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The proofs of Theorems 1, 2 and 3 are provided in Section S1. The sufficient conditions for

QM* and several loss functions that satisfy QM* are presented in Section S2. The stopping

criteria for the FCR and GFCR algorithms are discussed in S3. Additional details and results

of numerical experiments and NHANES data analysis are given in Sections S5, and S6.

S1 Proofs of Theorems

For the references from the main article, we add the character ‘m’ before

the number such as (1) for Equation (1) in the main article.

S1.1 Proof of Theorem 1

Proof. Define the loss function as

L(β1, . . . , βp) :=
1

2n
∥y −Xβ∥22.

Observe that
∑p

k=1 ckI(β
†
k) ≤ C is true by the definition of β†.

Let β†
j ∈ I†. Since (β†

1, · · · , β
†
j−1, t, β

†
j+1, β

†
p) ∈ C for all t ∈ R we have

β†
j = argmin

t∈R
L(β†

1, . . . , β
†
j−1, t, β

†
j+1, . . . , β

†
p).
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By simple algebra, we have

β†
j = argmin

t∈R

1

2n
∥y −Xβ† − (t− β†

j )Xj∥22

= argmin
t∈R

[
∥Xj∥22
2n

(t− β†
j )

2 − 1

n
(t− β†

j )X
⊤
j (y −Xβ†)

]
= argmin

t∈R

[
t−
(
β†
j +

1

∥Xj∥22
X⊤

j (y −Xβ†)
)]2

. (S1.1)

Hence, we have β†
j = β†

j +
1

∥Xj∥22
X⊤

j (y −Xβ†).

Now, let β†
j /∈ I†. If the perturbation t of β†

j violates the constraints,

i.e.
∑

k ̸=j ckI(β
†
k) ≤ C, but

∑
k ̸=j ckI(β

†
k) + cj > C, then the minimizer is

t = 0. Otherwise, (β†
1, · · · , β

†
j−1, t, β

†
j+1, β

†
p) ∈ C for all t ∈ R, and hence the

following holds, by the definition of β†,

0 = argmin
t∈R

L(β†
1, . . . , β

†
j−1, t, β

†
j+1, . . . , β

†
p).

This completes the first argument. For the second argument, we notice

β† = argmin
(t1,··· ,tp)∈C

[
L(t1, β

†
2, . . . , β

†
p) + L(β†

1, t2, . . . , β
†
p) + · · ·+ L(β†

1, β
†
2, . . . , tp)

]
(S1.2)

= argmin
(t1,··· ,tp)∈C

p∑
j=1

[
tj −

(
β†
j +

1

∥Xj∥22
X⊤

j (y −Xβ†)
)]2

,

which ends the proof. The first equality (S1.2) holds from proof of contra-

diction. Let t† ̸= β† be solution that satisfies (S1.2). Then,

p∑
j=1

L(β†
1, . . . , t

†
k, . . . , β

†
p) ≤ pL(β†

1, . . . , β
†
p). (S1.3)



S1. PROOFS OF THEOREMS

However, for any t†k such that L(β†
1, . . . , t

†
k, . . . , β

†
p) ≤ L(β†

1, . . . , β
†
k, . . . , β

†
p),

t†k = β†
k due to the definition of β†

k. Contrapositive of the statement implies

that

if t†k ̸= β†
k, then L(β†

1, . . . , t
†
k, . . . , β

†
p) > L(β†

1, . . . , β
†
k, . . . , β

†
p).

Since there exists at least one k ∈ {1, 2, . . . , p} such that t†k ̸= β†
k, it contra-

dicts (S1.3).

S1.2 Proof of Theorem 2

Proof. Define β†
−j(t) = (β†

1, . . . , β
†
j−1, t, β

†
j+1, . . . , β

†
p) and observe that

∑p
k=1 ckI(β

†
k) ≤

C holds by the definition of β†.

Let β†
j ∈ I†. Since (β†

1, · · · , β
†
j−1, t, β

†
j+1, β

†
p) ∈ C for all t ∈ R we have

β†
j = argmin

t∈R
L(β†

1, . . . , β
†
j−1, t, β

†
j+1, . . . , β

†
p)

= argmin
t∈R

Q(β†
−j(t),β

†).

The second equality comes from (2.12). It leads us to get

β†
j = argmin

t∈R
Q(β†

−j(t),β
†)

= argmin
t∈R

∥X̃β†
−j(t)− X̃β† + g∥22

= argmin
t∈R

∥X̃⊤
j (t− β†

j ) + g∥22

= argmin
t∈R

[
t− (β†

j +
1

∥X̃j∥22
X̃⊤

j g)

]2
.
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Therefore, we have β†
j = β†

j +
1

∥X̃j∥22
X̃⊤

j g. Now, let β†
j /∈ I†. If the per-

turbation t of β†
j violates the constraints, that is,

∑
k ̸=j ckI(β

†
k) ≤ C,

but
∑

k ̸=j ckI(β
†
k) + cj > C, then the minimizer is t = 0. Otherwise,

(β†
1, · · · , β

†
j−1, t, β

†
j+1, β

†
p) ∈ C for all t ∈ R, and hence the following holds,

by the definition of β†,

0 = argmin
t∈R

L(β†
1, . . . , β

†
j−1, t, β

†
j+1, . . . , β

†
p)

= argmin
t∈R

Q(β†
−j(t),β

†).

