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This online Supplementary Material includes seven sections. Section S1 provides the tensor notations and

Tucker decomposition. Section S2 gives the technical proofs of Theorems 1-2. Section S3 provides four useful

lemmas. Lemma 1 establishes covering number and discretization of low-multilinear-rank tensors. Lemma 2

derives restricted strong convexity and smoothness. Lemma 3 derives the deviation bound, and they will be

used in the proof of Theorem 1 and 2. Lemma 4 derives the contractive projection property, which is used

in the proof of Theorem 2. Section S4 presents the technical proofs of Corollary 1 in Section 3. Section S5

gives two useful lemmas. Lemma 5 derives the restricted strong convexity of the estimated low-Tucker-rank

linear form, Lemma 6 derives the deviation bound of the estimated low-Tucker-rank linear form, and they will

be used in the proof of Corollary 1. Section S6 presents simulation results for the MLR-TT-HAR model, and

Section S7 gives one Table for the selected ranks of the MLR-FT-HAR, MLR-TT-HAR and VHARI models

in Real data analysis. Throughout this subsection, we will use C to represent generic positive numbers, whose

value may vary from line to line.
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S1 Tensor notations and Tucker decomposition

The section gives a brief introduction to tensor notations and Tucker decomposition,

and a detailed review on tensor notations and operations can be referred to in (Kolda

and Bader, 2009).

Tensors, also known as multidimensional arrays, are higher-order extensions of

matrices, and a multidimensional array A P Rd1�...�dK is called a K-th-order tensor,

where the order of a tensor is known as the dimension, way or mode. This paper

concentrates on fourth-order tensors.

For a fourth-order tensor A P Rp1�p2�p3�p4 , its element is denoted by Aijkl for

1 ¤ i ¤ p1, 1 ¤ j ¤ p2, 1 ¤ k ¤ p3 and 1 ¤ l ¤ p4, and the Frobenius norm is defined

as }A}F �
�°p1

i�1

°p2
j�1

°p3
k�1

°p4
l�1X

2
ijkl

	1{2

.

Matricization, also known as unfolding or flattening, involves rearranging the el-

ements of a higher-order tensor into a matrix format. This process treats the first

mode of the tensor as the rows of the matrix, while collapsing all other modes into the

columns. Specifically, the element at position pi1, i2, i3, i4q in the tensor A corresponds

to the pi1, jq-th element in the matricized form Ap1q P Rp1�p2p3p4 , where

j � 1�
4̧

k�2

pik � 1q Jk with Jk �
k�1¹
ℓ�2

pℓ.

Similarly, mode-2, mode-3, and mode-4 matricizations can be defined. Matricizing

tensors allows for establishing connections between matrix concepts and properties

with those of tensors. The mode-1 multiplication, denoted as �1, between a tensor A
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and a matrix B P Rq1�p1 , is defined as follows

A�1 B �
�

p1̧

i�1

AijklBsi

�
1¤s¤q1,1¤j¤p2,1¤k¤p3,1¤l¤p4

.

The mode-k multiplication, denoted as �k, where k � 2, 3, 4, can be defined similarly.

The multilinear ranks of a tensor A is defined as pr1, r2, r3, r4q, where

r1 � rank
�
Ap1q

�
, r2 � rank

�
Ap2q

�
, r3 � rank

�
Ap3q

�
, and r4 � rank

�
Ap4q

�
.

Accordingly, there exists a Tucker decomposition (Tucker, 1966; De Lathauwer

et al., 2000):

A � G�1 U1 �2 U2 �3 U3 �4 U4 � G�4
i�1 Ui, (S1.1)

where Ui P Rpi�ri for i � 1, 2, 3, 4 represent the factor matrices, and G P Rr1�r2�r3�r4

denotes the core tensor. Alternatively, this decomposition can be represented as A �

rrG;U1,U2,U3,U4ss.

Note that the Tucker decomposition is not unique, since

rrG;U1,U2,U3,U4ss � rrG�1 O1 �2 O2 �3 O3 �4 O4;U1O
�1
1 ,U2O

�1
2 ,U3O

�1
3 ,U4O

�1
4 ss.

for any invertible matrices Oi P Rri�ri with 1 ¤ i ¤ 4. As a special Tucker decomposi-

tion, the higher-order singular value decomposition (HOSVD) is defined by choosingU1,

U2, U3 andU4 as the tall matrices that consist of the top pr1, r2, r3, r4q left singular vec-

tors ofAp1q, Ap2q, Ap3q andAp4q respectively, and then G � A�1U
J
1 �2U

J
2 �3U

J
3 �4U

J
4 .

As a result, factor matrices U1, U2, U3 and U4 are all orthonormal, and G possesses
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the all-orthogonal property, i.e., for each 1 ¤ j ¤ 4, the rows of Gpjq are pairwise or-

thogonal. Note that the HOSVD is still not unique unless we impose more constraints

(Wang et al., 2022).

The four ranks, r1, r2, r3 and r4, are not equal in general. In particular, when

r4 � p4, the multilinear ranks of A are denoted by pr1, r2, r3q instead, omitting the

rank of mode-4 matricization. The multilinear ranks are also known as Tucker ranks,

as they are closely related to the Tucker decomposition. There are many other tensor

decomposition methods, such as CP decomposition (Kolda and Bader, 2009), and the

ranks of a tensor can be defined in many different ways.

