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Supplementary Material

Appendix A: Verification Details

Appendix A.1: Verification for the form of W

For the sake of simplicity, we write W1 = {w ∈ RK+1 : Bw = β(0)} and W2 = {e1 + Θu :

u ∈ RK−d+1}. Then it suffices to show that W1 = W2. On one side, for any w ∈ W2, we

can find u such that w = e1 +Θu. We then have Bw = B(e1 +Θu) = β(0) + BΘu. In fact,

we should have BΘu = 0p; otherwise we have u⊤Θ⊤B⊤BΘu > 0, which is a contradiction

since Θ⊤B⊤BΘ = OK−d+1. Then Bw = β(0) and thus w ∈ W1, indicating W2 ⊂ W1. On

the other side, for any w ∈ W1, we should have B(w − e1) = 0. Recall that rank(B) = d,

rank(Θ) = K + d − 1, and BΘ = Op×(K+d−1). Therefore, Θ is a basis of the null space for

B. It follows that there exists u ∈ RK+d−1 such that w − e1 = Θu. Therefore, w ∈ W2 and

W1 ⊂ W2. Consequently, we have W1 = W2.

Appendix A.2: Derivation of w∗

We start with solving w∗ = argminw∈WP(w) = argminw∈W w⊤Σεw. Recall that for any

w ∈ W, there exists some u ∈ RK+1−d such that w = e1 + Θu. Therefore, minimizing

w⊤Σεw under the constraint w ∈ W is equivalent to minimizing (e1+Θu)⊤Σε(e1+Θu) with
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respect to u ∈ RK+1−d. Define Q(u) = (e1 +Θu)⊤Σε(e1 +Θu), which is convex with respect

to u. The first-order derivative of Q(u) is given by Q̇(u) = ∂Q(u)/∂u = Θ⊤Σεe1+Θ⊤ΣεΘu.

Setting this derivative to zero, we find u∗ = −(Θ⊤ΣεΘ)−1Θ⊤Σεe1. Finally, substituting u∗

into the expression for w, we obtain the optimal weight w∗ = e1 −Θ(Θ⊤ΣεΘ)−1Θ⊤Σεe1.
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Appendix B: The Proof of Theorem 1

Write H = Σ
1/2
ε Θ(Θ⊤ΣεΘ)−1ΘΣ

1/2
ε and Ĥ = Σ̂

1/2
ε Θ̂(Θ̂Σ̂εΘ̂)−1Θ̂Σ̂

1/2
ε . We then have w∗ =

e1 − Σ
−1/2
ε HΣ

1/2
ε e1 and ŵ∗ = e1 − Σ̂

−1/2
ε ĤΣ̂

1/2
ε e1. Then

∥β̂ŵ∗ − β̂w∗∥2 =∥B̂(ŵ∗ − w∗)∥op ≤ ∥B̂∥op∥ŵ∗ − w∗∥op

≤∥B̂∥op∥Σ̂−1/2
ε ĤΣ̂1/2

ε − Σ−1/2
ε HΣ1/2

ε ∥op

≤∥B̂∥op
{
∥Σ̂−1/2

ε − Σ−1/2
ε ∥op∥Σ̂1/2

ε ∥op + τ
−1/2
min ∥Ĥ −H∥op∥Σ̂1/2

ε ∥

+ τ
−1/2
min ∥Σ̂1/2

ε − Σ1/2
ε ∥op

}
.

Consequently, it suffices to prove the following inequalities, i.e., (B.1)—(B.4). Their detailed

proofs are presented in Appendix C.

P

(
∥B̂ −B∥op > C1

√
p+K

N

)
≤ C2 exp

{
− (p+K)

}
, (B.1)

P

{
∥Σ̂1/2

ε − Σ1/2
ε ∥op > C3

(√
K

N
+

p

N

)}
≤ 2 exp(−K), (B.2)

P

{
∥Σ̂−1/2

ε − Σ−1/2
ε ∥op > C4

(√
K

N
+

p

N

)}
≤ 2 exp(−K), (B.3)

P

{
∥Ĥ −H∥op > C5

(√
K + d

N
+

p

N

)}
≤ C6 exp(−K). (B.4)

The detailed proof of (B.1) is given in Lemma 1. The results of (B.2) and (B.3) are given

in Lemma 2. The inequality (B.4) is proved in Lemma 3.

