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Supplementary Material

S1 Proofs of the Main Theorems

In this section, we prove the main theorems of main document. Some technical lemmas for

proving main theorems are placed in Section S2.

Condition 1 (Regularity of Ωd). There exists C0 > 0 such that C−1
0 ≤ λmin(Ωd) ≤ λmax(Ωd) ≤

C0, where λmax(A) and λmin(A) are the maximum and minimum eigenvalues of symmetric ma-

trixA, respectively. Also assume that there exists 0 < ηd < 1 such that max
1≤i,j≤p1

∣∣∣∣∣∣ ωdi,j√
ωdi,iω

d
j,j

∣∣∣∣∣∣ ≤ ηd < 1.

Condition 2 (Sparsity of Ωd). There exists τ > 0 such that |Aτ | = O(p
1/16
1 ), where Aτ ={

(i, j) :

∣∣∣∣ ωdi,j√
ωdi,iω

d
j,j

∣∣∣∣ ≥ (log p1)−2−τ , 1 ≤ i < j ≤ p1, d = 1 or 2

}

Condition 3 (Relationship among n1, n2, and p1). Assume log p1 = o(n1/5) and n = min(n1, n2).

Remark on Condition 3. Xia et al. (2018) and our work appear similar in that both consider



subnetworks. However, a significant distinction lies in the conditions related to the size of

the subnetwork. Their focus is on identifying which subnetworks differ when the number of

subnetworks ( p
p1

) is very large. In contrast, our model aims to identify which edges differ within

a subnetwork when the subnetwork itself is large, leading us to assume a relationship between p1

and n. Therefore, the primary difference between Xia et al. (2018) and our work lies in whether

the focus is on differences between subnetworks or within a subnetwork.

Condition 4 (Convergence rate of β̂di ). The estimator β̂di satisfies

max
1≤i≤p1

‖β̂di − βdi ‖1 = op{(log p1)−1} and max
1≤i≤p1

‖β̂di − βdi ‖2 = op{(nd log p1)−1/4}.

According to (Liu, 2013, Proposition 4.2), Condition 4 is guaranteed under Condition 1,

Condition 3, and max1≤i≤p1
∑p1+p2−1
j=1 I(βdj,i 6= 0) = o

(
λmin(Σ)

√
nd√

log p3

)
by solving the following

optimization problem:

β̂di =
(
Dd
−i,−i

)− 1
2

arg min
u∈Rp1+p2−1

{
λdnd,i‖u‖1

+
1

2nd

∣∣∣∣(Xd
·,−i − X̄d

·,−i

)(
Dd
−i,−i

)− 1
2

u−
(
Xd
·,i − X̄d

·,i

)∣∣∣∣2
2

}
,

(S1.1)

where Dd = diag(Σ̂d), Σ̂d = (σ̂di,j)1≤i,j≤p1 =
(

1
nd

∑nd
k=1(Xd

k,i − X̄d
·,i)(X

d
k,j − X̄d

·,j)
)

1≤i,j≤p1
,

and λdnd,i = κd
√

(σ̂di,i log p)/nd for κd > 2.
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S1.1 Proof of Theorem 1

Proof of Theorem 1. We divide the index set A := {(i, j) : 1 ≤ i ≤ j ≤ p1} into two parts:

Large
∣∣∣ωdi,j/√ωdi,iωdj,j∣∣∣ elements: Aτ :=

(i, j) :

∣∣∣∣∣∣ ωdi,j√
ωdi,iω

d
j,j

∣∣∣∣∣∣ ≥ (log p1)−1−τ


Not large

∣∣∣ωdi,j/√ωdi,iωdj,j∣∣∣ elements: A \Aτ .

Let yp1 = 4 log p1 − log log p1 + t for fixed t ∈ R. Then, by Lemma 11,

P

(
max

(i,j)∈Aτ
|∆̃i,j |2 ≥ yp1

)
= o(1).

Therefore, we can ignore Aτ parts:

P (M̃n ≥ yp1)

= P ( max
(i,j)∈A\Aτ

|∆̃i,j |2 ≥ yp1) + P ({ max
(i,j)∈A\Aτ

|∆̃i,j |2 < yp1} ∩ { max
(i,j)∈Aτ

|∆̃i,j |2 ≥ yp1})

= P ( max
(i,j)∈A\Aτ

|∆̃i,j |2 ≥ yp1) + o(1),

For any ε > 0, we decompose P (M̃n ≥ yp1) into two parts:

P (M̃n ≥ yp1) ≤ P ( max
(i,j)∈A\Aτ

|Vi,j | ≥
√
yp1 − ε)

+ P ( max
(i,j)∈A\Aτ

|∆̃i,j − Vi,j | ≥
√
yp1 −

√
yp1 − ε) + o(1),
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where Vi,j is defined in Lemma 11. From Lemma 11, we derive

P ( max
(i,j)∈A\Aτ

|∆̃i,j − Vi,j | ≥
√
yp1 −

√
yp1 − ε) ≤ P ( max

(i,j)∈A\Aτ
|∆̃i,j − Vi,j | ≥

ε

2
(yp1)−1/2)

≤ P ( max
(i,j)∈A\Aτ

|∆̃i,j − Vi,j | ≥
ε

4
(log p1)−1/2)

= o(1).

Therefore, we obtain

P (M̃n ≥ yp1) ≤ P ( max
(i,j)∈A\Aτ

|Vi,j | ≥ (yp1 − ε)
1/2) + o(1).

and the opposite inequality can be showed similarly. Thus, for any ε > 0,

P ( max
(i,j)∈A\Aτ

|Vi,j |2 ≥ yp1 + ε) + o(1) ≤P (M̃n ≥ yp1) ≤ P ( max
(i,j)∈A\Aτ

|Vi,j |2 ≥ yp1 − ε) + o(1).

Then, by Lemma 12,

P ( max
1≤m≤q

|V̂m|2 ≥ yp1 + 2ε) + o(1) ≤P (Mn ≥ yp1) ≤ P ( max
1≤m≤q

|V̂m|2 ≥ yp1 − 2ε) + o(1).

By Lemma 13, for any positive integer N

2N∑
d=1

(−1)d−1

d!

(
(8π)−1/2e−(t+2ε)/2

)d
+ o(1) ≤P (M̃n ≥ yp1)

≤
2N−1∑
d=1

(−1)d−1

d!

(
(8π)−1/2e−(t−2ε)/2

)d
+ o(1).



S1.2 Proof of Theorem 2

By letting n and p1 go to ∞, we obtain

2N∑
d=1

(−1)d−1

d!

(
(8π)−1/2e−(t+2ε)/2

)d
≤ lim inf P (Mn ≥ yp1)

2N−1∑
d=1

(−1)d−1

d!

(
(8π)−1/2e−(t−2ε)/2

)d
≥ lim supP (Mn ≥ yp1).

By letting N go ∞, we also obtain

1− exp
(
−(8π)−1/2e−(t+2ε)/2

)
≤ lim inf P (M̃n ≥ yp1)

≤ lim supP (M̃n ≥ yp1) ≤ 1− exp
(
−(8π)−1/2e−(t−2ε)/2

)
.

Finally, by letting ε go to 0, we complete the proof.

lim
n,p1→∞

P (M̃n ≥ yp1) = 1− exp
(
−(8π)−1/2e−t/2

)
.

S1.2 Proof of Theorem 2

This proof is to demonstrate how the power of the test based on our weighted statistic converges

to 1 as p1 and n approach infinity in Theorem 2.

Proof of Theorem 2. In Theorem 1, we put t = 1
2

log log p1 to

P (M̃n − 4 log p1 + log log p1 ≤ t)→ ΦM (t) as n, p1 →∞,
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then we obtain

lim
n,p1→∞

P (M̃n > 4 log p1 −
1

2
log log p1)

= lim
n,p1→∞

P (M̃n − 4 log p1 + log log p1 >
1

2
log log p1)

= 1− lim
p1→∞

ΦM

(
1

2
log log p1

)
= 1− lim

p1→∞
exp(−(8π)−1/2(log p1)−1/4) = 0.

(S1.2)

From the following inequality

A2 ≤ 2(A−B)2 + 2B2 for any A,B ∈ R,

we have

max
1≤i≤j≤p1

1

θ̂1
i,j + θ̂2

i,j

 ω1
i,j√

ω1
i,iω

1
j,j

−
ω2
i,j√

ω2
i,iω

2
j,j

2

≤ 2M̃n + 2Mn. (S1.3)

Thus, for (Ω1,Ω2) ∈ U(4), by (S1.3)

1 = P

16 log p1 ≤ max
1≤i≤j≤p1

1

θ̂1
i,j + θ̂2

i,j

 ω1
i,j√

ω1
i,iω

1
j,j

−
ω2
i,j√

ω2
i,iω

2
j,j

2
≤ P (8 log p1 −Mn ≤ M̃n).

Decomposing a set {8 log p1 −Mn ≤ M̃n} into

{8 log p1 −Mn ≤ M̃n ≤ 4 log p1 −
1

2
log log p1}⋃(

{8 log p1 −Mn ≤ M̃n} ∩ {M̃n > 4 log p1 −
1

2
log log p1}

)
,
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we have

1 = lim
n,p1→∞

P (8 log p1 −Mn ≤ M̃n)

= lim
n,p1→∞

P (8 log p1 −Mn ≤ M̃n ≤ 4 log p1 −
1

2
log log p1)

+ lim
n,p1→∞

P ({8 log p1 −Mn ≤ M̃n} ∩ {M̃n > 4 log p1 −
1

2
log log p1})

= lim
n,p1→∞

P (Mn ≥ 4 log p1 +
1

2
log log p1) + 0.

The last inequality is from (S1.2). Thus, we obtain

lim
n,p→∞

P (Mn ≥ 4 log p+
1

2
log log p) = 1,

where the convergence is uniform for (Ω1,Ω2) ∈ U(4), which implies

inf
(Ω1,Ω2)∈U(4)

P (Ψα = 1) = inf
(Ω1,Ω2)∈U(4)

P (Mn ≥ qα + 4 log p1 − log log p1)

≥ inf
(Ω1,Ω2)∈U(4)

P (Mn ≥ 4 log p1 +
1

2
log log p1)→ 1

as n, p1 →∞. Therefore, we obtain our goal.

Remark on Theorem 2. Theorem 2 guarantees that the convergence of the power even when

the dimension p1 is sufficiently larger than the sample sizes n1 and n2, with log p1 = o(n1/5)

where n = min{n1, n2}. Thus we need the scale assumption log p1 = o(n1/5) for p1 and n in

Condition 3.

S1.3 Proof of Theorem 3

In fact, the probability measure P depends on (Ω1,Ω2), so P(Ω1,Ω2) denote the probability

measure P given (Ω1,Ω2).
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Proof of Theorem 3. To investigate the infimum of supTα∈Tα P(Ω1,Ω2)(Tα = 1), we should con-

sider a case of (Ω1,Ω2) with a small distance. Our strategy is finding a finite set of precision

matrices S such that

1

|S|
∑
Ω∈S

sup
Tα∈Tα

P(Ω,Ip1+p2
)(Tα = 1) ≤ α+ o(1)

Without loss of generality, we assume n1 ≥ n2. Define Ωm = (ωm,i,j) ∈ R(p1+p2)×(p1+p2) as

follows,

ωm,i,j =



1 if i = j

ρ :=
√

n1+n2

n2(n1−c20 log p1)
c0(log p1)1/2 if (i, j) = (m, 1) or (1,m)

0 otherwise,

where c0 is to be determined later. From the assumption of Theorem 3, log p1 = o(n2), we know

that 0 < ρ < 1 is well-defined for sufficiently large n and p1. Then if (Ω1,Ω2) = (Ωm, Ip1+p2),

1

(θ1
i,j + θ2

i,j)
1/2

∣∣∣∣∣∣ ω1
i,j√

ω1
i,iω

1
j,j

−
ω2
i,j√

ω2
i,iω

2
j,j

∣∣∣∣∣∣ =


c0(log p1)1/2 if (i, j) = (m, 1) or (1,m)

0 otherwise,

where Ip is a p× p identity matrix. Thus, (Ωm, Ip1+p2) ∈ U(c0) for sufficiently large n and p1.

Since Tα is a set of all tests with size α,

P(Ip1+p2
,Ip1+p2

)(Tα = 1) ≤ α
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for any Tα ∈ Tα, which implies

{{Tα = 1} : Tα ∈ Tα} ⊂ {A : P(Ip1+p2
,Ip1+p2

)(A) ≤ α}. (S1.4)

Let S by {Ωm : m = 2, 3, · · · , p1} and dPS = 1
p1−1

∑p1
m=2 dP(Ωm,Ip1+p2

). Then, by (S1.4),

sup
Tα∈Tα

PS(Tα = 1) ≤ sup
{A:P(Ip1+p2

,Ip1+p2
)(A)≤α}

PS(A)

= sup
{A:P(Ip1+p2

,Ip1+p2
)(A)≤α}

|PS(A)− P(Ip1+p2
,Ip1+p2

)(A)|+ α

≤ ‖PS − P(Ip1+p2
,Ip1+p2

)‖+ α =

∫
|f − 1|dP(Ip1+p2

,Ip1+p2
) + α,

where ‖µ‖ denotes the total variation norm of µ and f = dPS
dP(Ip1+p2

,Ip1+p2
)

is a Radon-Nikodym

derivative. Since

(∫
|f − 1|dP(Ip1+p2

,Ip1+p2
)

)2

≤
∫

(f − 1)2dP(Ip1+p2
,Ip1+p2

)

=

∫
|f |2dP(Ip1+p2

,Ip1+p2
) − 2

∫
fdP(Ip1+p2

,Ip1+p2
) + 1

=

∫
|f |2dP(Ip1+p2

,Ip1+p2
) − 1

then it is sufficient to show that

∫
|f |2dP(Ip1+p2

,Ip1+p2
) = 1 + o(1).
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By definition of P(Ωm,Ip1+p2
) and P(Ip1+p2

,Ip1+p2
),

dP(Ip1+p2
,Ip1+p2

) =
√

2π
−(p1+p2)(n1+n2)

n1∏
l=1

e−|y
1
l |

2/2dy1
l

n2∏
l=1

e−|y
2
l |

2/2dy2
l

dP(Ωm,Ip1+p2
) =
√

2π
−(p1+p2)(n1+n2)

n1∏
l=1

|Ωm|1/2 exp

(
− (y1

l )
TΩmy1

l

2

)
dy1

l

n2∏
l=1

e−|y
2
l |

2/2dy2
l

so we can compute f directly,

f =
dPS

dP(Ip1+p2
,Ip1+p2

)

=
1

p1 − 1

p1∑
m=1

dP(Ωm,Ip1+p2
)

dP(Ip1+p2
,Ip1+p2

)

=
1

p1 − 1

p1∑
m=1

n1∏
l=1

|Ωm|1/2 exp

(
− (y1

l )
T (Ωm − Ip1+p2)y1

l

2

)

=
(1− ρ2)n1/2

p1 − 1

p1∑
m=1

n1∏
l=1

exp

(
− (y1

l )
T (Ωm − Ip1+p2)y1

l

2

)

Using this, we can obtain

∫
|f |2dP(Ip1+p2

,Ip1+p2
)

=
(1− ρ2)n1

(p1 − 1)2

∑
m,m′

n1∏
l=1

∫
exp

(
− (y1

l )
T (Ωm + Ωm′ − 2Ip1+p2)y1

l

2

)
dP(Ip1+p2

,Ip1+p2
)

=
(1− ρ2)n1

(p1 − 1)2

∑
m,m′

n1∏
l=1

|Ωm + Ωm′ − Ip1+p2 |
−1/2

=
(1− ρ2)n1

(p1 − 1)2

p1∑
m=2

(
1− 4ρ2)−n1/2

+
(1− ρ2)n1

(p1 − 1)2

∑
m 6=m′

(1− 2ρ2)−n1/2

=
(1− ρ2)2n1

(1− 4ρ2)n1/2

(1− ρ2)−n1

p1 − 1
+

(1− ρ2)n1

(1− 2ρ2)n1/2

p1 − 2

p1 − 1

Finally, we will show that (1−ρ2)−n1

p1−1
= o(1) and (1−aρ2)n1/a

(1−2aρ2)n1/(2a)
= 1 + o(1) for any a > 0. Since

ρ = o(1), for sufficiently large n1, n2, p1, we know 0 < ρ <
√

1− 1
e
, which implies

1

1− ρ2
≤ exp

(
e

e− 1
ρ2

)
. (S1.5)
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From (S1.5), we obtain

(1− ρ2)−n1

p1 − 1
=

1

p1 − 1
exp

(
en1(n1 + n2)

(e− 1)n2(n1 − c20 log p1)
c20 log p1

)
≤ p1

p1 − 1
p
c20

Ke
e−1

(1+o(1))−1

1 ,

where K > 0 is a constant for comparable condition between n1 and n2: K−1 < n1
n2

< K. Thus,

if we take c0 sufficiently small then

(1− ρ2)−n1

p1 − 1
= o(1) for sufficiently large n1, n2, p1.

Now, we will show (1−aρ2)n1/a

(1−2aρ2)n1/(2a)
= 1 + o(1) for any a > 0. We have

(1− aρ2)n1/a

(1− 2aρ2)n1/(2a)
=

(
(1− aρ2)2

1− 2aρ2

)n1/(2a)

=

(
1 +

a2ρ4

1− 2aρ2

)n1/(2a)

=

(
1 +

a2ρ4

1− 2aρ2

) 1−2aρ2

a2ρ4
· an1ρ

4

2(1−2aρ2)

.

