Optimal Robust Sequential Tests of Circular Nonconforming Probability

Qunzhi Xu and Yajun Mei

Department of Biostatistics

School of Global Public Health, New York University

Supplementary Material

S1 Proof of lemma 1

For the sake of being self-contained, let us first restate both the functional maximum likelihood estimator (MLE) problem and Lemma 1 in the main body of the paper.

Functional MLE Problem: Given $p \in (0, 1)$ and the n observed data vector (x_i, y_i) 's, find the real-valued probability mass function $f(u_i, v_i) = \mathbf{P}(x = u_i, Y = v_i)$ for $i = 1, 2, \cdots$ that maximizes the likelihood function

$$L_p(f) = \prod_{i=1}^{n} f(x_i, y_i)$$
 (S1.1)

subject to the constraints

$$f(u_i, v_i) \ge 0$$
, $\sum_{i=1}^{\infty} f(u_i, v_i) = 1$, and $\sum_{i=1}^{\infty} I(u_i^2 + v_i^2 > r^2) f(u_i, v_i) = p$.

(S1.2)

Lemma 1 solves this functional MLE problem:

Lemma 1. For a given $p \in (0,1)$ and assume $m = \sum_{i=1}^{n} I(x_i^2 + y_i^2 > r^2) \in [0,n]$. For the functional MLE problem in (S1.1)-(S1.2), the maximum value of likelihood function is given by

$$L_p^* = \sup_f L_p(f) = \sup_f \prod_{i=1}^n f(x_i, y_i) = \left(\frac{1-p}{n-m}\right)^{n-m} \left(\frac{p}{m}\right)^m,$$
 (S1.3)

where we adopt the classical notation $(\frac{b}{a})^a = 1$ whenever a = 0.

We are now provide a rigorous proof to Lemma 1. In the functional MLE problem in (S1.1)-(S1.2), note that the likelihood function $L_p(f) = 0$ if at least one of $f(x_i, y_i) = 0$, and thus observed data (x_i, y_i) 's must be on the support of the optimal probability mass function f. Without loss of generality, we order the observed data (x_i, y_i) from largest to smallest based on the values of $x_i^2 + y_i^2$ (random ordering if there are ties), and assume $(u_i, v_i) = (x_i, y_i)$ for $i = 1 \cdots, n$. By (S1.1) and the definition of $m = \sum_{i=1}^n I(x_i^2 + y_i^2 > r^2)$, we have

$$\sum_{i=1}^{m} f(x_i, y_i) + \sum_{j=n+1}^{\infty} I(u_j^2 + v_j^2 > r^2) f(u_j, v_j) = p$$

$$\sum_{i=m+1}^{n} f(x_i, y_i) + \sum_{j=n+1}^{\infty} I(u_j^2 + v_j^2 \le r^2) f(u_j, v_j) = 1 - p. \quad (S1.4)$$

Let $w_i = f(x_i, y_i)$ for $i = 1 \cdots, n$. Maximizing (S1.1) is equivalent to maximizing two sub-problems simultaneously:

$$\max \prod_{i=1}^{m} w_i \text{ subject to } \sum_{i=1}^{m} w_i \le p, \quad \min_{1 \le i \le m} w_i \ge 0,$$

$$\max \prod_{i=m+1}^{n} w_i \text{ subject to } \sum_{i=m+1}^{n} w_i \le 1 - p, \quad \min_{m+1 \le i \le n} w_i \ge 0.$$
(S1.5)

We claim that the optimal solutions for (S1.5) are $w_i = p/m$ for $i = 1, \dots, m$ and $w_i = (1-p)/(n-m)$ for $i = m+1, \dots, n$.

To see this, let us focus on the case of $i=1,\dots,m$, and we first show that the optimized values w_i must be identical. Assume a pair w_i and w_j were different. Define $w_i' = w_j' = (w_i + w_j)/2$. Then $w_i' + w_j' = w_i + w_j$ but $w_i'w_j' - w_iw_j = (w_i - w_j)^2/4 > 0$. Thus if we replace w_i and w_j by $w_i' = w_j' = (w_i + w_j)/2$, we maintain the overall sum and increase the overall product. Hence, the product must be maximized when all w_i 's are equal to w for $i = 1 \dots, m$.

Next, for a given integer $m \in [0, n]$, the first optimization problem in (S1.5) becomes the problem of maximizing w^m subject to $0 \le w \le p/m$, which is attained at w = p/m. This shows that the optimized $w_i = p/m$ for $i = 1, \dots, m$. Likewise, for the second optimization problem in (S1.5), the optimized $w_i = (1-p)/(n-m)$ for $i = m+1, \dots, n$. Combining these

results together yields (S1.3), completing the proof of Lemma 1.

