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This online Supplementary Material includes seven sections. Section [S1] provides the tensor notations and
Tucker decomposition. Section [S2| gives the technical proofs of Theorems Section provides four useful
lemmas. Lemma [I] establishes covering number and discretization of low-multilinear-rank tensors. Lemma [2]
derives restricted strong convexity and smoothness. Lemma |3| derives the deviation bound, and they will be
used in the proof of Theorem 1 and 2. Lemma [4] derives the contractive projection property, which is used
in the proof of Theorem 2. Section presents the technical proofs of Corollary [I] in Section Section
gives two useful lemmas. Lemma [5] derives the restricted strong convexity of the estimated low-Tucker-rank
linear form, Lemma@ derives the deviation bound of the estimated low-Tucker-rank linear form, and they will
be used in the proof of Corollary [T} Section [S6] presents simulation results for the MLR-TT-HAR model, and
Section gives one Table for the selected ranks of the MLR-FT-HAR, MLR-TT-HAR and VHARI models
in Real data analysis. Throughout this subsection, we will use C' to represent generic positive numbers, whose

value may vary from line to line.
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S1 Tensor notations and Tucker decomposition

The section gives a brief introduction to tensor notations and Tucker decomposition,
and a detailed review on tensor notations and operations can be referred to in (Kolda
and Bader| 2009).

Tensors, also known as multidimensional arrays, are higher-order extensions of
matrices, and a multidimensional array A € R4 *+*4x ig called a K-th-order tensor,
where the order of a tensor is known as the dimension, way or mode. This paper
concentrates on fourth-order tensors.

For a fourth-order tensor A € RP1*P2*P3xP1 - jtg element is denoted by A,y for
1<i<p,1<j<py, 1 <k<pgand 1 <[ < py, and the Frobenius norm is defined

1/2
as |ALe = (X0 202, X0 S0 X2)

Matricization, also known as unfolding or flattening, involves rearranging the el-
ements of a higher-order tensor into a matrix format. This process treats the first
mode of the tensor as the rows of the matrix, while collapsing all other modes into the

columns. Specifically, the element at position (i1, s, 3,74) in the tensor A corresponds

to the (i1, j)-th element in the matricized form Ay € RP**P2P3P4 - where

4 k—1
J:1+Z(Zk_1)t]k with Jk:Hpé
k=2 =2

Similarly, mode-2, mode-3, and mode-4 matricizations can be defined. Matricizing
tensors allows for establishing connections between matrix concepts and properties

with those of tensors. The mode-1 multiplication, denoted as x1, between a tensor A
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and a matrix B € R2*P1 is defined as follows

p1
Ax;B= (Z Aijlesi>
1<s<qy,1

i=1 A<j<pe,1<k<ps,1<I<ps

The mode-£ multiplication, denoted as xj, where k = 2,3,4, can be defined similarly.

The multilinear ranks of a tensor A is defined as (ry,re, r3,74), where
r1 = rank (A(l)) ,  T9 =rank (.A(Q)) , T3 =rank (A(g)) , and ry; =rank (A(4)) .

Accordingly, there exists a Tucker decomposition (Tucker, 1966; De Lathauwer

et al., |2000):

A=Gx,U; x5 Uy x3Uz x, Uy =G xi, Uy, (S1.1)

where U; € RPi*" for ¢ = 1,2, 3,4 represent the factor matrices, and G € R" *"2x73x74
denotes the core tensor. Alternatively, this decomposition can be represented as A =
[[97 U17 UQ; U37 U4]]

Note that the Tucker decomposition is not unique, since
[S; U1, Us, U, Uy = [[G %1 O1 x5 05 x3 03 x4 Og;U; 071, U051, U305, U, 07 ']

for any invertible matrices O; € R™*" with 1 < i < 4. As a special Tucker decomposi-
tion, the higher-order singular value decomposition (HOSVD) is defined by choosing Uy,
U,, Uj and U, as the tall matrices that consist of the top (rq,re, r3,74) left singular vec-
tors of A1y, A2), Ay and Ay respectively, and then § = Ax, U x,Uj x3UJ x,Uj.

As a result, factor matrices Uy, Uy, Uz and U, are all orthonormal, and G possesses
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the all-orthogonal property, i.e., for each 1 < j < 4, the rows of G;) are pairwise or-
thogonal. Note that the HOSVD is still not unique unless we impose more constraints
(Wang et al., [2022)).

The four ranks, 1,7, r3 and r4, are not equal in general. In particular, when
ry = py, the multilinear ranks of A are denoted by (ri,72,73) instead, omitting the
rank of mode-4 matricization. The multilinear ranks are also known as Tucker ranks,
as they are closely related to the Tucker decomposition. There are many other tensor
decomposition methods, such as CP decomposition (Kolda and Bader;, |2009), and the

ranks of a tensor can be defined in many different ways.