(S1.6)

In (S1.6),

a2ρ4

1− 2aρ2
= o(1) and

an1ρ
4

2(1− 2aρ2)
,

which implies

(1− aρ2)n1/a

(1− 2aρ2)n1/(2a)
→ e0 = 1

as n, p1 →∞. Thus, (1−aρ2)n1/a

(1−2aρ2)n1/(2a)
= 1 + o(1), then we also obtain

(1− ρ2)n1

(1− 2ρ2)n1/2
= 1 + o(1)

(1− ρ2)2n1

(1− 4ρ2)n1/2
=

(
(1− ρ2)n1

(1− 2ρ2)n1/2
· (1− 2ρ2)n1/2

(1− 4ρ2)n1/4

)2

= 1 + o(1).
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Therefore, if we take c0 sufficiently small then

1

p1

p1∑
m=1

sup
Tα∈Tα

P(Ωm,Ip1+p2
)(Tα = 1) ≤ α+ o(1) ≤ 1− γ for sufficiently large n, p1.

It implies that there exists 1 ≤ m̂ ≤ p1 such that

sup
Tα∈Tα

P(Ωm̂,Ip1+p2
)(Tα = 1) ≤ 1− γ for sufficiently large n, p1.

Therefore,

inf
(Ω1,Ω2)∈U(c0)

sup
Tα∈Tα

P(Ω1,Ω2)(Tα = 1) ≤ 1− γ for sufficiently large n, p1.

S1.4 Proof of Theorem 4

This proof is to demonstrate the FDP and FDR of the test based on our weighted statistic

converge to αq0
q

as p1 and n approach infinity in Theorem 4.

Proof of theorem 4. Let F̂DP(t) =
(1− Φ(t))(p2

1 − p1)

max(N(t), 1)
then

lim
t↗(4 log p1−log log p1+log log log p1)1/2

F̂DP(t) ≤ (log log p1)−1/2 < α,

lim
t↘0

F̂DP(t) = 1 > α a.s.,

for sufficiently large p1 and 0 < α < 1. Moreover, for 0 < t < Pα/2,

F̂DP(t) ≥ 2(1− Φ(t)) > 2(1− Φ(Pα/2)) = α,
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where Pα/2 is a value with
(
1− Φ(Pα/2)

)
= α/2. Thus,

0 < Pα/2 ≤ t̂0 < (4 log p1 − log log p1 + log log log p1)1/2 < 2(log p1)1/2 a.s.. (S1.7)

Moreover, since F̂DP is continuous at almost everywhere points and increases at the discontin-

uous points, so

(1− Φ(t̂0))(p2
1 − p1)

max(N(t̂0), 1)
= α

for sufficiently large p1 and 0 < α < 1. Then,

∣∣∣∣FDP(t̂0)

αq0/q
− 1

∣∣∣∣ =

∣∣∣∣ N0(t̂0)

max(N(t̂0), 1)
· q

αq0
− 1

∣∣∣∣ =

∣∣∣∣ N0(t̂0)

2(1− Φ(t̂0))q0
− 1

∣∣∣∣
=

∣∣∣∣∣
∑

(i,j)∈I0

[
I(|∆i,j | ≥ t̂0)− 2(1− Φ(t̂0))

]
2(1− Φ(t̂0))q0

∣∣∣∣∣
≤

∣∣∣∣∣
∑

(i,j)∈I0∩Aτ

[
I(|∆i,j | ≥ t̂0)− 2(1− Φ(t̂0))

]
2(1− Φ(t̂0))q0

∣∣∣∣∣
+

∣∣∣∣∣
∑

(i,j)∈I0\Aτ

[
I(|∆i,j | ≥ t̂0)− I(|Vi,j | ≥ t̂0)

]
2(1− Φ(t̂0))q0

∣∣∣∣∣
+

∣∣∣∣∣
∑

(i,j)∈I0\Aτ

[
P (|Vi,j | ≥ t̂0)− 2(1− Φ(t̂0))

]
2(1− Φ(t̂0))q0

∣∣∣∣∣
+

∣∣∣∣∣
∑

(i,j)∈I0\Aτ

[
I(|Vi,j | ≥ t̂0)− P (|Vi,j | ≥ t̂0)

]
2(1− Φ(t̂0))q0

∣∣∣∣∣ =: B1 +B2 +B3 +B4

Using Lemmas 14-17, we can show that each Bi is op{1}. Therefore, we obtain

∣∣∣∣FDP(t̂0)

αq0/q
− 1

∣∣∣∣ = op{1}.

Remark on Theorem 4. According to Theorem 4, the FDP and FDR converge even if the

dimension p1 is much larger than the sample sizes n1 and n2, as long as p1 ≤ cnr for some



constants c > 0 and r > 0, where n = min{n1, n2}. Unlike Theorem 2, this result ensures

convergence even in cases of unbalanced sample sizes. That is, the convergence of the FDP and

FDR can be expected even when n1 � n2 or n2 � n1.

S2 Technical Lemmas

In this section, we collect some technical lemmas and their proofs for proving main theorems.

Lemmas 1-10 are about convergence rates of some quantities. The following Lemma is a partic-

ular case of (Cai and Liu, 2011, Lemma 1).

Lemma 1. Let ξ1, · · · , ξn be independent random variables with mean 0. Suppose that there

exists Dn > 0 such that

n∑
k=1

E[ξ2
ke
|ξk|] ≤ D2

n.

Then, for 0 < x < Dn,

P

(∣∣∣∣∣
n∑
k=1

ξk

∣∣∣∣∣ ≥ 2Dnx

)
≤ 2e−x

2

.

Proof. For any t > 0,

P

(
n∑
k=1

ξk − 2Dnx ≥ 0

)
≤ E

[
et(

∑n
k=1 ξk−2Dnx)

]
= e−2tDnx

n∏
k=1

E
[
etξk

]
.

By using an inequality es ≤ 1 + s+ s2e|s|, we obtain

P

(
n∑
k=1

ξk − 2Dnx ≥ 0

)
≤ e−2tDnx

n∏
k=1

(
1 + tE[ξk] + t2E

[
ξ2
ke
t|ξk|

])
.



From E[ξk] = 0,

P

(
n∑
k=1

ξk − 2Dnx ≥ 0

)
≤ e−2tDnx

n∏
k=1

(
1 + t2E

[
ξ2
ke
t|ξk|

])
≤ e−2tDnx

n∏
k=1

exp
(
t2E

[
ξ2
ke
t|ξk|

])
.

By taking t = x/Dn ≤ 1, we obtain

P

(
n∑
k=1

ξk ≥ 2Dnx

)
≤ e−2x2 exp

(
x2

D2
n

n∑
k=1

E
[
ξ2
ke
|ξk|
])
≤ e−x

2

.

And replacing ξk with −ξk makes we obtain the opposite inequality.

P

(
−

n∑
k=1

ξk ≥ 2Dnx

)
≤ e−x

2

.

Therefore,

P

(∣∣∣∣∣
n∑
k=1

ξk

∣∣∣∣∣ ≥ 2Dnx

)
≤ P

(
n∑
k=1

ξk ≥ 2Dnx

)
+ P

(
−

n∑
k=1

ξk ≥ 2Dnx

)
≤ 2e−x

2

.

Lemma 2. Let {Wk}k=1,··· ,n ⊂ R be a set of identical independent observations such that

E
[
Wk

]
= µ, Var(Wk) = σ2 < ∞, and E

[
(Wk − µ)2e|Wk−µ|/(logn)

]
< C for k = 1, · · · , n and

for sufficiently large n. Then, there exists a function fW = fW (σ, n) = o(1) such that

P

(∣∣∣∣∣ 1n
n∑
k=1

Wk − µ

∣∣∣∣∣ ≥ (2σ + fW )
√
M(log p/n)1/2

)
≤ 2p−M

for any M > 0 and for sufficiently large n and p with log p = o(n1/5).



Proof. Let ξk = (logn)−1(Wk − µ) then

n∑
k=1

E
[
ξ2
ke
|ξk|
]

=

n∑
k=1

E
[
ξ2
ke
|ξk|I{|ξk|≤(logn)−1/2}

]
+

n∑
k=1

E
[
ξ2
ke
|ξk|I{|ξk|>(logn)−1/2}

]
≤nE

[
(W1 − µ)2

(logn)2
e

1√
logn

]
+ nE

[
ξ2
1e
|ξ1|I{|ξ1|>(logn)−1/2}

]
≤ n

(logn)2
e

1√
lognVar(Wk) +

n

(logn)2
E
[
(W1 − µ)2e|W1−µ|/(logn)I{|W1−µ|>(logn)1/2}

]
=

n

(logn)2

(
σ2 + σ2(e

1√
logn − 1) + E

[
(W1 − µ)2e|W1−µ|/(logn)I{|W1−µ|>(logn)1/2}

])

Let fW := σ(e
1√

logn−1)+σ−1E
[
(W1 − µ)2e|W1−µ|/(logn)I{|W1−µ|>(logn)1/2}

]
andDn =

√
n

logn
(σ+

fW /2) then by the dominated convergence theorem

fW = o(1) as n→∞

and
nd∑
k=1

E
[
ξ2
ke
|ξk|
]
≤ n

(logn)2
(σ2 + σfW ) ≤ D2

n.

Let x =
√
M log p, then for sufficiently large n and p with n1/5 = o(log p),

0 < x < Dn

and by Lemma 1,

P

(
(logn)−1

∣∣∣∣∣
n∑
k=1

(Wk − µ)

∣∣∣∣∣ ≥ 2

√
n

logn
(σ + fW /2)

√
M log p

)
≤ 2e−x

2

= 2p−M

Thus,

P

(∣∣∣∣∣ 1n
n∑
k=1

Wk − µ

∣∣∣∣∣ ≥ (2σ + fW )
√
M(log p/n)1/2

)
≤ 2p−M



Lemma 3. Let {Wk}k=1,··· ,n ⊂ R be a set of identical independent observations such that

E[Wk] =
n− 1

n
µ, Var(Wk) = σ2 < ∞, and E

[
(Wk − n−1

n
µ)2e|Wk−

n−1
n

µ|/(logn)
]
< C for

k = 1, · · · , n and for sufficiently large n. Then, there exists a function fW = fW (σ, n) such that

P

(∣∣∣∣∣ 1n
n∑
k=1

Wk − µ

∣∣∣∣∣ ≥ (2σ + fW )
√
M(log p/n)1/2

)
≤ 2p−M

for any M > 0 and for sufficiently large n and p with log p = o(n1/5).

Proof. Let ξk = (logn)−1
(
Wk − n−1

n
µ
)

and decompose ξ2
ke
|ξk| into two parts:

ξ2
ke
|ξk| = ξ2

ke
|ξk|I{|ξk|≤(logn)−1/2} + ξ2

ke
|ξk|I{|ξk|>(logn)−1/2}. (S2.8)

Then, from the first part of (S2.8), we derive

n∑
k=1

E
[
ξ2
ke
|ξk|I{|ξk|≤(logn)−1/2}

]
≤

n∑
k=1

E

[
(Wk − n−1

n
µ)2

(logn)2
e

1√
logn

]

≤
n∑
k=1

E

[
(Wk − n−1

n
µ)2

(logn)2
e

1√
logn

]

≤ n

(logn)2
e

1√
lognVar(Wk) ≤ n

(logn)2

(
σ2 + σ2(e

1√
logn − 1)

)
,

and from the second part of (S2.8), we derive

n∑
k=1

E
[
ξ2
ke
|ξk|I{|ξk|>(logn)−1/2}

]
= nE

[
ξ2
1e
|ξ1|I{|ξ1|>(logn)−1/2}

]
=

n

(logn)2
E

[
(W1 −

n− 1

n
µ)2e|W1−n−1

n
µ|/(logn)I{|W1−n−1

n
µ|>(logn)1/2}

]
.



Let fW := 2σ(e
1√

logn − 1) + 2σ−1E
[
(W1 − n−1

n
µ)2e|W1−n−1

n
µ|/(logn)I{|W1−n−1

n
µ|>(logn)1/2}

]
and Dn =

√
n

logn
(σ + fW /2− n−1/2|µ|/2) then by the dominated convergence theorem

2σ√
logn

≤ fW = o(1) as n→∞. (S2.9)

Also,

nd∑
k=1

E
[
ξ2
ke
|ξk|
]

=

n∑
k=1

E
[
ξ2
ke
|ξk|I{|ξk|≤(logn)−1/2}

]
+

n∑
k=1

E
[
ξ2
ke
|ξk|I{|ξk|>(logn)−1/2}

]
≤ n

(logn)2
(σ2 + σfW /2) ≤ n

(logn)2
(σ + fW /4)2 ≤ D2

n

for sufficiently large n. The last inequality is derived from

|µ|
2
√
n
≤ σ

2
√

logn
≤ fW

4
, by (S2.9)

for sufficiently large n. By Lemma 1, we obtain

P

(
(logn)−1

∣∣∣∣∣
n∑
k=1

(Wk −
n− 1

n
µ)

∣∣∣∣∣ ≥ 2

√
n

logn
(σ + fW /2− n−1/2|µ|/2)

√
M log p

)
≤ 2e−x

2

for 0 < x < Dn. Let x =
√
M log p, then for sufficiently large n and p with n1/5 = o(log p), we

have

0 < x < Dn.

Thus,

P

(∣∣∣∣∣ 1n
n∑
k=1

Wk −
n− 1

n
µ

∣∣∣∣∣ ≥ (2σ + fW − n−1/2|µ|)
√
M(log p/n)1/2

)
≤ 2p−M



Therefore,

P

(∣∣∣∣∣ 1n
n∑
k=1

Wk − µ

∣∣∣∣∣ ≥ (2σ + fW )
√
M(log p/n)1/2

)

≤ P

(∣∣∣∣∣ 1n
n∑
k=1

Wk −
n− 1

n
µ

∣∣∣∣∣ ≥ (2σ + fW )
√
M(log p/n)1/2 − 1

n
|µ|

)

≤ P

(∣∣∣∣∣ 1n
n∑
k=1

Wk −
n− 1

n
µ

∣∣∣∣∣ ≥ (2σ + fW − |µ|(Mn log p)−1/2)
√
M(log p/n)1/2

)
.

If p > e
1
M , then

P

(∣∣∣∣∣ 1n
n∑
k=1

Wk − µ

∣∣∣∣∣ ≥ (2σ + fW )
√
M(log p/n)1/2

)

≤ P

(∣∣∣∣∣ 1n
n∑
k=1

Wk −
n− 1

n
µ

∣∣∣∣∣ ≥ (2σ + fW − n−1/2|µ|)
√
M(log p/n)1/2

)
≤ 2p−M .

Lemma 4. Assume Condition 1. For any d = 1, 2, 1 ≤ i, j, i′ ≤ p1, i′ 6= i, and k = 1, · · · , nd

and for sufficiently large nd,

εdk,i, ε
d
k,iε

d
k,j , (εdk,i)

2/rdi,i, ε̃
d
k,iX̃

d
k,i′ , and ε̃dk,i(X̃

d
k,−i)

Tβdi

satisfies assumptions in Lemma 2, and

X̃d
k,iX̃

d
k,j , ε̃

d
k,iε̃

d
k,j , and ε̃dk,iε̃

d
k,j/r

d
i,j

satisfies assumptions in Lemma 3, and where ε̃dk,i = εdk,i− ε̄d·,i, X̃d
k,i = Xd

k,i− X̄d
·,i, and X̃d

k,−i =

Xd
k,−i − X̄d

·,−i.

Proof. From the definition of εdk,i and its normality, we obtain the results for sufficeintly large



nd.

Lemma 5. Assume Conditions 1 and 3. There exists f = f(C0, n,K) such that for any M > 0,

1 ≤ i, j, i′ ≤ p1, i′ 6= i, and sufficiently large n and p1,

P
(∣∣∣ε̄d·,i∣∣∣ ≥ (2

√
3C0 + f)

√
M(log p1/nd)

1/2
)
≤ 2p−M1

P
(∣∣∣Udi,j∣∣∣ ≥ (2

√
3C0 + f)

√
M(log p1/nd)

1/2
)
≤ 2p−M1

P

(∣∣∣∣∣ 1

nd

nd∑
k=1

ε̃dk,iX̃
d
k,i′

∣∣∣∣∣ ≥ (2C0 + f)
√
M(log p1/nd)

1/2

)
≤ 2p−M1

P

(∣∣∣∣∣ 1

nd

nd∑
k=1

ε̃dk,i(X̃
d
k,i′)

Tβdi

∣∣∣∣∣ ≥ (2
√

3C0 + f)
√
M(log p1/nd)

1/2

)
≤ 2p−M1

Moreover, for any M > 0 and sufficiently large n and p1,

P
(

max
i

∣∣∣ε̄d·,i∣∣∣ ≥ (2
√

3C0 + f)
√
M + 1(log p1/nd)

1/2
)

= O(p−M1 )

P

(
max
i,j

∣∣∣Udi,j∣∣∣ ≥ (2
√

3C0 + f)
√
M + 2(log p1/nd)

1/2

)
= O(p−M1 )

P

(
max
i,i′

∣∣∣∣∣ 1

nd

nd∑
k=1

ε̃dk,iX̃
d
k,i′

∣∣∣∣∣ ≥ (2
√

3C0 + f)
√
M + 2(log p1/nd)

1/2

)
= O(p−M1 )

P

(
max
i

∣∣∣∣∣ 1

nd

nd∑
k=1

ε̃dk,i(X̃
d
k,i′)

Tβdi

∣∣∣∣∣ ≥ (2
√

3C0 + f)
√
M + 1(log p1/nd)

1/2

)
= O(p−M1 )

Proof. By Lemma 2 and Lemma 4, this results are derived directly.

