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Consistency

established?

Adapt to dis-

continuities

in regression

function?

UQ Tractable to

fit model for

p = 250?

Analytical expres-

sion for Shapley

effects or Sobol´

indices?

Available

code to

estimate

Shapley ef-

fects?

B
A
R
T

yes (Jeong

and Rock-

ova, 2023)

yes (Jeong

and Rockova,

2023)

Bayesian yes (Sec-

tion 5)

yes (Horiguchi

et al., 2021)

this paper

(Pratola,

2023)

G
P

yes yes (Moham-

madi et al.,

2019)

Bayesian no yes for some co-

variance kernels

sensitivity

R package

(Iooss and

Prieur, 2019)

P
C
E no no bootstrap no yes (Sudret, 2008) no

B
M

A
R
S no no Bayesian yes (Fran-

com et al.,

2018)

yes (Francom

et al., 2018)

no

Table 1: Properties of various metamodels under nonparametric regression.

S2 Review of posterior contraction

A posterior contraction rate quantifies how quickly a posterior distribution

approaches the true parameter of the data’s distribution. We use a sim-

plified version of the definition from Ghosal and Van der Vaart (2017): for

every n ∈ N, let X(n) be an observation in a sample space (X(n),X (n)) with

distribution P
(n)
θ indexed by θ belonging to a first countable topological

space Θ. Given a prior Πn on the Borel sets of Θ, let Πn(· | X(n)) be (a

fixed particular version of) the posterior distribution.

Definition 1 (Posterior contraction rate). A sequence {εn}n∈N is a poste-
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rior contraction rate at the parameter θ0 with respect to the semimetric d if

Πn(θ : d(θ, θ0) ≥ Mnεn | X(n)) → 0 in P
(n)
θ0

-probability, for every Mn → ∞.

If there exists a constant M > 0 such that Πn(θ : d(θ, θ0) ≥ Mεn |

X(n)) → 0 in P
(n)
θ0

-probability, then the sequence {εn}n∈N satisfies the def-

inition of posterior contraction rate. This will be relevant in interpreting

Corollaries 3 and 4 in Section 3.

After reviewing the concept of contraction rates, we state for conve-

nience the conditions made in the theorems of Jeong and Rockova (2023)

that our contraction-rate results rely on. Because these conditions are not

the focus of this paper, we leave discussion of the context behind these

conditions to Jeong and Rockova (2023).

S3 Preliminaries for proofs

For any positive integer m, denote [m] := {1, . . . ,m}.

From the main text, we copy here the considered regression models with

fixed and random design. The regression model with fixed design is

Yi = f0(xi) + εi, εi ∼ N(0, σ2
0), i = 1, . . . , n, (S3.1)

where σ2
0 < ∞ and each covariate xi ∈ [0, 1]p is fixed. The regression model
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with random design is

Yi = f0(Xi) + εi, Xi ∼ π, εi ∼ N(0, σ2
0), i = 1, . . . , n, (S3.2)

where σ2
0 < ∞, each Xi ∈ [0, 1]p is a p-dimensional random covariate, and

π is a probability measure such that supp(π) ⊆ [0, 1]p.

Piecewise heterogeneous anisotropic functions Next we introduce the con-

ditions of the theorems of Jeong and Rockova (2023) relevant to our work.

The first set of conditions involves what values of f0 and σ2
0 are allowed

for BART to contract around f0. A common assumption for f0 is isotropic

smoothness, but this excludes the realistic scenario that f0 is discontinuous

and has different degrees of smoothness in different directions and regions.

Jeong and Rockova (2023) introduce a new class of piecewise heterogeneous

anisotropic functions whose domain is partitioned into many boxes (i.e.

hyperrectangles), each of which has its own anisotropic smoothness with

the same harmonic mean. First assume f0 is d-sparse, i.e. there exists a

function h0 : [0, 1]
d → R and a subset S0 ⊆ [p] with |S0| = d such that

f0(x) = h0(xS0) for any x ∈ [0, 1]p. For any given box Ξ ⊆ [0, 1]d, smooth-

ness parameter α = (α1, . . . , αd)
T ∈ (0, 1]d, and Hölder coefficient λ < ∞,

an anisotropic α-Hölder space on Ξ is defined as

Hα,d
λ (Ξ) :=

{
h : Ξ → R; |h(x)− h(y)| ≤ λ

d∑
j=1

|xj − yj|αj , x, y ∈ Ξ
}
.
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Though h0 might have different anisotropic smoothness on different boxes, it

is important to assume that all boxes have the same harmonic mean. Thus

define the set AR,d
ᾱ to be the set of R-tuples of smoothness parameters that

have harmonic mean ᾱ ∈ (0, 1]:

AR,d
ᾱ :=

{
(α1, . . . ,αR) : αr ∈ (0, 1]d, ᾱ−1 = p−1

d∑
j=1

α−1
rj , r ∈ [R]

}
.

