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Supplementary Material

Appendix A: Verification Details

Appendix A.1: Verification for the form of W

For the sake of simplicity, we write W; = {w € R : Bw = O} and W, = {e; + Ou :
u € ]RK_d*l}. Then it suffices to show that W; = W,. On one side, for any w € Wy, we
can find u such that w = e; + Ou. We then have Bw = B(e; + Ou) = 8 + BOu. In fact,
we should have BOu = 0,; otherwise we have u'®"BTBOu > 0, which is a contradiction
since ©'B"BO = Og_4.1. Then Bw = B and thus w € Wy, indicating Wy, € W;. On
the other side, for any w € Wy, we should have B(w — e;) = 0. Recall that rank(B) = d,
rank(©) = K +d — 1, and BO = Opy(k+a-1). Therefore, O is a basis of the null space for
B. Tt follows that there exists u € RE+?~1 such that w — e; = Ou. Therefore, w € W, and

Wi, € W,. Consequently, we have W; = W,

Appendix A.2: Derivation of w*

We start with solving w* = arg min,ew P(w) = argmingew w' S.w. Recall that for any
w € W, there exists some u € RXH1=4 such that w = e; + Ou. Therefore, minimizing

w' Y. w under the constraint w € W is equivalent to minimizing (e; + ©Ou) Y. (e; + Ou) with
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respect to u € RET174, Define Q(u) = (e; + Ou) " . (eq + Ou), which is convex with respect
to u. The first-order derivative of Q(u) is given by Q(u) = dQ(u)/du = O X.e; + O 7. Ou.
Setting this derivative to zero, we find u* = —(07X.0)7'0@"X.e;. Finally, substituting u*

into the expression for w, we obtain the optimal weight w* =¢; — ©(073.0)7 10 Y ¢;.



Appendix B: The Proof of Theorem 1

Write H = $°0(075.0)10%Y? and H = $Y?6(05.0)"105Y%. We then have w* =

€] — EQI/QHE;ﬂel and W* = e; — f];lﬂlfliiﬂel. Then

~
1Ba —

({5* - w*)HOP < HBHOp”@* - w*HOp
<|Bllop|EZV2HEY? — £7V2HEY?
suéuop{uigw — SV IEY lop + Tl PIH — H[|op || S22

mln

+ o IEY2 = EH 2o }.
Consequently, it suffices to prove the following inequalities, i.e., (B.1))—(B.4)). Their detailed

proofs are presented in Appendix C.

+ K

P(||1§—15>||01{,>01 pT> < Cyexp{ — (p+ K)}, (B.1)

~ K »p
/2 $1/2 Ho v < .
P{HEg 52 |op > Cs (,/N + N)} < 2exp(—K), (B.2)
PUIS2 =52 > o [ 2+ 2V < 2exp(-K) (B.3)
‘ P N N = ’

~ K+d
TN <) | SO

The detailed proof of is given in Lemma . The results of and are given
in Lemma . The inequality is proved in Lemma .

Based on (B.1)—(B.4), we have IBllop < ||B=Bllop+]|Bllop < 2||Bllop as long as N > Ny
for some sufficiently large constant /Vy. Similarly, we have ||§];/2|| < 2||§];/2||OlD as N > N, for
the same Np. It follows that || B+ — Bus|l2 < 4mitee| S = S22 + 72732 H — Hlop +

mm
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Tor, Tax| 22> — 2% [lop. Then by (B-2)—(B.4), we have

IK+d p
- il < —
o > CY < N + N)} Csexp(—K),

for some constants C; and Cy as long as N > N, for the same constant Ny. This concludes

p{Hgﬁ* s

the entire proof.



Appendix C: Some Useful Lemmas for Theorem 1

Lemma 1. (Convergence Rate of B\) Assume the same conditions as Theorem 1. Then

B — Bllop < C14/(p+ K)/N holds with probability at least 1 — Coexp{—(p+ K)} as long

as N > Ny for some sufficiently large constant Ny. Here Cy and Cy are constants independent

of p, K, and N.

Proof. Note that B—B = (XX)"!XT€, where X = (X1, ..., Xy)T € RV? £ = (O (K)) ¢

RVX(E+D)  and ¢®) = (ggk)’ ,,,,gg\l,"))T € RY. Then we have

1B = Bllop < 1=t llop| N X7 Eop

IA

~ -1
{)\min (Emm> - )\max (sz - Zmr)} HN—IXTSHOpa

where the last inequality is due to the fact that Apin(A) > Ain(B) — Amax(B — A) for two

arbitrary but symmetric matrices A and B. Then it sufficies to prove the following two

inequalities
P(Him — Dallop > Tmm/z) < €y exp(—CaN), (C.1)
P(HN’lXTé’H > t) <Cexpdop+ K)—covmin (—£— L)1 (C.2)
> B 4C(:Lub’ 2Ctszub