S2 Proofs of two Theorems

Proof of Theorem 1. For simplicity, denote the multilinear low-rank estimator pAMLR

by pA, and let ∆ � pA �A, where A is the true parameter tensor. The loss function

has the form of

LpAq � 1

T

Ţ

n�1

||yn �Ap1qxn||22,

where xn � pyJn�1, . . . ,y
J
n�SQqJ P RNSQ. Due to the optimality of the pA, it holds that

1

T

Ţ

n�1

}yn � pAp1qxn}22 ¤
1

T

Ţ

n�1

}yn �Ap1qxn}22,

which implies that

1

T

Ţ

n�1

}∆p1qxn}22 ¤
2

T

Ţ

n�1

xεn,∆p1qxny ¤ 2x 1
T

Ţ

n�1

εn �Xn,∆y, (S2.1)
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where Xn � pyn�1, . . . ,yn�SQq P RN�SQ,
°T

n�1xεn,∆p1qxny � x°T
n�1 εn �Xn,∆y, and

� denotes the outer product.

Denote the set of tensors

Spr1, r2, r3, r4q � tA P RN�N�S�Q : }A}F � 1, rankipAiq ¤ ri, 1 ¤ i ¤ 4u.

Note that the Tucker ranks of both pA and A are pr1, r2, r3, r4q, and hence the Tucker

ranks of ∆ are at most p2r1, 2r2, 2r3, 2r4q. As a result, from (S2.1),

1

T

Ţ

n�1

}∆p1qxn}22 ¤ 2}∆}F sup
∆PSp2r1,2r2,2r3,2r4q

x 1
T

Ţ

n�1

εn �Xn,∆y,

and we hence can derive the estimation error bound by applying Lemma 2 and Lemma 3.

The prediction error bound can also be established from the above inequality, estimation

error bound and Lemma 3.

Proof of Theorem 2. For a fixed 1 ¤ k ¤ K, define a linear space,

A � tα1
pAk � α2A, α1, α2 P Ru,

and denote by pBqA the projection of B P RN�N�S�Q onto the space A, where the

dependence of A on k is suppressed for simplicity. Since A P Θpr1, r2, r3, r4q and

pAk P Θpr1

1, r
1

2, r
1

3, r
1

4q, it holds that A � Θpr1 � r
1

1, r2 � r
1

2, r3 � r
1

3, r4 � r
1

4q.

Note that rAk � pAk�1�η∇LppAk�1q, and r
1

i ¥
�

4

b
1� κL

24κU
� 1

	�2

ri with 1 ¤ i ¤ 4.

From Lemma 4, we have

}pAk � prAkqA}F ¤ r
4¹

i�1

p
c

ri
r

1

i

� 1q � 1s}A� prAkqA}F ¤ κL

24κU

}A� prAkqA}F,
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which, together with the fact that 1   1� κL

24κU
  2, implies that

}pAk �A}F ¤}pAk � prAkqA}F � }A� prAkqA}F ¤ p1� κL

24κU

q}A� prAkqA}F

¤p1� κL

24κU

q}pA� pAk�1 � ηr∇LpAq �∇LppAk�1qsqA}F � 2η}p∇LpAqqA}F

:� A1 � A2.

(S2.2)

We first handle the term of A1. Let H � T�1
°T

n�1pxnx
J
n b INq, and it holds that

T�1
°T

n�1 }∆p1qxn}22 � T�1
°T

n�1 }pxJn b INqvecp∆q}22 � vecp∆qJHvecp∆q. Then, from

Lemma 2 and for all ∆ P Θpr1 � r
1

1, r2 � r
1

2, r3 � r
1

3, r4 � r
1

4q,

1

8
κL}∆}2F ¤ vecp∆qJHvecp∆q ¤ 8

3
κU}∆}2F

with a probability at least

1� expp�Cd
1

Mq � 2 exppCd
1

M � CT pκL{κUq2mintκ�2, κ�4uq. (S2.3)

Note that η � 2{3κU , and H is the Hessian matrix of the loss function LpBq with

respect to vecpBq. It holds that vecp∇LpAq �∇Lp pAk�1qq � HvecpA� pAk�1q, and

A1 � p1� κL

24κU

q}ppI� ηHqvecpA� pAk�1qqA}2

¤ p1� κL

24κU

qp1� κL

12κU

q}pAk�1 �A}F

¤ p1� κL

24κU

q}pAk�1 �A}F,

(S2.4)

with the probability at (S2.3), where pvecpBqqA � pBqA, and the first inequality is by

Lemma 4 of Chen et al. (2019).
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We next handle the term of A2, and by Lemma 5 in Chen et al. (2019),

A2 ¤ 32

κL

}p∇LpAqqA}F � 32

κL

sup
SPA,}S}F�1

x∇LpAq,Sy ¤ 32

κL

ξ,

where Spr1�r
1

1, r2�r
1

2, r3�r
1

3, r4�r14q � Θpr1�r
1

1, r2�r
1

2, r3�r
1

3, r4�r
1

4q
�t}S}F � 1u

and

ξ � sup
SPSpr1�r

1
1,r2�r

1
2,r3�r

1
3,r4�r

1
4q

x∇LpAq,Sy

� sup
SPSpr1�r

1
1,r2�r

1
2,r3�r

1
3,r4�r

1
4q

C
2

T

Ţ

n�SQ�1

εn � rXn,S

G

¤ C

�
κ2
a
λmaxpΣεqκU

c
d

1

M
T

�

with a probability at least 1� expp�Cd
1

Mq�2 exppCd
1

M�CT pκL{κUq2mintκ�2, κ�4uq.