S2 Proofs of two Theorems

Proof of Theorem[1. For simplicity, denote the multilinear low-rank estimator .ZIMLR
by .Zl, and let A = A — A, where A is the true parameter tensor. The loss function

has the form of
| T
L(A) = & D lyn = Ayxall3,
n=1
where X, = (Y,_1,-- -+ ¥a_s0) | € RV5?. Due to the optimality of the A, it holds that
| ~ |
T Z [y = Agyxall3 < T Z [y = Aqyxall,
n=1 n=1
which implies that

1 < 2 < 1 &
T Z ”A(l)an% < T Z<€m A(1)Xn> < 2<? Z en 0 X, A), (S2.1)
n=1 n=1 n=1
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where X,, = (Yn_1,--,¥Yn_s5g) € RV Z::1<sn, AqyXp) = <Z::1 g, 0 X, A), and
o denotes the outer product.

Denote the set of tensors
S(Tl,TQ,T3,T4) = {A € RNXNXSXQ . ||'AHF = 1,ranki(}li) < Ti,l <1< 4}

Note that the Tucker ranks of both A and A are (r1,7r9,73,74), and hence the Tucker

ranks of A are at most (211, 2r, 2r3, 2r4). As a result, from (S2.1)),

T 2 |A@xalz < 2| Al sup

AES(2T1,2T2,27‘3,27‘4)

€, 0X,, A),

H
D

and we hence can derive the estimation error bound by applying Lemma[2land Lemma/[3]
The prediction error bound can also be established from the above inequality, estimation

error bound and Lemma Bl m

Proof of Theorem[d. For a fixed 1 < k < K, define a linear space,
A = {Ozlﬁk + OéQA, Qaq, 09 € R},

and denote by (B)4 the projection of B € RV*N*5xQ onto the space A, where the
dependence of A on k is suppressed for simplicity. Since A € O(ry,re,r3,r4) and

.Zlk € @(r’l,r;, Té,’/’;), it holds that A < O(ry + 7”1,7"2 + 7"’2,7"3 + 7’;, r4 + 7’;).

24/‘€U

~ ~ ~ ) —2
Note that Ay, = Aj_1—nVL(Aj_1),and r, > ( 1+ 1) r; with 1 <7 < 4.

From Lemma [4] we have

4
~ K ~
M= Bl < ([T 57+ 1 = DA = Gale < 514 = (Rl
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| A, — Al <[ Ay — (A alle + [A — (A e < ( >||A () alle

<(L+ 5 (A = Agy = [ VL(A) - VL(flkfl)])AHF + 20 |(VL(A)) e

24HU

= A + As.
(S2.2)
We first handle the term of A;. Let H=T"'3"_ (x,x] ® Iy), and it holds that
T Y [AwXal3 = T7 X, [(x) @ In)vec(A)|3 = vec(A) "Hyvec(A). Then, from

Lemma and for all A € O(r; + 7"'1,7“2 + 7“'2,7“3 + r;, r4+ r;),
—HLIIAIIF vec(A) Hvec(A) < shufAlls
with a probability at least

1 —exp(—Cd,,) — 2exp(Cd — CT(kr/ky)? min{r~2, k~4}). (52.3)

Note that n = 2/3ky, and H is the Hessian matrix of the loss function L(B) with

respect to vec(B). It holds that vec(VL(A) — VL(ﬁ.k_l)) = Hvec(A — flk_l), and

A= U>||<<I—nH>vec<A A )l
<(1+ 24/<U)(1 o U)||Ak 1 — Alr (S2.4)
< ( 24 )||Ak 1 — Allr,

with the probability at ((S2.3)), where (vec(B))4 = (B)., and the first inequality is by

Lemma 4 of Chen et al|(2019).
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We next handle the term of Ay, and by Lemma 5 in (Chen et al.| (2019),

32 32 39
Ay < —|[(VL(A))allr = — sup (VL(A),8) < n_f’

AL FL 8 |8)r=1
where S(rq —i—r’l, Ty —i-r;, r3 —i-r;), ro+1)) =0O(r —i—r’l, Ty +7"2, rs —H“é, T4 —i—?“:l) N8| = 1}

and

&= sup (VL(A),8)

’ / / ’
868(7"1 +r),r2+ry, 34Ty, ratry)

9 T
= sup — Z €,0X,,8
SES(M +7'/1 ,r2+r;,r3+rg,r4+7ﬁ) n=SQ+1

<C (/ﬁ?\/)\max(ﬁlg)/-@m / %)

with a probability at least 1 —exp(—Cd ) — 2 exp(Cd, — CT (k1/ky)? min{x~2, k=4}).

This, together with (52.2) and (S2.4)), accomplishes the proof.

S3 Four useful lemmas for Theorems 1 and 2

We provide four useful lemmas for Theorems [1], [2]

Lemma 1. (Covering number and discretization of low-multilinear-rank tensors). Sup-
pose that S(ry,ra,73,74) is an e-net of the set S(ry,ro,r3,14) 1= {A € RVN*SxQ .

| Allp = 1, rank;(Aq) < 73,1 <i <4}
(i) The cardinality of S(ry,r2,73,74) satisfies

‘S(Tl, o, T3, 7,4)‘ < (15/6)(T17‘27’3+NT’1+N7‘2+ST‘3+Q7‘4)'



Yuan, Li, Lu, Wan and Zhou

(ii) For any tensor N € RNVXN*SXQ gnd matriz Z € RVNS9*T it holds that,

sup (N,AY <(1—4e)”'  max (N,A),  and

A€eS(2r1,2r2,2r3,2r4) AEeS(2r1,2r2,2r3,274)

2rmaraara) |AWZ|, <(1—4e)7 max |AWZ], -

AES(2T1,21”2,27‘3,27‘4 ZGS(ZT1,2T2,2T3727’4)

Proof of Lemma[l] (i) The proof hinges on the covering number for the low-rank matrix
studied by |Candes and Plan| (2011)).