This completes the first argument. For the second argument, as similar in

the case in Theorem 1,

β† = argmin
t1,··· ,tp, t∈C

[
Q((t1, β

†
2, . . . , β

†
p),β

†) +Q((β†
1, t2, . . . , β

†
p),β

†) + · · ·+Q((β1, β
†
2, . . . , tp),β

†)
]

= argmin
t1,··· ,tp, t∈C

p∑
j=1

[
tj −

(
β†
j +

1

∥Xj∥22
X⊤

j (y −Xβ†)
)]2

,

which ends the proof. The first equality follows from the exactly same

argument in the proof of Theorem 1.

S1.3 Proof of Theorem 3

For the proof of Theorem 3, we introduce notation. We denote the subma-

trices with the index set I by XI ∈ Rn×|I|. The subvector of a vector β

with index set I is denoted by βI ∈ R|I|. We denote a sparse vector by

β|I ∈ Rp where (β|I)j = βj1(j ∈ I).
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We use technical lemmas from Huang et al. (2018) without any proof.

Lemma 1 (Lemmas 20, 21, and 22 (Huang et al., 2018)). Let I,J be

disjoint subsets of {1, 2, . . . , p} with |I| = s1 and |J | = s2. Assume X ∼

SRC(s1 + s2, b−(s1 + s2), b+(s1 + s2)). Let θs1,s2 be the sparse orthogonality

constant. Then we have

nb−(s1) ≤ ∥X⊤
IXI∥2 ≤ nb+(s1), (S1.4)

1

nb−(s1)
≤ ∥(X⊤

IXI)
−1∥2 ≤

1

nb+(s1)
, (S1.5)

∥X⊤
I ∥2 ≤

√
nb+(s1), (S1.6)

θs1,s2 ≤ max((b+(s1 + s2)− 1), (1− b−(s1 + s2)), (S1.7)

P
(
max
|I|≤s

∥X⊤
I ζ∥2 ≤ σ

√
s
√

2 log(p/α)n

)
≥ 1− 2α. (S1.8)

We now define some notation that will be useful in proving Theorem 3.

First,

h(q) := max
|I|≤q

∥X⊤
I ζ̄∥2
n

, (S1.9)

where ζ̄ := X(βtrue − β∗) + ζ. For simplicity, let J ∗ = (I∗)c. Let Ik be

the sequence of active sets generated by FCR (Algorithm 1). We define the

two measures of interest to bound

D2(Ik) := ∥β∗|I∗\Ik∥2, and ∆k := βk+1 − β∗|Ik .
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We then define several sets of our interest at the k-th iteration

Ik
1 := Ik ∩ I∗, Ik

2 := I∗ \ Ik, J k
3 := Ik ∩ J ∗, J k

4 := J ∗ \ J k
3 ,

and (k + 1)-th iteration

Ik
11 := Ik

1 \ Ik+1, Ik
22 := Ik

2 \ Ik+1, J k
33 := Ik+1 ∩ J k

3 , J k
44 := Ik+1 ∩ J k

4 .

Lemma 2. Suppose |Ik| ≤ q. If X ∼ SRC(q, b−(q), b+(q)), we have

∥βk+1 − β∗∥2 ≤
(
1 +

θq,q
b−(q)

)
D2(Ik) +

h(q)

b−(q)
, (S1.10)

∥∆k∥2 ≤
θq,q
b−(q)

∥β∗|Ik
2
∥2 +

h(q)

b−(q)
. (S1.11)

Proof of Lemma 2. We have

βk+1
Ik = (X⊤

IkXIk)−1X⊤
Iky

= (X⊤
IkXIk)−1X⊤

Ik(XIk
1
β∗

Ik
1
+XIk

2
β∗

Ik
2
+ ζ̄), (S1.12)

(β∗|Ik)Ik = (X⊤
IkXIk)−1X⊤

IkXIk(β∗|Ik)Ik

= (X⊤
IkXIk)−1X⊤

Ik(XIk
1
β∗

Ik
1
), (S1.13)

where the first equality uses the definition of βk+1 and the third equality is
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from simple algebra. Therefore,

∥∆k∥2 = ∥βk+1
Ik − (β∗|Ik)Ik∥2

= ∥(X⊤
IkXIk)−1X⊤

Ik(XIk
2
β∗

Ik
2
+ ζ̄)∥2

≤ 1

nb−(q)