S2 Proof of Theorem 1

For completeness, we restate the notation and results of Theorem 1 in the main body of the paper. For the bivariate data (X_i, Y_i) for $i = 1, \dots, n$ with distribution f, when testing $H_0: f = f_0 \in \Omega_0$ against $H_1: f = f_1 \in \Omega_1$, the generalized likelihood ratio (GLR) test statistic is defined as

$$G_n = \frac{\sup_{f_1 \in \Omega_1} \prod_{i=1}^n f_1(X_i, Y_i)}{\sup_{f_0 \in \Omega_0} \prod_{i=1}^n f_0(X_i, Y_i)}.$$
 (S2.1)

Meanwhile, define the binary quantizer variable

$$Z_i = \mathbf{1}\{X_i^2 + Y_i^2 > r^2\}, \quad i = 1, \dots, n.$$
 (S2.2)

and the corresponding the likelihood ratio test statistic is given by

$$L_n = \prod_{i=1}^n \left(\frac{1-p_1}{1-p_0}\right)^{1-Z_i} \left(\frac{p_1}{p_0}\right)^{Z_i}.$$
 (S2.3)

Theorem 1 asserts that $G_n = L_n$. By Lemma 1, we have proved Theorem 1 under the discrete case in the main body of the paper. To be more specific, by Lemma 1, the GLR statistic G_n in (S2.1),

$$G_n = \frac{L_{p_1}^*}{L_{p_0}^*} = \left(\frac{1-p_1}{n-m}\right)^{n-m} \left(\frac{p_1}{m}\right)^m \left(\frac{n-m}{1-p_0}\right)^{n-m} \left(\frac{m}{p_0}\right)^m$$
$$= \left(\frac{1-p_1}{1-p_0}\right)^{n-m} \left(\frac{p_1}{p_0}\right)^m,$$

which is the same as L_n in (S2.3), since $m = \sum_{i=1}^n I(x_i^2 + y_i^2 > r^2) = \sum_{i=1}^n Z_i$ by the definition of Z_i in (S2.2).

below we provide a detailed proof of Theorem 1 under the continuous case with pdf f(u, v). The key idea is to add a small neighborhood of (x_i, y_i) and then apply Lemma 1 to the discrete probabilities of those small neighborhoods. While the areas of those small neighborhoods affect the maximum likelihood functions $L_{p_0}^*(f)$ and $L_{p_1}^*(f)$ themselves, they are canceled out in the ratios, and thus do not affect the GLR statistic G_n in (S2.1). To be more concrete, denote by $B_{\epsilon}(x_i, y_i)$ a small neighborhood of (x_i, y_i) and denoted its area by $\mu(B_{\epsilon}(x_i, y_i))$. By the definition of the pdf, we have

$$f(x_i, y_i) = \lim_{\epsilon \to 0} \frac{\mathbf{P}_f((u, v) \in B_{\epsilon}(x_i, y_i))}{\mu(B_{\epsilon}(x_i, y_i))}.$$

and thus

$$\mathcal{L}_p(f) = \prod_{i=1}^n f(x_i, y_i) = \lim_{\epsilon \to 0} \frac{\prod_{i=1}^n \mathbf{P}_f((u, v) \in B_{\epsilon}(x_i, y_i))}{\prod_{i=1}^n \mu(B_{\epsilon}(x_i, y_i))}.$$

The results follow directly by applying Lemma 1 to the corresponding discrete likelihood

$$\mathcal{L}_p(f_{\epsilon}) = \prod_{i=1}^n \mathbf{P}_f((u, v) \in B_{\epsilon}(x_i, y_i)).$$

since the term $\prod_{i=1}^{n} \mu(B_{\epsilon}(x_i, y_i))$ does not affect ratios. Of course, to be more rigorous in the application of Lemma 1, the neighborhood $B_{\epsilon}(x_i, y_i)$

should be chosen to satisfy (1) $u^2 + v^2 \le r^2$ for any $(u, v) \in B_{\epsilon}(x_i, y_i)$ when $x_i^2 + y_i^2 \le r^2$, and (2) $u^2 + v^2 > r^2$ for any $(u, v) \in B_{\epsilon}(x_i, y_i)$ when $x_i^2 + y_i^2 > r^2$. This completes the proof of Theorem 1.