The detailed proofs are given in the follwing STEP 1 and STEP 2. With the help of (C.1))

and ((C.2), we then have

P(HE — Bllop > 5) < P(Him — Suallop > Tmin/2) + P<27_1 INIXE| > 5)

< 92Cy exp {2(p + K) — CyN min (C262, 055)}, (C.3)
where C5 = Tyin/(4C2,) is a constant. Recall that by Condition (C4), p/N — 0 holds as
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N — o00. Therefore, we should have p/N < /p/N as long as N > N for the same constant

Ny. Subsequenlt, we take

5:imax 3Sp+K) 3(p+K)\| 1 S(p—l—K).

Cs C.N = CN T Cs CuN

Then suggests that ||§ — Bllop < C14/(p+ K)/N holds with probability at least
1—Corexp{ — (p+ K)}, where C; = 3/(/CiC5) and Cy = 2C5 are constants. This leads to
the conclusion of Lemma . We next verify the inequalities and in the following
two steps.

STEP 1: PrOOF OF (|C.1)). By condition (C1), we know X; is an independently and

identically distributed sub-Gaussian random variable. Therefore, we can apply Theorem 6.5

of [Wainwright| (2019)) and obtain

fef a5+ 8) ) ool ). o

where C,Cy and C3 are some fixed constants. Next define € = 7, /(4C5p). Then by

ixm - E:cm

Condition (C2) that p/N — 0 as N — oo, we should have C1C?, (1/p/N + p/N) + C? e <

Tmin/2 as long as N > N for some sufficiently large constant Ny. Therefore, by the inequality

(C.4) we know that as long as N > Ns, we have
P(1Z0 = Saellop = Tin/2) < Coexp(—~Ca), (C.5)

where Cy = C5 min {Tmin /(4Csuw), T2/ (1605ub4)} is a constant independent of N.
STEP 2: PROOF OF (C.2). We consider an e-net to bound the term [|[N~'XTE&|2.

Let ¢ = 1/3 and we can find two e-nets & and V of the unit spheres SP~! and S* with



cardinalities [U| < 77 < € and |V| < 7K+ < 2K+ respectively (Vershynin, 2018,
Corollary 4.2.13). Then we have |[N7'XTE||op < 2max,eyvey [N HEV)T (Xu)| (Vershynin,
2018, Lemma 4.4.1). Note that N-1(£0)T(Xu) = N2 SN X.&, where X; = X, /u € R
and & = /v € R. Here X; and Z; are independent sub-Gaussian variables with ||)N(Z||¢2 <

Csup and |[|&; ||y, < Csup by Condition (C1). We further note that ngz are sub-exponential

variables with E(X;2;) = 0 and || X:&]ly, < | Xillws |Eille, < C2

sub

(Vershynin|, 2018, Lemma

>t
2

2.7.7). Then for some fixed positive constant C5 and Cg, we have

| JRELY
P(INXTe||, > t) <l P (‘NE XE
=1

t2 t
< - . 202 ) |- '
< Cs exp {2(19 + K) — CeN min <40;lub’ QCfub> } o
]

Lemma 2. (Convergence Rate of S2 and 251/2) Assume the same conditions as Theorem
1. We then have |SY? —SY?|lop < CL(/K/N+p/N) and | S =S ||op < Co(/K/N +
p/N) hold with a probability at least 1 — 2exp(—K) as long as N > Ny for some sufficiently

large constant Ny. Here Cy and Cs are constants independent of K, N, and Nj.

Proof. We first argue the conclusion that ||S. — Yllop < C(v/K/N + p/N) holds with a
probability at least 1 — 2exp(—K) as long as N > Ny. We prove this conclusion in Lemma
. Then by Lemma , we should have 3. to be consistent as N — co. Define A = $1/2—x1/?
we should have ||Allo, =, 0 as N — co. We next study the probabilistic upper bound for
|A[lop- Note that . = (S22 + A)(SH? + A) = 5. + D2A + ASY? + A2 Tt follows that
=G _26—1/2”010 < CylI%. —X¢||op for some constant Cy. Then by Lemma , we should have

1A]op = ||§§/2 - Z;/QHOP < C1(v/K/N +p/N) holds for some constant Cy with a probability
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at least 1 — 2exp(—K) as long as N > Ny. Further note that I IRA S (i;ﬂ -

SYHE v VAE - .)SoL. This suggests that [P 25—1/2”013 < Cy(y/K/N +p/N)

£

holds with a probability at least 1 —2exp(—K) as long as N > Ny for some sufficiently large

constant Ny and a constant Cs. O

Lemma 3. (Convergence rate of }AI) Assume the same conditions as Theorem 1. Then
|H — Hl||op < Cl{ (K +d)/N + (p/N)} holds with a probability at least 1 — Cy exp(—K)

as long as N > Ny for some sufficiently large constant Nj.