Given a partition (Ξ1, . . . ,ΞR) of [0, 1]d with boxes Ξr ⊆ [0, 1]d and a

smoothness R-tuple Aᾱ ∈ AR,d
ᾱ for some ᾱ ∈ (0, 1], define a piecewise

heterogeneous anisotropic Hölder space as

HAᾱ,d
λ (X) :=

{
h : [0, 1]d → R;h|Ξr ∈ Hαr,d

λ (Ξr), r ∈ [R]
}
.

To extend a function from a sparse domain to the original domain [0, 1]p,

for any nonempty subset S ⊆ [p] define W p
S : C(R|S|) → C(Rp) as the map

that extends h ∈ C(R|S|) to the function W p
Sh : x → h(xS) where x ∈ [0, 1]p

and C(E) denotes the class of real-valued continuous functions defined on

a Euclidean subspace E. With this definition, the space HAᾱ,d
λ (X) from the

preceding panel can be extended to the corresponding d-sparse piecewise

heterogeneous anisotropic Hölder space

ΓAᾱ,d,p
λ (X) :=

⋃
S⊆[p] : |S|=d

W p
S

(
HAᾱ,d

λ (X)
)
.

With these definitions, we can now state the needed assumptions on

the true f0 and σ2.
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(A1) For d > 0, λ > 0, R > 0, X = (Ξ1, . . . ,ΞR), and Aᾱ ∈ AR,d
ᾱ with

ᾱ ∈ (0, 1], the true function satisfies f0 ∈ ΓAᾱ,d,p
λ (X) or f0 ∈ ΓAᾱ,d,p

λ (X)∩

C([0, 1]p).

(A2) It is assumed that d, p, λ, R, and ᾱ satisfy ϵn ≪ 1, where

ϵn :=

√
d log p

n
+ (λd)d/(2ᾱ+d)

(R log n

n

)ᾱ/(2ᾱ+d)

. (S3.3)

(A3) The true function f0 satisfies ∥f0∥∞ ≲
√
log n.

(A4) The true variance parameter satisfies σ2 ∈ [C−1
0 , C0] for some suffi-

ciently large C0 > 1.

Split-net The second set of conditions (of the theorems of Jeong and Rock-

ova (2023) relevant to our work) involves the split values c allowed in the

binary split rules “xj < c” of the regression trees. If a partition of [0, 1]p can

be created using the aforementioned tree-based procedure, call it a flexible

tree partition. To restrict a flexible tree partition by a set of allowable split

values in the binary split rules, for any integer bn define a split-net Z to

be a finite set of points in [0, 1]p at which possible splits occur along coor-

dinates. That is, the allowable split values for any input dimension j ∈ [p]

are the jth components of the points in the split-net. For a given split-net

Z, a flexible tree partition (Ω1, . . . ,ΩK) of [0, 1]p with boxes Ωk ⊆ [0, 1]p,

k ∈ [K], is called a Z-tree partition if every split occurs at points in Z.
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A split net should be dense enough for a resulting partition to be close

enough to the underlying partition X∗ = (Ξ∗
1, . . . ,Ξ

∗
R) of the true function

f0. For any two box partitions Y1 = (Ψ1
1, . . . ,Ψ

1
J) and Y2 = (Ψ2

1, . . . ,Ψ
2
J)

with the same number J of boxes, their closeness will be measured using

the Hausdorff-type divergence

Υ(Y1,Y2) := min
τ∈Perm[J ]

max
r∈[J ]

Haus(Ψ1
r,Ψ

2
τ(r))

where Perm[J ] denotes the set of all permutations of [J ] and Haus(·, ·) is the

Hausdorff distance. For a subset S ⊆ [p], a box partition of [0, 1]p is called

S-chopped if every box Ψ in the box partition satisfies maxj∈S len([Ψ]j) <

1 and minj /∈S len([Ψ]j) = 1, where [Ψ]j denotes the interval created by

projecting the box [Ψ] onto the j-th principal axis. For a given subset

S ⊆ [p], consider an S-chopped partition Y of [0, 1]p with J boxes. For any

given cn ≥ 0, a split-net Zn is said to be (Y, cn)-dense if there exists an S-

chopped Zn-tree partition Tn of [0, 1]
p with J boxes such that Υ(Y, Tn) ≤ cn.