(
∥X⊤

IkXIk
2
β∗

Ik
2
∥2 + ∥X⊤

Ik ζ̄∥2
)

≤ θq,q
b−(q)

∥β∗|Ik
2
∥2 +

h(q)

b−(q)

=
θq,q
b−(q)

D2(Ik) +
h(q)

b−(q)
,

where the first equality uses supp(βk+1) = Ik, the second inequality follows

from (S1.12) and (S1.13). The first inequality comes from (S1.5) and the

triangle inequality, and the second inequality follows from the definition of

θa,b, and h2(q), which completes the proof of (S1.11). The third equality

follows from the definition of D2(Ik) . Then the triangle inequality ∥βk+1−

β∗∥2 ≤ ∥βk+1 − β∗|Ik∥2 + ∥β∗ |I∗\Ik ∥2 and (S1.11) implies (S1.10).

Lemma 3.

D2(Ik+1) ≤ ∥β∗
Ik
11
∥2 + ∥β∗

Ik
22
∥2, (S1.14)

∥β∗
Ik
11
∥2 ≤ ∥∆k

Ik
11
∥2 + ∥βk+1

Ik
11
∥2, (S1.15)

∥β∗
Ik
22
∥2 ≤

∥dk+1
Ik
22
∥2 + θq,q∥∆k

Ik∥2 + θq,qD2(Ik) + h(q)

b−(q)
, if X ∼ SRC(q, b−(q), b+(q)).

(S1.16)
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Proof. By the definition of D2(Ik), we have

D2(Ik) = ∥β∗|Ik
2
= ∥β∗|Ik

11∪· Ik
22
∥2 ≤ ∥β∗

Ik
11
∥2 + ∥β∗

Ik
22
∥2,

which prove (S1.14). Also, using ∆k = βk+1 − β∗|Ik , we have

∥βk+1
Ik
11
∥2 = ∥

(
β∗|Ik

)
Ik
11
+∆k

Ak
11
∥2 ≥ ∥β∗

Ik
11
∥2 − ∥∆k

Ak
11
∥2,

which prove (S1.15). For (S1.16), we consider

∥dk+1
Ik
22
∥2 = ∥X⊤

Ik
22

(
XIkβk+1

Ik − y
)
/n∥2

= ∥X⊤
Ik
22

(
XIk∆k

Ik +XIkβ∗
Ik −XI∗β∗

I∗ − ζ̄
)
/n∥2

= ∥X⊤
Ik
22

(
XIk∆k

Ik −XIk
22
β∗

Ik
22
−XIk

2 \Ik
22
β∗

Ik
2 \Ik

22
− ζ̄
)
/n∥2

≥ b−(|Ik
22|)∥β∗

Ik
22
∥2 − θ|Ik

22|,q∥∆
k
Ik∥2 − θ|Ik

2 |,|Ik
2 \Ik

22|∥β
∗
Ik
2 \Ik

22
∥2 − ∥X⊤

Ik
22
ζ̄/n∥2

≥ b−(q)∥β∗
Ik
22
∥2 − θq,q∥∆k

Ik∥2 − θq,qD2(Ik)− h(q),

where the first equality uses the definition of dk+1, and the third equality

follows from simple algebra. The first inequality uses (S1.4), and the def-

inition of θs1,s2 . The last inequality follows from the definition of h(·) and

the monotonicity of b−(·). This completes the proof.

Lemma 4.

∥βk+1
Ik
11
∥2 + ∥dk+1

Ik
22
∥2 ≤

√
2
(
∥βk+1

J k
33
∥2 + ∥dk+1

J k
44
∥2
)
. (S1.17)

Proof of lemma 4. For inequality (S1.17), we first notice the relationship
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between the true index set and the k-th index set from the knapsack algo-

rithm such that

∥(βk+1 + dk+1)Ik+1∥22 ≥ ∥(βk+1 + dk+1)I∗∥22.

Reducing the contribution of Ik+1 ∩ I∗, we obtain

∥(βk+1 + dk+1)Ik+1\I∗∥22 ≥ ∥(βk+1 + dk+1)I∗\Ik+1∥22. (S1.18)

Since βk
j d

k
j = 0 for j ∈ {1, . . . , p},∀k ≥ 1 , the both side of (S1.18) can be

decomposed. We have

∥βk+1
Ik+1\I∗∥22 + ∥dk+1

Ik+1\I∗∥22 ≥ ∥βk+1
I∗\Ik+1∥22 + ∥dk+1

I∗\Ik+1∥22. (S1.19)

We obtain

∥dk+1
Ik
22
∥22 = ∥dk+1

I∗\Ik\Ik+1∥22

= ∥dk+1
I∗\Ik+1∥22

≤ ∥βk+1
Ik+1\I∗∥22 + ∥dk+1

Ik+1\I∗∥22 − ∥βk+1
I∗\Ik+1∥22

≤ ∥βk+1
J k
44
∥22 + ∥βk+1

J k
33
∥22 + ∥dk+1

J k
44
∥22 + ∥dk+1

J k
33
∥22 − ∥βk+1

Ik
11
∥22.