Proof. We consider the symmetric matrices M = Y- /*BTBY-Y? and M = S:Y*BTB —

f d1+1 AeVk AT)Z 1/2 , where Xk is the k-th largest eigenvalue of BTB and Uy, 1s the associ-

ated eigenvector. Then we have M Y20 = 0 and MEY?6 = O, where O is a zero matrix.

K+1 A

We conduct the eigenvalue decomposition on M and M as M = Sy AvivyT and M =

K+173 N . ~
XD T where Af and Af are the k-th largest eigenvalues and vf and 7 are the as-

sociated eigenvectors of M and M, respectively. Let ©* = (Uit oves Vieyq) € REFDX(E=d4D)

R(K-&-l)x(K—d—i—l)'

and ©* = (Vii1s s Vicp1) € Then we have ©* and ©* as matrices with

orthogonal columns, satisfying M©* = O and M©* = 0. Under the condition that X:z > 0,
we should have S(X 1/2@) = S5(0%) and S(X 1/2@) = S(©*) with projection matrices H and
H, respectively. Therefore, we have ||H — PA[HOP = |66 — 0*0*T||,p = || sin 0(0*, O")|op;
sce Lemma 2.5 of (Chen et al| (2021). Here sinf(0*,0%) = diag(sinf; : 0 < k < K) €
RK+D)x(K+1)

, where ¢; = arccos(o}) and o} is the k-th largest singular value of e Tor.

Note that A} > TminT,

max

and /)\\z = 0 for any d < k < K +1. Under the condition that XZ >0

for 1 < k < d, we can apply the Davis-Kahan Theorem (Chen et al., [2021, Theorem 2.7) as

Hﬁf _H sin 6 (@*, @*) (C.7)

Tmax 7
op Tmin

op op
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We write M = S2V2(BTB — K4 Nl )52 = STY2BT RS2 - ST26R0 TS
where A = diaghy : d < k < K 4+ 1) € REFDXED - Then ||M — M|y, can be
further bounded by M; + M,, where M; = ||§5_1/2§T§§]5_1/2 — Z;UQBTBEE_UQHOP and
M, = ||S21P0A6TS 2.,

For the term M;, simple algebra suggests that M; < M, + Mo, where

B"B-B"B|| |,
op

My, = Hi;lﬂ

2
o

P

4 ”271/2“ ) H§71/2 _ -1/
o € op € €

M12 = Tmax (Higl/2

o op

Furthermore, note that My < ||§;1/2||§p|id+1|, which is due to the fact that ||‘7||Op = Adi1.
Recall that /):d > 0 and Ags; = 0. Then by Weyl’s inequality, we should have /)\\d+1 =
|Xd+1 — 1] < H§T§ — BT B||op (Chen et al., 2021, Lemma 2.2). Consequently, we have
My < ||S22)12,I|BTB— BT B|lop. Thus we have || M — M||op < 2My; + M. Next by Lemma

[2, we should have

My < Mjy = 4||E7V2)2 | BT B — BT Bllop,

Mis < Mjy = 3||S7V2|0p|IZ72 = S22,

as long as N > N, for some sufficiently large constant Ny. Then by Lemma [2| and Lemma



, we obtain the probabilistic upper bound for |[H — H llop as

~ 4C Trax K+d p 3C9 Tmax K p
P ||H — H||op > 1/ + = +— V=t =
{” lop T2 ( N N Ti/li N N

~ K+d p
< P{||B"B-B'B|, =

~ K
+P {||Z;1/2 — E;l/2||op > CQ ( N + %)} S Cg exp(—K).

Consequently, we should have P[Hﬁ — Hllop > Ci{/(K +d)/N + (p/N)}} < Cyexp(—K)

holds as long as N > N, for the same constant Ny as mentioned before. O

Lemma 4. (Convergence Rate of f]e) Assume the same conditions as Theorem 1. We then
have ||S. —Yelop < C(W/K/N+p/N) holds with a probability at least 1 —2exp(—K) as long
as N > Ny for some sufficiently large constant Noy. Here C' is a constant independent of K,

N, and Ny.