Lemma 6. Assume Conditions 1 and 3. There exists f = f(C0, n,K) such that for any M > 0,

1 ≤ i, j ≤ p1, and sufficiently large n and p1,

P
(∣∣∣σ̂di,j − σdi,j∣∣∣ ≥ (2

√
3C0 + f)

√
M(log p1/nd)

1/2
)
≤ 2p−M1

P
(∣∣∣R̃di,j − rdi,j∣∣∣ ≥ (2

√
3C0 + f)

√
M(log p1/nd)

1/2
)
≤ 2p−M1

where Σ̂d = (σ̂di,j)1≤i,j≤p1+p2 = 1
nd

∑nd
k=1(Xd

k − X̄d)(Xd
k − X̄d)T and R̃di,j = 1

nd

∑nd
k=1 ε̃

d
k,iε̃

d
k,j.



Moreover, for any M > 0 and sufficiently large n and p1,

P

(
max
i,j

∣∣∣σ̂di,j − σdi,j∣∣∣ ≥ (2
√

3C0 + f)
√
M + 2(log p1/nd)

1/2

)
= O(p−M1 )

P

(
max
i,j

∣∣∣R̃di,j − rdi,j∣∣∣ ≥ (2
√

3C0 + f)
√
M + 2(log p1/nd)

1/2

)
= O(p−M1 )

Proof. By Lemma 3 and Lemma 4, the results are derived directly.

Lemma 7. Assume Conditions 1, 3, and 4, then we have

r̃di,j = R̃di,j − r̃di,i(β̂di,j − βdi,j)− r̃dj,j(β̂dj−1,i − βdj−1,i) + op{(nd log p1)−1/2}

uniformly in 1 ≤ i < j ≤ p1 and d = 1, 2, where R̃di,j = 1
nd

∑nd
k=1 ε̃

d
k,iε̃

d
k,j.

r̃di,i = R̃di,i + op{(nd log p1)−1/2}

uniformly in 1 ≤ i ≤ p1 and d = 1, 2.

Proof. We prove the lemma in 2 steps.

Step 1. For 1 ≤ i ≤ j ≤ p1, the following equality holds uniformly,

r̃di,j =R̃di,j −
1

nd

nd∑
k=1

ε̃dk,iX̃
d
k,i(β̂

d
i,j − βdi,j)I(i 6= j)

− 1

nd

nd∑
k=1

ε̃dk,jX̃
d
k,j(β̂

d
j−1,i − βdj−1,i)I(i 6= j) + op{(nd log p1)−1/2}.



Proof of step 1. By definition of ε̂dk,i = X̃d
k,i − X̃d

k,−iβ̂
d
i and ε̃dk,i = X̃d

k,i − X̃d
k,−iβ

d
i ,

1

nd

nd∑
k=1

ε̂dk,iε̂
d
k,j =

1

nd

nd∑
k=1

(
ε̃dk,i − X̃d

k,−i(β̂
d
i − βdi )

)(
ε̃dk,j − X̃d

k,−j(β̂
d
j − βdj )

)
=

1

nd

nd∑
k=1

ε̃dk,iε̃
d
k,j −

1

nd

nd∑
k=1

ε̃dk,iX̃
d
k,−j(β̂

d
j − βdj )

− 1

nd

nd∑
k=1

ε̃dk,jX̃
d
k,−i(β̂

d
i − βdi ) + (β̂di − βdi )T Σ̂d

−i,−j(β̂
d
j − βdj )

=:
1

nd

nd∑
k=1

ε̃dk,iε̃
d
k,j − a1 − a2 + a3,

where Σ̂d = (σ̂di,j)1≤i,j≤p1+p2 = 1
nd

∑nd
k=1(Xd

k − X̄d)(Xd
k − X̄d)T . Now we will bound the

last three terms separately. By Conditions 1 and 4 and Lemma 6,

|a3| ≤
∣∣∣(β̂di − βdi )T (Σ̂d

−i,−j −Σd
−i,−j)(β̂

d
j − βdj )

∣∣∣+
∣∣∣(β̂di − βdi )TΣd

−i,−j(β̂
d
j − βdj )

∣∣∣
=op{(log p1)−1}Op{(log p1/nd)

1/2}op{(log p1)−1}+ op{(nd log p1)−1/2}

=op{(nd log p1)−1/2}

uniformly in 1 ≤ i ≤ j ≤ p1. For a1, by Condition 4 and Lemma 5,

∣∣∣∣∣a1 −
1

nd

nd∑
k=1

ε̃dk,iX̃
d
k,i(β̂

d
i,j − βdi,j)I(i 6= j)

∣∣∣∣∣ ≤max
i

max
i′ 6=i,j

∣∣∣∣∣ 1

nd

nd∑
k=1

ε̃dk,iX̃
d
k,i′

∣∣∣∣∣ op{(log p1)−1}

=op{(nd log p1)−1/2}

uniformly in 1 ≤ i ≤ j ≤ p1. Since a2 has a similar form to a1, so

a2 = op{(nd log p1)−1/2}+
1

nd

nd∑
k=1

ε̃dk,jX̃
d
k,j(β̂

d
j−1,i − βdj−1,i)I(i 6= j)



Step 2. For 1 ≤ i < j ≤ p1, the following equality holds

r̃di,j = R̃di,j − r̃di,i(β̂di,j − βdi,j)− r̃dj,j(β̂dj−1,i − βdj−1,i) + op{(nd log p1)−1/2}

Proof of step 2. Since

R̃di,i,d =
1

nd

nd∑
k=1

ε̃dk,iε̃
d
k,i =

1

nd

nd∑
k=1

ε̃dk,i(X̃
d
k,i − X̃d

k,−iβ
d
i )

=
1

nd

nd∑
k=1

ε̃dk,iX̃
d
k,i +Op{(log p1/nd)

1/2}.

The last equality is from Lemma 5. Thus by step 1 for i = j,

1

nd

nd∑
k=1

ε̃dk,iX̃
d
k,i =R̃di,i +Op{(log p1/nd)

1/2}

=r̃di,i + op{(nd log p1)−1/2}+Op{(log p1/nd)
1/2}

=r̃di,i +Op{(log p1/nd)
1/2}

uniformly in 1 ≤ i ≤ p1. Therefore,

r̃di,j =R̃di,j − r̃di,i(β̂di,j − βdi,j)− r̃dj,j(β̂dj−1,i − βdj−1,i)

+Op{(log p1/nd)
1/2}op{(log p1)−1}+ op{(nd log p1)−1/2}

=R̃di,j − r̃di,i(β̂di,j − βdi,j)− r̃dj,j(β̂dj−1,i − βdj−1,i) + op{(nd log p1)−1/2}



Lemma 8. Assume Conditions 1, 3, and 4, then we have

r̂di,j − (ωdi,iR̃
d
i,i + ωdj,jR̃

d
j,j − 1)rdi,j + Udi,j = op{(nd log p1)−1/2}

uniformly in 1 ≤ i < j ≤ p1 and d = 1, 2. Also, we have

r̂di,i = rdi,i + Udi,i + op{(nd log p1)−1/2} (S2.10)

uniformly in 1 ≤ i ≤ p1 and d = 1, 2.

Proof. By using Lemma 7,

r̂di,j =− (r̃di,j + r̃di,iβ̂
d
i,j + r̃dj,j β̂

d
j−1,i)

=− (R̃di,j + r̃di,iβ
d
i,j + r̃dj,jβ

d
j−1,i) + op{(nd log p1)−1/2}

=− (R̃di,j + R̃di,iβ
d
i,j + R̃dj,jβ

d
j−1,i) + op{(nd log p1)−1/2}

=−

(
R̃di,j + R̃di,i

ωdi,j
ωdj,j

+ R̃dj,j
ωdi,j
ωdi,i

)
+ op{(nd log p1)−1/2}

=(−1 + R̃di,iω
d
i,i + R̃dj,jω

d
j,j)r

d
i,j + rdi,j − R̃di,j + op{(nd log p1)−1/2}.

From the definitions of rdi,j , R̃
d
i,j , and Udi,j ,

r̂di,j − (ωdi,iR̃
d
i,i + ωdj,jR̃

d
j,j − 1)rdi,j =E[εdk,iε

d
k,j ]−

(
1

nd

nd∑
k=1

εdk,iε
d
k,j − ε̄d·,iε̄d·,j

)
+ op{(nd log p1)−1/2}

=− Udi,j + ε̄d·,iε̄
d
·,j + op{(nd log p1)−1/2}.



By Lemma 5,

r̂di,j − (ωdi,iR̃
d
i,i + ωdj,jR̃

d
j,j − 1)rdi,j + Udi,j =

(
Op{(log p1/nd)

1/2}
)2

+ op{(nd log p1)−1/2}

=op{(nd log p1)−1/2}.

Also, we can obtain (S2.10) by the similar way.

Lemma 9. Assume Conditions 1, 3, and 4, then we have

ω̂d,wi,j − Ũ
d
i,j =

(ωdi,iUi,i + ωdj,jUj,j)r
d
i,j

2
√
rdi,ir

d
j,j

+ op{(nd log p1)−1/2}

uniformly in 1 ≤ i < j ≤ p1 and d = 1, 2. In particular, for Ã ⊂ A, we have

max
(i,j)∈Ã

|ω̂d,wi,j − Ũ
d
i,j | = Op{(log p1/nd)

1/2} max
(i,j)∈Ã

|rdi,j |+ op{(nd log p1)−1/2}. (S2.11)

Remark on Lemma 9. Using equation (S2.11), we can approximate the estimator ω̂di,j

of
ωdi,j√
ω̂di,iω̂

d
j,j

by the random variable Ũdi,j , derived from the multivariate normal distribution

(εdk,i)i=1,··· ,nd . However, while this approximation requires a sufficient convergence rate, equa-

tion (S2.11) only provides a relatively slow convergence rate of Op{(log p1/nd)
1/2}. This neces-

sitates Condition 2, which indicates that the set Aτ of indices (i, j), where |rdi,j | is not small,

has a negligible size. As a result, for indices in Acτ , we have max(i,j)∈Acτ |r
d
i,j | ≤ (log p1)−1−τ .

By using the equation (S2.11), we can achieve a faster convergence rate for ω̂di,j , specifically

op{(nd log p1)−1/2}, when considering the indices in Acτ . For the remaining indices in Aτ , we

can disregard the set because Aτ is a small set. Therefore, using (S2.11), ω̂di,j can be approxi-

mated by the random variable Ũdi,j with an appropriate convergence rate. Since the distribution

of Ũdi,j is much easier to compute compared to that of ω̂di,j , we can derive the asymptotic dis-



tribution of ω̂di,j through (S2.11).

Proof. By Lemma 6, we have Udi,i = Op{(log p1/nd)
1/2}, then

√
rdi,ir

d
j,j −

√
(rdi,i + Udi,i)(r

d
j,j + Udj,j) =

−
(
rdj,jU

d
i,i + rdi,iU

d
j,j + Udi,iU

d
j,j

)√
rdi,ir

d
j,j +

√
(rdi,i + Udi,i)(r

d
j,j + Udj,j)

=
−
(
rdj,jU

d
i,i + rdi,iU

d
j,j + Udi,iU

d
j,j

)
2
√
rdi,ir

d
j,j

+Op{log p1/nd}

=
−
(
rdj,jU

d
i,i + rdi,iU

d
j,j

)
2
√
rdi,ir

d
j,j

+Op{log p1/nd}.

Also, we know

r̂di,i = rdi,i + Udi,i + op{(nd log p1)−1/2}

from Lemma and 8, so we obtain

1√
r̂di,ir̂

d
j,j

− 1√
rdi,ir

d
j,j

=
1√

(rdi,i + Udi,i)(r
d
j,j + Udj,j)

− 1√
rdi,ir

d
j,j

+ op{(nd log p1)−1/2}

=

√
rdi,ir

d
j,j −

√
(rdi,i + Udi,i)(r

d
j,j + Udj,j)√

rdi,ir
d
j,j(r

d
i,i + Udi,i)(r

d
j,j + Udj,j)

+ op{(nd log p1)−1/2}

=
−
(
rdj,jU

d
i,i + rdi,iU

d
j,j

)
2rdi,ir

d
j,j

√
(rdi,i + Udi,i)(r

d
j,j + Udj,j)

+ op{(nd log p1)−1/2}

=
−
(
ωdi,iU

d
i,i + ωdj,jU

d
j,j

)
2
√
rdi,ir

d
j,j

+ op{(nd log p1)−1/2}.

From Lemma 8, we also have

r̂di,j = (ωdi,iR̃i,i + ωdj,jR̃j,j − 1)rdi,j − Udi,j + op{(nd log p1)−1/2}

=
(
ωdi,i

(
rdi,i + Udi,i

)
+ ωdj,j

(
rdj,j + Udj,j

)
− 1
)
rdi,j − Udi,j + op{(nd log p1)−1/2}

=
(
ωdi,iU

d
i,i + ωdj,jU

d
j,j + 1

)
rdi,j − Udi,j + op{(nd log p1)−1/2}.



Therefore, we obtain

ω̂d,wi,j − Ũ
d
i,j =

r̂di,j√
r̂di,ir̂

d
j,j

−
rdi,j − Udi,j√
rdi,ir

d
j,j

=
rdi,j − Udi,j + (ωdi,iUi,i + ωdj,jUj,j)r

d
i,j√

r̂di,ir̂
d
j,j

−
rdi,j − Udi,j√
rdi,ir

d
j,j

+ op{(nd log p1)−1/2}

=
rdi,j√
r̂di,ir̂

d
j,j

−
rdi,j√
rdi,ir

d
j,j

+
(ωdi,iUi,i + ωdj,jUj,j)r

d
i,j√

rdi,ir
d
j,j

+
(
−Udi,j + (ωdi,iUi,i + ωdj,jUj,j)r

d
i,j

) 1√
r̂di,ir̂

d
j,j

− 1√
rdi,ir

d
j,j


=

(ωdi,iUi,i + ωdj,jUj,j)r
d
i,j

2
√
rdi,ir

d
j,j

+ op{(nd log p1)−1/2}.

Lemma 10. Under Condition 1, for any 1 ≤ i, j ≤ p1,

ndθ
d
i,j ≥ 1. (S2.12)

Assume Conditions 1, 3, and 4, then we have

max
1≤i≤j≤p1

∣∣∣θ̂di,j − θdi,j∣∣∣ = Op{(log p1/n
3
d)

1/2} (S2.13)

uniformly in 1 ≤ i < j ≤ p1 and d = 1, 2.

Proof. For any 1 ≤ i, j ≤ p1,

ndθ
d
i,j =

rdi,ir
d
j,j + (rdi,j)

2

rdi,ir
d
j,j

≥ 1 (S2.14)

And by Lemmas 6 and 7, r̂di,i = rdi,i + Op{(log p1/nd)
1/2} uniformly in 1 ≤ i ≤ p1 and by



Condition 4,

∣∣∣θ̂di,j − θdi,j∣∣∣ =

∣∣∣∣∣1 + (β̂di,j)
2r̂di,i/r̂

d
j,j

nd
−

1 + (βdi,j)
2rdi,i/r

d
j,j

nd

∣∣∣∣∣
=

1

nd

∣∣∣∣∣(β̂di,j)2 r̂
d
i,i

r̂dj,j
− (βdi,j)

2 r
d
i,i

rdj,j

∣∣∣∣∣ = Op{(log p1/n
3
d)

1/2}

(S2.15)

uniformly in 1 ≤ i < j ≤ p1.

Lemma 11. In the setting of Theorem 1, let A = {(i, j) : 1 ≤ i ≤ j ≤ p} and

Vi,j :=
(Ũ1

i,j − Ũ2
i,j)− (ω1

i,j/
√
ω1
i,iω

1
j,j − ω

2
i,j/
√
ω2
i,iω

2
j,j)

(θ1
i,j + θ2

i,j)
1/2

∆̃i,j :=
(ω̂1,w
i,j − ω̂

2,w
i,j )− (ω1

i,j/
√
ω1
i,iω

1
j,j − ω

2
i,j/
√
ω2
i,iω

2
j,j)

(θ̂1
i,j + θ̂2

i,j)
1/2

then under Conditions 1, 2, 3, and 4, we obtain

max
(i,j)∈A\Aτ

|∆̃i,j − Vi,j | =op{(log p1)−1/2},

P

(
max

(i,j)∈Aτ
|∆̃i,j |2 ≥ 3.9 log p1

)
=o(1),

for any t > 0.