The first equality comes from the definition of Ik
22, the second from the

property of FCR dk+1
Ik = 0, the third inequality from (S1.19). For the

fourth inequality, we use Ik+1 \I∗ = J k
44∪· J k

33 and Ik
11 ⊂ I∗ \Ik+1. We note

that βk+1
J k
44

= 0 and dk+1
J k
33

= 0 since J k
44 ∪ Ik = ∅ and J k

33 ⊂ Ik. It leads us
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to obtain

∥βk+1
Ik
11
∥22 + ∥dk+1

Ik
22
∥22 ≤ ∥βk+1

J k
33
∥22 + ∥dk+1

J k
44
∥22.

Therefore,

1

2

(
∥βk+1

Ik
11
∥2 + ∥dk+1

Ik
22
∥2
)2

≤
(
∥βk+1

Ik
11
∥22 + ∥dk+1

Ik
22
∥22
)

≤ ∥βk+1
J k
33
∥22 + ∥dk+1

J k
44
∥22

≤
(
∥βk+1

J k
33
∥2 + ∥dk+1

J k
44
∥2
)2

,

which completes the proof.

Lemma 5.

∥βk+1
J k
33
∥2 ≤ ∥∆k

J k
33
∥2. (S1.20)

Furthermore, We have

∥dk+1
J k
44
∥ ≤ θq,q∥∆k

Ik∥+ θq,qD2(Ik) + h(q), if X ∼ SRC(q, b−(q), b+(q)).

(S1.21)

Proof. The definition of ∆k gives

∥βk+1
J k
33
∥2 = ∥∆k

J k
33
+ β∗

J k
33
∥2 = ∥∆k

J k
33
∥2,

since β∗ vanishes on J k
33, which gives the inequality (S1.20). For inequality
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(S1.21), d in the FCR algorithm gives

∥dk+1
J k
44
∥ = ∥X⊤

J k
44

(
XIkβk+1

Ik − y
)
∥2

= ∥X⊤
Ik
22

(
XIk∆k

Ik +XIkβ∗
Ik −XI∗β∗

I∗ − ζ̄
)
∥2

= ∥X⊤
J k
44

(
XIk∆k

Ik −XIk
2
β∗

Ik
2
− ζ̄
)
∥2

≤ θ|J k
44|,q∥∆

k
Ik∥2 + θ|J k

44|,|Ik
2 |∥β

∗
Ik
2
∥2 + ∥X⊤

J k
44
ζ̄∥2

≤ θq,q∥∆k
Ik∥2 + θq,qD2(Ik) + h(q).

In the fourth inequality, we employ the definition of θs1,s2 , and in the fifth

inequality, we use its monotonicity property.

Lemma 6. If X ∼ SRC(q, b−(q), b+(q)), then

D2(Ik+1) ≤ rD2(Ik) +
r

θq,q
h(q). (S1.22)

Proof of Lemma 6.

D2(Ik+1) ≤
(
∥β∗

Ik
11
∥2 + ∥β∗

Ik
22
∥2
)
/b−(q)

≤
(
∥β∗

Ik
11
∥2 + ∥d∗

Ik
22
∥2 + ∥∆k

Ik
11
∥2 + θq,q∥∆k

Ik∥2 + θq,qD2(Ik) + h(q)
)
/b−(q)

≤
(√

2(∥βk+1
J k
33
∥2 + ∥dk+1

J k
44
∥2) + ∥∆k

Ik
11
∥2 + θq,q∥∆k

Ik∥+ θq,qD2(Ik) + h(q)
)
/b−(q)

≤
(
(
√
2 + (1 +

√
2)θq,q)∥∆k∥2 + (1 +

√
2)θq,qD2(Ik) + (1 +

√
2)h(q)

)
/b−(q)

≤
(√2θq,q + (1 +

√
2)θ2q,q

b−(q)2
+

(1 +
√
2)θq,q

b−(q)

)
D2(Ik)

+
(√2 + (1 +

√
2)θq,q

b−(q)2
+

1 +
√
2

b−(q)

)
h(q).
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The initial inequality is derived from equation (S1.14), the subsequent in-

equality is a result of referencing equations (S1.15) and (S1.16), the third

inequality is obtained by referring to equation (S1.17), the fourth inequality

is established by combining the sums of equations (S1.20) and (S1.21), and

the final inequality is derived from equation (S1.11).

Lemma 7. Let β∗ be the solution for the optimization problem (1.1). Then,

we have

∥β∗ − βtrue∥2 ≤

√
b+(p0)

b−(p0 + q)
∥β̄ − βtrue∥2.