Let the HOSVD A = [[G; Uy, Uy, U, Uy]], where |A|r = 1 and each U; is an
orthonormal matrix. We construct an e-net for A by covering the set of G and all
U, ’s. We take G to be an ¢/5-net for G with |G| < (15/¢)™2™™ . Next, let O,,, =
{U eR¥™ . U'U = IT}. To cover O, ,, it is beneficial to use the | - |12 norm, defined

as
X2 = max | X

where X; denotes the 7 th column of X. Let @Q,, = {XeR"™" :|X|;2<1}. One
can easily check that O, , < @, and thus an ¢/5-net ém for O,,, obeying ‘ém‘ <
(15/¢)™".

Denote S = {[[g_, U,,0,,U;,U0,]:GeG,U;€0,,,.,i= 1,2,3,4} and we have
151 < 1G]  [Onrs|  [Onura]  [Osra]  [Oqrra| = (16 e)rirarsras Nev inmat s ans

We will next show that for any A € S (rq, 79,73, 74), there exists a A € S such that
| A~ Alp <e.

For any fixed A € S (11, 79,73, 74), decompose it by HOSVD as A = [[G; Uy, Uy, U, Uy]].

Then, there exist A = [G; Uy, Uy, Us, Uy with G € G,U; € O,,,, satisfying that
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|U; — ﬁile < ¢/5 and |G — G|r < ¢/5. This gives

|4 = Al < |[G = G; U1, Uy, Us, U]l + IG5 Us = Uy, Uy, Us, UL,

+ H[[g_7 617 U2 - .[_J-27 U37 U4]] + H[[g_7 Ijl? 627 U3 - 637 U4]]

Is I

+ H[[g_, U, U, U3, U, — ﬁ4]]HF :

Since each U is an orthonormal matrix, the first term is |G — G|r < ¢/5. For the
second term, by the all-orthogonal property of G and the orthonormal property of Us,

Ug and U4,
1601 = 01, U2, Us, Uil = [ 1 (Us = U) [y < |G UL = Ui, < /5.

Similarly, we can obtain the upper bound for the third, fourth and the last term, and
thus show that [A — A|r < e.

(ii) Conmsider an e-net S(2ry,2ry,2rs, 2ry) for S(2r1, 27y, 2r3,2r,). Then for any
tensor A € S(2r, 2ry, 213, 2r,), there exists a A € S(2r1, 2ry, 213, 2r4) such that |A —
Alr < e. Since the rank of W = A — A are at most (4r,4ry, 4r3,4r,), we can split
the HOSVD of W into 16 parts such that W = 3% W, where rank;(W,) < 2r;
for 1 <7< 16 and 1 < 5 < 4, and <W]—,Wk> = 0 for any 5 # k. Then for any

N e RVXNXSXQ e have

(N, Ay = (N,A) + Zm, W) =(N,A) + Z (N W/ Wille) [Wil.,  (S3.1)

where W,/ HW € S(2r1,2ra,2r3,2r4), and (N, W, /| W [p ) < SUD AeS(2r1 213 2r,2r4) (No A

2
F’

Note that [W[, = 3%, W[, and it holds that 1%, [Wile < 4|W|,. < 4,
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which, together with (S3.1]), implies that

v = sup N,JAY<  max <N, A> +4ve, or
A€eS(2r1,2r2,2r3,2r4) AES(2T172T272T312T4)
= sup N,AY< (1—4e)™'  max N,AS.
Py AES(2T1,2T2,2T3,2T4) < > ( ) AES(2T172T2,2T3727”4) < >

For matrix Z € RV5@xT it holds that

16
lAWZ]; < [Awz] + X | (WowZ],
i=1
= [AwZ[; + 2 Wil [(W)y/IWillrZ]
i=1
< ||AmZ W; AnZ
I Y L R S A
<||AWZ|,. +4 AWZ|..,
<|awz|, + s |AwZ],
and we accomplish the proof by taking supremum on both sides. O

Lemma 2. (Restricted strong convexity and smoothness). Suppose that Assumptions

and 4 hold, if T = max(k?, k%) (ky/kr)*dpm, then

Lt AR <2 3 [aum < Sno 1AL
8L F\T (1)n2\3U Fo

n=1

for all A € §(2ry,2ry, 213, 2ry) with probability at least
1 —2exp(Cdy — OT (kp/ky)? min{r 2, k™4}),

where K, K, Ky and dy are defined in Theorem [1]
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Proof of Lemma[d Denote Rp(A) =", |A@yx,[3, and it holds that

Rr(A) = 2 |A@xal;
(53.2)

== Z X A(l)A 1)Xn
By the spectral measure of ARMA processes in Basu and Michailidis (2015, we have