Based on (B.1)—(B.4), we have ∥B̂∥op ≤ ∥B̂−B∥op+∥B∥op ≤ 2∥B∥op as long as N > N0

for some sufficiently large constant N0. Similarly, we have ∥Σ̂1/2
ε ∥ ≤ 2∥Σ1/2

ε ∥op as N > N0 for

the same N0. It follows that ∥β̂ŵ∗ − β̂w∗∥2 ≤ 4τ
3/2
max∥Σ̂−1/2

ε −Σ
−1/2
ε ∥+ τ

−1/2
min τ

3/2
max∥Ĥ −H∥op +
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τ
−1/2
min τmax∥Σ̂1/2

ε − Σ
1/2
ε ∥op. Then by (B.2)—(B.4), we have

P

{∥∥∥β̂ŵ∗ − β̂w∗

∥∥∥
op

> C7

(√
K + d

N
+

p

N

)}
≤ C8 exp(−K),

for some constants C7 and C8 as long as N > N0 for the same constant N0. This concludes

the entire proof.
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Appendix C: Some Useful Lemmas for Theorem 1

Lemma 1. (Convergence Rate of B̂) Assume the same conditions as Theorem 1. Then

∥B̂ − B∥op ≤ C1

√
(p+K)/N holds with probability at least 1− C2 exp {−(p+K)} as long

as N > N0 for some sufficiently large constant N0. Here C1 and C2 are constants independent

of p, K, and N .

Proof. Note that B̂−B = (X⊤X)−1X⊤E , where X = (X1, ..., XN)
⊤ ∈ RN×p, E = (ε(0), ..., ε(K)) ∈

RN×(K+1), and ε(k) = (ε
(k)
1 , ..., ε

(k)
N )⊤ ∈ RN . Then we have

∥B̂ −B∥op ≤ ∥Σ̂−1
xx∥op∥N−1X⊤E∥op

≤
{
λmin (Σxx)− λmax

(
Σxx − Σ̂xx

)}−1

∥N−1X⊤E∥op,

where the last inequality is due to the fact that λmin(A) ≥ λmin(B) − λmax(B − A) for two

arbitrary but symmetric matrices A and B. Then it sufficies to prove the following two

inequalities

P
(
∥Σ̂xx − Σxx∥op > τmin/2

)
≤ C1 exp(−C2N), (C.1)

P
(
∥N−1X⊤E∥op > t

)
≤ C3 exp

{
2(p+K)− C4N min

(
t2

4C4
sub

,
t

2C2
sub

)}
. (C.2)

The detailed proofs are given in the follwing Step 1 and Step 2. With the help of (C.1)

and (C.2), we then have

P
(
∥B̂ −B∥op > δ

)
≤ P

(
∥Σ̂xx − Σxx∥op > τmin/2

)
+ P

(
2τ−1

min∥N−1XE∥ > δ
)

≤ 2C3 exp
{
2(p+K)− C4N min

(
C2
5δ

2, C5δ
)}

, (C.3)

where C5 = τmin/(4C
2
sub) is a constant. Recall that by Condition (C4), p/N → 0 holds as
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N → ∞. Therefore, we should have p/N ≤
√
p/N as long as N > N0 for the same constant

N0. Subsequenlt, we take

δ =
1

C5
max

√3(p+K)

C4N
,
3(p+K)

C4N

 =
1

C5

√
3(p+K)

C4N
.

Then (C.3) suggests that ∥B̂ − B∥op ≤ C1

√
(p+K)/N holds with probability at least

1− C2 exp
{
− (p +K)

}
, where C1 = 3/(

√
C4C5) and C2 = 2C3 are constants. This leads to

the conclusion of Lemma 1. We next verify the inequalities (C.1) and (C.2) in the following

two steps.

Step 1: Proof of (C.1). By condition (C1), we know Xi is an independently and

identically distributed sub-Gaussian random variable. Therefore, we can apply Theorem 6.5

of Wainwright (2019) and obtain

P

{
C−2

sub

∥∥∥Σ̂xx − Σxx

∥∥∥
op

≥ C1

(√
p

N
+

p

N

)
+ ϵ

}
≤ C2 exp

{
− C3N min(ϵ, ϵ2)

}
, (C.4)

where C1, C2 and C3 are some fixed constants. Next define ϵ = τmin/(4Csub). Then by

Condition (C2) that p/N → 0 as N → ∞, we should have C1C
2
sub(
√

p/N + p/N) + C2
subϵ ≤

τmin/2 as long as N > N0 for some sufficiently large constant N0. Therefore, by the inequality

(C.4) we know that as long as N > Nδ, we have

P
(
∥Σxx − Σ̂xx∥op ≥ τmin/2

)
≤ C2 exp(−C4N), (C.5)

where C4 = C3min
{
τmin/(4Csub), τ

2
min/(16Csub4)

}
is a constant independent of N .