Proof. First, we will show the first equality. Without loss of generality, we may assume n1 ≥ n2

in the proof. Since ndθ
d
i,j ≥ 1 and nd max

(i,j)∈A
|θ̂di,j − θdi,j | = Op{(log p1/nd)

1/2} from and Lemma

10,

max
(i,j)∈A

∣∣∣∣∣ 1

(θ̂1
i,j + θ̂2

i,j)
1/2
− 1

(θ1
i,j + θ2

i,j)
1/2

∣∣∣∣∣
=
√
n2 max

(i,j)∈A

∣∣∣∣∣∣∣
1(

n2
n1

(
n1θ̂1

i,j

)
+ n2θ̂2

i,j

)1/2
− 1(

n2
n1

(
n1θ1

i,j

)
+ n2θ2

i,j

)1/2

∣∣∣∣∣∣∣ .



Since n2
n1

(
n1θ

1
i,j

)
+ n2θ

2
i,j ≥ 1, we obtain

max
(i,j)∈A

∣∣∣∣∣ 1

(θ̂1
i,j + θ̂2

i,j)
1/2
− 1

(θ1
i,j + θ2

i,j)
1/2

∣∣∣∣∣ =
√
n2

(
Op{(log p1)1/2n2/n

2
1}+Op{(log p1)1/2/n2}

)
= Op{(log p1/n2)1/2}.

Thus, since ω̂d,wi,j −
ω1
i,j√

ω1
i,iω

1
j,j

= Op{(log p1/nd)
1/2}, we have

∆̃i,j − Vi,j =

(
ω̂1,w
i,j − ω̂

2,w
i,j

)
−
(

ω1
i,j√

ω1
i,iω

1
j,j

− ω2
i,j√

ω2
i,iω

2
j,j

)
(θ̂1
i,j + θ̂2

i,j)
1/2

−
(Ũ1

i,j − Ũ2
i,j)−

(
ω1
i,j√

ω1
i,iω

1
j,j

− ω2
i,j√

ω2
i,iω

2
j,j

)
(θ1
i,j + θ2

i,j)
1/2

=

(
ω̂1,w
i,j − ω̂

2,w
i,j

)
− (Ũ1

i,j − Ũ2
i,j)

(θ1
i,j + θ2

i,j)
1/2

+Op{log p1/n2}.

From Lemma 9, we obtain

∣∣∣∆̃i,j − Vi,j
∣∣∣ =

∣∣∣∣∣∣
(
ω̂1,w
i,j − Ũ

1
i,j

)
−
(
ω̂2,w
i,j − Ũ

2
i,j

)
(θ1
i,j + θ2

i,j)
1/2

∣∣∣∣∣∣+Op{log p1/n2}

≤ 1√
2

∑
d=1,2


∣∣∣∣∣∣∣∣

1
nd

∑nd
k=1

εdk,i√
rdi,i

εdk,i√
rdi,i√

θ̂di,i

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣
1
nd

∑nd
k=1

εdk,j√
rdj,j

εdk,j√
rdj,j√

θ̂dj,j

∣∣∣∣∣∣∣∣
+Op{log p1/n2}

(S2.16)

and

max
(i,j)∈Aτ

|∆̃i,j − Vi,j | = Op{(log p1)1/2} max
(i,j)∈Aτ

|rdi,j |+Op{log p1/
√
n2}. (S2.17)

We have

|rdi,j | ≤

∣∣∣∣∣∣ ωdi,j√
ωdi,iω

d
j,j

∣∣∣∣∣∣
√
rdi,ir

d
j,j = o((log p1)−1) (S2.18)

for (i, j) ∈ A \Aτ . Therefore, combining (S2.17) and (S2.18), we obtain the first equality.

Next, we will show the second equality. By (S2.16) and Lemma 18, we have for sufficiently



any ε0 > 0,

P

(
max

(i,j)∈Aτ

∣∣∣∆̃i,j − Vi,j
∣∣∣ ≥ (

√
2 + ε0)(log p1)1/2

)

≤ 2
∑
d=1,2

P

 ∑
(i,j)∈Aτ

∣∣∣∣∣∣∣∣
1
nd

∑nd
k=1

εdk,i√
rdi,i

εdk,j√
rdj,j√

θ̂di,j

∣∣∣∣∣∣∣∣ ≥
(log p1)1/2

2

+ o(1)

= C|Aτ |
(

1− Φ

(
(log p1)1/2

2
√

2

))
+ o(1) = C|Aτ |

p
−1/16
1

(log p1)1/4
+ o(1).

Also, by Lemma 18, we obtain

P

(
max

(i,j)∈Aτ
|Vi,j | ≥

(log p1)1/2

2

)
≤ C|Aτ |

(
1− Φ

(
(log p1)1/2

2
√

2

))
+ o(1)

= C|Aτ |
p
−1/16
1

(log p1)1/4
+ o(1).

Therefore, for sufficiently large n and p1 and for sufficiently small ε0 > 0, we obtain

P

(
max

(i,j)∈Aτ
|∆̃i,j |2 ≥ 3.9 log p1

)
= P

(
max

(i,j)∈Aτ
|Vi,j | ≥ 0.5(log p1)1/2

)
+ P

(
max

(i,j)∈Aτ

∣∣∣∆̃i,j − Vi,j
∣∣∣ ≥ (

√
2 + ε0)(log p1)1/2

)
= C|Aτ |

p
−1/16
1

(log p1)1/4
+ o(1).

Since |Aτ | = O(p
1/16
1 ), we can conclude

P

(
max

(i,j)∈Aτ
|∆̃i,j |2 ≥ 3.9 log p1

)
= o(1).

Lemma 12. In the setting of Theorem 1, let A\Aτ = {(im, jm) : m = 1, · · · , q} with q = |A\Aτ |



and

ηm,d =
Var(εdk,imε

d
k,jm)

rdim,imr
d
jm,jm

Zk,m =


ε1k,im

ε1k,jm
−E[ε1k,im

ε1k,jm
]√

r1im,im
r1jm,jm

for 1 ≤ k ≤ n1

−
ε2k−n1,im

ε2k−n1,jm
−E[ε2k−n1,im

ε2k−n1,jm
]√

r2im,im
r2jm,jm

for n1 + 1 ≤ k ≤ n1 + n2

Ẑk,m =Zm,kI(|Zk,m| ≤ τn)− E[Zk,mI(|Zk,m| ≤ τn)], where τn = 4 log(p1 + n1 + n2)

then using the above ηm,d, Zk,m, and Ẑk,m, we can represent Vim,jm again and find approxima-

tion of Vim,jm . That is

Vm :=

1
n1

∑n1
k=1 Zk,m + 1

n2

∑n1+n2
k=n1+1 Zk,m

(ηm,1/n1 + ηm,2/n2)1/2
= Vim,jm

and V̂m :=

1
n1

∑n1
k=1 Ẑk,m + 1

n2

∑n1+n2
k=n1+1 Ẑk,m

(ηm,1/n1 + ηm,2/n2)1/2

then

max
1≤m≤q

|Vm − V̂m| = Op{p−3
1 }.

Proof. By the definition of ηm,d, we know that ηm,d = 1 +
(rdim,jm

)2

rdim,im
rdjm,jm

≥ 1. Thus, we obtain

|Vm − V̂m| ≤
1

n1

n1∑
k=1

|Zk,m − Ẑk,m|
(ηm,2/n2 + ηm,1/n1)1/2

+
1

n2

n1+n2∑
k=n1+1

|Zk,m − Ẑk,m|
(ηm,2/n2 + ηm,1/n1)1/2

≤ 1

n2

n1+n2∑
k=1

|Zk,m|I(|Zk,m| > τn) + |E[Zk,mI(|Zk,m| ≤ τn)]|
(1/n2 + 1/n1)1/2

.

From E[Zk,m] = 0, we know E[Zk,mI(|Zk,m| ≤ τn)] = −E[Zk,mI(|Zk,m| > τn)], so max
1≤m≤q

max
1≤k≤n1+n2

|Zk,m| ≤ τn



implies

max
1≤m≤q

|Vm − V̂m| ≤
n1+n2∑
k=1

1√
n2
|E[Zk,mI(|Zk,m| > τn)]|

≤ 2n1√
n2

max
1≤k≤n1+n2

E[|Zk,m| exp(|Zk,m| − 4 log(p1 + n1 + n2))]

=
2n1√

n2(p1 + n1 + n2)4
E[|Zk,m| exp(|Zk,m|)] ≤ Cp−3

1

because the nomality of εdk,im implies the uniformly boundedness of E [|Zk,m| exp (|Zk,m|)].

Thus,

P

(
max

1≤m≤q
|Vm − V̂m| ≥ Cp−3

1

)
≤ P

(
max

1≤m≤q
max

1≤k≤n1+n2

|Zk,m| > τn

)
≤ (n1 + n2)q max

1≤m≤q
max

1≤k≤n1+n2

P (|Zk,m| > 4 log(p1 + n1 + n2))

≤ (n1 + n2)q max
1≤m≤q

max
1≤k≤n1+n2

E [exp (|Zk,m| − 4 log(p1 + n1 + n2))]

=
(n1 + n2)q

(p1 + n1 + n2)4
max

1≤m≤q
max

1≤k≤n1+n2

E [exp (|Zk,m|)] = O(p−1
1 )

because the nomality of εdk,im implies the uniformly boundedness of E [exp (|Zk,m|)].

Lemma 13. In the setting of Theorem 1, let yp1 = 4 log p1− log log p1 + t then for any positive

integer N , the following inequalities hold.

2N∑
d=1

(−1)d−1

d!

(
(8π)−1/2e−t/2

)d
+ o(1) ≤P ( max

1≤m≤q
|V̂m|2 ≥ yp1)

≤
2N−1∑
d=1

(−1)d−1

d!

(
(8π)−1/2e−t/2

)d
+ o(1),

where V̂m and q are defined in Lemma 12.

Proof. Without loss of generality, we may assume n1 ≥ n2.



By Bonferroni inequality,

2N∑
d=1

(−1)d−1
∑

1≤m1<···<md≤q

P

(
d⋂
j=1

{|V̂mj |
2 ≥ yp1}

)

≤ P ( max
1≤m≤q

|V̂m|2 ≥ yp1)

≤
2N−1∑
d=1

(−1)d−1
∑

1≤m1<···<md≤q

P

(
d⋂
j=1

{|V̂mj |
2 ≥ yp1}

)
.

For fixed d > 0, let ξk = (Z̃k,m1 , · · · , Z̃k,md)T and

Z̃k,m =


Ẑk,m

(ηm,1+n1ηm,2/n2)1/2
for 1 ≤ k ≤ n1

Ẑk,m

(n2ηm,1/n1+ηm,2)1/2
for n1 + 1 ≤ k ≤ n1 + n2,

then {∣∣∣∣∣
n1+n2∑
k=1

ξk

∣∣∣∣∣
min

≥ (n1yp1)1/2

}
=

d⋂
j=1

{|V̂mj | ≥ y
1/2
p1 }

and ξk satisfies the conditions of (Zaitsev, 1987, Theorem 1.1) with for any u, v ∈ Rd and

m = 3, 4, · · · ,

E[(ξk · v)2(ξk · u)m−2] ≤
(
C
√
dτn
)m−2

‖u‖m−2E[(ξk · v)2]

≤m!

2

(
C
√
dτn
)m−2

‖u‖m−2E[(ξk · v)2]

Thus, there exist c1, c2, c3 > 0 such that for any λ > 0,

P
(
|Ñd|min ≥ (n1yp1)1/2 + λ

)
− c1d5/2 exp

(
− λ

c2Cd3τn

)
≤P

(∣∣∣∣∣
n1+n2∑
l=1

ξl

∣∣∣∣∣
min

≥ (n1yp1)1/2

)

≤P
(
|Ñd|min ≥ (n1yp1)1/2 − λ

)
+ c1d

5/2 exp

(
− λ

c2Cd3τn

)
,



where Ñd ∼ N(0, n1Cov(ξ1) + n2Cov(ξn1+1)). Let Nd = n
−1/2
1 Ñd and λ =

√
n1εn(log p1)−1/2

for εn determined later, then Nd ∼ N(0,Cov(ξ1) + n2Cov(ξn1+1)/n1) and

P
(
|Nd|min ≥ y1/2

p1 + εn(log p1)−1/2
)
− c1d5/2 exp

(
−

√
n1εn

c2Cd3τn(log p1)1/2

)
≤P

(∣∣∣∣∣
n1+n2∑
l=1

ξl

∣∣∣∣∣
min

≥ (n1yp1)1/2

)

≤P
(
|Nd|min ≥ y1/2

p1 − εn(log p1)−1/2
)

+ c1d
5/2 exp

(
−

√
n1εn

c2Cd3τn(log p1)1/2

)

Set εn = (log p1)1/2n
−1/10
1 , then εn → 0 and

c1d
5/2 exp

(
−

√
n1εn

c2Cd3τn(log p1)1/2

)

= c1d
5/2 exp

(
− n

2
5
1

16c2Cd3 log(p1 + n1 + n2)

)
→ 0, as n, p1 →∞.

By (Cai et al., 2013, Lemma 5), we obtain

∑
1≤m1<···<md≤q

P (|N|min ≥ y1/2
p1 ± εn(log p)−1/2) =

1

d!

(
(8π)−1/2e−t/2

)d
(1 + o(1)),

so we can conclude the proof by combining with Bonferroni inequaltiy.

Lemma 14. Under the same conditions as in Theorem 4, we have

∣∣∣∣∣
∑

(i,j)∈I0∩Aτ

[
I(|∆i,j | ≥ t̂0)− 2(1− Φ(t̂0))

]
2(1− Φ(t̂0))q0

∣∣∣∣∣ = op{1}.

Proof. Let

B1 :=

∣∣∣∣∣
∑

(i,j)∈I0∩Aτ

[
I(|∆i,j | ≥ t̂0)− 2(1− Φ(t̂0))

]
2(1− Φ(t̂0))q0

∣∣∣∣∣
≤

∣∣∣∣∣
∑

(i,j)∈I0∩Aτ I(|∆i,j | ≥ t̂0))

2(1− Φ(t̂0))q0

∣∣∣∣∣+
|I0 ∩Aτ |

q0
.



Then, we have for any ε > 0

P

(∑
(i,j)∈I0∩Aτ I(|∆i,j | ≥ t̂0)

2(1− Φ(t̂0))q0
> ε

)

= P

({∑
(i,j)∈I0∩Aτ I(|∆i,j | ≥ t̂0)

2(1− Φ(t̂0))q0
> ε

}
∩ {t̂0 ≥ (3.9 log p1)1/2}

)

+ P

({∑
(i,j)∈I0∩Aτ I(|∆i,j | ≥ t̂0)

2(1− Φ(t̂0))q0
> ε

}
∩ {t̂0 < (3.9 log p1)1/2}

)
.

(S2.19)

By Lemma 11, we have

P

({∑
(i,j)∈I0∩Aτ I(|∆i,j | ≥ t̂0)

2(1− Φ(t̂0))q0
> ε

}
∩ {t̂0 ≥ (3.9 log p1)1/2}

)

≤ P

(∑
(i,j)∈I0∩Aτ I(|∆i,j | ≥ (3.9 log p1)1/2)

2(1− Φ(t̂0))q0
> 0

)

= P

(
max

(i,j)∈I0∩Aτ
|∆i,j | > (3.9 log p1)1/2

)
= o(1).

(S2.20)

Also, by the assumption of Theorem 4 (|I0 ∩Aτ | = o(pν1) for any ν > 0), we have

P

({∑
(i,j)∈I0∩Aτ I(|∆i,j | ≥ t̂0)

2(1− Φ(t̂0))q0
> ε

}
∩ {t̂0 < (3.9 log p1)1/2}

)

≤ P

 ∑
(i,j)∈I0∩Aτ

I(|∆i,j | ≥ t̂0) > 2ε(1− Φ((3.9 log p1)1/2))q0


≤ P

(
|I0 ∩Aτ | > C

p2−1.95
1√
log p1

)
= o(1).

(S2.21)

Thus, by combining (S2.19), (S2.20), and (S2.21), we obtain

∑
(i,j)∈I0∩Aτ I(|∆i,j | ≥ t̂0)

2(1− Φ(t̂0))q0
= op{1},

which implies B1 = op{1}.



Lemma 15. Under the same conditions as in Theorem 4, we assume

0 < t̂0 < (4 log p1 − log log p1 + log log log p1)1/2 a.s..

Then, we have ∣∣∣∣∣
∑

(i,j)∈I0\Aτ

[
I(|∆i,j | ≥ t̂0)− I(|Vi,j | ≥ t̂0)

]
2(1− Φ(t̂0))q0

∣∣∣∣∣ = op{1}.

Proof. Let

B2 :=

∣∣∣∣∣
∑

(i,j)∈I0\Aτ

[
I(|∆i,j | ≥ t̂0)− I(|Vi,j | ≥ t̂0)

]
2(1− Φ(t̂0))q0

∣∣∣∣∣
=

∑
(i,j)∈I0\Aτ

[
I(|∆i,j | ≥ t̂0 > |Vi,j |) + I(|Vi,j | ≥ t̂0 > |∆i,j |)

]
2(1− Φ(t̂0))q0

.

For (i, j) ∈ I0 \Aτ and for any ε > 0, we have

I(|∆i,j | ≥ t̂0 > |Vi,j |)

= I(|∆i,j | ≥ t̂0 > |Vi,j |)I(|∆i,j − Vi,j | < ε(log p1)−1/2)

+ I(|∆i,j | ≥ t̂0 > |Vi,j |)I(|∆i,j − Vi,j | ≥ ε(log p1)−1/2)

≤ I(|Vi,j |+ ε(log p1)−1/2 ≥ t̂0 > |Vi,j |) + I(|∆i,j − Vi,j | ≥ ε(log p1)−1/2)

(S2.22)

and

I(|Vi,j | ≥ t̂0 > |∆i,j |)

≤ I(|Vi,j | ≥ t̂0 > |Vi,j | − ε(log p1)−1/2) + I(|∆i,j − Vi,j | ≥ ε(log p1)−1/2).

