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S1 Proof of lemma 1

For the sake of being self-contained, let us first restate both the functional

maximum likelihood estimator (MLE) problem and Lemma 1 in the main

body of the paper.

Functional MLE Problem: Given p ∈ (0, 1) and the n observed data

vector (xi, yi)’s, find the real-valued probability mass function f(ui, vi) =

P(x = ui, Y = vi) for i = 1, 2, · · · that maximizes the likelihood function

Lp(f) =
n∏

i=1

f(xi, yi) (S1.1)
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subject to the constraints

f(ui, vi) ≥ 0,
∞∑
i=1

f(ui, vi) = 1, and
∞∑
i=1

I(u2
i + v2i > r2)f(ui, vi) = p.

(S1.2)

Lemma 1 solves this functional MLE problem:

Lemma 1. For a given p ∈ (0, 1) and assume m =
∑n

i=1 I(x
2
i + y2i > r2) ∈

[0, n]. For the functional MLE problem in (S1.1)-(S1.2), the maximum value

of likelihood function is given by

L∗
p = sup

f
Lp(f) = sup

f

n∏
i=1

f(xi, yi) =
( 1− p

n−m

)n−m( p
m

)m
, (S1.3)

where we adopt the classical notation ( b
a
)a = 1 whenever a = 0.

We are now provide a rigorous proof to Lemma 1. In the functional

MLE problem in (S1.1)-(S1.2), note that the likelihood function Lp(f) = 0

if at least one of f(xi, yi) = 0, and thus observed data (xi, yi)’s must be

on the support of the optimal probability mass function f . Without loss

of generality, we order the observed data (xi, yi) from largest to smallest

based on the values of x2
i + y2i (random ordering if there are ties), and

assume (ui, vi) = (xi, yi) for i = 1 · · · , n. By (S1.1) and the definition of

m =
∑n

i=1 I(x
2
i + y2i > r2), we have

m∑
i=1

f(xi, yi) +
∞∑

j=n+1

I(u2
j + v2j > r2)f(uj, vj) = p
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n∑
i=m+1

f(xi, yi) +
∞∑

j=n+1

I(u2
j + v2j ≤ r2)f(uj, vj) = 1− p. (S1.4)

Let wi = f(xi, yi) for i = 1 · · · , n. Maximizing (S1.1) is equivalent to max-

imizing two sub-problems simultaneously:

max
m∏
i=1

wi subject to
m∑
i=1

wi ≤ p, min
1≤i≤m

wi ≥ 0,

max
n∏

i=m+1

wi subject to
n∑

i=m+1

wi ≤ 1− p, min
m+1≤i≤n

wi ≥ 0.

(S1.5)

We claim that the optimal solutions for (S1.5) are wi = p/m for i =

1, · · · ,m and wi = (1− p)/(n−m) for i = m+ 1, · · · , n.

To see this, let us focus on the case of i = 1, · · · ,m, and we first show

that the optimized values wi must be identical. Assume a pair wi and wj

were different. Define w′
i = w′

j = (wi + wj)/2. Then w′
i + w′

j = wi + wj

but w′
iw

′
j − wiwj = (wi − wj)

2/4 > 0. Thus if we replace wi and wj by

w′
i = w′

j = (wi + wj)/2, we maintain the overall sum and increase the

overall product. Hence, the product must be maximized when all wi’s are

equal to w for i = 1 · · · ,m.

Next, for a given integer m ∈ [0, n], the first optimization problem in

(S1.5) becomes the problem of maximizing wm subject to 0 ≤ w ≤ p/m,

which is attained at w = p/m. This shows that the optimized wi = p/m

for i = 1, · · · ,m. Likewise, for the second optimization problem in (S1.5),

the optimized wi = (1− p)/(n−m) for i = m+1, · · · , n. Combining these
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results together yields (S1.3), completing the proof of Lemma 1.

S2 Proof of Theorem 1

For completeness, we restate the notation and results of Theorem 1 in the

main body of the paper. For the bivariate data (Xi, Yi) for i = 1, · · · , n with

distribution f , when testing H0 : f = f0 ∈ Ω0 against H1 : f = f1 ∈ Ω1,

the generalized likelihood ratio (GLR) test statistic is defined as

Gn =
supf1∈Ω1

∏n
i=1 f1(Xi, Yi)

supf0∈Ω0

∏n
i=1 f0(Xi, Yi)

. (S2.1)

Meanwhile, define the binary quantizer variable

Zi = 1{X2
i + Y 2

i > r2}, i = 1, . . . , n. (S2.2)

and the corresponding the likelihood ratio test statistic is given by

Ln =
n∏

i=1

(1− p1
1− p0

)1−Zi
(p1
p0

)Zi

. (S2.3)

Theorem 1 asserts that Gn = Ln. By Lemma 1, we have proved Theo-

rem 1 under the discrete case in the main body of the paper. To be more

specific, by Lemma 1, the GLR statistic Gn in (S2.1),

Gn =
L∗
p1

L∗
p0

=
(1− p1
n−m

)n−m(p1
m

)m(n−m

1− p0

)n−m(m
p0

)m
=

(1− p1
1− p0

)n−m(p1
p0

)m
,
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which is the same as Ln in (S2.3), sincem =
∑n

i=1 I(x
2
i+y2i > r2) =

∑n
i=1 Zi

by the definition of Zi in (S2.2).

below we provide a detailed proof of Theorem 1 under the continu-

ous case with pdf f(u, v). The key idea is to add a small neighborhood

of (xi, yi) and then apply Lemma 1 to the discrete probabilities of those

small neighborhoods. While the areas of those small neighborhoods affect

the maximum likelihood functions L∗
p0
(f) and L∗

p1
(f) themselves, they are

canceled out in the ratios, and thus do not affect the GLR statistic Gn in

(S2.1). To be more concrete, denote by Bϵ(xi, yi) a small neighborhood of

(xi, yi) and denoted its area by µ(Bϵ(xi, yi)). By the definition of the pdf,

we have

f(xi, yi) = lim
ϵ→0

Pf ((u, v) ∈ Bϵ(xi, yi))

µ(Bϵ(xi, yi))
.

and thus

Lp(f) =
n∏

i=1

f(xi, yi) = lim
ϵ→0

∏n
i=1 Pf ((u, v) ∈ Bϵ(xi, yi))∏n

i=1 µ(Bϵ(xi, yi))
.

The results follow directly by applying Lemma 1 to the corresponding dis-

crete likelihood

Lp(fϵ) =
n∏

i=1

Pf ((u, v) ∈ Bϵ(xi, yi)).

since the term
∏n

i=1 µ(Bϵ(xi, yi)) does not affect ratios. Of course, to be

more rigorous in the application of Lemma 1, the neighborhood Bϵ(xi, yi)
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should be chosen to satisfy (1) u2 + v2 ≤ r2 for any (u, v) ∈ Bϵ(xi, yi)

when x2
i + y2i ≤ r2, and (2) u2 + v2 > r2 for any (u, v) ∈ Bϵ(xi, yi) when

x2
i + y2i > r2. This completes the proof of Theorem 1.
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