Proof. First, we note that when the loss function is l2, the optimization

problem (1.1) is equivalent to

min
β

(β − βtrue)⊤Σ(β − βtrue), (S1.23)

where Σ = Ex[xx
⊤] is a p × p matrix by equation (3) in Yu et al. (2022).

Let us define the nonzero index set of βtrue

I0 := {1, 2, . . . , p0}.

Then, from

b−(p0 + q) · I ≤ X⊤
I∗∪I0XI∗∪I0 ≤ b+(p0 + q) · I

b−(p0) · I ≤ X⊤
I0XI0 ≤ b+(p0) · I,
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taking the expectation at both side will give

1

n− 1
b−(p0 + q) · I ≤ ΣI∗∪I0 ≤

1

n− 1
b+(p0 + q) · I, (S1.24)

1

n− 1
b−(p0) · I ≤ ΣI0 ≤

1

n− 1
b+(p0) · I. (S1.25)

where ΣI is the |I| × |I| sub-matrix. Then we have

b−(p0 + q)∥β∗ − βtrue∥22 ≤ (β∗ − βtrue)⊤I∗∪I0ΣI∗∪I0(β
∗ − βtrue)I∗∪I0

≤ (β∗ − βtrue)⊤Σ(β∗ − βtrue)

≤ (β̄ − βtrue)⊤Σ(β̄ − βtrue)

≤ (β̄ − βtrue)⊤I0ΣI0(β̄ − βtrue)I0

≤ b+(p0)∥βtrue − β̄∥22.

The first inequality follows from (S1.24), the second and fourth from simple

algebra, the third from (S1.23), and the final from (S1.25). This completes

the proof.

Lemma 8. With probability 1− 2α, we have

h(q) ≤

√
b+(q)b+(p0)b+(p0 + q)

b−(p0 + q)
∥βtrue − β̄∥2 + σ

√
2q log(p/α)

n
. (S1.26)

Proof. By the definition of h(q) in (S1.9)

h(q) ≤ max
|I|≤q

∥X⊤
IX(βtrue − β∗)∥2

n
+max

|I|≤q

∥X⊤
I ζ∥2
n

. (S1.27)
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As for the first term of (S1.27), we have

max
|I|≤q

∥X⊤
IX(βtrue − β∗)∥2

n
≤ max

|I|≤q

∥X⊤
I ∥2∥X(βtrue − β∗)∥2

n

≤
√
b+(q)

∥XI∗∪I0(β
true − β∗)I∗∪I0∥2√

n

≤
√
b+(q)b+(p0 + q)∥βtrue − β∗∥2

≤

√
b+(q)b+(p0)b+(p0 + q)

b−(p0 + q)
∥βtrue − β̄∥2.

The fourth inequality comes from Lemma 7. The second term of (S1.27)

gives

max
|I|≤q

∥X⊤
I ζ∥2
n

≤ σ

√
2q log(p/α)

n
.

with probability at least 1− 2α by (S1.8), which completes the proof.

Proof of Theorem 3. Suppose r < 1. Using (S1.22) recursively,

∥β∗|I∗\Ik+1∥2 = D2(Ik+1) ≤ rD2(Ik) +
r

θq,q
h(q)

≤ · · ·

≤ rk+1D2(I0) +
r

(1− r)θq,q
h(q)

< rk+1∥β∗∥2 +
r

(1− r)θq,q
h(q). (S1.28)
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Now, we also have

∥βk+1 − β∗∥2 ≤
(
1 +

θq,q
b−(q)

)
D2(Ik) +

h(q)

b−(q)

≤
(
1 +

θq,q
b−(q)

)(
rk∥β∗∥2 +

r

(1− r)θq,q
h(q)

)
+

h(q)

b−(q)

=
(
1 +

θq,q
b−(q)

)
rk∥β∗∥2 +

(
r

(1− r)θq,q

(
1 +

θq,q
b−(q)

)
+

1

b−(q)

)
h(q).

(S1.29)

The initial inequality is a result of referencing equation (S1.10), the subse-

quent inequality is derived from the definition of D2(Ik), and the third line

is the outcome of some algebraic calculation.

Hence, from equations (S1.28) and (S1.29), with probability 1− 2α,

∥β∗|I∗\Ik+1∥2 ≤ rk+1∥β∗∥2 +
r

(1− r)θq,q

√
b+(q)b+(p0)b+(p0 + q)

b−(p0 + q)
∥βtrue − β̄∥2

+
r

(1− r)θq,q
ϵ,

and

∥βk+1 − β∗∥2 ≤
(
1 +

θq,q
b−(q)

)
rk∥β∗∥2 +

(
r

(1− r)θq,q

(
1 +

θq,q
b−(q)

)
+

1

b−(q)

)
h(q)

≤
(
1 +

θq,q
b−(q)

)
rk∥β∗∥2

+

(
r

(1− r)θq,q

(
1 +

θq,q
b−(q)

)
+

1

b−(q)

)√
b+(q)b+(p0)b+(p0 + q)

b−(p0 + q)
∥βtrue − β̄∥2

+

(
r

(1− r)θq,q

(
1 +

θq,q
b−(q)

)
+

1

b−(q)

)
ϵ.
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S1.4 Proof of Corollary 1

From the assumption that
∑p0

j=1 cjI(β
true
j ) ≤ C, we have, due to βtrue ∈ C,

RC := ∥β̄ − βtrue∥2 = 0.