A split net should also be regular enough (defined below) for a tree

partition to capture local features of f0 on each box. Assume the under-

lying partition X∗ can be approximated well by an S(X∗)-chopped Z-tree

partition (Ω∗
1, . . . ,Ω

∗
R) := argminT ∈TS(X∗),R,Z Υ(X∗, T ). In each box Ω∗

r, the

idea is to allow splits to occur more often along the input dimensions with

less smoothness. Given a split-net Z and splitting coordinate j, define the
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midpoint-split of a box Ψ as the bisection of Ψ along coordinate j at the

⌈b̃j(Z,Ψ)/2⌉th split-candidate in [Z]j ∩ int([Ψ]j), where b̃j(Z,Ψ) is the

cardinality of [Z]j ∩ int([Ψ]j). Given a smoothness vector α ∈ (0, 1]d, box

Ψ ⊆ [0, 1]p, split-net Z, integer L > 0, and index set S = {s1, . . . , sd} ⊆ [p],

define the anisotropic k-d tree AKD(Ψ;Z,α, L, S) as the iterative splitting

procedure that partitions Ψ into disjoint boxes Ω◦
1, . . . ,Ω

◦
2L◦ as follows:

1. Set Ω◦
1 = Ψ and set counter lj = 0 for each j ∈ [d].

2. Let L◦ =
∑d

j=1 lj for the current counters. For splits at iteration 1+L◦,

choose j′ = min{argminj ljαj}. Midpoint-split all boxes Ω◦
1, . . . ,Ω

◦
2L◦

with the given Z and splitting coordinate sj′ . Relabel the generated

new boxes as Ω◦
1, . . . ,Ω

◦
21+L◦ , and then increment lj′ by one.

3. Repeat step 2 until either the updated L◦ equals L or the midpoint-

split is no longer available. Return counters l1, . . . , ld and boxes Ω◦
1, . . . ,Ω

◦
2L◦ .

For a given box Ψ ⊆ [0, 1]p, smoothness vector α ∈ (0, 1]d, integer L > 0,

and index set S = {s1, . . . , sd} ⊆ [p], a split-net Z is called (Ψ,α, L, S)-

regular if the counters and boxes returned by AKD(Ψ;Z,α, L, S) satisfy

L◦ = L and maxk len([Ω
◦
k]sj) ≲ len([Ψ]sj)2

−lj for every j ∈ [d].

With these definitions, we can now state the needed assumptions on

the sequence {Zn}∞n=1 of split-nets.
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(A5) Each split-net Zn satisfies max1≤j≤p log bj(Zn) ≲ log n, where bj(Zn)

is the cardinality of the set {zj : (z1, . . . , zp) ∈ Zn}.

(A6) Each split-net Zn is suitably dense and regular to construct a Zn-tree

partition T̂ such that there exists a simple function f̂0 ∈ FT̂ satisfying

∥f0 − f̂0∥n ≲ ϵ̄n, where

ϵ̄n := (λd)d/(2ᾱ+d){(R log n)/n}ᾱ/(2ᾱ+d), (S3.4)

the empirical L2-norm ∥ · ∥n is defined as ∥f∥2n = n−1
∑n

i=1 |f(xi)|2,

and FT̂ is the set of functions on [0, 1]p that are constant on each piece

of the partition T̂ .

(A7) Each Zn-tree partition (Ω∗
1, . . . ,Ω

∗
R) approximating the underlying par-

tition X∗ for the true function f0 satisfies maxr∈[R] depth(Ω
∗
r) ≲ log n,

where depth means the depth of a node (i.e. number of nodes in the

path from that node to the root node).

Finally, we state the required prior specification.

(P1) Each tree partition in the ensemble is independently assigned a tree

prior with Dirichlet sparsity from Linero (2018). This sparse Dirichlet

prior places a Dirichlet prior on the proportion vector used to select

the splitting coordinate j during the creation of a split rule.
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(P2) The step-heights of the regression-tree functions are each assigned a

normal prior with mean zero and covariance matrix whose eigenvalues

are bounded below and above.

(P3) The variance parameter σ2 is assigned an inverse gamma prior.

Jeong and Rockova (2023) make the above assumptions and prior spec-

ification for their contraction-rate results in the fixed design setting (S3.1).

For their contraction-rate results in the random design setting (S3.2), a

few of the above assumptions and prior specifications are replaced by the

following:

(A3∗) The true function f0 satisfies ∥f0∥∞ ≤ C∗
0 for some sufficiently large

C∗
0 > 0.