(S2.23)



By Lemma 11, we have

P

(∑
(i,j)∈I0\Aτ I(|∆i,j − Vi,j | ≥ ε(log p1)−1/2)

2(1− Φ(t̂0))q0
> 0

)

= P

(
max

(i,j)∈I0\Aτ
|∆i,j − Vi,j | ≥ ε(log p1)−1/2

)
= o(1).

(S2.24)

Combining (S2.22), (S2.23), and (S2.24), we have

B2 ≤
∑

(i,j)∈I0\Aτ I(t0 + ε(log p1)−1/2 > |Vi,j | > t̂0 − ε(log p1)−1/2)

2(1− Φ(t̂0))q0
+ op{1}

=: B21 + op{1}.

We will decompose B21 into M parts as follows:

B21 =

M∑
m=1

∑
(i,j)∈I0\Aτ

I(t0 + ε(log p1)−1/2 > |Vi,j | > t̂0 − ε(log p1)−1/2)

2(1− Φ(t̂0))q0
I(Jm), (S2.25)

where

Jm = {vm−1 ≤ t̂0 < vm},

M = dvM/v1e, v1 = (log p1)−1/2(log log log log p1)−1, and

vm =


mv1 if 0 ≤ m < M

√
4 log p1 − log log p1 + log log log p1 if m = M,

and dxe is the smallest integer greater than or equal to x. Using (S2.25), we obtain

E[B21] ≤
M∑
m=1

∑
(i,j)∈I0\Aτ

P (vm + ε(log p1)−1/2 > |Vi,j | > vm−1 − ε(log p1)−1/2)

2(1− Φ(vm))q0
P (Jm)

≤ C
M∑
m=1

∑
(i,j)∈I0\Aτ

P (vm + ε(log p1)−1/2 > |Vi,j | > vm−1 − ε(log p1)−1/2)

φ(vm)q0/vm
P (Jm).



By (PETROV, 1975, Theorem 5 in Chapter VIII), we obtain

P (vm + ε(log p1)−1/2 > |Vi,j | > vm−1 − ε(log p1)−1/2)

≤ 2Φ(vm + ε(log p1)−1/2)− 2Φ(vm−1 − ε(log p1)−1/2)

+O

 1√
n
e−

[vm−1−ε(log p1)−1/2]2
+

2



≤
4εφ

([
vm−1 − ε(log p1)−1/2

]
+

)
(log p1)1/2

+O

 1√
n
e−

[vm−1−ε(log p1)−1/2]2
+

2



uniformly in (i, j) ∈ I0 \Aτ and m = 1, · · · ,M . Then, we have

E[B21] ≤ Cε
M∑
m=1

φ

([
vm−1 − ε(log p1)−1/2

]
+

)
(log p1)1/2φ(vm)

vmP (Jm)

+ C

M∑
m=1

vm
φ(vm)

O

 1√
n
e−

[vm−1−ε(log p1)−1/2]2
+

2

P (Jm).

We note that

φ

([
vm−1 − ε(log p1)−1/2

]
+

)
φ(vm)

≤ e−
1
2 ((vm−v1)−ε(log p1)−1/2)

2

+
+ 1

2
v2m

= ev1vm+εvm(log p1)−1/2−
v21
2
−εv1(log p1)−1/2− ε

2

2
(log p1)−1

I(vm−1 > ε(log p1)−1/2)

+ ev
2
m/2I(vm−1 < ε(log p1)−1/2)

≤ e(v1(log p1)1/2+2ε)vM (log p1)−1/2

+ e
(ε(log p1)−1/2+v1)2

2

Since vm ≤ vM ≤ 2(log p1)1/2 and v1(log p1)1/2 = o(1), we have

max
1≤m≤M

φ

([
vm−1 − ε(log p1)−1/2

]
+

)
(log p1)1/2φ(vm)

vm < C.



Similarily, we have

vme
−

[vm−1−ε(log p1)−1/2]2
+

2

√
nφ(vm)

≤ C(log p1)1/2

√
n

.

Thus, we obtain

E[B21] ≤
M∑
m=1

(
Cε+O

(
(log p1)1/2

√
n

))
P (JM ) = Cε+O

(
(log p1)1/2

√
n

)
.

Therefore, we obtain

lim
n,p1→∞

E[B2] ≤ Cε

for any ε > 0, which implies

lim
n,p1→∞

E[B2] = 0.

Then,

lim
n,p1→∞

P (|B2| > ε) ≤ lim
n,p1→∞

E[|B2|]
ε

= lim
n,p1→∞

E[B2]

ε
= 0.

Therefore, B2 = op{1}.

Lemma 16. Under the same conditions as in Theorem 4, we assume

0 < t̂0 < (4 log p1 − log log p1 + log log log p1)1/2 a.s..

Then, we have ∣∣∣∣∣
∑

(i,j)∈I0\Aτ

[
P (|Vi,j | ≥ t̂0)− 2(1− Φ(t̂0))

]
2(1− Φ(t̂0))q0

∣∣∣∣∣ = op{1}.

Proof. Let

B3 :=

∣∣∣∣∣
∑

(i,j)∈I0\Aτ

[
P (|Vi,j | ≥ t̂0)− 2(1− Φ(t̂0))

]
2(1− Φ(t̂0))q0

∣∣∣∣∣ .



Then, by (PETROV, 1975, Theorem 5 in Chapter VIII), we obtain

B3 ≤ C
∑

(i,j)∈I0\Aτ e
−t̂20/2

2
√
n(1− Φ(t̂0))q0

≤ C e−t̂
2
0/2

2
√
n(1− Φ(t̂0))

.

As in Lemma 15, we also decompose B3 into M parts as follows:

B3 ≤ C
M∑
m=1

e−t̂
2
0/2

2
√
n(1− Φ(t̂0))

I(Jm) ≤ C
M∑
m=1

e−v
2
m−1/2

2
√
n(1− Φ(vm))

I(Jm).

Since

e−v
2
m−1/2

1− Φ(vm)
≤ Cvme−

1
2 (v2m−1−v

2
m) ≤ Cvme−

1
2 ((vm−v1)2−v2m) ≤ C(log p1)1/2ev1vm

and v1vm = o(1), we obtain

B3 ≤ C
M∑
m=1

(log p1)1/2

√
n

I(Jm) = C
(log p1)1/2

√
n

(1 + op{1}) = op{1}.

Lemma 17. Under the same conditions as in Theorem 4, we assume

0 < Pα/2 ≤< t̂0 < (4 log p1 − log log p1 + log log log p1)1/2 a.s., (S2.26)

where Pα/2 is a value with
(
1− Φ(Pα/2)

)
= α/2. Then, we have

∣∣∣∣∣
∑

(i,j)∈I0\Aτ

[
I(|Vi,j | ≥ t̂0)− P (|Vi,j | ≥ t̂0)

]
2(1− Φ(t̂0))q0

∣∣∣∣∣ = op{1}.



Proof. Let

B4 :=

∑
(i,j)∈I0\Aτ

[
I(|Vi,j | ≥ t̂0)− P (|Vi,j | ≥ t̂0)

]
2(1− Φ(t̂0))q0

.

Using the M partition {Jm : m = 1, · · · ,M}, we have

∑
(i,j)∈I0\Aτ I(|Vi,j | ≥ vm)

2(1− Φ(vm−1))q0
I(Jm) ≤

∑
(i,j)∈I0\Aτ I(|Vi,j | ≥ t̂0)

2(1− Φ(t̂0))q0
I(Jm)

≤
∑

(i,j)∈I0\Aτ I(|Vi,j | ≥ vm−1)

2(1− Φ(vm−2))q0

1− Φ(vm−2)

1− Φ(vm)
I(Jm)

for m = 2, · · · ,M , and we know

I(J1), I

(
M⋂
m=2

Jcm

)
= op{1}

by (S2.26) for sufficiently large p1. Thus, we have

M∑
m=1

∑
(i,j)∈I0\Aτ [I(|Vi,j | ≥ vm)− P (|Vi,j | ≥ vm)]

2(1− Φ(vm−1))q0
I(Jm)

−
M∑
m=1

∑
(i,j)∈I0\Aτ

P (vm−1 ≤ |Vi,j | < vm)

2(1− Φ(vm−1))q0
I(Jm) + op{1}

≤ B4

≤
M∑
m=1

∑
(i,j)∈I0\Aτ [I(|Vi,j | ≥ vm−1)− P (|Vi,j | ≥ vm−1)]

2(1− Φ(vm−2))q0

1− Φ(vm−2)

1− Φ(vm)
I(Jm)

−
M∑
m=1

∑
(i,j)∈I0\Aτ

P (vm−2 ≤ |Vi,j | < vm−1)

2(1− Φ(vm−2))q0

1− Φ(vm−2)

1− Φ(vm)
I(Jm) + op{1}.

Hence, for B4 = op{1}, it is sufficient to show

max
1≤m≤M

∑
(i,j)∈I0\Aτ

P (vm−1 ≤ |V |i,j < vm)

2(1− Φ(vm−1))q0
= op{1}, (S2.27)

max
2≤m≤M

1− Φ(vm−2)

1− Φ(vm)
= 1 + o(1), (S2.28)



and

max
1≤m≤M

∣∣∣∣∣
∑

(i,j)∈I0\Aτ [I(|Vi,j | ≥ vm)− P (|Vi,j | ≥ vm)]

2(1− Φ(vm−1))q0

∣∣∣∣∣ = op{1}. (S2.29)

As we showed B21 = op{1} in the proof of Lemma 15, we also can show (S2.27). Since

∣∣∣∣ max
2≤m≤M

Φ(vm)− Φ(vm−2)

1− Φ(vm)

∣∣∣∣ ≤ C 2v1φ(vm−2)

φ(vm)/vm
≤ Cv1vMe

−
v2m−2−v

2
m

2

≤ Cv1vMe
− (vm−2v1)2−v2m

2

≤ Cv1vMe
2v1vm = o(1) (∵ v1vM = O(log log log log p1)−1)),

we have (S2.28). To show (S2.29), we use the following inequality,

P

(
max

0≤m≤M

∣∣∣∣∣
∑

(i,j)∈I0\Aτ [I(|Vi,j | ≥ vm)− P (|Vi,j | ≥ vm)]

2(1− Φ(vm−1))q0

∣∣∣∣∣ ≥ ε
)

≤
M∑
m=0

P

(∣∣∣∣∣
∑

(i,j)∈I0\Aτ [I(|Vi,j | ≥ vm)− P (|Vi,j | ≥ vm)]

2(1− Φ(vm−1))q0

∣∣∣∣∣ ≥ ε
)

From (S2.28), we also know that

max
2≤m≤M

1− Φ(vm−2)

1− Φ(vm)
= 1 + o(1),

which implies

max
1≤m≤M

1− Φ(vm−1)

1− Φ(vm)
≥ C > 0

for sufficiently large p1. Therefore, we have

P

(∣∣∣∣∣
∑

(i,j)∈I0\Aτ [I(|Vi,j | ≥ vm)− P (|Vi,j | ≥ vm)]

2(1− Φ(vm−1))q0

∣∣∣∣∣ ≥ ε
)

≤ P

(∣∣∣∣∣
∑

(i,j)∈I0\Aτ [I(|Vi,j | ≥ vm)− P (|Vi,j | ≥ vm)]

2(1− Φ(vm))q0

∣∣∣∣∣ ≥ Cε
)
.



By (Xia et al., 2015, Lemma 4), we obtain

∑
1≤m≤M

P

(∣∣∣∣∣
∑

(i,j)∈I0\Aτ [I(|Vi,j | ≥ vm)− P (|Vi,j | ≥ vm)]

2(1− Φ(vm))q0

∣∣∣∣∣ ≥ Cε
)

= o(1)

Therefore, we complete the proof.

Lemma 18. Let Xk ∈ Rp ∼ N(µ1,Σ1) for k = 1, · · · , n1 and Yk ∈ Rp ∼ N(µ2,Σ2) for

k = 1, · · · , n2. Define

Σ̃1 = (σ̃i,j,1) =
1

n1

n1∑
k=1

(Xk − µ1)(Xk − µ1)T , Σ̃2 = (σ̃i,j,2) =
1

n2

n2∑
k=1

(Yk − µ2)(Yk − µ2)T .

Then, for some constant C > 0, σ̃i,j,1 − σ̃i,j,2 satisfies the large deviation bound

P

(
max

(i,j)∈S

(σ̃i,j,1 − σ̃i,j,2 − σi,j,1 − σi,j,2)2

Var((Xk,i − µ1,i)(Xk,j − µ1,j))/n1 + Var((Yk,i − µ2,i)(Yk,j − µ2,j))/n2
≥ x2

)
≤ C|S|(1− Φ(x/

√
2)) + o(1)

uniformly for 0 ≤ x ≤ √n2 and any subset S ⊂ {(i, j) : 1 ≤ i ≤ j ≤ p} where Φ is the

cumulative distribution function of the standard normal.

Proof. Assume n1 ≥ n2, and define

Zk,i,j =


n2

n1

(
(Xk,i − µ1,i)(Xk,j − µ1,j)− σi,j,1

)
for 1 ≤ k ≤ n1

−
(
(Yk−n1,i − µ2,i)(Yk−n1,j − µ2,j)− σi,j,2

)
for n1 + 1 ≤ k ≤ n1 + n2



Using the nomalities of Xk and Yk, we can apply Lemma 2 to

(Xk,i − µ1,i)(Xk,j − µ1,j), (Yk,i − µ2,i)(Yk,j − µ2,j),
(
(Xk,i − µ1,i)(Xk,j − µ1,j)− σi,j,1

)2
,

and
(
(Yk,i − µ2,i)(Yk,j − µ2,j)− σi,j,2

)2
as in Lemma 5, so we obtain

P

(
max
i,j
|σ̃i,j,d − σi,j,d| ≥ C(log p/nd)

1/2

)
= o(1),

P

(
max
i,j

∣∣∣∣∣ 1

n1

n1∑
k=1

(Zk,i,j)
2 − n2

2

n2
1

Var(Xk,iXk,j)

∣∣∣∣∣ ≥ C
(
n2

n1

)2

(log p/n1)1/2

)
= o(1),

P

max
i,j

∣∣∣∣∣∣ 1

n2

n1+n2∑
k=n1+1

(Zk,i,j)
2 −Var(Yk,iYk,j)

∣∣∣∣∣∣ ≥ C(log p/n1)1/2

 = o(1).

Thus, we obtain

P

(
max
i,j

∑n1+n2
k=1 (Zk,i,j)

2

n2
2Var(Xk,iXk,j)/n1 + n2Var(Yk,iYk,j)

≥ 2

)

≤ P
(

max
i,j

∑n1
k=1(Zk,i,j)

2

n2
2Var(Xk,iXk,j)/n1

≥ 2

)
+ P

(
max
i,j

∑n1+n2
k=n1+1(Zk,i,j)

2

n2Var(Yk,iYk,j)
≥ 2

)

≤ P

(
max
i,j

(
n1∑
k=1

(Zk,i,j)
2 − n2

2

n1
Var(Xk,iXk,j)

)
≥ n2

2

n1
Hmin

)

+ P

max
i,j

 n1+n2∑
k=n1+1

(Zk,i,j)
2 − n2Var(Yk,ikYk,j)

 ≥ n2Hmin


≤ P

(
max
i,j

(
1

n1

n1∑
k=1

(Zk,i,j)
2 − n2

2

n2
1

Var(Xk,iXk,j)

)
≥ n2

2

n2
1

Hmin

)

+ P

max
i,j

 1

n2

n1+n2∑
k=n1+1

(Zk,i,j)
2 −Var(Yk,iYk,j)

 ≥ Hmin

 = o(1),

where Hmin := min (mini,j Var(Xk,iXk,j) + mini,j Var(Yk,iYk,j)) > 0. By (Jing et al., 2003,



Theorem 1), we obtain

max
(i,j)∈S

P

((∑n1+n2
k=1 Zk,i,j

)2∑n1+n2
k=1 (Zk,i,j)2

≥ x2

)
≤ C|S|(1− Φ(x))

for 0 ≤ x ≤ √n2. Therefore,

P

(
max

(i,j)∈S

(σ̃i,j,1 − σ̃i,j,2 − σi,j,1 − σi,j,2)2

Var((Xk,i − µ1,i)(Xk,j − µ1,j))/n1 + Var((Yk,i − µ2,i)(Yk,j − µ2,j))/n2
≥ x2

)
≤ P

(
max

(i,j)∈S

(∑n1+n2
k=1 Zi,j,k

)2∑n1+n2
k=1 (Zk,i,j)2

×max
i,j

∑n1+n2
k=1 (Zk,i,j)

2

n2
2Var(Xk,iXk,j)/n1 + n2Var(Yk,iYk,j)

≥ x2

)

≤ P

(
max

(i,j)∈S

(∑n1+n2
k=1 Zk,i,j

)2∑n1+n2
k=1 (Zk,i,j)2

≥ x2/2

)

+ P

(
max
i,j

∑n1+n2
k=1 (Zk,i,j)

2

n2
2Var(Xk,iXk,j)/n1 + n2Var(Yk,iYk,j)

≥ 2

)

= C|S|(1− Φ(x/
√

2)) + o(1).