Also, from (S1.23), β∗ = βtrue because (β∗ −βtrue)⊤Σ(β∗ −βtrue) ≥ 0 and

attains 0 when β∗ = βtrue. Equation (3.16) in the main article gives us

∥βk+1 − β∗∥2 ≤ b3r
k∥β∗∥2 + b4ϵ.

If k ≥ log1/r
b3∥β∗∥2

b4ϵ
, we have b3r

k∥β∗∥2 ≤ b4ϵ, which completes the first

argument.

Now, from (3.15) in the main article, we have

∥β∗|I∗\Ik∥2 ≤ rk∥β∗∥2 + b1ϵ

≤ (1− ξ)m̄+ b1ϵ if k ≥ log1/r
∥β∗∥2

(1− ξ)m̄

< (1− ξ)m̄+ ξm̄

≤ m̄.

Then, from ∥β∗|I∗\Ik∥2 < m̄, we have Ik ⊂ I∗.
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S2 The QM* condition

S2.1 Sufficient conditions

The following lemma characterizes a class of loss functions that satisfies the

QM* condition.

Lemma 9. Assume Φ(y, µ) is differentiable with respect to µ and write

Φ′
µ = ∂Φ(y,µ)

∂µ
. Then

∇L(β) =
1

n

n∑
i=1

Φ′
µ(yi,x

⊤
i β)xi.

(1) If Φ′
µ is Lipschitz continuous with constant C1 such that

|Φ′
µ(y, µ1)− Φ′

µ(y, µ2)| ≤ C1|µ1 − µ2| ∀ y, µ1, µ2 ∈ R,

then the QM* condition holds for H = 2C1

n
Ip.

(2) If Φ′′
µ = ∂Φ2(y,µ)

∂µ2 exists and

Φ′′
µ ≤ C2 ∀ y, µ ∈ R,

then the QM* condition holds for Φ and H = C2

n
.

S2.2 Examples

The function hsvmδ is defined in Yang and Zou (2015).
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Loss L(β) gi(β) H

Logistic

(-1, 1 loss)

1
n

∑
log(1 + exp(yix

⊤
i β))

1
n · 1

1+exp(yix⊤
i β)

1
4nIp

Logistic

(0, 1 loss)

1
n

∑
−yix

⊤
i β + log

(
1 + exp(β⊤xi)

)
1
n

(
−yi +

exp(xiβ)
1+exp(xiβ)

)
1
4nIp

Squared

hinge loss

1
n

∑(
(1− yix

⊤
i β)+

)2 1
n

(
yi(1− yix

⊤
i β)+

)
4
nIp

Huberized

hinge loss

1
n

∑
hsvmδ(yix

⊤
i β)

1
nyihsvm

′
δ(yix

⊤
i β)

2
nδ Ip

S3 Stopping criteria

The FCR algorithm raises an important point about the stopping crite-

ria for this algorithm. Specifically, we observe that given a finite set of

subsets defined over integers {1, 2, . . . , p} that satisfy the cost restrictions∑p
j=1 cjI(βj) ≤ C, there exists only a limited number of active sets I ′s. As

a result, the algorithm has eventual periodicity, that is, there exist integers

m and m̃, which satisfy Im+m̃ = Im (Foucart, 2011). This periodicity in the

set of the active set I ′s leads to the corresponding outcome of βm+m̃ = βm

within the algorithm framework.

Using periodicity, we establish stopping criteria for the algorithm. We

terminate the algorithm when the difference in loss from the previous it-
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eration falls below a predetermined tolerance, denoted δ. However, even

with this criterion in place, the FCR algorithm tends to exhibit fluctua-

tions around local minima and does not necessarily converge to a specific

point. In the context of the coordinate descent algorithm, FCR updates all

coordinates simultaneously, as opposed to one-by-one, which generally does

not guarantee stable convergence. To address this, we introduce a criterion

to detect periodic behavior while the algorithm is running. If periodicity is

detected, we terminate the algorithm and select the active set I and its cor-

responding β where the objective function is minimized during the course

of the algorithm. The FCR algorithm, when applied with these termination

conditions, demonstrates superior performance compared to other existing

methods, as detailed in Section 4.

S4 Grouped cost

It is a typical scenario in which purchasing a single component is not pos-

sible without acquiring all the variables. Buying a variable from a survey

costs the same amount as buying all survey questionnaires. In a clinical

data set, demographic information about the patient is usually collected

all at once, rather than separately, to minimize communication expenses.