(A6∗) The split-net Z is suitably dense and regular to construct a Z-tree

partition T̂ such that there exists f̂0 ∈ FT̂ satisfying ∥f0 − f̂0∥ ≲ ϵ̄n

where ϵ̄n is given by (S3.4).

(P2∗) A prior on the compact support [−C̄1, C̄1] is assigned to the step-

heights of the regression-tree functions for some C̄1 > C∗
0 .

(P3∗) A prior on the compact support [C̄−1
2 , C̄2] is assigned to the variance

parameter σ2 for some C̄2 > C0.
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S4 Posterior asymptotics

This section establishes our contraction-rate results (Corollaries 3 and 4) for

estimators of Sobol´ indices and Shapley effects under either the fixed design

(S3.1) or the random design (S3.2). Our proofs rely on these sensitivity

indices having a property (defined in Lemma 2 below) similar to but slightly

less restrictive than Lipschitz continuity. However, the tasks of proving this

property for all of these sensitivity indices are very similar to each other.

Because these indices are linear combinations of the functional cP,π defined

in (S5.5), we can use Lemma 2 to reduce the above tasks to the single task

of proving this property for cP,π.

Lemma 1. Suppose the following relationship is true for all indices k in

a finite set A: given two metric spaces X and X0 with the same metric

dX , there exists a constant C > 0 such that, for all (x, x0) ∈ X × X0, the

function ϕk : X ∪X0 → R satisfies

|ϕk(x)− ϕk(x0)| ≤ CdX(x, x0).

Then any set {ak}k∈A of real numbers satisfies

∣∣∣∑
k∈A

akϕk(x)−
∑
k∈A

akϕk(x0)
∣∣∣ ≤ C∗dX(x, x0).

where C∗ = C
∑

k∈A+
|ak| and A+ := {k ∈ A :

∣∣ϕk(x)− ϕk(x0)
∣∣ > 0}.
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S4.1 Nonparametric regression with random design

This section assumes the random-design regression setting (S3.2); all ex-

pectations in this section are with respect to the probability measure π in

(S3.2).

Theorem 1. Assume (A3*). If f ∈ L2([0, 1]p) shares the same bound C∗
0

from (A3*), then for any subset P ⊆ [p] and distribution π with support

[0, 1]p we have

|cP,π(f)− cP,π(f0)| ≤ 4C∗
0∥f − f0∥2,π

for the functional cP,π defined in (S5.5).

Corollary 1. Under the assumptions of Theorem 4 of Jeong and Rockova

(2023) – Assumptions (A1), (A2), (A3∗), (A4), (A5), (A6∗), and (A7),

and the prior assigned through (P1), (P2∗), and (P3∗) – and Theorem 3

above, there exist positive constants LV,π,|P |, LT,π, and LS such that as n →

∞ for ϵn in (S5.6),

E0Π
{
(f, σ2) : |VP,π(f)− VP,π(f0)|+ |σ2 − σ2

0| > LV,π,|P |ϵn

∣∣∣Y1, . . . , Yn

}
→ 0,

E0Π
{
(f, σ2) : |Tj,π(f)− Tj,π(f0)|+ |σ2 − σ2

0| > LT,πϵn

∣∣∣Y1, . . . , Yn

}
→ 0,

and E0Π
{
(f, σ2) : |Sj,π(f)− Sj,π(f0)|+ |σ2 − σ2

0| > LSϵn

∣∣∣Y1, . . . , Yn

}
→ 0.
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S4.2 Nonparametric regression with fixed design

This section assumes the fixed-design regression setting (S3.1); all expec-

tations in this section are with respect to the probability measure PX (·) =

n−1
∑

x∈X δx(·) where X is the set of the fixed covariates assumed in (S3.1).

Theorem 2. Assume (A3). If f ∈ L2([0, 1]p) shares the same bound
√
log n

from (A3), then for any subset P ⊆ [p] and distribution π with support [0, 1]p

we have

|cP,PX
(f)− cP,PX

(f0)| ≲ 4
√

log n∥f − f0∥2,PX

where the empirical L2-norm ∥·∥2,PX
is defined as ∥f∥22,PX

= n−1
∑

x∈X |f(x)|2.