This, together with (S2.2) and (S2.4), accomplishes the proof.

S3 Four useful lemmas for Theorems 1 and 2

We provide four useful lemmas for Theorems 1, 2.

Lemma 1. (Covering number and discretization of low-multilinear-rank tensors). Sup-

pose that sSpr1, r2, r3, r4q is an ϵ-net of the set Spr1, r2, r3, r4q :� tA P RN�N�S�Q :

}A}F � 1, rankipApiqq ¤ ri, 1 ¤ i ¤ 4u.

(i) The cardinality of sSpr1, r2, r3, r4q satisfies
�� sSpr1, r2, r3, r4q�� ¤ p15{ϵqpr1r2r3�Nr1�Nr2�Sr3�Qr4q.



Yuan, Li, Lu, Wan and Zhou

(ii) For any tensor N P RN�N�S�Q and matrix Z P RNSQ�T , it holds that,

sup
∆PSp2r1,2r2,2r3,2r4q

xN,∆y ¤p1� 4ϵq�1 max
�∆P sSp2r1,2r2,2r3,2r4q

@
N, s∆D

, and

sup
∆PSp2r1,2r2,2r3,2r4q

��∆p1qZ
��
F
¤p1� 4ϵq�1 max

�∆P sSp2r1,2r2,2r3,2r4q

�� s∆p1qZ
��
F
.

Proof of Lemma 1. (i) The proof hinges on the covering number for the low-rank matrix

studied by Candès and Plan (2011).

Let the HOSVD A � rrG;U1,U2,U3,U4ss, where }A}F � 1 and each Ui is an

orthonormal matrix. We construct an ϵ-net for A by covering the set of G and all

Ui ’s. We take sG to be an ϵ{5-net for G with | sG| ¤ p15{ϵqr1r2r3r4 . Next, let On,r � 
U P Rn�r : UJU � Ir

(
. To cover On,r, it is beneficial to use the } � }1,2 norm, defined

as

}X}1,2 � max
i

}Xi}2

where Xi denotes the i th column of X. Let Qn,r � tX P Rn�r : }X}1,2 ¤ 1u. One

can easily check that On,r � Qn,r, and thus an ϵ{5-net sOn,r for On,r obeying
�� sOn,r

�� ¤
p15{ϵqnr.

Denote sS �  rrsG; sU1, sU2, sU3, sU4ss : sG P sG, sUi P sOni,ri , i � 1, 2, 3, 4
(

and we have

| sS| ¤ |sG| � �� sON�r1

��� �� sON�r2

��� �� sOS�r3

��� �� sOQ�r4

�� � p15{ϵqr1r2r3r4�Nr1�Nr2�Sr3�Qr4 .

We will next show that for any A P S pr1, r2, r3, r4q, there exists a sA P sS such that

}A� sA}F ¤ ϵ.

For any fixedA P S pr1, r2, r3, r4q, decompose it by HOSVD asA � rrG;U1,U2,U3,U4ss.

Then, there exist sA � rrsG; sU1, sU2, sU3, sU4ss with sG P sG, sUi P sOni,ri satisfying that
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��
1,2

¤ ϵ{5 and }G � sG}F ¤ ϵ{5. This gives

}A� sA}F ¤
��rrG � sG;U1,U2,U3,U4ss

��
F
� ��rrsG;U1 � sU1,U2,U3,U4ss

��
F

� ��rrsG; sU1,U2 � sU2,U3,U4ss
��
F
� ��rrsG; sU1, sU2,U3 � sU3,U4ss

��
F

� ��rrsG; sU1, sU2, sU3,U4 � sU4ss
��
F
.

Since each Ui is an orthonormal matrix, the first term is }G � Ḡ}F ¤ ϵ{5. For the

second term, by the all-orthogonal property of sG and the orthonormal property of U2,

U3 and U4,

��rrsG;U1 � sU1,U2,U3,U4ss
��
F
� �� sG �1

�
U1 � sU1

���
F
¤ }sG}F ��U1 � sU1

��
2,1

¤ ϵ{5.

Similarly, we can obtain the upper bound for the third, fourth and the last term, and

thus show that }A� sA}F ¤ ϵ.