Step 2: Proof of (C.2). We consider an ε-net to bound the term ∥N−1X⊤E∥2op.

Let ε = 1/3 and we can find two ε-nets U and V of the unit spheres Sp−1 and SK with
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cardinalities |U| ≤ 7p ≤ e2p and |V| ≤ 7K+1 ≤ e2(K+1), respectively (Vershynin, 2018,

Corollary 4.2.13). Then we have ∥N−1X⊤E∥op ≤ 2maxu∈U ,v∈V |N−1(Ev)⊤(Xu)| (Vershynin,

2018, Lemma 4.4.1). Note that N−1(Ev)⊤(Xu) = N−1
∑N

i=1 X̃iε̃i, where X̃i = X⊤
i u ∈ R

and ε̃i = ε⊤i v ∈ R. Here X̃i and ε̃i are independent sub-Gaussian variables with ∥X̃i∥ψ2 ≤

Csub and ∥ε̃i∥ψ2 ≤ Csub by Condition (C1). We further note that X̃iε̃i are sub-exponential

variables with E(X̃iε̃i) = 0 and ∥X̃iε̃i∥ψ1 ≤ ∥X̃i∥ψ2∥ε̃i∥ψ2 ≤ C2
sub (Vershynin, 2018, Lemma

2.7.7). Then for some fixed positive constant C5 and C6, we have

P
(∥∥N−1X⊤E

∥∥
op

> t
)
≤ |U| |V|P

(∣∣∣∣∣ 1N
N∑
i=1

X̃iε̃i

∣∣∣∣∣ > t

2

)

≤ C5 exp

{
2(p+K)− C6N min

(
t2

4C4
sub

,
t

2C2
sub

)}
. (C.6)

Lemma 2. (Convergence Rate of Σ̂
1/2
ε and Σ̂

−1/2
ε ) Assume the same conditions as Theorem

1. We then have ∥Σ̂1/2
ε −Σ

1/2
ε ∥op ≤ C1(

√
K/N+p/N) and ∥Σ̂−1/2

ε −Σ
−1/2
ε ∥op ≤ C2(

√
K/N+

p/N) hold with a probability at least 1− 2 exp(−K) as long as N > N0 for some sufficiently

large constant N0. Here C1 and C2 are constants independent of K, N , and N0.

Proof. We first argue the conclusion that ∥Σ̂ε − Σε∥op ≤ C(
√

K/N + p/N) holds with a

probability at least 1− 2 exp(−K) as long as N > N0. We prove this conclusion in Lemma

4. Then by Lemma 4, we should have Σ̂ε to be consistent as N → ∞. Define ∆ = Σ̂
1/2
ε −Σ

1/2
ε ,

we should have ∥∆∥op →p 0 as N → ∞. We next study the probabilistic upper bound for

∥∆∥op. Note that Σ̂ε = (Σ
1/2
ε + ∆)(Σ

1/2
ε + ∆) = Σε + Σ

1/2
ε ∆ +∆Σ

1/2
ε + ∆2. It follows that

∥Σ̂−1/2
ε −Σ

−1/2
ε ∥op ≤ C0∥Σ̂ε−Σε∥op for some constant C0. Then by Lemma 4, we should have

∥∆∥op = ∥Σ̂1/2
ε −Σ

1/2
ε ∥op ≤ C1(

√
K/N +p/N) holds for some constant C0 with a probability
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at least 1 − 2 exp(−K) as long as N > N0. Further note that Σ̂
−1/2
ε − Σ

−1/2
ε = (Σ̂

1/2
ε −

Σ
1/2
ε )Σ̂−1

ε − Σ
−1/2
ε (Σ̂ε − Σε)Σ̂

−1
ε . This suggests that ∥Σ̂−1/2

ε − Σ
−1/2
ε ∥op ≤ C2(

√
K/N + p/N)

holds with a probability at least 1−2 exp(−K) as long as N > N0 for some sufficiently large

constant N0 and a constant C2.

Lemma 3. (Convergence rate of Ĥ) Assume the same conditions as Theorem 1. Then

∥Ĥ −H∥op ≤ C1

{√
(K + d)/N + (p/N)

}
holds with a probability at least 1 − C2 exp(−K)

as long as N > N0 for some sufficiently large constant N0.