Proof. Recall that &, = N-1(Y — XB)T(Y — XB) = N'ET(Iy — Hx)E € REFDX(K+1),
where Y = (Y, ., V")) € RV<(E+D and Hy = X(XTX)"!X. It follows that E(3.) =
{(N —p)/N}Z.. Therefore, we should have ||S. — Yellop < 15, — E(is)HOp + Tmaxp/N. Then
it suffices to prove the following inequality as
P{||§A]€ B TORI S 5} < 2exp {4[( — C)N min (5—1 L) } . (C8)
4C% 7 2Csun

sub

Recall that by Condition (C1), p/N — 0 as N — oo. Assume p/N < /p/N holds for any

N > Ny with a sufficiently large constant Ny. Next, in order to apply ((C.8]), we set

[ 5K 5K | DK
0= 203ub max ( Q—N7 C’l—N> = QCsub CYI_N
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It follows that P(||S. — Scllep > Con/K/N) < exp(—K), where Cy = 2v/5Cqu/v/C is
a constant. Consequently, taking C3 = max(Cy, Tmin), We can prove that ||§]6 — Xellop <
C3(y/K/N + p/N) holds with probability at least 1 — 2exp(—K). We then verify as
follows.

Proor oF (C.8). We consider an e-net ¢ on the unit sphere with ¢ = 1/3. It follows
that /| < e25+D. We then have ||S. — B(E.)|lop < 2max, pey [u {S: — E(S.)}v|. Note
that ||uTigv||w1 <IN TETEV|y, < C2,, which suggests that u'S.v is a sub-exponential

variable. Then the Hanson-Wright inequality can be applied to obtain the upper bound as

P{S - Bl >0} < 37 P

u,veEU

52 J
S 2€Xp {4K - CleiH <F4b, m) } .

(S, ~ B > g]

This concludes the entire proof. O

Lemma 5. (Convergence Rate of BTE) Assume the same conditions as Theorem 1. We
then have |BTB — B'Bllop < Cl{\/(K +d)/N +p/N} holds with a probability at least

1 — Cyexp(—K) as long as N > Ny for some sufficiently large constant Ny.

Proof. Note that |BTB — BT B|lop < 2||BT(B — B)|lop + | B — B||2,, where the probabilistic

upper bound for || B — B||Z, can be obtained from Lemma 1| Therefore, it sufficies to prove

the following inequality
P{||BT(§ — B)|lop > 5} < Oy exp {(K +d) — CoN min(C26?, 035)} (C.9)

for some constants C, Cy, and C3 as long as N > N, for a sufficiently large constant Nj.
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To apply (C.9)), we take

5:imax 2(K +d) 2(K +d) 1 [2(K+d)

Cs CbN N | cs\ T ooN

where the last equation is due to Condition (C4) that (p/N) < /p/N as long as N > Nj.

~ K +d
P (HBT(B — B)llop > C4 T+> < Csexp(—K)
as long as N > Ny. Then by the conclusion of Lemma [ we should have
o~ K+d Ciép+K)

P|||[B"B—B"B|op >2 4

(u Jop > 2031/ =25 + 25

~ K +d ~ K

<P (HBT(B - B)lop > CN%) +P (uB = Bllop > Ci ’%)

< Csexp(—K) + Crexp(—p).

It follows that

Consequently, we should have |[BTB — BTB lop < Cg{\/m + p/N } holds with
probability at least 1 — Cyexp(—K). This leads to the desired conclusion. Then it only
sufficies to prove ((C.9)).

PrOOF OF (C9). Note that |[BT(B — B)|lop = [N "' BT IXTE|op < [N'BT (S —
SoOXTElop + [NTIBTEIXTE||op. We first study the term [[N7!BTY71XTE|,p. Recall
that v, € RE*! is the eigenvector corresponding to the k-th largest eigenvalue of B'B.
We then consider two e-nets U and V of the set {||z]| =1 :2 € S(i, : 1 < k < d)}
and the unit sphere S¥ with ¢ = 1/3. It follows that || < €* and |[V]| < e2K+D,
Note that |[NT'BTE'XTE|op < 25up,cypey [N 'u'BTEIXTE0|. Further write ¢ =

Y 'Bu/||X ' Bul| with ||¢| = 1. Then |[N7'BTY'XTE|,p can be further bounded by
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2 Tmax T SUPyersvey N ~1tTXT&v. Subsequenltly, by Hanson-Wright’s inequality, we have

min

P(HNﬂBTE;legHop > 5) < [U||v|P <N1tTXT&} - Tmin5)

Tmax

. TI%liH(sz Tmin(s
<y exp {2<K H) - Gl (472 Ty 2rmaXCsub) } |

max ~'sub

where C; = 2¢®. By Lemma {4 that ||, — Yellop =p 0 as N — oo, it follows that
INTIBT(S: = SoHXTE ||op < [INT'BTEIXTE|op holds almost surely as N — oo. There-

fore, as long as N > N for some constant Ny, we should have

P{IBT(B = B)|p > 6

' 72,07 Tinin0
S C3 exp {2(K + d) B C2N min (47’2 02 ’ QTmaszub) }

max ~ sub

for some constants C, and Cs. O
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