Corollary 2. Under the assumptions of Theorem 2 of Jeong and Rockova

(2023) – Assumptions (A1), (A2), (A3), (A4), (A5), (A6), and (A7), and

the prior assigned through (P1), (P2), and (P3) – and Theorem 4 above,

there exist positive constants LV,π,|P |, LT,π, and LS such that as n → ∞ for

ϵn in (S5.6),

E0Π
{
(f, σ2) : |VP,π(f)− VP,π(f0)|+ |σ2 − σ2

0| > LV,π,|P |ϵn
√
log n | Y1, . . . , Yn

}
→ 0,

E0Π
{
(f, σ2) : |Tj,π(f)− Tj,π(f0)|+ |σ2 − σ2

0| > LT,πϵn
√
log n | Y1, . . . , Yn

}
→ 0,

and E0Π
{
(f, σ2) : |Sj,π(f)− Sj,π(f0)|+ |σ2 − σ2

0| > LSϵn
√

log n | Y1, . . . , Yn

}
→ 0.
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S5 Proofs of results in main text

For convenience, here we replicate the theorems, lemmas, and relevant equa-

tions from the main text.

S5.1 Relevant quantities

cP,π(f) = Varπ[Eπ{f(X) | XP}] = Eπ([Eπ{f(X) | XP}]2)− [Eπ{f(X)}]2.

(S5.5)

ϵn :=

√
d log p

n
+ (λd)d/(2ᾱ+d)

(R log n

n

)ᾱ/(2ᾱ+d)

. (S5.6)

Sj,π(f) = (p!)−1
∑

P⊆([p]\{j})

(p− |P | − 1)! |P |!
{
cP∪{j},π(f)− cP,π(f)

}
. (S5.7)

S5.2 Theorems and lemmas

Lemma 2. Suppose the following relationship is true for all indices k in

a finite set A: given two metric spaces X and X0 with the same metric

dX , there exists a constant C > 0 such that, for all (x, x0) ∈ X × X0, the

function ϕk : X ∪X0 → R satisfies

|ϕk(x)− ϕk(x0)| ≤ CdX(x, x0).



S5.2 Theorems and lemmas15

Then any set {ak}k∈A of real numbers satisfies

∣∣∣∑
k∈A

akϕk(x)−
∑
k∈A

akϕk(x0)
∣∣∣ ≤ C∗dX(x, x0).

where C∗ = C
∑

k∈A+
|ak| and A+ := {k ∈ A :

∣∣ϕk(x)− ϕk(x0)
∣∣ > 0}.

Theorem 3. Assume (A3*). If f ∈ L2([0, 1]p) shares the same bound C∗
0

from (A3*), then for any subset P ⊆ [p] and distribution π with support

[0, 1]p we have

|cP,π(f)− cP,π(f0)| ≤ 4C∗
0∥f − f0∥2,π

for the functional cP,π defined in (S5.5).

Corollary 3. Under the assumptions of Theorem 4 of Jeong and Rockova

(2023) – Assumptions (A1), (A2), (A3∗), (A4), (A5), (A6∗), and (A7),

and the prior assigned through (P1), (P2∗), and (P3∗) – and Theorem 3

above, there exist positive constants LV,π,|P |, LT,π, and LS such that as n →

∞ for ϵn in (S5.6),

E0Π
{
(f, σ2) : |VP,π(f)− VP,π(f0)|+ |σ2 − σ2

0| > LV,π,|P |ϵn

∣∣∣Y1, . . . , Yn

}
,

E0Π
{
(f, σ2) : |Tj,π(f)− Tj,π(f0)|+ |σ2 − σ2

0| > LT,πϵn

∣∣∣Y1, . . . , Yn

}
,

and E0Π
{
(f, σ2) : |Sj,π(f)− Sj,π(f0)|+ |σ2 − σ2

0| > LSϵn

∣∣∣Y1, . . . , Yn

}
each shrink to zero.
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Theorem 4. Assume (A3). If f ∈ L2([0, 1]p) shares the same bound
√
log n

from (A3), then for any subset P ⊆ [p] and distribution π with support [0, 1]p

we have

|cP,PX
(f)− cP,PX

(f0)| ≲ 4
√

log n∥f − f0∥2,PX

where the empirical L2-norm ∥·∥2,PX
is defined as ∥f∥22,PX

= n−1
∑

x∈X |f(x)|2.