Proof. We consider the symmetric matrices M = Σ
−1/2
ε B⊤BΣ

−1/2
ε and M̂ = Σ̂

−1/2
ε (B̂⊤B̂ −∑K+1

k=d+1 λ̂kν̂kν̂
⊤
k )Σ̂

−1/2
ε , where λ̂k is the k-th largest eigenvalue of B̂⊤B̂ and ν̂k is the associ-

ated eigenvector. Then we have MΣ
1/2
ε Θ = O and M̂Σ̂

1/2
ε Θ̂ = O, where O is a zero matrix.

We conduct the eigenvalue decomposition on M and M̂ as M =
∑K+1

k=1 λ∗
kν

∗
kν

∗⊤
k and M̂ =∑K+1

k=1 λ̂∗
kν̂

∗
k ν̂

∗⊤
k , where λ∗

k and λ̂∗
k are the k-th largest eigenvalues and ν∗

k and ν̂∗
k are the as-

sociated eigenvectors of M and M̂ , respectively. Let Θ∗ = (ν∗
d+1, ..., ν

∗
K+1) ∈ R(K+1)×(K−d+1)

and Θ̂∗ = (ν̂∗
d+1, ..., ν̂

∗
K+1) ∈ R(K+1)×(K−d+1). Then we have Θ∗ and Θ̂∗ as matrices with

orthogonal columns, satisfying MΘ∗ = O and M̂Θ̂∗ = O. Under the condition that λ̂∗
d > 0,

we should have S(Σ1/2
ε Θ) = S(Θ∗) and S(Σ̂1/2

ε Θ̂) = S(Θ̂∗) with projection matrices H and

Ĥ, respectively. Therefore, we have ∥H − Ĥ∥op = ∥Θ̂∗Θ̂∗⊤ −Θ∗Θ∗⊤∥op = ∥ sin θ(Θ̂∗,Θ∗)∥op;

see Lemma 2.5 of Chen et al. (2021). Here sin θ(Θ̂∗,Θ∗) = diag(sin θ∗k : 0 ≤ k ≤ K) ∈

R(K+1)×(K+1), where θ∗k = arccos(σ∗
k) and σ∗

k is the k-th largest singular value of Θ̂∗⊤Θ∗.

Note that λ∗
d ≥ τminτ

−1
max and λ̂∗

k = 0 for any d < k ≤ K+1. Under the condition that λ̂∗
k > 0

for 1 ≤ k ≤ d, we can apply the Davis-Kahan Theorem (Chen et al., 2021, Theorem 2.7) as

∥∥∥Ĥ −H
∥∥∥
op

=
∥∥∥sin θ (Θ̂∗,Θ∗

)∥∥∥
op

≤
(
τmax

τmin

)∥∥∥M̂ −M
∥∥∥
op
. (C.7)
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We write M̂ = Σ̂
−1/2
ε (B̂⊤B̂ −

∑K+1
k=d+1 λ̂kν̂kν̂

⊤
k )Σ̂

−1/2
ε = Σ̂

−1/2
ε B̂⊤B̂Σ̂

−1/2
ε − Σ̂

−1/2
ε Θ̂Λ̂Θ̂⊤Σ̂

−1/2
ε ,

where Λ̂ = diag(λ̂k : d < k ≤ K + 1) ∈ R(K+1)×(K+1). Then ∥M̂ − M∥op can be

further bounded by M1 + M2, where M1 = ∥Σ̂−1/2
ε B̂⊤B̂Σ̂

−1/2
ε − Σ

−1/2
ε B⊤BΣ

−1/2
ε ∥op and

M2 = ∥Σ̂−1/2
ε Θ̂Λ̂Θ̂⊤Σ̂

−1/2
ε ∥op.

For the term M1, simple algebra suggests that M1 ≤ M11 +M12, where

M11 =
∥∥∥Σ̂−1/2

ε

∥∥∥2
op

∥∥∥B̂⊤B̂ −B⊤B
∥∥∥
op
,

M12 = τmax

(∥∥∥Σ̂−1/2
ε

∥∥∥
op

+
∥∥Σ−1/2

ε

∥∥
op

)∥∥∥Σ̂−1/2
ε − Σ−1/2

ε

∥∥∥
op
.

Furthermore, note that M2 ≤ ∥Σ̂−1/2
ε ∥2op|λ̂d+1|, which is due to the fact that ∥V̂ ∥op = λ̂d+1.