(ii) Consider an ϵ-net sSp2r1, 2r2, 2r3, 2r4q for Sp2r1, 2r2, 2r3, 2r4q. Then for any

tensor ∆ P Sp2r1, 2r2, 2r3, 2r4q, there exists a s∆ P sSp2r1, 2r2, 2r3, 2r4q such that }∆ �
s∆}F ¤ ϵ. Since the rank of �W � ∆ � ∆̄ are at most p4r1, 4r2, 4r3, 4r4q, we can split

the HOSVD of �W into 16 parts such that �W � °16
i�1

�Wi, where rankjp�Wiq ¤ 2rj

for 1 ¤ i ¤ 16 and 1 ¤ j ¤ 4, and
@�Wj,�Wk

D � 0 for any j � k. Then for any

N P RN�N�S�Q, we have

xN,∆y � @
N, s∆D� 16̧

i�1

xN,�Wiy �
@
N, s∆D� 16̧

i�1

@
N,�Wi{}�Wi}F

D ���Wi

��
F
, (S3.1)

where �Wi{
���Wi

��
F
P Sp2r1, 2r2, 2r3, 2r4q, and

@
N,�Wi{}�Wi}F

D ¤ sup∆PSp2r1,2r2,2r3,2r4q xN,∆y.

Note that
���W��2

F
� °16

i�1

���Wi

��2
F
, and it holds that

°16
i�1

���Wi}F ¤ 4}�W��
F
¤ 4ϵ,
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which, together with (S3.1), implies that

γ :� sup
∆PSp2r1,2r2,2r3,2r4q

xN,∆y ¤ max
�∆P sSp2r1,2r2,2r3,2r4q

@
N, s∆D� 4γϵ, or

γ � sup
∆PSp2r1,2r2,2r3,2r4q

xN,∆y ¤ p1� 4ϵq�1 max
�∆P sSp2r1,2r2,2r3,2r4q

@
N, s∆D

.

For matrix Z P RNSQ�T , it holds that

��∆p1qZ
��
F
¤ �� s∆p1qZ

��
F
�

16̧

i�1

��p�Wiqp1qZ
��
F

� �� s∆p1qZ
��
F
�

16̧

i�1

���Wi

��
F

��p�Wiqp1q{}�Wi}FZ
��
F

¤ �� s∆p1qZ
��
F
�

16̧

i�1

���Wi

��
F

sup
∆PSp2r1,2r2,2r3,2r4q

��∆p1qZ
��
F

¤ �� s∆p1qZ
��
F
� 4ϵ sup

∆PSp2r1,2r2,2r3,2r4q

��∆p1qZ
��
F
,

and we accomplish the proof by taking supremum on both sides.

Lemma 2. (Restricted strong convexity and smoothness). Suppose that Assumptions

1 and 2 hold, if T Á maxpκ2, κ4qpκU{κLq2dM, then

1

8
κL }∆}2F ¤

1

T

Ţ

n�1

��∆p1qxn

��2
2
¤ 8

3
κU }∆}2F ,

for all ∆ P Sp2r1, 2r2, 2r3, 2r4q with probability at least

1� 2 exppCdM � CT pκL{κUq2mintκ�2, κ�4uq,

where κ, κL, κU and dM are defined in Theorem 1.
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Proof of Lemma 2. Denote RT p∆q � °T
n�1 }∆p1qxn}22, and it holds that

RT p∆q �
Ţ

n�1

��∆p1qxn

��2
2

�
Ţ

n�1

xJn∆
J
p1q∆p1qxn.

(S3.2)

By the spectral measure of ARMA processes in Basu and Michailidis (2015), we have

λmintEpxnx
J
n qu ¥ λminpΣεq{µmaxpAq � κL and λmaxtEpxnx

J
n qu ¤ λmaxpΣεq{µminpAq �

κU , and it then holds that

TκL ¤ EpRT p∆qq �E
�

Ţ

n�1

vecp∆qJpIN b xnx
J
n qvecp∆q

�
¤ TκU , (S3.3)

as }∆}F � 1. Furthermore, RT p∆q ¥ EpRT p∆qq � sup∆PSt|RT p∆q �EpRT p∆qq|u, and

RT p∆q ¤ EpRT p∆qq � sup∆PSt|RT p∆q � EpRT p∆qq|u, where S � Sp2r1, 2r2, 2r3, 2r4q.

We next first bound |RT p∆q � EpRT p∆qq| for each fixed ∆ P Sp2r1, 2r2, 2r3, 2r4q.

Consider the term of RT p∆q � EpRT p∆qq. Note that xn � pyJn�1, . . . ,y
J
n�SQqJ

P RNSQ, and Ap1q � pA1, . . . ,ASQq with each Ai being an N -by-N matrix. From

(2.1), we have yn � Ap1qxn � εn. It can be further rewritten into an VAR(1) form,

xn � Bxn�1�en, and hence the VMA representation of xn �
°8

j�0B
jen�j, or z � Pe,

where

B �

���������������

A1 A2 � � � ASQ�1 ASQ

IN 0 � � � 0 0

0 IN � � � 0 0

...
...

. . .
...

...

0 0 � � � IN 0

��������������

, P �

���������������

INSQ B B2 � � � BT�1 � � �

0 INSQ B � � � BT�2 � � �

0 0 INSQ � � � BT�3 � � �
...

...
...

. . .
... � � �

0 0 0 � � � INSQ � � �

��������������

,
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en � pεJn , . . . ,0qJ P RNSQ, e � peJT , . . . , eJSQ, . . .qJ, and z � pxJT , . . . ,xJ1 qJ P RNSQT .