Amin{B (%%, )} 2 Ain(2e)/Himasx(A) = £z and Anaxc{ E(xn%,,)} < Amasx(Be) /min(A) =

ky, and it then holds that

Trr < E(Rr <Z vec(A) (Iy ® xnxT)vec(A)> < Tky, (S3.3)

as Al = 1. Furthermore, Rp(A) = E(Rp(A)) —supaes{|Rr(A) —E(Rr(A))[}, and
Rr(A) < E(Rr(A)) + supacsi|Rr(A) — E(Rr(A))]}, where § = S(2rq, 2rg, 213, 214).
We next first bound |Rr(A) — E(Ry(A))| for each fixed A € §(2rq, 2rg, 213, 214).
Consider the term of Rp(A) — E(Ryp(A)). Note that x,, = (y, 1,---,¥4_s0)
e RV9? and Apy = (A4,...,Agg) with each A; being an N-by-N matrix. From
, we have y, = A, + €,. It can be further rewritten into an VAR(1) form,

x, = Bx,_1 +e,, and hence the VMA representation of x,, = Z;O:o Ble, j, or z = Pe,

where

A Az o Asgar Asq Insg B B* ... BT

In 0 --- 0 0 0 Iysg B - BT2
B=1]o Iy --- 0 o | P= 0 0 Iyso - BT-3 ... |,

0 0 - Iy 0 0 0 0 - Iysg
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e, = (g),...,0) e R¥? e = (eg,....,ely,...) , and z = (x7,...,x{)" € RV5CT,

n

Moreover, by Assumption , the error term has the form of e = %€, where £, =

(€7,...,00T e RVSQ &= (&],... &5, ..)T,

. 0 --- 0 2 0 o
) 0 % --- 0 ) o =¥ o
3. = e RVIQXNSQ  and X =

0 0 ¥,

Denote X5 = SPT(Ir ® A(TI)A(U)PX_], and then
T — [ — —
Ry = Y X AlAgx, = £ ZP (Ir @ A})Aq))PEE = £/ TAL.
n=1
Note that Apax(PPT) = 1/ptmin(A), [Xal,, < v and
IZale < IZ12 1P lop [P Top 1r ® Al Ay lr < VT k.

For any ¢ > 0, by Hanson-Wright inequality, we can bound Ry (A) — E(Rr(A)) below,

]P)HRT(A) _E(RT(A))| > t] < 2€Xp (-Cmin ( t t2 ))
S3.4

5 [Baloy w5 [Zale

<9 Cmi t t2
<2exp|(-Cmin|{ —,—5 ).
P k*ky  KATKE

Let t; = Tk /2 and, from (S3.3)), it holds that

P05k, < T7'Rr(A) < 1.5ky ]

T Tk3
>1—2exp (—C’min( 2/{,; Kg)),

4
K Ky KK

(S3.5)

Let S to be an e-covering net of S(2r, 21y, 213, 2r4). To construct the union bound, we

rewrite Ry(A) as Rr(A) = |[AqX|E, where X = (xq,- -+ ,x7) € RV99*T_ Define the
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event

_ 1
E(e) = {VA € §(2ry, 2r9, 2r3,2ry) : v/0.5KL < \/_THA(UX”F < \/1.5/{(]} :

Then, by the pointwise bound in (S3.5]) and the covering number in Lemma [1f i),

2
P[E%e)] <2exp (CdM — C'min (THL Iri )) :

K*ky KARE

Note that, by Lemma [1] (ii),

1
8(6) c {AES( max \/_T”A(DXHF < o/ 1.5/{3(]}

2r1,2r2,2r3,2r4)
1 1.5k
el agXe< Y2l
AES(2T‘1,2T2,27‘3,2T‘4) \/T 1 - 46

Moreover, similarly to Lemma [Ifii), we can show that

16
||A(1)ZHF = HA(I)Z”F - Z H(Wz’)(l)Z”F
i=1

16

> |AwZle = [Wils sup |AwZ]r
i=1 A€3(2T1,2T2,27‘3,27‘4)

= HA(I)Z”F —4e sup HA(l)Z”Fa

A€eS(2r1,2r2,2r3,214)
where the last inequality is due to 221 |Wi|p < 4e. Taking infimum on both sides, if

Oéeéé,wehave

1 1
inf — | AWL||r = min — | AMZ
A€eS(2r1,2r2,2r3,2r4) \/TH W ”F AeS(2r1,2r2,273,214) \/TH (1) ”F
1
—de—= sup ALk
T AES(2T1,2T‘2,2T‘3,2T4) H ( ) ||

1.5
=4/0.5K51 — 4e 1 ZU > 0.5k, — 4eA/6Ky.
— 4e
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When € is chosen to be %, / 15:117 As a result, with the above choice of ¢,

3

KL . 1 9 1
Ele)c{ — < inf —[ANLX]|z < su —
(© { 8  AeS(2r1,2r2,2r3,2r4) T” WX AeS(Qm,QrIQ),Qrg,Qm) T

8/€U
|A@X][E < —} :

Given the conditions that T = (ky/kr)? max(x?, £*)dr, we have that for all A e

S(2T1,2T2, 27“3, 27“4),

8k

1 T
: [% S ?nzl | A@xa]3 < TU > 1—2exp (Cdp — OT(kp/ky)? min(s2, 5 74)) .

This accomplishes the proof. m

Lemma 3. (Deviation bound) Suppose that Assumptions and@ hold. If sample size

T = max(k?, k%) (ky/KkL)2da, then

1 < d
sup <? Z €p O Xna A> < 0/12’\/ Amax(ila)’%U TM
n=1

AES(2T1,21"2,27‘3,,2T4)

with probability at least
1 —exp(—Cdp) — 2exp(Cda — CT(kp/ky)* min{k 2, K *})
, where K, Kk, ky and dyg are defined in Theorem [1.