S3 Algorithms for Weighted Conditional Testing

Our algorithms consist of (1) the estimation of the precision matrix, (2) the global testing

procedure, and (3) the multiple testing procedure. The algorithms explained in this section are

described in Algorithms 1-3. In addition, the computational plots when the number of nodes

p = p1 = p2 and sample sizes n1 = n2 = 50, 100 are displayed in Figures 13 and 14.

In Figures 13 and 14 in the supplementary materials, it can be observed that the WCT

model requires approximately 1.5 to 4 times more computation time compared to the NCT

model. That is because WCT uses (p1 +p2)× (p1 +p2) network (given network + network given

other network), but NCT uses only p1 × p1 network (network given other network). In these

testing procedures, the computation times are more influenced by the network dimensions than



S3.1 Precision Matrix Estimation

by sample size.

S3.1 Precision Matrix Estimation

Step 1) Using lasso, we estimate the regression coefficients βi ∈ Rp1+p2−1 and residual ε̂k,i of

Xk,i to Xk,−i described in (S1.1) with the smoothing parameter λn,i = κ
√

(σ̂i,i log p)/n.

Step 2) Using the estimator of βi, we then estimate ωdi,j , θ
d,w
i,j , and ∆i,j .

S3.2 Global Weighted Conditional Testing

Step 1) From the precision matrix estimation with κ = 2, compute ∆i,j andMn = maxi≤i≤j≤p1 (∆i,j)
2.

Step 2) If Mn ≥ qα+4 log p1−log log p1, where qα = − log(8π)−2 log | log(1−α)| and a significance

level of α, then reject H0 : max1≤i≤j≤p1

∣∣∣∣ ω1
i,j√

ω1
i,iω

1
j,j

− ω2
i,j√

ω2
i,iω

2
j,j

∣∣∣∣ = 0.

S3.3 Multiple Weighted Conditional Testing

Step 1: Repeat the precision matrix estimation for κ = 1/20, 2/20, · · · , 39/20, 40/20, and collect

∆i,js for each κ. Then, select κ̂0 to minimize∑10
l=1

(∑
1≤i<j≤p1

I{|∆i,j |≥Φ−1(1−l[1−Φ{(log p1)1/2}]/10)}
lp1(p1−1)[1−Φ{(log p1)1/2}]/10

− 1

)2

. With κ̂0, compute ∆i,j .

Step 2: Start t from 0 and continue increasing by 0.001 until [1−Φ(t)](p1
2−p1)

max(N(t),1)
≤ α or t > 2(log p1)1/2,

where N(t) defined in Section 3.2 of main document.

Step 3: For each 1 ≤ i < j ≤ p1, if |∆i,j | ≥ t̂0, then reject H0,i,j :
ω1
i,j√

ω1
i,iω

1
j,j

=
ω2
i,j√

ω2
i,iω

2
j,j

.

S4 Settings of Simulation Studies

In Section 6 of the main document, we generate four types of sparse precision matrices, Ω(m),

m = 1, . . . , 4 for the simulation studies. These simple examples of Ω(m) with p1 = p2 = 10 and



m = 1, . . . , 4 are displayed in Figure 1.

We conducted simulations for various scenarios as follows: 1) same sample size and same

dimension of network, 2) different sample sizes and same dimension of network, 3) same sam-

ple size and different dimensions of network, and 4) different diagonal elements. We describe

scenarios 2), 3), and 4) in this section. In the second scenario (Tables 3-6), we set n1 = 100,

n2 = 50, 75, 100, and p1 = p2 = 50. For each combination of n1, n2, p1, p2, and m, we conduct

1000 simulations and study the performance of our approach based on the difference between

n1 and n2. In the third scenario (Tables 7-10), we set n = n1 = n2 = 100 and p1 = 100,

p2 = 30, 50, 100. For each combination of n, p1, p2, and m, we conduct 1000 simulations and

study the performance of our approach based on the difference between p1 and p2. In the fourth

scenario (Tables 11-14), we set n = n1 = n2 = 100 and p̃ = p1 = p2 = 50. However, for each m,

we consider Ω1 and Ω2 with

Ωd =
1

1 + δ
D

1/2
d (Ω(m) + δI)D

1/2
d ,

where Dd is a diagonal matrix whose diagonal elements are uniformly distributed between 0.5

and 2.5 independently and δ = |λmin(Ω(m))| + 0.05. We note that we set D1 = D2 in other

scenarios. For each combination of n, p̃, and m, we conduct 1000 simulations and study the

performance of our approach based on the difference between D1 and D2.

Using Tables 3 and 11 of the supplementary materials, we can also see the influence of

adjusting diagonal elements. Adjusting the diagonal elements is crucial for analyzing pathway-

based genetics data by controlling the effects of individual genes (or the diagonal elements of

the precision matrices). Also, the unbalanced sample sizes between the two groups magnify the

effects of individual genes. Therefore, by adjusting the diagonal elements, we can also reduce

the impact of unbalanced sample sizes.



In Table 11 of the supplementary materials, we consider the case where the effects of

individual genes (or the diagonal elements of the precision matrices) are different. As we can see

in Table 11, WCT, the only test that adjusts the diagonal elements, achieves an empirical size

similar to the significance level 5%, whereas the other tests exhibit much higher empirical sizes

(above 98%). This demonstrates that adjusting the diagonal elements is crucial for analyzing

pathway data by controlling the effects of individual genes.

Additionally, Table 3 of the supplementary materials reveals that the effectiveness of adjust-

ing the diagonal elements becomes more pronounced as the sample size becomes unbalanced. For

instance, in the case of Ω(2) with the same given networks in Table 3, when (n1, n2) = (100, 100),

WCT, NWCT, and NCT have similar empirical sizes of 2.2%, 3.5%, and 4.2%, respectively. How-

ever, when (n1, n2) = (100, 50), WCT achieves an empirical size of 1.4%, while the other two

methods show empirical sizes exceeding 25%. This indicates that adjusting the diagonal ele-

ments is useful not only when the diagonal elements of the precision matrices differ but also

when sample sizes are unbalanced.

As observed in the empirical size, Table 4 of the supplementary materials also illustrates

the influence of adjusting diagonal elements. For example, in the case of Ω(4) with the same

given networks in Table 4, when (n1, n2) = (100, 100), the empirical power of WCT, NWCT,

and NCT exceeds 98% (specifically, 99.7%, 98.1%, and 98.7%, respectively). However, when

(n1, n2) = (100, 50), WCT still achieves an empirical power of 99.6%, while the empirical power

of the other two methods falls below 90%.



S5 Testing Results on Breast Cancer Genetic Path-

ways

We apply our weighted conditional testing (WCT) and non-weighted conditional test (NWCT)

to breast cancer genetic pathway data in Section 7. The human breast cancer data set consists

of 22283 gene expression measurements from 176 White patients and 102 non-White patients.

We collected 25 pathways whose ID, name, and the number of genes were listed in Table 15.

We compare our approaches (WCT, NCT) with the nonconditional test (NCT) by Xia et al.

(2015). We display selected results in Figures 2-12 and Tables 17, 18.

We found that some genes in Table 16 of the supplementary materials are associated with

breast cancers. Functional polymorphisms of FAS and FASL gene were associated with the

risk of breast cancer in the examined population (Hashemi et al., 2013). We also found that

functional polymorphisms in the death pathway genes FAS and FASL significantly contribute to

the occurrence of breast cancer (Wang et al., 2012). Reimer et al. (2002) reports that FASL:FAS

ratio may be useful not only as a prognostic factor but also as a predictive factor for projecting

response to the antioestrogen tamoxifen. The results strongly support a correlation between

FASL:FAS ratio greater than 1 and lack of efficacy of tamoxifen in hormone receptor positive

patients. A tumor-associated splice-isoform of MAP2K7 drives dedifferentiation in MBNL1-low

cancers via JNK activation (Ray et al., 2020). Inhibition of the MAP2K7-JNK pathway with

5Z-7-oxozeaenol induces apoptosis in T-cell acute lymphoblastic leukemia (Chen et al., 2021).

We found some biological results of genes in Table 18 (WCT result). Zhao et al. (2022)

report that RFC2 is a prognosis biomarker correlated with the immune signature in diffuse

lower-grade gliomas. An essential function of a modified PSMA3, the immunoproteasome, is

the processing of class I MHC peptides (GeneCards; The Human Gene Database). Saidy et al.
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(2021) reports that PKA expression and PP1 expression are of significant interest in cancer

as they are involved in a wide array of cellular processes, and these data indicate PKA and

PP1 may play an important role in patient outcomes. CENPA, an essential centromere pro-

tein, is a prognostic marker for relapse in estrogen receptor-positive breast cancer (McGovern

et al., 2012). PSMA7 - NUP133; these genes are both protein coding genes. Diseases associ-

ated with PSMA7 include Hepatitis and Hepatitis C Virus. Diseases associated with NUP133

include Galloway-Mowat Syndrome 8 and Nephrotic Syndrome, Type 18 (GeneCards; The Hu-

man Gene Database; https://www.genecards.org/). PMF1-BGLAP is a Protein Coding gene.

Diseases associated with PMF1-BGLAP include Phototoxic Dermatitis and Cerebral Arteri-

opathy, Autosomal Dominant, With Subcortical Infarcts And Leukoencephalopathy, Type 1

(GeneCards; The Human Gene Database; https://www.genecards.org/).
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Table 1: Empirical FDR (%) and the power of testing the equality of two precision matrices

(Ω1,Ω2) when same given networks using the weighted conditional test (WCT), nonweighted

conditional test (NWCT), and nonconditional test (NCT); (Ω1,Ω2) are generated by Ω(m), m =

1, . . . , 4, with the number of nodes of the network given other networks p1 = p̃ = 50, 100, 200,

the number of nodes of the given network p2 = p̃ = 50, 100, 200, sample size n1 = n2 = 100,

and significance level α = 0.1 and 0.2. For m = 1, 2, 3, 4, Ω(1) is a pentadiagonal matrix, Ω(2)

is a scale-free network, Ω(3) is a symmetric matrix whose upper off-diagonal elements are from

Binomial distribution, and Ω(4) is a symmetric matrix whose randomly assigned off-diagonal

elements is 0.5.

Ω(1) Ω(2) Ω(3) Ω(4)

Same given networks case
(
(Ω1

I1,I2
,Ω1

I2,I2
) = (Ω2

I1,I2
,Ω2

I2,I2
)
)

p̃ WCT NWCT NCT WCT NWCT NCT WCT NWCT NCT WCT NWCT NCT

empirical FDR with α = 0.1

50 10.0 12.1 10.6 11.4 13.2 14.1 9.3 9.7 10.4 12.5 13.0 13.5

100 10.8 12.8 13.4 10.5 11.2 10.9 13.1 13.1 13.2 10.8 10.7 11.6

200 10.5 9.9 10.4 11.3 10.1 10.4 11.6 10.9 10.9 10.9 10.7 9.9

empirical FDR with α = 0.2

50 23.5 23.0 23.0 21.7 24.6 24.5 20.2 21.8 21.3 24.0 26.4 25.3

100 23.3 22.8 24.3 19.6 20.8 20.5 22.6 24.1 25.2 20.6 22.7 23.3

200 21.6 19.1 19.8 21.3 20.4 20.0 22.9 21.8 23.6 20.4 19.3 20.0

Power with α = 0.1

50 44.3 34.8 38.2 46.0 37.4 38.9 47.9 38.0 40.4 46.9 38.4 42.9

100 48.7 38.6 43.1 50.4 41.4 41.8 50.4 40.5 44.6 47.7 39.2 42.6

200 50.9 39.7 41.8 50.5 40.4 41.3 53.9 43.4 44.7 48.3 37.9 38.6

Power with α = 0.2

50 53.1 42.2 46.7 53.5 44.2 44.8 54.1 38.0 40.4 55.3 46.1 51.4

100 54.6 44.8 49.3 56.5 48.1 49.8 57.0 46.5 50.6 55.1 46.0 48.9

200 55.9 44.9 47.0 55.6 45.4 46.1 58.8 48.9 50.6 53.8 43.6 44.5



Table 2: Empirical FDR(%) and the power of testing the equality of two precision matrices

(Ω1,Ω2) when different given networks using the weighted conditional test (WCT), nonweighted

conditional test (NWCT), and nonconditional test (NCT); (Ω1,Ω2) are generated by Ω(m), m =

1, . . . , 4, with the number of nodes of the network given other networks p1 = p̃ = 50, 100, 200,

the number of nodes of the given network p2 = p̃ = 50, 100, 200, sample size n1 = n2 = 100,

and significance level α = 0.1 and 0.2. For m = 1, 2, 3, 4, Ω(1) is a pentadiagonal matrix, Ω(2)

is a scale-free network, Ω(3) is a symmetric matrix whose upper off-diagonal elements are from

Binomial distribution, and Ω(4) is a symmetric matrix whose randomly assigned off-diagonal

element is 0.5.

Ω(1) Ω(2) Ω(3) Ω(4)

Different given networks case
(
(Ω1

I1,I2
,Ω1

I2,I2
) 6= (Ω2

I1,I2
,Ω2

I2,I2
)
)

p̃ WCT NWCT NCT WCT NWCT NCT WCT NWCT NCT WCT NWCT NCT

empirical FDR with α = 0.1

50 10.0 10.6 10.1 10.2 12.1 11.0 11.1 12.1 13.1 9.9 11.1 9.8

100 12.1 12.7 12.6 9.1 10.8 10.5 9.3 11.1 9.7 11.2 11.0 11.3

200 8.7 9.0 9.0 10.3 9.5 9.3 10.2 10.6 10.5 9.2 8.2 7.7

empirical FDR with α = 0.2

50 18.5 18.9 19.0 21.8 22.1 23.1 20.4 21.7 23.6 20.5 20.7 21.6

100 20.9 21.8 22.4 19.2 18.8 20.0 20.5 21.1 22.1 19.7 19.9 20.4

200 19.0 17.8 18.1 21.4 20.6 19.3 20.4 20.6 19.2 16.7 18.6 16.6

Power with α = 0.1

50 39.0 32.8 36.2 38.6 30.9 32.3 37.3 29.9 30.2 36.0 29.7 33.1

100 43.9 36.1 37.9 41.9 33.4 34.2 43.9 35.3 37.7 41.4 32.6 33.4

200 44.3 38.9 40.0 42.6 30.8 31.1 44.5 33.4 33.4 44.3 32.9 33.9

Power with α = 0.2

50 46.1 40.2 43.4 46.5 39.6 41.3 45.1 37.6 39.4 43.6 37.2 41.6

100 50.4 42.7 44.3 47.9 39.3 39.8 50.8 42.6 44.8 47.7 38.8 40.1

200 49.9 38.9 40.0 47.9 36.9 36.5 49.7 39.9 40.3 48.7 38.7 39.1



Table 3: Empirical sizes (%) for testing the equality of two precision matrices (Ω1,Ω2) when

same or different given networks using the weighted conditional test (WCT), nonweighted con-

ditional test (NWCT), and nonconditional test (NCT); (Ω1,Ω2) are generated under H0 using

Ω(m), m = 1, . . . , 4, with the number of nodes of the network given other networks p1 = 50,

the number of nodes of the given network p2 = 50, sample size n1 = 100, n2 = 50, 75, 100, and

significance level α = 0.05. For m = 1, 2, 3, 4, Ω(1) is a pentadiagonal matrix, Ω(2) is a scale-free

network, Ω(3) is a symmetric matrix whose upper off-diagonal elements are from Binomial

distribution, and Ω(4) is a symmetric matrix whose randomly assigned off-diagonal elements is

0.5.

Ω(1) Ω(2) Ω(3) Ω(4)

Same given networks case
(
(Ω1

I1,I2
,Ω1

I2,I2
) = (Ω2

I1,I2
,Ω2

I2,I2
)
)

n2 WCT NWCT NCT WCT NWCT NCT WCT NWCT NCT WCT NWCT NCT

50 2.5 2.9 6.5 1.4 33.6 25.5 1.8 7.7 8.8 2.8 3.2 7.0

75 2.3 2.6 4.3 2.4 6.3 6.1 2.3 4.1 5.9 3.2 3.3 5.8

100 3.5 3.1 5.7 2.2 3.5 4.2 2.2 3.7 4.6 2.4 2.8 3.6

different given networks case
(
(Ω1

I1,I2
,Ω1

I2,I2
) 6= (Ω2

I1,I2
,Ω2

I2,I2
)
)

n2 WCT NWCT NCT WCT NWCT NCT WCT NWCT NCT WCT NWCT NCT

50 6.0 11.0 20.0 3.2 8.7 14.4 4.7 10.7 21.0 4.5 9.5 16.7

75 6.2 6.8 21.8 3.7 5.8 15.1 5.1 5.7 20.7 5.4 6.4 17.6

100 5.5 4.7 21.1 3.5 4.1 13.4 6.2 5.3 21.1 4.5 4.5 18.0



Table 4: Empirical powers(%) for testing the equality of two precision matrices (Ω1,Ω2) when

same or different given networks using the weighted conditional test (WCT), nonweighted con-

ditional test (NWCT), and nonconditional test (NCT); (Ω1,Ω2) are generated under H1 using

Ω(m), m = 1, . . . , 4, with the number of nodes of the network given other networks p1 = 50,

the number of nodes of the given network p2 = 50, sample size n1 = 100, n2 = 50, 75, 100, and

significance level α = 0.05. For m = 1, 2, 3, 4, Ω(1) is a pentadiagonal matrix, Ω(2) is a scale-free

network, Ω(3) is a symmetric matrix whose upper off-diagonal elements are from Binomial

distribution, and Ω(4) is a symmetric matrix whose randomly assigned off-diagonal elements is

0.5.