Recall that λ̂d ≥ 0 and λd+1 = 0. Then by Weyl’s inequality, we should have λ̂d+1 =

|λ̂d+1 − λd+1| ≤ ∥B̂⊤B̂ − B⊤B∥op (Chen et al., 2021, Lemma 2.2). Consequently, we have

M2 ≤ ∥Σ̂−1/2
ε ∥2op∥B̂⊤B̂−B⊤B∥op. Thus we have ∥M̂−M∥op ≤ 2M11+M12. Next by Lemma

2, we should have

M11 ≤ M ′
11 = 4∥Σ̂−1/2

ε ∥2op∥B̂⊤B̂ −B⊤B∥op,

M12 ≤ M ′
12 = 3∥Σ−1/2

ε ∥op∥Σ̂−1/2
ε − Σ−1/2

ε ∥op,

as long as N > N0 for some sufficiently large constant N0. Then by Lemma 2 and Lemma
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5, we obtain the probabilistic upper bound for ∥Ĥ −H∥op as

P

{
∥Ĥ −H∥op >

4C1τmax

τ 2min

(√
K + d

N
+

p

N

)
+

3C2τmax

τ
3/2
min

(√
K

N
+

p

N

)}

≤ P

{
∥B̂⊤B̂ −B⊤B∥op > C1

(√
K + d

N
+

p

N

)}

+P

{
∥Σ̂−1/2

ε − Σ−1/2
ε ∥op > C2

(√
K

N
+

p

N

)}
≤ C3 exp(−K).

Consequently, we should have P
[
∥Ĥ −H∥op > C4{

√
(K + d)/N + (p/N)}

]
≤ C3 exp(−K)

holds as long as N > N0 for the same constant N0 as mentioned before.

Lemma 4. (Convergence Rate of Σ̂ε.) Assume the same conditions as Theorem 1. We then

have ∥Σ̂ε−Σε∥op ≤ C(
√
K/N +p/N) holds with a probability at least 1−2 exp(−K) as long

as N > N0 for some sufficiently large constant N0. Here C is a constant independent of K,

N , and N0.

Proof. Recall that Σ̂ε = N−1(Y − XB̂)⊤(Y − XB̂) = N−1E⊤(IN − HX)E ∈ R(K+1)×(K+1),

where Y = (Y
(0)
i , ..., Y

(K)
i ) ∈ RN×(K+1), and HX = X(X⊤X)−1X. It follows that E(Σ̂ε) =

{(N −p)/N}Σε. Therefore, we should have ∥Σ̂ε−Σε∥op ≤ ∥Σ̂ε−E(Σ̂ε)∥op+ τmaxp/N . Then

it suffices to prove the following inequality as

P
{
∥Σ̂ε − E(Σ̂ε)∥op > δ

}
≤ 2 exp

{
4K − C1N min

(
δ2

4C4
sub

,
δ

2Csub

)}
. (C.8)

Recall that by Condition (C1), p/N → 0 as N → ∞. Assume p/N ≤
√

p/N holds for any

N > N0 with a sufficiently large constant N0. Next, in order to apply (C.8), we set

δ = 2Csubmax

(√
5K

C1N
,
5K

C1N

)
= 2Csub

√
5K

C1N
.
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It follows that P (∥Σ̂ε − Σε∥op ≥ C2

√
K/N) ≤ exp(−K), where C2 = 2

√
5Csub/

√
C1 is

a constant. Consequently, taking C3 = max(C2, τmin), we can prove that ∥Σ̂ε − Σε∥op ≤

C3(
√

K/N + p/N) holds with probability at least 1 − 2 exp(−K). We then verify (C.8) as

follows.

Proof of (C.8). We consider an ε-net U on the unit sphere with ε = 1/3. It follows

that |U| ≤ e2(K+1). We then have ∥Σ̂ε − E(Σ̂ε)∥op ≤ 2maxu,v∈U |u⊤{Σ̂ε − E(Σ̂ε)}v|. Note

that ∥u⊤Σ̂εv∥ψ1 ≤ ∥N−1u⊤E⊤Ev∥ψ1 ≤ C2
sub, which suggests that u⊤Σ̂εv is a sub-exponential

variable. Then the Hanson-Wright inequality can be applied to obtain the upper bound as

P
{
∥Σ̂ε − E(Σ̂ε)∥op > δ

}
≤
∑
u,v∈U

P

[∣∣∣u⊤{Σ̂ε − E(Σ̂ε)}v
∣∣∣ > δ

2

]

≤ 2 exp

{
4K − C1N min

(
δ2

4C4
sub

,
δ

2Csub

)}
.