Proof of Lemma[3. We let X,, = (Yn_1,---,Yn_sq) € RV*5? then

1 ¢ 1 ¢
sup <T Z enoX,,A) = sup <T Z Ens AXy).  (83.6)
n=1 1

A€eS(2r1,2r2,2r3,2r4) A€eS(2r1,2r2,2r3,2r4) n—

Since it is easily verified that {(€,0X,,, A) = (&,, A(1)X,). Denote S;(A) = 3 _ {(en, AyX,)

and R;(A) =3 _ |Aqyx,|2 for 1 <n < T. By the Chernoff bound of errors, for any
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a>0,8>0and ¢ > 0, there exists n > 0,

P[(S1(A) = a} () {Rr(A) < 3}
= inf P [fexp (952(8)) = exp (o)} | {Re(A) < 5}
= %IE)P [exp (nS7 (A)) [(Rr(A) < B) = exp(na)]

(33.7)
< 717r>1£ exp (—na) E [exp(nSr(A)I(Rr(A) < 8)]

= 71721; exp(—na + cn?B)E [eXp(nST(A) — e’ BI(Rp(A) < ﬁ)]

< inf exp(—na + e’ B)E [exp(nSr(A) — en’ Rr(A))].

n>

By the tower property for conditional expectations, we have

E [exp (nST(A) — CUQRT(A))]
=E [E [exp (nST(A) — CﬁQRT(A)) |~7:T*1]]

=E |exp (nS7_1(A) — e’ Rr—1(A)) E [exp (nler, Aqyxr) — en’| Aqyxr|3) [Fr-1]] -

With the sub-Gaussianity condition in Assumption , then (e, Aqyxr) = (&7, »Y QA(l)xT>,
and E [exp(nder, Aqyxr))| < exp (126 Amax(Ze) [ Aqyxr[3/2). Since x,, is F,,_;-measurable,
€, is F,-measurable and &, |F,_; is mean-zero, let ¢ = k?Ap.,(2:)/2, and the following

inequalities can be easily deduced,

E[exp(nST(A) - 7]21‘12)\max(26)RT(A)/2)]
<E[exp(775T,1(A) - 77252)\max(25)RT*1(A)/2)]

< < E[exp(nSsgi1(A) = 17K Anax(Be) Rso1(A)/2)] < 1.
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As a result, for any o > 0 and > 0, we can have the following inequality of (S3.7)),

P[{Sr(A) = o} [ |{Rr(A) < 5]

< ing exp(—na + N** Anax(22)3/2) (S3.8)

n>

o2
—ow <_ 2’€2)‘ma><(26)6> ‘

Moreover, according to Lemma [2| the following bounds for Rr(A) hold that

T T
i < Rr(A) < %EU (S3.9)

with probability at least 1 — 2exp(Cdy — CT(kr/ky)? min{x~2, k~1}).

By Lemma (1] (ii), for any = > 0,

_ T
P sup — Eno X, A Y=z
_AES(2T1,27‘2,2T3,2T4) <T ; > ]

1 T
' 7260 XnA )= (14 $3.10
AeS(QrTz?fzr?,,zm) T Z © > ( e)x] ( )

N

n=1

_ 1 &
<|S(2rq, 2rg, 213, 214)| - P [ T Z en o Xy, A> > (1-— 4€)I] ,

n=1

which, together with (S3.8) and (S3.9)), implies that

|
<f Z €n 0 X, A> > (1-— 46)1’]
n=1

<Pl{Sr(A) = T(1 - de)a} [ J{Rr(A) < CTr*ky}] + P[Rr(A) = CTr*ky]

P

(1- 46)2T$2
20K A max (B2 Ry

<exp [— ] + 2exp(Cdpy — CT(kr/ky)? min{s~2, k™}),

for any > 0. Note that, from Lemma [l |S(r1,79,73,74)] < (15/€)%. By letting
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e = 1/10, and z = C\/dmr* Anax (e )i /T, we then have

1 d s
P sup — €, 0 X0, A ) = Cr Y/ Anax (B ) A | —
L68< <TZ > S\

2r1,2r2,2r3,214) (S3.11)
< exp(—=Cd) + 2exp(Cdpy — CT (ki /kp)* min{k—2, k™*}).
We hence complete the proof. O

Lemma 4. (Contractive projection property) Suppose that X € @(rl ,rgo),ré ),rflo))

and TZ(I) < 7"52) < TZ(O) with 1 < i < 4, then for any Y € G)(’r’gl), rél), rél), ril)),

|Poguer 21 2, (X) = Xlp < [Ty (8 + 1) — 1][Y — X, (53.12)

where (; = \/(7"50) _ 7}(2))/(7“50) _ Tlgl)).