Ω(1) Ω(2) Ω(3) Ω(4)

Same given networks case
(
(Ω1

I1,I2
,Ω1

I2,I2
) = (Ω2

I1,I2
,Ω2

I2,I2
)
)

n2 WCT NWCT NCT WCT NWCT NCT WCT NWCT NCT WCT NWCT NCT

50 97.4 88.5 89.6 94.5 84.1 84.8 98.8 90.3 91.4 96.2 87.2 89.2

75 99.4 94.0 96.7 98.3 92.7 93.8 99.5 96.1 97.1 97.9 93.1 94.3

100 99.3 97.4 98.2 98.4 94.4 95.4 99.6 97.9 98.4 99.7 98.1 98.7

Different given networks case
(
(Ω1

I1,I2
,Ω1

I2,I2
) 6= (Ω2

I1,I2
,Ω2

I2,I2
)
)

n2 WCT NWCT NCT WCT NWCT NCT WCT NWCT NCT WCT NWCT NCT

50 87.0 60.7 70.0 82.2 56.6 63.7 90.1 63.3 72.7 85.3 59.9 68.2

75 95.9 82.6 88.8 91.4 75.9 81.4 97.2 85.0 88.4 95.4 80.9 87.2

100 97.6 89.7 94.2 96.1 88.5 91.0 98.1 91.6 94.1 97.4 90.2 92.9



Table 5: Empirical FDR (%) and the power of testing the equality of two precision matrices

(Ω1,Ω2) when same given networks using the weighted conditional test (WCT), nonweighted

conditional test (NWCT), and nonconditional test (NCT); (Ω1,Ω2) are generated by Ω(m),

m = 1, . . . , 4, with the number of nodes of the network given other networks p1 = 50, the

number of nodes of the given network p2 = 50, sample size n1 = 100, n2 = 50, 75, 100, and

significance level α = 0.1 and 0.2. For m = 1, 2, 3, 4, Ω(1) is a pentadiagonal matrix, Ω(2) is

a scale-free network, Ω(3) is a symmetric matrix whose upper off-diagonal elements are from

Binomial distribution, and Ω(4) is a symmetric matrix whose randomly assigned off-diagonal

elements is 0.5.

Ω(1) Ω(2) Ω(3) Ω(4)

Same given networks case
(
(Ω1

I1,I2
,Ω1

I2,I2
) = (Ω2

I1,I2
,Ω2

I2,I2
)
)

n2 WCT NWCT NCT WCT NWCT NCT WCT NWCT NCT WCT NWCT NCT

empirical FDR with α = 0.1

50 16.8 15.5 13.8 12.6 14.8 12.1 15.0 15.4 15.5 11.2 11.9 12.6

75 13.2 15.0 13.0 12.6 11.5 10.7 13.4 13.8 15.0 11.7 13.0 13.7

100 10.0 12.1 10.6 11.4 13.2 14.1 9.3 9.7 10.4 12.5 13.0 13.5

empirical FDR with α = 0.2

50 26.4 27.1 27.3 25.0 25.3 23.7 23.5 24.5 25.2 22.4 22.6 23.7

75 24.7 25.9 27.3 24.5 25.2 24.2 23.7 25.6 26.2 24.3 25.8 26.1

100 23.5 23.0 23.0 21.7 24.6 24.5 20.2 21.8 21.3 24.0 26.4 25.3

Power with α = 0.1

50 35.5 25.6 26.7 35.7 28.4 27.4 35.8 26.2 26.8 37.1 29.2 30.1

75 42.8 34.9 37.2 43.0 34.2 34.7 42.7 33.4 34.9 41.0 31.4 35.8

100 44.3 34.8 38.2 46.0 37.4 38.9 47.9 38.0 40.4 46.9 38.4 42.9

Power with α = 0.2

50 42.9 34.0 36.7 44.1 35.3 34.5 43.7 34.7 36.9 43.4 35.8 37.9

75 50.8 42.7 45.9 49.3 42.5 42.7 49.5 42.4 44.2 48.5 40.6 44.8

100 53.1 42.2 46.7 53.5 44.2 44.8 54.1 38.0 40.4 55.3 46.1 51.4



Table 6: Empirical FDR(%) and the power of testing the equality of two precision matrices

(Ω1,Ω2) when different given networks using the weighted conditional test (WCT), nonweighted

conditional test (NWCT), and nonconditional test (NCT); (Ω1,Ω2) are generated by Ω(m),

m = 1, . . . , 4, with the number of nodes of the network given other networks p1 = 50, the

number of nodes of the given network p2 = 50, sample size n1 = 100, n2 = 50, 75, 100, and

significance level α = 0.1 and 0.2. For m = 1, 2, 3, 4, Ω(1) is a pentadiagonal matrix, Ω(2) is

a scale-free network, Ω(3) is a symmetric matrix whose upper off-diagonal elements are from

Binomial distribution, and Ω(4) is a symmetric matrix whose randomly assigned off-diagonal

element is 0.5.

Ω(1) Ω(2) Ω(3) Ω(4)

Different given networks case
(
(Ω1

I1,I2
,Ω1

I2,I2
) 6= (Ω2

I1,I2
,Ω2

I2,I2
)
)

n2 WCT NWCT NCT WCT NWCT NCT WCT NWCT NCT WCT NWCT NCT

empirical FDR with α = 0.1

50 14.9 14.9 14.9 11.9 13.0 12.3 12.6 12.9 12.8 11.2 11.1 11.5

75 12.5 12.2 12.3 12.7 12.6 13.4 10.8 13.2 13.1 11.1 11.9 10.8

100 10.0 10.6 10.1 10.2 12.1 11.0 11.1 12.1 13.1 9.9 11.1 9.8

empirical FDR with α = 0.2

50 25.4 27.3 25.8 26.7 25.3 24.5 24.1 24.5 26.5 21.3 21.7 24.3

75 22.1 22.0 22.8 22.8 23.1 25.8 21.5 22.1 23.2 21.5 21.5 22.1

100 18.5 18.9 19.0 21.8 22.1 23.1 20.4 21.7 23.6 20.5 20.7 21.6

Power with α = 0.1

50 27.8 21.6 22.9 24.2 19.9 18.9 25.1 20.3 20.7 26.9 20.0 21.8

75 31.6 25.0 28.7 31.7 26.7 27.4 30.5 24.6 25.1 32.4 25.6 27.1

100 39.0 32.8 36.2 38.6 30.9 32.3 37.3 29.9 30.2 36.0 29.7 33.1

Power with α = 0.2

50 33.9 27.9 29.0 31.3 26.6 25.8 31.4 26.3 27.9 33.5 26.4 28.9

75 40.6 33.5 36.8 39.1 34.0 35.2 37.4 32.3 32.4 40.6 33.5 36.0

100 46.1 40.2 43.4 46.5 39.6 41.3 45.1 37.6 39.4 43.6 37.2 41.6



S7 dTable 7: Empirical sizes (%) for testing the equality of two precision matrices (Ω1,Ω2) when

same or different given networks using the weighted conditional test (WCT), nonweighted con-

ditional test (NWCT), and nonconditional test (NCT); (Ω1,Ω2) are generated under H0 using

Ω(m), m = 1, . . . , 4, with the number of nodes of the network given other networks p1 = 100,

the number of nodes of the given network p2 = 30, 50, 100, sample size n1 = n2 = 100, and

significance level α = 0.05. For m = 1, 2, 3, 4, Ω(1) is a pentadiagonal matrix, Ω(2) is a scale-free

network, Ω(3) is a symmetric matrix whose upper off-diagonal elements are from Binomial

distribution, and Ω(4) is a symmetric matrix whose randomly assigned off-diagonal elements is

0.5.

Ω(1) Ω(2) Ω(3) Ω(4)

Same given networks case
(
(Ω1

I1,I2
,Ω1

I2,I2
) = (Ω2

I1,I2
,Ω2

I2,I2
)
)

p2 WCT NWCT NCT WCT NWCT NCT WCT NWCT NCT WCT NWCT NCT

30 3.4 3.3 5.1 2.4 3.7 3.6 2.3 3.4 4.2 3.6 3.8 5.6

50 2.4 2.5 4.6 3.1 3.7 3.8 2.3 3.3 3.3 2.6 2.6 3.4

100 2.7 2.7 3.7 3.0 3.2 3.4 2.3 2.9 3.7 2.9 2.9 4.4

different given networks case
(
(Ω1

I1,I2
,Ω1

I2,I2
) 6= (Ω2

I1,I2
,Ω2

I2,I2
)
)

p2 WCT NWCT NCT WCT NWCT NCT WCT NWCT NCT WCT NWCT NCT

30 5.3 5.8 18.3 3.9 4.2 12.7 4.7 4.1 16.7 4.9 4.4 18.0

50 4.3 4.0 18.5 3.8 3.9 12.3 5.4 4.9 19.8 3.4 3.7 17.5

100 3.9 3.9 17.1 4.6 5.2 12.5 3.9 3.7 19.6 4.2 4.1 18.0



Table 8: Empirical powers(%) for testing the equality of two precision matrices (Ω1,Ω2) when

same or different given networks using the weighted conditional test (WCT), nonweighted con-

ditional test (NWCT), and nonconditional test (NCT); (Ω1,Ω2) are generated under H1 using

Ω(m), m = 1, . . . , 4, with the number of nodes of the network given other networks p1 = 100,

the number of nodes of the given network p2 = 30, 50, 100, sample size n1 = n2 = 100, and

significance level α = 0.05. For m = 1, 2, 3, 4, Ω(1) is a pentadiagonal matrix, Ω(2) is a scale-free

network, Ω(3) is a symmetric matrix whose upper off-diagonal elements are from Binomial

distribution, and Ω(4) is a symmetric matrix whose randomly assigned off-diagonal elements is

0.5.

Ω(1) Ω(2) Ω(3) Ω(4)

Same given networks case
(
(Ω1

I1,I2
,Ω1

I2,I2
) = (Ω2

I1,I2
,Ω2

I2,I2
)
)

p2 WCT NWCT NCT WCT NWCT NCT WCT NWCT NCT WCT NWCT NCT

30 99.2 95.7 96.6 98.5 94.0 94.0 100.0 97.5 97.9 99.4 94.4 95.8

50 99.4 95.2 96.5 98.8 93.9 94.8 99.9 97.5 98.0 99.2 95.7 96.6

100 99.9 96.4 97.0 99.0 93.7 94.7 99.9 97.3 97.8 99.3 96.1 97.3

Different given networks case
(
(Ω1

I1,I2
,Ω1

I2,I2
) 6= (Ω2

I1,I2
,Ω2

I2,I2
)
)

p2 WCT NWCT NCT WCT NWCT NCT WCT NWCT NCT WCT NWCT NCT

30 95.2 88.3 90.7 96.3 85.2 88.1 98.7 90.8 93.9 95.3 83.1 86.5

50 97.2 88.4 91.9 94.7 82.7 85.0 99.3 91.2 93.8 95.6 86.6 89.6

100 97.1 88.7 92.0 95.6 85.9 89.6 98.4 87.9 93.5 96.7 85.5 90.1



Table 9: Empirical FDR (%) and the power of testing the equality of two precision matrices

(Ω1,Ω2) when same given networks using the weighted conditional test (WCT), nonweighted

conditional test (NWCT), and nonconditional test (NCT); (Ω1,Ω2) are generated by Ω(m),

m = 1, . . . , 4, with the number of nodes of the network given other networks p1 = 100, the

number of nodes of the given network p2 = 30, 50, 100, sample size n1 = n2 = 100, and

significance level α = 0.1 and 0.2. For m = 1, 2, 3, 4, Ω(1) is a pentadiagonal matrix, Ω(2) is

a scale-free network, Ω(3) is a symmetric matrix whose upper off-diagonal elements are from

Binomial distribution, and Ω(4) is a symmetric matrix whose randomly assigned off-diagonal

elements is 0.5.

Ω(1) Ω(2) Ω(3) Ω(4)

Same given networks case
(
(Ω1

I1,I2
,Ω1

I2,I2
) = (Ω2

I1,I2
,Ω2

I2,I2
)
)

p2 WCT NWCT NCT WCT NWCT NCT WCT NWCT NCT WCT NWCT NCT

empirical FDR with α = 0.1

30 11.4 12.4 12.0 11.5 12.4 12.9 11.0 12.6 12.8 10.8 11.7 11.3

50 11.0 11.5 12.6 9.8 10.9 12.0 11.9 12.6 13.0 11.7 13.1 13.6

100 10.8 12.8 13.4 10.5 11.2 10.9 13.1 13.1 13.2 10.8 10.7 11.6

empirical FDR with α = 0.2

30 20.6 22.9 23.1 21.3 22.4 23.2 21.8 23.8 23.0 20.9 21.1 22.5

50 22.1 23.1 24.5 20.2 20.9 21.9 20.7 21.7 24.0 23.6 24.2 24.8

100 23.3 22.8 24.3 19.6 20.8 20.5 22.6 24.1 25.2 20.6 22.7 23.3

Power with α = 0.1

30 48.8 40.8 43.1 46.2 38.1 38.2 49.9 41.2 41.9 47.7 39.1 43.1

50 50.1 41.7 44.3 49.1 41.6 42.7 51.2 41.5 43.1 51.1 44.7 46.5

100 48.7 38.6 43.1 50.4 41.4 41.8 50.4 40.5 44.6 47.7 39.2 42.6

Power with α = 0.2

30 54.3 47.2 49.1 52.8 44.8 45.0 57.0 49.1 50.0 53.3 46.2 48.6

50 56.5 48.5 51.6 54.8 48.7 49.3 56.9 48.3 50.0 57.9 51.2 53.0

100 54.6 44.8 49.3 56.5 48.1 49.8 57.0 46.5 50.6 55.1 46.0 48.9



Table 10: Empirical FDR(%) and the power of testing the equality of two precision matrices

(Ω1,Ω2) when different given networks using the weighted conditional test (WCT), nonweighted

conditional test (NWCT), and nonconditional test (NCT); (Ω1,Ω2) are generated by Ω(m),

m = 1, . . . , 4, with the number of nodes of the network given other networks p1 = 100, the

number of nodes of the given network p2 = 30, 50, 100, sample size n1 = n2 = 100, and

significance level α = 0.1 and 0.2. For m = 1, 2, 3, 4, Ω(1) is a pentadiagonal matrix, Ω(2) is

a scale-free network, Ω(3) is a symmetric matrix whose upper off-diagonal elements are from

Binomial distribution, and Ω(4) is a symmetric matrix whose randomly assigned off-diagonal

element is 0.5.

Ω(1) Ω(2) Ω(3) Ω(4)

Different given networks case
(
(Ω1

I1,I2
,Ω1

I2,I2
) 6= (Ω2

I1,I2
,Ω2

I2,I2
)
)

p2 WCT NWCT NCT WCT NWCT NCT WCT NWCT NCT WCT NWCT NCT

empirical FDR with α = 0.1

30 9.7 10.0 10.9 10.6 10.0 10.3 10.9 11.6 12.8 10.9 11.9 12.7

50 11.0 10.9 10.4 10.8 10.0 9.9 9.6 11.1 10.4 9.1 9.4 10.0

100 12.1 12.7 12.6 9.1 10.8 10.5 9.3 11.1 9.7 11.2 11.0 11.3

empirical FDR with α = 0.2

30 21.0 21.4 21.8 21.5 21.1 21.5 21.7 23.5 22.7 23.7 23.9 24.0

50 21.2 22.5 22.3 21.1 21.5 22.9 21.1 19.3 19.5 19.0 20.1 19.4

100 20.9 21.8 22.4 19.2 18.8 20.0 20.5 21.1 22.1 19.7 19.9 20.4

Power with α = 0.1

30 43.1 41.8 43.6 38.8 32.8 32.7 38.0 29.5 30.4 42.4 34.9 35.7

50 50.9 42.5 44.5 42.5 35.3 35.5 40.1 34.0 34.1 43.7 34.9 35.7

100 43.9 36.1 37.9 41.9 33.4 34.2 43.9 35.3 37.7 41.4 32.6 33.4

Power with α = 0.2

30 50.3 41.8 43.6 46.2 39.5 39.0 45.6 36.5 37.4 49.8 41.4 43.0

50 50.9 42.5 44.5 48.7 42.1 42.5 47.6 40.0 40.5 50.4 41.1 42.5

100 50.4 42.7 44.3 47.9 39.3 39.8 50.8 42.6 44.8 47.7 38.8 40.1



Table 11: Empirical sizes (%) for testing the equality of two precision matrices (Ω1,Ω2) when

same or different given networks using the weighted conditional test (WCT), nonweighted con-

ditional test (NWCT), and nonconditional test (NCT); (Ω1,Ω2) are generated under H0 using

Ω(m), m = 1, . . . , 4, with the number of nodes of the network given other networks p1 = p, the

number of nodes of the given network p2 = p, sample size n1 = n2 = 100, and significance level

α = 0.05. For m = 1, 2, 3, 4, Ω(1) is a pentadiagonal matrix, Ω(2) is a scale-free network, Ω(3)

is a symmetric matrix whose upper off-diagonal elements are from Binomial distribution, and

Ω(4) is a symmetric matrix whose randomly assigned off-diagonal elements is 0.5.