Corollary 4. Under the assumptions of Theorem 2 of Jeong and Rockova

(2023) – Assumptions (A1), (A2), (A3), (A4), (A5), (A6), and (A7), and

the prior assigned through (P1), (P2), and (P3) – and Theorem 4 above,

there exist positive constants LV,π,|P |, LT,π, and LS such that as n → ∞ for

ϵn in (S5.6),

E0Π
{
(f, σ2) : |VP,π(f)− VP,π(f0)|+ |σ2 − σ2

0| > LV,π,|P |ϵn
√
log n | Y1, . . . , Yn

}
,

E0Π
{
(f, σ2) : |Tj,π(f)− Tj,π(f0)|+ |σ2 − σ2

0| > LT,πϵn
√
log n | Y1, . . . , Yn

}
,

and E0Π
{
(f, σ2) : |Sj,π(f)− Sj,π(f0)|+ |σ2 − σ2

0| > LSϵn
√

log n | Y1, . . . , Yn

}
each shrink to zero.

S5.3 Proofs

Proof of Lemma 2. We have∣∣∣∑
k∈A

akϕk(x)−
∑
k∈A

akϕk(x0)
∣∣∣ ≤ ∑

k∈A

|ak|
∣∣ϕk(x)−ϕk(x0)

∣∣ ≤ ∑
k∈A+

|ak|CdX(x, x0)

where the right-most sum in the preceding panel is exactly C∗dX(x, x0).
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Proof of Theorem 3. Note that

∣∣∣cP,π(f)− cP,π(f0)
∣∣∣ = ∣∣∣(E[

(E[f(X) | XP ])
2 − (E[f0(X) | XP ])

2
])

−
(
[Ef(X)]2 − [Ef0(X)]2

)∣∣∣
≤ E

∣∣∣(E[f(X) | XP ])
2 − (E[f0(X) | XP ])

2
∣∣∣

+
∣∣∣[E{f(X)}]2 − [E{f0(X)}]2

∣∣∣.
From the assumption that f and f0 are bounded in supremum norm by C∗

0 ,

we get

∣∣∣[E{f(X)}]2 − [E{f0(X)}]2
∣∣∣

=
∣∣∣[E{f(X)}+ E{f0(X)}

][
E{f(X)} − E{f0(X)}

]∣∣∣
≤ 2C∗

0E|f(X)− f0(X)|.

We can similarly deduce for any XP that

∣∣∣(E[f(X) | XP ])
2 − (E[f0(X) | XP ])

2
∣∣∣ ≤ 2C∗

0 E[|f(X)− f0(X)| | XP ].

Then

|cP,π(f)− cP,π(f0)|

≤ E
[
2C∗

0E[|f(X)− f0(X)| | XP ]
]
+ 2C∗

0E|f(X)− f0(X)|

= 4C∗
0E|f(X)− f0(X)|.

To finish, Jensen’s inequality implies E|f(X)− f0(X)| ≤ ∥f − f0∥2,π.
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Proof of Corollary 3. Below is the proof just for the jth (where j ∈ [p])

total-effect Sobol´ index. The same argument can be followed to obtain

the corresponding results for any main-effect Sobol´ index and any Shapley

effect after making the appropriate substitutions for the aP below. Lemma 2

and Theorem 3 together imply

|Tj,π(f)− Tj,π(f0)| ≤ DT,π∥f − f0∥2,π.

where DT,π ≤ max{1, 4C∗
0

∑
P∈[p] |aP,π|} and the real values aP are the

coefficients corresponding to Tj,π expressed as a linear combination of cP,π.

(Theorem 5 provides upper bounds for the sum
∑

P∈[p] |aP,π|.) For any

constant δ > 0, define the two sets

Aδ := {(f, σ2) : |Tj,π(f)− Tj,π(f0)|+ |σ2 − σ2
0| > δ}

Bδ := {(f, σ2) : DT,π|Tj,π(f)− Tj,π(f0)|+DT,π|σ2 − σ2
0| > δ}.

BecauseDT,π ≥ 1, we haveAδ ⊆ Bδ for all δ > 0. Let Dn := {(X1, Y1), . . . , (Xn, Yn)}.

By Theorem 4 of Jeong and Rockova (2023), there exists a constant M > 0

such that E0Π(BLT,πϵn | Dn) → 0 as n → ∞, where LT,π = DT,πM . Because

ALT,πϵn ⊆ BLT,πϵn for all n, we have E0Π(ALT,πϵn | Dn) → 0 as n → ∞.