Proof of Lemma[. The proof could be divided into two parts. First, we show a matrix
low-rank projection result, i.e. for two matrices W, A € RVM*M2 rank(A) = 1) <
1 < 1 = rank(W), we have | o) (W) — Wz < (r@ —r®) / (#@ — r D) JA-W |2
where P.2 denotes projection to matrix subspace with rank(W) < r® . Second, we
extend the result to tensors with the approximate projection operator Pg RONOMONCIE

The first part mainly follows Lemma 1 and 2 in|Jain et al. (2014). Consider a SVD

W = UXV' with singular values o = 03 > --- = 0,(, and it then holds that

7(0)
|Po(W)=W[i=" > o} = |pe(diag(T)) - diag(T)|3,

i=r(2)+1
where diag(X) returns a column vector of the elements on the diagonal of ¥ and

Pr» (diag(X)) takes the r(®) largest elements of the vector diag(¥). Then we consider
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the expression

o, (diag (X)) — diag(S) 5 [pre (diag(X)) — diag(E)[5

r(0) — p(1) r(0) — (2)

1 r(2) 1 1 70
S 2 _ 2
(0 — (1) Z o + <r(0) (D) g0 — 7a(2)> Z o; = 0.

i=r(141 i=r(2)41

Hence, [p,e (diag(2)) — diag(Z) 3 < (r© @) / (rO — D) [p,0) (diag(E)) ~diag(E)]; =

(r® —r®) / (@ — D) | Py (W) = WZ < (r@ — @) / (r© — D) | A-W 2. The

last inequality is due to Eckart Young Theorem and finishes the proof for the first part.
Second we consider the approximate projection of tensor P@ (TEQ),TEZ)méZ)mf)) (X). Re-

call that

P@(r?),rg?),rf),rf))(X) = (MZI o Prf) o M4) 0:-+0 (Ml_l o} Prgz) o Ml) oX.

We then introduce following notation for projection operator sequentially

Ay = (Mfl o P o Ml) o X,

X[i] = (/\/1._1 o PT@) o MZ> o X[i71]7

2

for i = 2,3,4. M, represents mode- ¢ sequential matricization. So it is obvious that

Pe(rgz>77,£2)7r§2)771512))(X) = Ajy. By triangle inequality,

| — X[ < Ay — X + | — A | + [ A — X + [ Ay — |- (83.13)

Let 5, = \/(rl@ — 7’1(2)) / (r§°> — 7‘1(1)) for i = 1,2,3,4. Now we use the result in

the first part to analyze every term on the right side of the above inequality (S3.13)).
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For any ) such that rank (y(l)) < rgl),
HX[l] — XHF = H (Ml_l o Prgz) o Ml) o X — XHF
_ HPTE” (M (X)) — Ml(X)HF
<B | Yoy — Ml(X)HF

=61]Y — X]p.
Similarly, we have
| Xy — Al < B2 |V = Xy g < B (1Y = Xp + Ay — X[ ) <B2(1+5) |V = X
Furthermore,

| A — X | < 85 |V — A
< B (| = Xp + [ Xy — X + [ X2 — X))

< B3 (14 52) (1 +51) |V = X,

and

| Xy — Az | <Y — A

<Ba (1Y = Xle + A1 = Xl + | ¥z — Al + | ¥z — Aale)
3

B[ [@+B) Y= X]e.

i=1

Sum up these terms and we have

T | (CERE e

W~

i=1

We hence complete the proof. O
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S4 Proofs of Corollary 1

Proof. Since the low-rank estimator A is typically biased, we then compute a debiased

estimator using residuals from the initial model fit

where K is the precision matrix of x,,. Let A(l) =Aq) — .2[(1) be the estimation error,

The debiased estimator can be decomposed as
~u 1 T 1 T N ~
Ay = Aw + 7 2, enx K+ = D (Apxx K — Ay,
n=1 n=1

For a prespecified loading tensor B, let dz denotes the size of the low-rank space

that the prespecified loading tensor B resides, and ¢ = T tr(B ) K B(Tl)EE), we have

sup IP’(<.ZIH—A,B> < u) —P(g < u)‘

ueR

= sup |P (<.Zl(1) — Ay, By < u) —P(g < u)‘
ueR
~u 1 &
< Sl;ﬂ}g P (<A(1) — .A(l), B(l)> < u) —P (? Z<€nXIK, B(l)> <uU-— 5) ‘
u n=1

+ sup

u€R n—1

1 T

+sup|P(g <u—9)—P(g <u

ueR
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. g (5 —u2/2¢
< 2€‘Xp <CdeB — (C'min <2—IZ§]7 ?>> + 3m”KH2HB(1)”F + Qﬁe /2 .
U

. L 2
The last inequality is due to Lemmasand@ Let 0 = T=Y4 and TV? = kf,” max(x?, k*)dsdp,

the above bound is dominated by the second term with 7/ O

S5 Two useful lemmas for Corollary 1

We provide two useful lemmas for Corollary [1}

Lemma 5. (Restricted strong convezity of the estimated low-Tucker-rank linear form)
Suppose Assumptians and@ hold, T = (k¥ /k%)? max(k?, k*)dsmdg, then for all Ae

S(2rq, 2rq, 2r3,2r4), any t > 0, we have

|

Tt Tt
< 2€Xp (CdeB — C'min (W’ m)) .
K IQU KK

U

1 & ~
(7 2 (Baxax, K — Aw), Bay)
n=1

> OB(U”FAFt}

Proof. Without loss of generality, we restrict the |By)|r and |Ap to be 1. Let Hy =
o A(l)xnerLK, B(1)), then its expectation satisfies E(Hry) = T<A, B).