Moreover, by Assumption 2, the error term has the form of e � Σ̄ξ̄, where ξ̄n �

pξJn , . . . ,0qJ P RNSQ, ξ̄ � pξ̄JT , . . . , ξ̄JSQ, . . .qJ,

Σ̄ε �

�����������

Σε 0 � � � 0

0 Σε � � � 0

...
...

. . .
...

0 0 � � � Σε

����������

P RNSQ�NSQ and Σ̄ �

�����������

Σ̄
1{2
ε 0 0 � � �

0 Σ̄
1{2
ε 0 � � �

0 0 Σ̄
1{2
ε � � �

...
...

...
. . .

����������

.

Denote Σ∆ � Σ̄PJpIT b∆J
p1q∆p1qqPΣ̄, and then

RT �
Ţ

n�1

xJn∆
J
p1q∆p1qxn � ξ̄JΣ̄PJpIT b∆J

p1q∆p1qqPΣ̄ξ̄ � ξ̄JΣ∆ξ̄.

Note that λmaxpPPJq � 1{µminpAq, }Σ∆}op ¤ κU and

}Σ∆}F ¤ }Σ̄}2op}P}op}PJ}op}IT b∆J
p1q∆p1q}F ¤

?
TκU .

For any t ¡ 0, by Hanson-Wright inequality, we can bound RT p∆q � EpRT p∆qq below,

P r|RT p∆q � EpRT p∆qq| ¥ ts ¤ 2 exp

�
�Cmin

�
t

κ2 }Σ∆}op
,

t2

κ4 }Σ∆}2F

��

¤ 2 exp

�
�Cmin

�
t

κ2κU

,
t2

κ4Tκ2
U




.

(S3.4)

Let t1 � TκL{2 and, from (S3.3), it holds that

P
�
0.5κL ¤ T�1RT p∆q ¤ 1.5κU

�
¥ 1� 2 exp

�
�Cmin

�
TκL

κ2κU

,
Tκ2

L

κ4κ2
U




,

(S3.5)

Let S̄ to be an ϵ-covering net of Sp2r1, 2r2, 2r3, 2r4q. To construct the union bound, we

rewrite RT p∆q as RT p∆q � }∆p1qX}2F, where X � px1, � � � ,xT q P RNSQ�T . Define the
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event

Epϵq �
"
@∆ P S̄p2r1, 2r2, 2r3, 2r4q :

?
0.5κL ¤ 1?

T
}∆p1qX}F ¤

?
1.5κU

*
.

Then, by the pointwise bound in (S3.5) and the covering number in Lemma 1(i),

P rEcpϵqs ¤ 2 exp

�
CdM � Cmin

�
TκL

κ2κU

,
Tκ2

L

κ4κ2
U




.

Note that, by Lemma 1 (ii),

Epϵq �
"

max
∆PS̄p2r1,2r2,2r3,2r4q

1?
T
}∆p1qX}F ¤

?
1.5κU

*
�
#

sup
∆PSp2r1,2r2,2r3,2r4q

1?
T
}∆p1qX}F ¤

?
1.5κU

1� 4ϵ

+
.

Moreover, similarly to Lemma 1(ii), we can show that

}∆p1qZ}F ¥ }∆̄p1qZ}F �
16̧

i�1

}p�Wiqp1qZ}F

¥ }∆̄p1qZ}F �
16̧

i�1

}�Wi}F sup
∆PSp2r1,2r2,2r3,2r4q

}∆p1qZ}F

¥ }∆̄p1qZ}F � 4ϵ sup
∆PSp2r1,2r2,2r3,2r4q

}∆p1qZ}F,

where the last inequality is due to
°16

i�1 }�Wi}F ¤ 4ϵ. Taking infimum on both sides, if

0 ¤ ϵ ¤ 1
8
, we have

inf
∆PSp2r1,2r2,2r3,2r4q

1?
T
}∆p1qZ}F ¥ min

∆PS̄p2r1,2r2,2r3,2r4q

1?
T
}∆p1qZ}F

� 4ϵ
1?
T

sup
∆PSp2r1,2r2,2r3,2r4q

}∆p1qZ}F

¥?0.5κL � 4ϵ

?
1.5κU

1� 4ϵ
¥ ?

0.5κL � 4ϵ
?
6κU .
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When ϵ is chosen to be 1
8

b
κL

12κU
, As a result, with the above choice of ϵ,

Epϵq �
#
κL

8
¤ inf

∆PSp2r1,2r2,2r3,2r4q

1

T
}∆p1qX}2F ¤ sup

∆PSp2r1,2r2,2r3,2r4q

1

T
}∆p1qX}2F ¤

8κU

3

+
.

Given the conditions that T Á pκU{κLq2maxpκ2, κ4qdM, we have that for all ∆ P

Sp2r1, 2r2, 2r3, 2r4q,

P

�
κL

8
¤ 1

T

Ţ

n�1

}∆p1qxn}22 ¤
8κU

3

�
¥ 1� 2 exp

�
CdM � CT pκL{κUq2minpκ�2, κ�4q� .

This accomplishes the proof.