When dealing with categorical variables, the generated dummy variables are
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bundled together for purchase, even if some may not be needed. Suppose

that we have G groups of variables and each group has size pg variables,

where we denote the g-th group cost as c̃g for g = 1, . . . , G. This cost

constraint is formulated as

C̃ := {β : c̃g Ĩ(βg,1, · · · , βg,pg) ≤ C}, (S4.30)

where Ĩ(βg,1, · · · , βg,pg) equals to one if one of βg,js is nonzero, and zero

otherwise.

We apply Algorithm 2 in this scenario. We maintain the procedure for

calculating zk = βk + dk and the way of updating βk
Ik and dk

Ik based on

current nonzero coefficients. The difference from Section 2.2 is to project

into C̃, instead of C, after updating the signal candidate. We derive the

following

argmin
β∈C̃

∥β − (βk + dk)∥22 = argmin
β∈C̃

G∑
g=1

∥βg − (βk
g + dk

g)∥22, (S4.31)

where βg and dg are pg-dimensional (pg ∈ N) subset of β and d, respectively.

Equation (S4.30) and the right-hand side of (S4.31) imply that if c̃g is spent

and the gth group is chosen, the value lost is 0, but ∥βk
g+dk

g∥22 otherwise. By

entering the loss and cost vector pair ({∥βk
g +dk

g∥22}, {c̃g}) for g = 1, . . . , G,

and the budget C, the knapsack algorithm provides the exact projection in

C̃, that is, it solves the precise solution (S4.31). Incorporating this broadens
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the practical effectiveness of Algorithm 2 when the cost at the group level

should be considered.

S5 Numerical Details and Results for Simulations 2-6

For Simulation 2 (S2), we continue to show the performance of the al-

gorithms, varying the correlation ρ among the covariates of X to better

capture the applicability of the real world. The predictor is generated from

a Gaussian distribution with mean 0p and covariance Σ where Σij = ρ|i−j|

for i, j = 1, . . . , p0. For i, j = p0+1, . . . , p, we set Σij = 1[i = j]. The inclu-

sion of the variable ρ complicates the computational process of identifying

the optimal value for β∗, so we reduce p0 to 16. The elements of βtrue are

generated in the same way as in Simulation 1, and we set C = 80, and we

vary ρ among {0.2, 0.4, 0.6, 0.8}.

Figure S1 shows the performance of the three algorithms over ρ. HCR

and FCR increase its predictive performance as ρ increases. This implies

the practical applicability of cost-constrained regression methods. Although

the budget is limited to buy all variables, the algorithm can improve its ex-

plainability by choosing correlated cost-efficient variables. Therefore, for

cost-constrained regression methods, increasing ρ has a similar effect of in-

creasing the sample size. On the other hand, the second row of Figure S1
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Figure S1: Simulation 2 results of the log of prediction error (the first row), and the

FNR* (second), and the elapsed time (third) over ρ = {0.2, 0, 4.0.6, 0.8}.
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Figure S2: Simulation 2 results of L2 (the first row), and the FPR* (second) over ρ =

{0.2, 0, 4.0.6, 0.8}.



S5. NUMERICAL DETAILS AND RESULTS FOR SIMULATIONS 2-6

n=500

rhos

lo
g(

P
re

d 
E

rr
or

)

200 400 600 800

0

50

100

150

FCR
HCR
Lasso

n=1000

rhos

lo
g(

P
re

d 
E

rr
or

)

200 400 600 800

0

20

40

60

80

100

120

140

n=3000

rhos

lo
g(

P
re

d 
E

rr
or

)

200 400 600 800

0

20

40

60

80

100

120

rhos

lo
g(

tim
e)

200 400 600 800

−1

0

1

2 FCR
HCR
Lasso

rhos

lo
g(

tim
e)

200 400 600 800

−1.5

−1.0

−0.5

0.0

0.5

1.0

rhos

lo
g(

tim
e)

200 400 600 800

−0.5

0.0

0.5

1.0

1.5

2.0

Figure S3: Simulation 3 results of the log of prediction error (the first row) and the

elaspsed time (second) over C = {200, 400, 600, 800}

shows that LASSO tends not to select cost-effective variables as ρ increases.

This implies the statistical inefficiency of using regularization methods in

a cost-constrained situation. As similar to S1 , FCR shows superior pre-

dictive performance and its small variance (cf. the first row of Figure 2),

especially for high-dimensional regression settings. Furthermore, the su-

perior performance of FCR is achieved in much shorter time than other

methods (cf. the third row in Figure S1).