Following the proof of Lemma, A% xTK, By = S, X,IKB(TDA(UX” =
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ETEPT(I; @ KB1)Ay))PEE = 7A€, where S = SPT(I; @ KB(1)A))PE, we
have |Xallop < ku| K2 and |Xar < \/TK/UHKHQ. Let k¥ = ry|K||, for any ¢ > 0, by

Hanson-Wright inequality, we can bound Hy — E(Hr) below,
P(|Hy — E(Hy)| > ] < 2 C'mi ! r
T )] = t] <2exp | —Cmin 7
w2 [ Zalop” w4 Sallp

_ t t?
< 2 exp —C min W’ —.14:2 .
KoKy kAT R

Then we have the pointwise bound for fixed A and B ,
Tt Tt
P tp<2exp|—Cmin|——F,—+ .
KRG kAR,

(S5.2)
Following the proof of Lemma let S to be an e-covering net of S(2r1, 21y, 273, 2r4).

(85.1)

1 & - ~
(7 2 (Apxx K= An), By =

To construct the union bound, we rewrite Hy as Hy = <ZZ:1 x,x, K A(TI)B(U> and
let XF =37 xxK-E(X_ x,x]K).

By Lemma (1| (ii), then

P o sy T B0 > 1

AeS(2r1,2r2,2r3,2r4) 365(31,R2,R3,R4)

> F P max —X’“A By = t/(1— de
{AeS(Qm 2r9,2r3,2r,) BES(R1,R2,R3,R4) T< (1 )> /( )}

> IP’{ sup sup —<Xk Al mBayy =t/(1 - 45)2} .

A€eS(2r1,2r2,2r3,2r4) BeS(R1,Ra,R3,R4) T

Choose € = 1/8 and B € S(Ry, Ry, R3, Ry), we have that for all A € §(2ry, 21y, 213, 2ry),
T A~ ~
7 2 Auxx K= Ay) Bay)
—1

1 Tt Tt
P< < >ty <2exp | Cdyds — Cmin | — PR .
K2R 114/4{]

This accomplishes the proof.
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Lemma 6. (Deviation bound of the estimated low-Tucker-rank linear form) Suppose

Assumptions [1] and [9 hold, then

<Z<snx K, Bq)) < ) P(g<u)| <

where g ~ N (0, T‘ltr(B(l)KB(Tl)EE)).

sup
u€eR

Tl/g 775 K21 B

Proof. 1f Assumptions [l| and 2 hold, then the sequence {y,} is a-mixing, and {x,} is
o-mixing. Since {e,} is independent of {x,}, {(€,x K, B() is a-mixing by Theorem
5.2 of Bradley] (2005). By Theorem 1 in |Chang et al. (2024)), and let | B¢ = 1, we

have for all By

o
Sup (\f2<€nx K. Buy) < ) ~Plg <u)| < 5Kl
where g ~ N(O,tr(ﬂ(l)KBa)Ee)), o is the ¢o norm of {e,x, K, B(1)). O

S6 Simulation results for the MLR-TT-HAR model

The third experiment is for evaluating the non-asymptotic estimation error bound for
MLR-TT-HAR models. The realized volatilities are generated using the model de-
scribed by equations and ([£.2), and the coefficient tensor is generated from ([2.5)
with P = 22. The coeflicient tensor A has the form A = G x Uy x Uy x Uz € RVXNxP,
where the core tensor G, the factor matrices U; are generated by the similar method
as in the first experiment.

For the MLR-TT-HAR model, |[Aywr — Alp = Op(x/dat/T) with dpg = riryrs +

Nry + Nry + Prs, and hence it is roughly linear with respect to 77! and N, given
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fixed values of 1,79, 73, P. We consider four settings to verify the relationship: (a)
(P, ry,r9,13) is fixed at (22,2, 2,2), the dimensionality is limited to N = 10, 13, 15, while
the sample size T varies among the set of {550, 600, 650, 700, 750} such that the values of
T~! are approximately and evenly spaced from 13 x 107 to 18 x 10™%; (b) (P, ry, 79, 73)
is fixed at (22,2,2,3), with the dimensionality and sample size the same as in (a); (c)
(P, ry,r9,13) is fixed at (22,2, 2,2), the sample size is limited to T = 100, 300, 500, while
the dimensionality N varies among the set to {8, 10, 13, 18,30} such that the values of
VN are approximately and evenly spaced from 2.8 to 5.5; (d) (P, 7y, 72, 73) is fixed at
(22,2,2,3) with the dimensionality and sample size the same as in (c).