Lemma 3. (Deviation bound) Suppose that Assumptions 1 and 2 hold. If sample size

T Á maxpκ2, κ4qpκU{κLq2dM, then

sup
∆PSp2r1,2r2,2r3,,2r4q

x 1
T

Ţ

n�1

εn �Xn,∆y ¤ Cκ2
a
λmaxpΣεqκU

c
dM
T

with probability at least

1� expp�CdMq � 2 exppCdM � CT pκL{κUq2mintκ�2, κ�4uq

, where κ, κL, κU and dM are defined in Theorem 1.

Proof of Lemma 3. We let Xn � pyn�1, . . . ,yn�SQq P RN�SQ, then

sup
∆PSp2r1,2r2,2r3,2r4q

x 1
T

Ţ

n�1

εn �Xn,∆y � sup
∆PSp2r1,2r2,2r3,2r4q

x 1
T

Ţ

n�1

εn,∆p1qxny. (S3.6)

Since it is easily verified that xεn�Xn,∆y � xεn,∆p1qxny. Denote Stp∆q � °t
n�1xεn,∆p1qxny

and Rtp∆q � °t
n�1 }∆p1qxn}22 for 1 ¤ n ¤ T . By the Chernoff bound of errors, for any
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α ¡ 0, β ¡ 0 and c ¡ 0, there exists η ¡ 0,

P
�
tST p∆q ¥ αu

£
tRT p∆q ¤ βu

�
� inf

η¡0
P
�
texp pηST p∆qq ¥ exp pηαqu

£
tRT p∆q ¤ βu

�
� inf

η¡0
P rexp pηST p∆qq I pRT p∆q ¤ βq ¥ exppηαqs

¤ inf
η¡0

exp p�ηαqE rexppηST p∆qqIpRT p∆q ¤ βqs

� inf
η¡0

expp�ηα � cη2βqE �
exppηST p∆q � cη2βqIpRT p∆q ¤ βq�

¤ inf
η¡0

expp�ηα � cη2βqE �
exppηST p∆q � cη2RT p∆qq� .

(S3.7)

By the tower property for conditional expectations, we have

E
�
exp

�
ηST p∆q � cη2RT p∆q��

�E �
E
�
exp

�
ηST p∆q � cη2RT p∆q� |FT�1

��
�E �

exp
�
ηST�1p∆q � cη2RT�1p∆q�E �

exp
�
ηxεT ,∆p1qxT y � cη2}∆p1qxT }22

� |FT�1

��
.

With the sub-Gaussianity condition in Assumption 2, then xεT ,∆p1qxT y � xξT ,Σ1{2
ε ∆p1qxT y,

and E
�
exppηxεT ,∆p1qxT yq

� ¤ exp
�
η2κ2λmaxpΣεq}∆p1qxT }22{2

�
. Since xn is Fn�1-measurable,

εn is Fn-measurable and εn|Fn�1 is mean-zero, let c � κ2λmaxpΣεq{2, and the following

inequalities can be easily deduced,

ErexppηST p∆q � η2κ2λmaxpΣεqRT p∆q{2qs

¤ErexppηST�1p∆q � η2κ2λmaxpΣεqRT�1p∆q{2qs

¤ � � � ¤ ErexppηSSQ�1p∆q � η2κ2λmaxpΣεqRSQ�1p∆q{2qs ¤ 1.
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As a result, for any α ¡ 0 and β ¡ 0, we can have the following inequality of (S3.7),

PrtST p∆q ¥ αu
£

tRT p∆q ¤ βus

¤ inf
η¡0

expp�ηα � η2κ2λmaxpΣεqβ{2q

� exp

�
� α2

2κ2λmaxpΣεqβ


.

(S3.8)

Moreover, according to Lemma 2, the following bounds for RT p∆q hold that

T

8
κL ¤ RT p∆q ¤ 8T

3
κU (S3.9)

with probability at least 1� 2 exppCdM � CT pκL{κUq2mintκ�2, κ�4uq.

By Lemma 1 (ii), for any x ¡ 0,

P

�
sup

∆PSp2r1,2r2,2r3,2r4q

C
1

T

Ţ

n�1

εn �Xn,∆

G
¥ x

�

¤P
�

max
∆P sSp2r1,2r2,2r3,2r4q

C
1

T

Ţ

n�1

εn �Xn,∆

G
¥ p1� 4ϵqx

�

¤|S̄p2r1, 2r2, 2r3, 2r4q| � P
�C

1

T

Ţ

n�1

εn �Xn,∆

G
¥ p1� 4ϵqx

�
,

(S3.10)

which, together with (S3.8) and (S3.9), implies that

P

�C
1

T

Ţ

n�1

εn �Xn,∆

G
¥ p1� 4ϵqx

�

¤PrtST p∆q ¥ T p1� 4ϵqxu
£
tRT p∆q ¤ CTκ2κUus � PrRT p∆q ¥ CTκ2κU s

¤ exp

�
� p1� 4ϵq2Tx2

2Cκ4λmaxpΣεqκU

�
� 2 exppCdM � CT pκL{κUq2mintκ�2, κ�4uq,

for any x ¡ 0. Note that, from Lemma 1, |S̄pr1, r2, r3, r4q| ¤ p15{ϵqdM . By letting
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ϵ � 1{10, and x � C
a
dMκ4λmaxpΣεqκU{T , we then have

P

�
sup

∆PSp2r1,2r2,2r3,2r4q

C
1

T

Ţ

n�1

εn �Xn,∆

G
¥ Cκ2

a
λmaxpΣεqκU

c
dM
T

�

¤ expp�CdMq � 2 exppCdM � CT pκL{κUq2mintκ�2, κ�4uq.
(S3.11)

We hence complete the proof.

