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S1 Proof of lemma 1

For the sake of being self-contained, let us first restate both the functional
maximum likelihood estimator (MLE) problem and Lemma 1 in the main
body of the paper.

Functional MLE Problem: Given p € (0, 1) and the n observed data

vector (z;,y;)’s, find the real-valued probability mass function f(u;,v;) =

Pz =w;,Y =v;) for i =1,2,--- that maximizes the likelihood function

Ly(f) = H f(@iyi) (S1.1)
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subject to the constraints

f(uhvi) > 07 Z f(ula vi) = 17 and ZI(U? + vz’2 > Tz)f(uhvi) =Dp.
=1 1=1
(S1.2)

Lemma 1 solves this functional MLE problem:

Lemma 1. For a given p € (0,1) and assume m =Y ;. I(z?4+y? > r?) €
[0,n]. For the functional MLE problem in -(S1.3), the mazimum value

of likelihood function is given by

Ly =sup Ly(f) = Sl;pr(xi,yi) — (L2 )n_m(%)m, (S1.3)

n—m

where we adopt the classical notation (%)“ = 1 whenever a = 0.

We are now provide a rigorous proof to Lemma [I] In the functional
MLE problem in (S1.1)-(S1.2), note that the likelihood function L,(f) = 0
if at least one of f(x;,y;) = 0, and thus observed data (x;,¥;)’s must be
on the support of the optimal probability mass function f. Without loss
of generality, we order the observed data (x;,y;) from largest to smallest
based on the values of z7 + y? (random ordering if there are ties), and
assume (u;,v;) = (x;,y;) for i = 1--- n. By and the definition of

m =y I(x] +y; > r?), we have

m o0

Zf(xi,yi) + Z I} + v > r®) f(ug,0;) = p

i=1 j=n+1
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S flany)+ > I(u + 0] <) fuy,vy) =1—p. (S14)

i=m+1 j=n+1

Let w; = f(zy,y;) for i = 1---  n. Maximizing (S1.1]) is equivalent to max-

imizing two sub-problems simultaneously:

m m
mawai subject to Zwi <p, min w; >0,

1<i<m
i=1 i=1

" " (S1.5)
max H w; subject to Z w; <1 —p, min w; > 0.

Mttt = m+1<i<n
We claim that the optimal solutions for are w; = p/m for i =
1L,--+ymand w; = (1 —p)/(n—m) for it =m+1,--- ,n.

To see this, let us focus on the case of : = 1,--- ,m, and we first show
that the optimized values w; must be identical. Assume a pair w; and w;
were different. Define w; = w’ = (w; + w;)/2. Then w; + v} = w; + w;
but wjw; — w;w; = (w; — w;)*/4 > 0. Thus if we replace w; and w; by
w; = wj = (w; + w;)/2, we maintain the overall sum and increase the
overall product. Hence, the product must be maximized when all w;’s are
equal tow fori=1--- m.

Next, for a given integer m € [0,n], the first optimization problem in
becomes the problem of maximizing w™ subject to 0 < w < p/m,
which is attained at w = p/m. This shows that the optimized w; = p/m

for i =1,--- ,m. Likewise, for the second optimization problem in (S1.5]),

the optimized w; = (1 —p)/(n —m) for i = m+1,--- ,n. Combining these
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results together yields (S1.3)), completing the proof of Lemma 1}

S2 Proof of Theorem 1

For completeness, we restate the notation and results of Theorem 1 in the
main body of the paper. For the bivariate data (X;,Y;) fori =1,---  n with
distribution f, when testing Hy : f = fo € Qo against Hy : f = f1 € Qq,

the generalized likelihood ratio (GLR) test statistic is defined as

_ SUPpeq [T, Ai(X,,Y5)

G, = o . (52.1)
SUP f,e00 [Tim fo(Xi, Y2)
Meanwhile, define the binary quantizer variable
Zi=1UX}+Y2>r"}, i=1,...,n (S2.2)

and the corresponding the likelihood ratio test statistic is given by

n

L= (1 _p1>1_zi <&>Zi. (52.3)

7 M=o Do

Theorem 1 asserts that GG, = L,,. By Lemma [l we have proved Theo-
rem 1 under the discrete case in the main body of the paper. To be more
specific, by Lemma , the GLR statistic G,, in (S2.1]),

L I —pi\n-m P1\m M — M\n—m, Mym
Gn = —pl = —_— —_— I
L;;O (n—m) (m) (1—p0) po)

. 1—p1 n—m ]2 m
(1—1?0) (po)

Y
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which is the same as L,, in (52.3), sincem = Y1 | I(z24y? > r?) =31, Z;
by the definition of Z; in (52.2)).

below we provide a detailed proof of Theorem 1 under the continu-
ous case with pdf f(u,v). The key idea is to add a small neighborhood
of (z;,y;) and then apply Lemma || to the discrete probabilities of those
small neighborhoods. While the areas of those small neighborhoods affect
the maximum likelihood functions Ly (f) and Ly (f) themselves, they are
canceled out in the ratios, and thus do not affect the GLR statistic G,, in
(S2.1). To be more concrete, denote by B.(x;,y;) a small neighborhood of
(x;,y;) and denoted its area by pu(B.(z;,;)). By the definition of the pdf,

we have

5 Yi) = lim P;((u,v) € Be(wi, 4i))
f($“yz) 1*)0 M(Be(x“yZ» .

and thus

_ - ) = lim [1im, Pr((u,v) € Be(wi, 1))
&0 =1Lt = = )

The results follow directly by applying Lemma [1| to the corresponding dis-

crete likelihood

‘Cp(fﬁ) = HPf((u’U) S Be(%a%))'

since the term [, u(Be(z;,v;)) does not affect ratios. Of course, to be

more rigorous in the application of Lemma , the neighborhood Bc(z;,y;)
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should be chosen to satisfy (1) u? + v*> < r? for any (u,v) € B(zs,y;)
when 2? + y? < r?, and (2) u® +v* > r? for any (u,v) € B.(z;,y;) when

7

x? 4+ y? > r?. This completes the proof of Theorem 1.
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