The step size, tolerance and initial values of Algorithm [I] are set as in the first
experiment. Both Figure and displays the average estimation error ||flMLR —
A|r over 500 replications. Figure illustrates that ||ﬁMLR — Al[r exhibits an ap-
proximately linear relationship with respect to v/7—1, while Figure implies that

H.ZlMLR — A|r is proportional to v/N.
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(rr2rs)=(2,2,2) (r1r213)=(2,2,3)
0.58- 0.64-
N=10 N=10
A N=13 A N=13
N=15 N=15
0.52- 0.58-
2
]
o
2 0.46- 0.52-
©
£
@
w
0.41- 0.47-
0.35- 0.41-
115 1.20 1.25 1.30 135 115 1.20 1.25 1.30 135
41000/T 41000/T

Figure S6.1: Estimation errors ||.21MLR — A|r against with 4/1000/T". The ranks are (r1,72,73) =

(2,2,2) in the left panel, and (r1,72,73) = (2,2,3) in the right panel.

(rir2r) =(2,2,2) (r1r213)=(2,2,3)
2.65- 2.73-
T=100 T=100
A T=300 A T=300
T=500 T=500
2.09- 2.16-
s
]
o
2152- 1.59-
©
£
@
w
0.96- 1.02-
0.40- 0.45-
2.80 3.47 415 482 5.50 2.80 3.47 415 482 5.50
N N

Figure S6.2: Estimation errors HleLR — A|r against with ~/N. The ranks are (r1,r2,73) = (2,2,2)

in the left panel, and (r1,72,73) = (2,2,3) in the right panel.

Moreover, we report the estimation accuracy with the dimensionality N varies

among the set to {8,10,13,18,30} while holding T fixed at 100, 300, 500, respectively.
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The estimation accuracy is evaluated by the averaged mean squared error (MSE), cal-
culated as ||.21MLR — A% over 500 replications. The corresponding runtime (RT) results
of first 50 interations in a single replication are also presented. All the results are sum-

marized in Table[S6.1] Table shows that the MSEs tend to increase as N increases,

while they decrease as T increases, and RT's tend to increase as N or T' increases.

Table S6.1: MSEs and RTs (seconds) with N = 8,10, 13, 18, 30, while holding T" = 100, 300, 500.

(rlaTQaT?)) = (2a252) (7”1,7'2,7”3) = (27273)

N 8 10 13 18 30 8 10 13 18 30

T =100

MSE 271 311 390 4.82 6.74 3.45 4.00 4.81 5.69 7.43

RT 0.11 0.13 0.17 0.27 0.81 0.10 0.13 0.17 0.27 0.79

T = 300

MSE 0.46 0.58 0.73 1.00 1.60 0.48 0.75 096 1.26 2.10

RT 013 0.15 020 0.32 0.89 0.13 0.15 0.21 033 0.89

T = 500

MSE 020 024 028 040 0.81 023 032 038 049 0.99

RT 0.15 0.18 0.25 0.38 1.02 0.15 0.18 0.25 0.39 1.10

The fourth experiment aims to assess the convergence performance of Algorithm
for MLR-TT-HAR models. We generate a sample using a similar data generation
process to the third experiment. The true Tucker ranks are (ry,79,73) = (2,2,2).
Four different running ranks are considered: (r},75,73) = (2,2,2), (2,2,3), (3,2,2),

and (3,3,3). Figure illustrates the average standardized root mean square errors
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| Anrr — Alp/|A|r over 500 replications for the first 150 iterations. The plot shows

a similar decay pattern across all cases, indicating the convergence of the algorithm.

Additionally, specifying more accurate ranks in advance leads to lower estimation errors,

with the true ranks yielding the best results.
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Standardized Mean Square Errors

2.00-

Standardized Mean Square Errors
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1.00-

0.50-

1.50-
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(rp 1515 =(3,3,2)
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2.00-

1.00-

0.50-

2.00-
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50 100

(rprp15) =(3.3,3)

150
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Iteration
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Figure S6.3: Standardized mean squares errors HleLR — Allp/||A||r for the first 150 iterations with

running ranks (17,7, 75) = (2,2,2), (2,2,3), (3,3,2) or (3,3,3).
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S7 One Table for the selected ranks of the MLR-FT-HAR,

MLR-TT-HAR and VHARI models in Real data analysis

Table gives the results of the selected ranks of the MLR-FT-HAR, MLR-TT-HAR

and VHARI models.

Table S7.1: Selected ranks of the VHARI, MLR-TT-HAR and MLR-FT-HAR models with 60 stocks

and 90 stocks during the short (2011.01 — 2013.12) and long periods (2009.04 — 2013.12).

Models

MLR-TT-HAR

MLR-FT-HAR

N period

P =22 P =66

Q=22 8=3

60 short r=2 r=2

long r=3 r=3

(7’177“277‘3) = (27272) (T17T27r3) = (2272)

(7’1,7'2,7’3) = (4>472) (7’1,7'2,7"3) = (3>372)

(r1,72,73,74) = (3,3,1,2)

(ri,7m2,713,74) = (3,3,1,4)

90 short r=2 r=2

long r=3 r=3

(7’1,7“277”3) = (3737 2) (7“177‘277”3) = (37372)

(T’l,TQ,Tg) = (3>332) (T17T23T3) = (37374)

(r1,7r2,73,74) = (3,3,1,2)

(7’1,7‘2,7‘3,1”4) = (3,37 1,4)
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