In Simulation 3 (S3), we extend the range of cost sets to investigate

how these algorithms work. We sample costs uniformly from {1,2,. . . , 50}

where the total cost is 686. We generate X the same way in S2 where the

correlation parameter ρ is equal to 0.3. As a result, FCR shows superior

performance compared to the other methods, and the implementation takes
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Figure S4: Simulation 4 results of the log of prediction error (the first row), and the

elapsed time (third) over C = {25, 50, 75, 100}.

much shorter time than the others, just like the previous simulations.

In Simulation 4 (S4), the grouped costs are considered in this simu-

lation. The predictor X = (x1, · · · ,xn)
⊤ is generated from a Gaussian

distribution with mean 0p and covariance Ip. We consider where the to-

tal number of groups G is 250 and where each group has a size pg = 4.

Regarding the generation of the first p0 = 32 elements of βtrue, where the

16 groups have nonzero elements. We generate the first two nonzero co-

efficients N(2, 0.25) for those groups and zeros for the rest. We vary the

budget by C = {25, 50, 75, 100}. For each j ∈ {1, 2, · · · , p}, we choose cj,

the cost of collecting the jth variable, randomly from the set of integers

{1, 2, . . . , 10}. Figure S4 shows that FCR outperforms other methods in

these cases. First, in grouped cost situations, FCR shows the best excep-
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Figure S5: Simulation 5 results of the prediction error (the first row), and the elpased

time (second) over C = {25, 50, 75, 100}.

tional performance in various budget scenarios, especially when n is 500.

As the sample size grows, the performance of HCR tends to converge to-

wards that of FCR. However, it should be noted that FCR achieves good

performance at a significantly faster rate.

For Simulations 5 and 6 (S5 and S6), we extend our scope to logistic

regression. The coefficient βtrue, and the cost sets are generated in the same

way as in S1–S3. The predictor X is generated in the same way as in S1,

but with ρ = 0.5 for S5 and ρ = {0.2, 0.4, 0.6, 0.8} for S6. For S5, we

vary the budget C among {25, 50, 75, 100} and investigate the performance
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Figure S6: Simulation 6 results of the prediction error (the first row), and the elpased

time (second) over ρ = {0.2, 0.4, 0.6, 0.8}.

of each method. Figures S5 and S6 summarize the results of S5 and S6,

respectively. The predictive performance of FCR exceeds that of other

methods, and FCR also achieves its solution much more rapidly than HCR

in these cases.

S6 More detailed results on NHANES data analysis

We report the loss function trajectories of the Hypertension, Arthritis, and

Heart data in Figure S7.

The cost-constrained algorithm adeptly selects variables based on the
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response \ costs 2 4 5 9

Diabetes 0.15 0.33 0.39 0.12

Hypertension 0.19 0.38 0.24 0.19

Arthritis 0.20 0.56 0.20 0.04

Heart 0.42 0.55 0 0.03

Table S1: Proportion of each cost for each dataset

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Hypertension Loss trajectory

log10 (iteration)

−
lo

gl

FCR C=10
FCR C=20
FCR C=30
FCR C=40
FCR C=50
HCR C=10
HCR C=20
HCR C=30
HCR C=40
HCR C=50

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
35

0.
45

0.
55

0.
65

Arthritis Loss trajectory

log10 (iteration)

−
lo

gl

FCR C=20
FCR C=40
FCR C=60
FCR C=80
FCR C=100
HCR C=20
HCR C=40
HCR C=60
HCR C=80
HCR C=100

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Heart Loss trajectory

log10 (iteration)

−
lo

gl

FCR C=20
FCR C=40
FCR C=60
FCR C=80
FCR C=100
HCR C=20
HCR C=40
HCR C=60
HCR C=80
HCR C=100

Figure S7: Loss function trajectories
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cost limitations provided. We represent variable selections of FCR in the

diabetes study in Figure S8, which illustrates its adaptability to differ-

ent situations. We partition the variables of the data into demographic

(Demo), questionnaire (Ques), examination (Exam), and laboratory (Lab)

categories, numbering them according to the variable’s nature. Addition-

ally, we enclose its cost within parentheses, and indicate the variable’s cat-

egorical nature with ‘d’. If the variable is selected, we color it red and

otherwise yellow. At the budget level of C = 10, the algorithm predomi-

nantly uses relatively inexpensive demographic and questionnaire variables,

many of which are grouped variables. With a budget increase of 15–20, the

algorithm acquires relatively costly examination variables (Exams 5 and

11). When reaching a budget of 25, it invests in the most expensive labora-

tory data (Lab 2) while excluding the examination variable (Exam 5). To

address this, at a budget of 30, the model opts for a questionnaire instead

of Exam 5 but reverts to acquiring Exam 5 when the budget reaches 35.

Consequently, the algorithm dynamically adjusts its expenditure to acquire

variables based on the available budget.
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Figure S8: The variable selections of FCR in the diabetes study: the x-axis is budget

C and the y-axis indicate the type of variables its cost in parenthesis. The categorical

variables are indicated by adding c1–c4.
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