The proofs of Theorem 4 and Corollary 4 can be obtained by replacing

the random-design bound C∗
0 with

√
log n and the distribution π with the

probability measure PX .
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Regarding the constant DT,π (and the corresponding constants DV,π,|P |

and DT,π) in the proof of Corollary 3, the sum
∑

P∈[p] |aP,π| seems to grow

exponentially in p. Theorem 5 below states that this exponential depen-

dence on p holds really only for a total-effect Sobol´ index (although the

sum for a Sobol´ index VP is 2|P |−1, in practice such indices are computed

only for |P | ≤ 3). However, p is often much larger than the order of the

highest-order interaction in the true function. If the input distribution π is

orthogonal (which is needed for a Sobol´ index to be interpretable), if the

true function does not contain interactions of order larger than q ≤ p, and if

the BART posterior assigns zero probability to functions with interactions

of order larger than q (this third assumption is not unreasonable for even

moderately large q, given that BART’s prior discourages deep trees and

a tree’s regression function cannot have interactions of order larger than

the tree’s depth), then the sum’s dependence on p for the total-effect in-

dex reduces to an exponential dependence on q, which is often quite small.

(We can further reduce this dependence on q if π is orthogonal by omitting

Sobol´ index terms for subsets containing inert variables in a similar fashion

as described in the proof of Theorem 5.)

Theorem 5. Upper bounds for DS, DV,π,|P |, and DT,π in the proof of Corol-

lary 3 are, respectively, max{1, 8C∗
0}, max{1, 4C∗

0(2
|P |−1)}, and max{1, 4C∗

0

∑p−1
i=0 (p−
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1)!/{(p − 1 − i)!i!}(2i+1 − 1)}. If π is orthogonal and neither f nor f0 in

Corollary 3 contain interactions of order larger than q < p, then the pre-

ceding upper bounds for DV,π,|P | and DT,π can be reduced to, respectively,

max{1, 4C∗
0

∑min{q,|P |}
i=1 P !/{(P − i)!i!}} and max{1, 4C∗

0

∑q−1
i=0 (q−1)!/{(q−

1− i)!i!}(2i+1 − 1)}.

Proof of Theorem 5. For the Shapley effect bound, we note that

1

p

∑
P⊆([p]\{j})

(p− 1− |P |)!|P |!
(p− 1)!

=
1

p

p−1∑
i=0

1 = 1.

This with (S5.7) and Theorem 3 together imply∣∣∣Sj,π(f)− Sj,π(f0)
∣∣∣ ≤

∣∣∣∣∣∣1p
∑

P⊆([p]\{j})

(p− 1− |P |)!|P |!
(p− 1)!

[
cP∪{j},π(f)− cP∪{j},π(f0)

]∣∣∣∣∣∣
+

∣∣∣∣∣∣1p
∑

P⊆([p]\{j})

(p− 1− |P |)!|P |!
(p− 1)!

[cP,π(f)− cP,π(f0)]

∣∣∣∣∣∣
≤ 4C∗

0∥f − f0∥2,π + 4C∗
0∥f − f0∥2,π.

As defined in Section 2.2, a Sobol´ index VP,π(f) is a linear combination

of costs (S5.5) over all nonempty subsets of P , where each coefficient in the

linear combination is either 1 or −1. Since P has
∑|P |

i=1 |P |!/{(|P |− i)!i!} =

2|P | − 1 many nonempty subsets, we can use Theorem 3 to get∣∣∣VP,π(f)− VP,π(f0)
∣∣∣ ≤ (2|P | − 1)4C∗

0∥f − f0∥2,π.

If π is orthogonal and there are no interactions of order larger than q, then

the Sobol´ indices for the subsets of P containing more than q elements are
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zero, and hence we can omit those Sobol´ indices from VP,π(f) − VP,π(f0).

Since P has
∑min{q,|P |}

i=1 |P |!/{(|P |−i)!i!}many nonempty subsets containing

at most q elements, the desired result follows.

As defined in Section 2.2, a total-effects Sobol´ index Tj,π(f) is the sum

of VP,π(f) over all subsets P ⊆ [p] containing j. Using the above result, we

get

∣∣∣Tj,π(f)− Tj,π(f0)
∣∣∣ =

∣∣∣∣∣∣
∑

P⊆([p]\{j})

VP∪{j},π(f)− VP∪{j},π(f0)

∣∣∣∣∣∣
≤

∑
P⊆([p]\{j})

(2|P |+1 − 1)4C∗
0∥f − f0∥2,π

≤
p−1∑
i=0

(p− 1)!

(p− 1− i)!i!
(2i+1 − 1)4C∗

0∥f − f0∥2,π.

If π is orthogonal and there are no interactions of order larger than q, then

the remaining result follows if we again omit from each sum the subsets of

P containing more than q elements.

S6 Functions used in simulation studies in Section 5

Table 2 contains the variances, Sobol´ indices, and Shapley values for each

test function.