Ω(1) Ω(2) Ω(3) Ω(4)

Same given networks case
(
(Ω1

I1,I2
,Ω1

I2,I2
) = (Ω2

I1,I2
,Ω2

I2,I2
)
)

Dd WCT NWCT NCT WCT NWCT NCT WCT NWCT NCT WCT NWCT NCT

same 3.5 3.1 5.7 2.2 3.5 4.2 2.2 3.7 4.6 2.4 2.8 3.6

different 2.6 100 100 2.5 100 100 2.4 100 100 1.9 99.9 100

different given networks case
(
(Ω1

I1,I2
,Ω1

I2,I2
) 6= (Ω2

I1,I2
,Ω2

I2,I2
)
)

Dd WCT NWCT NCT WCT NWCT NCT WCT NWCT NCT WCT NWCT NCT

same 5.5 4.7 21.1 3.5 4.1 13.4 6.2 5.3 21.1 4.5 4.5 18.0

different 5.1 98.9 99.5 5.0 99.7 100 5.2 98.3 99.6 5.1 99.0 99.5



Table 12: Empirical powers(%) for testing the equality of two precision matrices (Ω1,Ω2) when

same or different given networks using the weighted conditional test (WCT), nonweighted con-

ditional test (NWCT), and nonconditional test (NCT); (Ω1,Ω2) are generated under H1 using

Ω(m), m = 1, . . . , 4, with the number of nodes of the network given other networks p1 = p, the

number of nodes of the given network p2 = p, sample size n1 = n2 = 100, and significance level

α = 0.05. For m = 1, 2, 3, 4, Ω(1) is a pentadiagonal matrix, Ω(2) is a scale-free network, Ω(3)

is a symmetric matrix whose upper off-diagonal elements are from Binomial distribution, and

Ω(4) is a symmetric matrix whose randomly assigned off-diagonal elements is 0.5.

Ω(1) Ω(2) Ω(3) Ω(4)

Same given networks case
(
(Ω1

I1,I2
,Ω1

I2,I2
) = (Ω2

I1,I2
,Ω2

I2,I2
)
)

Dd WCT NWCT NCT WCT NWCT NCT WCT NWCT NCT WCT NWCT NCT

same 99.3 97.4 98.2 98.4 94.4 95.4 99.6 97.9 98.4 99.7 98.1 98.7

different 99.5 100 100 99.3 100 100 99.6 100 100 99.7 100 100

Different given networks case
(
(Ω1

I1,I2
,Ω1

I2,I2
) 6= (Ω2

I1,I2
,Ω2

I2,I2
)
)

Dd WCT NWCT NCT WCT NWCT NCT WCT NWCT NCT WCT NWCT NCT

same 97.6 89.7 94.2 96.1 88.5 91.0 98.1 91.6 94.1 97.4 90.2 92.9

different 97.3 99.7 99.6 95.8 99.8 99.7 98.9 99.6 99.8 97.1 99.5 99.6



Table 13: Empirical FDR (%) and the power of testing the equality of two precision matrices

(Ω1,Ω2) when same given networks using the weighted conditional test (WCT), nonweighted

conditional test (NWCT), and nonconditional test (NCT); (Ω1,Ω2) are generated by Ω(m),

m = 1, . . . , 4, with the number of nodes of the network given other networks p1 = p, the

number of nodes of the given network p2 = p, sample size n1 = n2 = 100, and significance level

α = 0.1 and 0.2. For m = 1, 2, 3, 4, Ω(1) is a pentadiagonal matrix, Ω(2) is a scale-free network,

Ω(3) is a symmetric matrix whose upper off-diagonal elements are from Binomial distribution,

and Ω(4) is a symmetric matrix whose randomly assigned off-diagonal elements is 0.5.

Ω(1) Ω(2) Ω(3) Ω(4)

Same given networks case
(
(Ω1

I1,I2
,Ω1

I2,I2
) = (Ω2

I1,I2
,Ω2

I2,I2
)
)

Dd WCT NWCT NCT WCT NWCT NCT WCT NWCT NCT WCT NWCT NCT

empirical FDR with α = 0.1

same 10.0 12.1 10.6 11.4 13.2 14.1 9.3 9.7 10.4 12.5 13.0 13.5

different 10.3 11.2 11.3 10.7 11.2 10.3 12.5 14.0 11.8 12.2 12.8 13.3

empirical FDR with α = 0.2

same 23.5 23.0 23.0 21.7 24.6 24.5 20.2 21.8 21.3 24.0 26.4 25.3

different 17.3 21.3 21.6 20.4 21.7 19.1 21.5 25.8 23.8 21.7 23.0 24.0

Power with α = 0.1

same 44.3 34.8 38.2 46.0 37.4 38.9 47.9 38.0 40.4 46.9 38.4 42.9

different 46.9 32.7 38.8 47.1 36.4 35.7 47.3 36.3 38.5 47.1 34.2 39.5

Power with α = 0.2

same 53.1 42.2 46.7 53.5 44.2 44.8 54.1 38.0 40.4 55.3 46.1 51.4

different 54.7 43.7 48.3 55.5 44.3 44.3 54.8 45.0 47.6 55.4 43.1 48.0



Table 14: Empirical FDR(%) and the power of testing the equality of two precision matrices

(Ω1,Ω2) when different given networks using the weighted conditional test (WCT), nonweighted

conditional test (NWCT), and nonconditional test (NCT); (Ω1,Ω2) are generated by Ω(m),

m = 1, . . . , 4, with the number of nodes of the network given other networks p1 = p, the

number of nodes of the given network p2 = p, sample size n1 = n2 = 100, and significance level

α = 0.1 and 0.2. For m = 1, 2, 3, 4, Ω(1) is a pentadiagonal matrix, Ω(2) is a scale-free network,

Ω(3) is a symmetric matrix whose upper off-diagonal elements are from Binomial distribution,

and Ω(4) is a symmetric matrix whose randomly assigned off-diagonal element is 0.5.

Ω(1) Ω(2) Ω(3) Ω(4)

Different given networks case
(
(Ω1

I1,I2
,Ω1

I2,I2
) 6= (Ω2

I1,I2
,Ω2

I2,I2
)
)

Dd WCT NWCT NCT WCT NWCT NCT WCT NWCT NCT WCT NWCT NCT

empirical FDR with α = 0.1

same 10.0 10.6 10.1 10.2 12.1 11.0 11.1 12.1 13.1 9.9 11.1 9.8

different 9.9 9.7 10.2 11.2 11.8 11.0 9.3 11.7 11.8 11.2 11.9 9.9

empirical FDR with α = 0.2

same 18.5 18.9 19.0 21.8 22.1 23.1 20.4 21.7 23.6 20.5 20.7 21.6

different 18.3 20.1 19.3 19.9 19.6 19.8 19.7 20.3 23.6 20.9 21.4 20.8

Power with α = 0.1

same 39.0 32.8 36.2 38.6 30.9 32.3 37.3 29.9 30.2 36.0 29.7 33.1

different 43.4 33.2 35.7 39.4 30.6 30.5 38.7 30.7 33.0 37.6 27.0 29.5

Power with α = 0.2

same 46.1 40.2 43.4 46.5 39.6 41.3 45.1 37.6 39.4 43.6 37.2 41.6

different 50.9 43.3 46.7 47.7 40.2 41.2 47.0 40.3 42.9 46.2 34.3 38.6



Table 15: Pathway id, name, and the number of genes of the pathway in the breast cancer
genetic pathways.

Pathway Id Pathway Name The Number of Genes

113 KEGG FOCAL ADHESION 195

137 KEGG NEUROTROPHIN SIGNALING PATHWAY 118

141 KEGG REGULATION OF ACTIN CYTOSKELETON 197

142 KEGG INSULIN SIGNALING PATHWAY 129

153 KEGG ALZHEIMERS DISEASE 145

672 REACTOME SIGNALLING BY NGF 196

683 REACTOME TCA CYCLE AND RESPIRATORY 106

ELECTRON TRANSPORT

711 REACTOME ORC1 REMOVAL FROM CHROMATIN 63

717 REACTOME SIGNALING BY ERBB2 91

750 REACTOME SIGNALING BY THE B CELL 113

RECEPTOR BCR

772 REACTOME SIGNALING BY FGFR IN DISEASE 112

852 REACTOME METABOLISM OF AMINO ACIDS 176

AND DERIVATIVES

857 REACTOME BIOLOGICAL OXIDATIONS 117

930 REACTOME TRANSMEMBRANE TRANSPORT OF 338

SMALL MOLECULES

943 REACTOME SIGNALING BY PDGF 113

955 REACTOME METABOLISM OF PROTEINS 366

956 REACTOME DOWNSTREAM SIGNAL TRANSDUCTION 85

968 REACTOME TRANSCRIPTION 177

1075 REACTOME METABOLISM OF RNA 241

1111 REACTOME METABOLISM OF LIPIDS AND 399

LIPOPROTEINS

1206 REACTOME DNA REPLICATION 173

1219 REACTOME HEMOSTASIS 415

1271 REACTOME ADAPTIVE IMMUNE SYSTEM 453

1277 REACTOME CLASS I MHC MEDIATED ANTIGEN 203

PROCESSING PRESENTATION

1289 REACTOME PLATELET ACTIVATION SIGNALING 185

AND AGGREGATION



Table 16: List of significant edges under the nonconditional test (NCT), the non-weighted

conditional test (NWCT), and the weighted conditional test (WCT) with FDR 0.2 for

breast cancer genetic pathway with the testing pathway: 137, the conditioned pathway:

717

NCT NWCT WCT
CALM1 - ATF4 CALM1 - ATF4
ARHGDIA - GRB2 ARHGDIA - GRB2
MAPK14 - HRAS MAPK14 - HRAS

PLCG1 - MAPK1
RPS6KA4 - CAMK2G RPS6KA4 - CAMK2G

MAPK11 - YWHAB
NFKB1 - GRB2

MAP2K7 - FASLG MAP2K7 - FASLG MAP2K7 - FASLG



Table 17: List of significant edges under the nonconditional test (NCT), the non-weighted

conditional test (NWCT), and the weighted conditional test (WCT) with FDR 0.2 for

breast cancer genetic pathway data with the testing pathway: 113, the conditioned path-

way: 137

NCT NWCT WCT

COL1A2 - COL5A2

VEGFB - ACTN2

PIK3CA - LAMB2



Table 18: List of significant edges under the nonconditional test (NCT), the non-weighted

conditional test (NWCT), and the weighted conditional test (WCT) with FDR 0.2 for the

breast cancer genetic pathway with the testing pathway: 1206, the conditioned pathway:

750

NCT NWCT WCT

RFC2 - PSMA3 RFC2 - PSMA3

PPP2R1A - PSMD7

PPP2R1A - LIG1 PPP2R1A - LIG1 PPP2R1A - LIG1

PPP1CC - PSMA1 PPP1CC - PSMA1

RPS27 - POLE2 RPS27 - POLE2 RPS27 - POLE2

PSMD8 - PSMC3

PSMD2 - CLASP1

PSMD4 - CENPA

PSMA7 - NUP133

PSMA7 - PSME4

PSMA7 - UBA52

PSMA5 - ZWINT PSMA5 - ZWINT PSMA5 - ZWINT

PSMA3 - STAG2 PSMA3 - STAG2 PSMA3 - STAG2

PSMA1 - CDK2 PSMA1 - CDK2 PSMA1 - CDK2

NUP133 - PSMB10 NUP133 - PSMB10 NUP133 - PSMB10

PLK1 - STAG1

PLK1 - SPC25 PLK1 - SPC25 PLK1 - SPC25

CCNA2 - SEH1L CCNA2 - SEH1L CCNA2 - SEH1L

PMF1///BGLAP

- POLD3

PMF1///BGLAP

- POLD3
STAG2 - NUP85

CKAP5 - NUP107 CKAP5 - NUP107 CKAP5 - NUP107

SKA1 - FBXO5



(a) An example of Ω(1) (b) An example of Ω(2)

(c) An example of Ω(3) (d) An example of Ω(4)

Figure 1: Examples of Ω(d) for p1 = p2 = 10, d = 1, 2, 3, 4 in the simulation setting.

Shaded part is a network given other networks, and non-shaded part is a given network.
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Figure 13: Computational time (second) for global test: the weighted conditional test

(WCT) and nonconditional test (NCT) with the number of nodes of the test network

p1 = p, the number of nodes of the conditioned network p2 = p, samples sizes n1 =

n2 = 50, 100; black-dashed line with circle=WCT when n1 = n2 = 50; black-dotted

line with triangle=WCT when n1 = n2 = 100; red-dashed line with circle=NCT when

n1 = n2 = 50; red-dotted line with triangle=NCT when n1 = n2 = 100



Figure 14: Computational time (second) for multiple test: the weighted conditional test

(WCT) and nonconditional test (NCT) with the number of nodes of the test network

p1 = p, the number of nodes of the conditioned network p2 = p, samples sizes n1 =

n2 = 50, 100; black-dashed line with circle=WCT when n1 = n2 = 50; black-dotted

line with triangle=WCT when n1 = n2 = 100; red-dashed line with circle=NCT when

n1 = n2 = 50; red-dotted line with triangle=NCT when n1 = n2 = 100



Algorithm 1 : Precision Matrix Estimation

Require: p1, p2, n1, n2 ≥ 0, n1 × (p1 + p2) matrix X1, n2 × (p1 + p2) matrix X2, and

0 < κ

Ensure: (∆i,j): Precision Matrix Estimator

p← p1 + p2

n← max(n1, n2)

for d = 1, 2 do

X̄d ← 1
nd

∑nd
k=1 Xd

k,·

Σ̂d = (σ̂di,j)1≤i,j≤p1 ← 1
nd

∑nd
k=1(Xd

k,· − X̄d)(Xd
k,· − X̄d)T

for i = 1, · · · , p1 do

D← diag
(
Σ̂d
−i,−i

)
λdnd,i ← 2

√
(σ̂di,i log p)/nd

β̂di ← D−1/2 arg minu∈Rp1+p2−1

{
(2nd)

−1
∣∣(Xd

·,−i − X̄d
·,−i
)
D−1/2u−

(
Xd
·,i − X̄d

·,i
)∣∣2

2
+ λdnd,i|u|1

}
end for

for i = 1, · · · , p1 do

ε̂d·,i ← Xd
·,i − X̄d

i − (Xd
·,−i − X̄d

−i) · β̂di

end for

r̃d ← 1
nd

∑nd
k=1 ε̂

d
k,·(ε̂

d
k,·)

T

for i = 1, · · · , p1 do

for j = i+ 1, · · · , p1 do

r̂di,j ← −r̃di,j − r̃di,iβ̂di,j − r̃dj,j β̂dj−1,i

ω̂d,wi,j ←
r̂di,j√
r̃di,ir̃

d
j,j

θ̂di,j ← 1
nd

(
1 + (β̂di,j)

2 r̂
d
i,i

r̂dj,j

)
end for

end for

end for



for i = 1, · · · , p1 do

for j = i+ 1, · · · , p1 do

∆i,j ←
|ω̂1,w
i,j −ω̂

2,w
i,j |√

θ̂1i,j+θ̂
2
i,j

end for

end for



Algorithm 2 : The Global Test

Require: p1, p2, n1, n2 ≥ 0, (p1 + p2) × n1 matrix X1, (p1 + p2) × n2 matrix X2, and

0 < α < 1

Ensure: Ψα: Whether the null hypothesis would be rejected in the global test.

∆← PrecisionMatrixEstimate(p1, p2, n1, n2,X
1,X2, 2)

Mn ← max1≤i<j≤p1(Zi,j)
2

Φα ← I{Mn ≥ − log(8π)− 2 log | log(1− α)|+ 4 log p1 − log log p1}



Algorithm 3 : The Multiple Test

Require: p1, p2, n1, n2 ≥ 0, (p1 + p2) × n1 matrix X1, (p1 + p2) × n2 matrix X2, and

0 < α < 1

Ensure: Nα: Which null hypotheses would be rejected in the multiple test.

for s = 1, · · · , 40 do

∆s ← PrecisionMatrixEstimate(p1, p2, n1, n2,X
1,X2, s/20)

Es ←
∑10
l=1

(∑
1≤i<j≤p1

I{∆s
i,j≥Φ−1(1−l[1−Φ{(log p1)1/2}]/10)}

lp1(p1−1)[1−Φ{(log p1)1/2}]/10

)2

. (Φ is the cumulate

distribution of standard normal.)

end for

κ̂← arg mins=1,2,··· ,40Es

for T = 1, 2, · · · , 200(log p1)1/2 do

t← T/100

N ←
∣∣{(i, j) : 1 ≤ i < j ≤ p1 and Z κ̂i,j ≥ t

}∣∣
if

(1−Φ(t))(p21−p1)
max(N,1) ≤ α then

Break

end if

end for

Nα ←
{

(i, j) : 1 ≤ i < j ≤ p1 and Z κ̂i,j ≥ t
}
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