This concludes the entire proof.

Lemma 5. (Convergence Rate of B̂⊤B̂) Assume the same conditions as Theorem 1. We

then have ∥B̂⊤B̂ − B⊤B∥op ≤ C1

{√
(K + d)/N + p/N

}
holds with a probability at least

1− C2 exp(−K) as long as N > N0 for some sufficiently large constant N0.

Proof. Note that ∥B̂⊤B̂−B⊤B∥op ≤ 2∥B⊤(B̂−B)∥op + ∥B̂−B∥2op, where the probabilistic

upper bound for ∥B̂ −B∥2op can be obtained from Lemma 1. Therefore, it sufficies to prove

the following inequality

P
{
∥B⊤(B̂ −B)∥op > δ

}
≤ C1 exp

{
(K + d)− C2N min(C2

3δ
2, C3δ)

}
(C.9)

for some constants C1, C2, and C3 as long as N > N0 for a sufficiently large constant N0.
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To apply (C.9), we take

δ =
1

C3

max

√2(K + d)

C2N
,
2(K + d)

C2N

 =
1

C3

√
2(K + d)

C2N
,

where the last equation is due to Condition (C4) that (p/N) ≤
√

p/N as long as N > N0.

It follows that

P

(
∥B⊤(B̂ −B)∥op > C4

√
K + d

N

)
≤ C5 exp(−K)

as long as N > N0. Then by the conclusion of Lemma 1, we should have

P

(
∥B̂⊤B̂ −B⊤B∥op > 2C4

√
K + d

N
+

C2
6(p+K)

N

)

≤ P

(
∥B⊤(B̂ −B)∥op > C4

√
K + d

N

)
+ P

(
∥B̂ −B∥op > C6

√
p+K

N

)

≤ C5 exp(−K) + C7 exp(−p).

Consequently, we should have ∥B̂⊤B̂ − B⊤B∥op ≤ C8

{√
(K + d)/N + p/N

}
holds with

probability at least 1 − C9 exp(−K). This leads to the desired conclusion. Then it only

sufficies to prove (C.9).

Proof of (C.9). Note that ∥B⊤(B̂ − B)∥op = ∥N−1B⊤Σ̂−1
ε X⊤E∥op ≤ ∥N−1B⊤(Σ̂−1

ε −

Σ−1
ε )X⊤E∥op + ∥N−1B⊤Σ−1

ε X⊤E∥op. We first study the term ∥N−1B⊤Σ−1
ε X⊤E∥op. Recall

that νk ∈ RK+1 is the eigenvector corresponding to the k-th largest eigenvalue of B⊤B.

We then consider two ε-nets U and V of the set {∥x∥ = 1 : x ∈ S(νk : 1 ≤ k ≤ d)}

and the unit sphere SK with ε = 1/3. It follows that |U| ≤ e2d and |V| ≤ e2(K+1).

Note that ∥N−1B⊤Σ−1
ε X⊤E∥op ≤ 2 supu∈U ,v∈V |N−1u⊤B⊤Σ−1

ε X⊤Ev|. Further write t =

Σ−1
ε Bu/∥Σ−1

ε Bu∥ with ∥t∥ = 1. Then ∥N−1B⊤Σ−1
ε X⊤E∥op can be further bounded by

12



2τmaxτ
−1
min supu∈U ,v∈V N

−1t⊤X⊤Ev. Subsequenltly, by Hanson-Wright’s inequality, we have

P
(∥∥N−1B⊤Σ−1

ε X⊤E
∥∥
op

> δ
)
≤ |U||V|P

(
N−1t⊤X⊤Ev >

τminδ

2τmax

)
≤ C1 exp

{
2(K + d)− C2N min

(
τ 2minδ

2

4τ 2maxC
2
sub

,
τminδ

2τmaxCsub

)}
,

where C1 = 2e2. By Lemma 4 that ∥Σ̂ε − Σε∥op →p 0 as N → ∞, it follows that

∥N−1B⊤(Σ̂−1
ε −Σ−1

ε )X⊤E∥op ≤ ∥N−1B⊤Σ−1
ε X⊤E∥op holds almost surely as N → ∞. There-

fore, as long as N > N0 for some constant N0, we should have

P
{
∥B⊤(B̂ −B)∥op > δ

}
≤ C3 exp

{
2(K + d)− C2N min

(
τ 2minδ

2

4τ 2maxC
2
sub

,
τminδ

2τmaxCsub

)}

for some constants C2 and C3.
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