Lemma 4. (Contractive projection property) Suppose that X P Θprp0q1 , r
p0q
2 , r

p0q
3 , r

p0q
4 q

and r
p1q
i   r

p2q
i   r

p0q
i with 1 ¤ i ¤ 4, then for any Y P Θprp1q1 , r

p1q
2 , r

p1q
3 , r

p1q
4 q,

}P
Θpr

p2q
1 ,r

p2q
2 ,r

p2q
3 ,r

p2q
4 q
pXq �X}F ¤ rΠ4

i�1pβi � 1q � 1s}Y�X}F, (S3.12)

where βi �
b
prp0qi � r

p2q
i q{prp0qi � r

p1q
i q.

Proof of Lemma 4. The proof could be divided into two parts. First, we show a matrix

low-rank projection result, i.e. for two matrices W,A P RN1�N2 , rankpAq � rp1q  

rp2q   rp0q � rankpWq, we have }Prp2qpWq �W}2F ¤
�
rp0q � rp2q

� { �rp0q � rp1q
� }A�W}2F

where Prp2q denotes projection to matrix subspace with rankpWq ¤ rp2q. Second, we

extend the result to tensors with the approximate projection operator P
Θpr

p2q
1 ,r

p2q
2 ,r

p2q
3 ,r

p2q
4 q

.

The first part mainly follows Lemma 1 and 2 in Jain et al. (2014). Consider a SVD

W � UΣVJ with singular values σ1 ¥ σ2 ¥ � � � ¥ σrp0q , and it then holds that

}Prp2qpWq �W}2F �
rp0q¸

i�rp2q�1

σ2
i � }prp2qpdiagpΣqq � diagpΣq}22 ,

where diagpΣq returns a column vector of the elements on the diagonal of Σ and

prp2qpdiagpΣqq takes the rp2q largest elements of the vector diagpΣq. Then we consider
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the expression

}prp1qpdiagpΣqq � diagpΣq}22
rp0q � rp1q

� }prp2qpdiagpΣqq � diagpΣq}22
rp0q � rp2q

� 1

rp0q � rp1q

rp2q¸
i�rp1q�1

σ2
i �

�
1

rp0q � rp1q
� 1

rp0q � rp2q


 rp0q¸
i�rp2q�1

σ2
i ¥ 0.

Hence, }prp2qpdiagpΣqq � diagpΣq}22 ¤
�
rp0q � rp2q

� { �rp0q � rp1q
� }prp1qpdiagpΣqq �diagpΣq}22 ��

rp0q � rp2q
� { �rp0q � rp1q

� }Prp1qpWq �W}2F ¤
�
rp0q � rp2q

� { �rp0q � rp1q
� }A�W}2F. The

last inequality is due to Eckart Young Theorem and finishes the proof for the first part.

Second we consider the approximate projection of tensor P
Θprp2q1 ,r

p2q
2 ,r

p2q
3 ,r

p2q
4 qpX q. Re-

call that

P
Θpr

p2q
1 ,r

p2q
2 ,r

p2q
3 ,r

p2q
4 q
pX q �

�
M�1

4 � P
r
p2q
4
�M4

	
� � � � �

�
M�1

1 � P
r
p2q
1
�M1

	
� X .

We then introduce following notation for projection operator sequentially

Xr1s �
�
M�1

1 � P
r
p2q
1
�M1

	
� X ,

Xris �
�
M�1

i � P
r
p2q
i
�Mi

	
� Xri�1s,

for i � 2, 3, 4. Mi represents mode- i sequential matricization. So it is obvious that

P
Θprp2q1 ,r

p2q
2 ,r

p2q
3 ,r

p2q
4 qpX q � Xr4s. By triangle inequality,

��Xr4s � X
��
F
¤ ��Xr1s � X

��
F
� ��Xr2s � Xr1s

��
F
� ��Xr3s � Xr2s

��
F
� ��Xr4s � Xr3s

��
F
. (S3.13)

Let βi �
c�

r
p0q
i � r

p2q
i

	
{
�
r
p0q
i � r

p1q
i

	
for i � 1, 2, 3, 4. Now we use the result in

the first part to analyze every term on the right side of the above inequality (S3.13).
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For any Y such that rank
�
Yp1q

� ¤ r
p1q
1 ,

��Xr1s � X
��
F
�
����M�1

1 � P
r
p2q
1
�M1

	
� X � X

���
F

�
���Pr

p2q
1
pM1pX qq �M1pX q

���
F

¤β1

��Yp1q �M1pX q
��
F

�β1}Y � X }F.

Similarly, we have

��Xr2s � Xr1s

��
F
¤ β2

��Y � Xr1s

��
F
¤ β2

�}Y � X }F �
��Xr1s � X

��
F

� ¤ β2 p1� β1q }Y � X }F.