1. The “Friedman” function (Friedman, 1991) is defined as

f(x) := 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5.
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2. The “Morris” function inspired by Morris et al. (2006) is defined as

f(x) := α
d∑

i=1

xi + β

d−1∑
i=1

xi

d∑
j=i+1

xj

where α =
√
12 − 6

√
0.1(d− 1) ≈ −0.331 and β = 12√

10(d−1)
≈ 1.897

are chosen.

3. The “Bratley” function (Bratley et al., 1992; Kucherenko et al., 2011)

is defined as

f(x) :=
d∑

i=1

(−1)i
i∏

j=1

xj = −x1 + x1x2 − x1x2x3 + x1x2x3x4 − x1x2x3x4x5.

4. The “g-function” from Saltelli and Sobol´ (1995) is defined as

f(x) :=
d∏

k=1

|4xk − 2|+ ck
1 + ck

,

where we use ck = (k − 1)/2 for k = 1, . . . , d suggested by Crestaux

et al. (2009).

S7 How do metamodels scale with input dimension?

Here we explore how various metamodels scale with input dimension p.

Sparse variational GPs are known for being scalable in sample size n, but

as explained in the abstract of Burt et al. (2020), to make the KL-divergence

between the approximate model and the exact posterior arbitrarily small for
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Friedman Morris Bratley g−function

Var: 23.8 Var: 5.25 Var: 0.057 Var: 3.076

j V ∗
j T ∗

j S∗
j V ∗

j T ∗
j S∗

j V ∗
j T ∗

j S∗
j V ∗

j T ∗
j S∗

j

1 0.197 0.274 0.235 0.190 0.210 0.2 0.688 0.766 0.725 0.411 0.558 0.482

2 0.197 0.274 0.235 0.190 0.210 0.2 0.142 0.220 0.179 0.183 0.288 0.233

3 0.093 0.093 0.093 0.190 0.210 0.2 0.051 0.099 0.073 0.103 0.172 0.135

4 0.350 0.350 0.350 0.190 0.210 0.2 0.006 0.018 0.011 0.066 0.113 0.088

5 0.087 0.087 0.087 0.190 0.210 0.2 0.006 0.018 0.011 0.046 0.080 0.062

Table 2: Normalized main-effects V ∗
j = V ∗

j (f), total-effects T ∗
j = T ∗

j (f), and Shapley

effects S∗
j = S∗

j (f) for various functions f and variable indices j ∈ [5] under orthogonal

inputs.

a Gaussian-noise regression model with M << N inducing points, squared-

exponential kernel, and p-dimensional Gaussian distributed covariates, an

overall computational cost of O(N(logN)2p(log logN)2), which is exponen-

tial in the input dimension p, is required.

Deep GPs (Damianou and Lawrence, 2013; Sauer et al., 2023) are meant

to be scalable in sample size, but not necessarily in total input dimension p.

Figure 1 shows that for a single-layer deep GP (which is essentially a typical

GP) with anisotropic lengthscales, its training time increases strongly with

p because a different parameter is needed for each input dimension. As

discussed in our theoretical results, our approach adapts to anisotropy and

hence this figure shows only models that also allow for anisotropy. However,

we also found in this same study that for a GP with isotropic lengthscales,

its training time is roughly constant with p because the same parameter
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is used for all input dimensions; hence such a GP could be computation-

ally useful for isotropic regression functions with high-dimensional input

variables.

Figure 1: Average training time (over 10 evaluations per input dimension) of metamodel

implementations on an M1-chip 4-core laptop for n = 100.

Figure 2 shows the training time for the OpenBT implementation of

BART Pratola (2023), the randomForest package (Liaw and Wiener, 2002)

implementation of random forests (Breiman, 2001), the xgboost package

(Chen et al., 2024) implementation of Extreme Gradient Boosting, the gbm

package (Ridgeway and Developers, 2024) implementation of Generalized

Boosted Regression Models, and the BASS package (Francom and Sansó,

2020) implementation of Bayesian MARS (Francom et al., 2018). We see

that as p increases, randomForest, xgboost, and gbm seem to increase
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at roughly the same rate, and that this rate is larger than the rate for

either openBT or BASS. The training time for openBT seems to have a larger

start-up time, but based on Figure 2 and Figure 1, the training time for

openBT seems to grow more slowly in n than do the other ensemble methods.

Interestingly, BASS has a small training time for both sample sizes, and

seems to grow slowly in p.

Figure 2: Average training time (over 10 evaluations per input dimension) of metamodel

implementations on an M1-chip 4-core laptop for n = 3000.
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