Furthermore,

��Xr3s � Xr2s

��
F
¤ β3

��Y � Xr2s

��
F

¤ β3

�}Y � X }F �
��Xr1s � X

��
F
� ��Xr2s � Xr1s

��
F

�
¤ β3 p1� β2q p1� β1q }Y � X }F,

and

��Xr4s � Xr3s

��
F
¤β4

��Y � Xr3s

��
F

¤β4

�}Y � X }F �
��Xr1s � X

��
F
� ��Xr2s � Xr1s

��
F
� ��Xr3s � Xr2s

��
F

�
¤β4

3¹
i�1

p1� βiq }Y � X }F.

Sum up these terms and we have���PΘpr
p2q
1 ,r

p2q
2 ,r

p2q
3 ,r

p2q
4 q
pX q � X

���
F
¤
�

4¹
i�1

pβi � 1q � 1

�
}Y � X }F.

We hence complete the proof.
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S4 Proofs of Corollary 1

Proof. Since the low-rank estimator pA is typically biased, we then compute a debiased

estimator using residuals from the initial model fit

pAu

p1q � pAp1q � 1

T

Ţ

n�1

pyn � pAp1qxnqxJnK,

where K is the precision matrix of xn. Let p∆p1q � Ap1q � pAp1q be the estimation error,

The debiased estimator can be decomposed as

pAu

p1q � Ap1q � 1

T

Ţ

n�1

εnx
J
nK� 1

T

Ţ

n�1

p p∆p1qxnx
J
nK� p∆p1qq.

For a prespecified loading tensor B, let dB denotes the size of the low-rank space

that the prespecified loading tensor B resides, and c � T�1trpBp1qKBJ
p1qΣεq, we have

sup
uPR

���P�xpAu �A,By ¤ u
	
� P pg ¤ uq

���
� sup

uPR

���P�xpAu

p1q �Ap1q,Bp1qy ¤ u
	
� P pg ¤ uq

���
¤ sup

uPR

�����P�xpAu

p1q �Ap1q,Bp1qy ¤ u
	
� P

�
1

T

Ţ

n�1

xεnxJnK,Bp1qy ¤ u� δ

������
� sup

uPR

�����P
�

1

T

Ţ

n�1

xεnxJnK,Bp1qy ¤ u� δ

�
� P pg ¤ u� δq

�����
� sup

uPR
|P pg ¤ u� δq � P pg ¤ uq|
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¤ sup
uPR

#
P

�
1

T

Ţ

n�1

xεnxJnK,Bp1qy ¤ u

�
� P

�
1

T

Ţ

n�1

xεnxJnK,Bp1qy ¤ u� δ

�+

� P

#�����x 1T
Ţ

n�1

p p∆p1qxnx
J
nK� p∆p1qq,Bp1qy

����� ¥ δ

+

� sup
uPR

�����P
�

1

T

Ţ

n�1

xεnxJnK,Bp1qy ¤ u� δ

�
� P pg ¤ u� δq

�����
� sup

uPR
|P pg ¤ u� δq � P pg ¤ uq|

¤ 2 exp

�
CdMdB � Cmin

�
Tδ

κ2κk
U

,
T δ2

κ4κk
U
2

��
� 3

σ

T 1{9
}K}2}Bp1q}F � 2

δ?
2πc

e�u2{2c.

The last inequality is due to Lemmas 5 and 6. Let δ � T�1{4, and T 1{2 Á κk
U
2
maxpκ2, κ4qdMdB,

the above bound is dominated by the second term with T�1{9.

S5 Two useful lemmas for Corollary 1

We provide two useful lemmas for Corollary 1.

Lemma 5. (Restricted strong convexity of the estimated low-Tucker-rank linear form)

Suppose Assumptions 1 and 2 hold, T Á pκk
U{κk

Lq2maxpκ2, κ4qdMdB, then for all p∆ P

Sp2r1, 2r2, 2r3, 2r4q, any t ¡ 0, we have

P

#�����x 1T
Ţ

n�1

p p∆p1qxnx
J
nK� p∆p1qq,Bp1qy

����� ¥ C}Bp1q}F} p∆}Ft
+

¤ 2 exp

�
CdMdB � Cmin

�
Tt

κ2κk
U

,
T t2

κ4κk
U
2

��
.

Proof. Without loss of generality, we restrict the }Bp1q}F and } p∆}F to be 1. Let HT �

x°T
n�1

p∆p1qxnx
J
nK,Bp1qy, then its expectation satisfies EpHT q � T x p∆,By.

Following the proof of Lemma 2, x°T
n�1

p∆p1qxnx
J
nK,Bp1qy �

°T
n�1 x

J
nKBJ

p1q
p∆p1qxn �
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sξJ sΣPJpIT bKBp1q
p∆p1qqPsΣsξ � sξJΣ∆

sξ, where Σ∆ � sΣPJpIT bKBp1q
p∆p1qqPsΣ, we

have }Σ∆}op ¤ κU}K}2 and }Σ∆}F ¤
?
TκU}K}2. Let κk

U � κU}K}2, for any t ¡ 0, by

Hanson-Wright inequality, we can bound HT � EpHT q below,

P r|HT � EpHT q| ¥ ts ¤ 2 exp

�
�Cmin

�
t

κ2 }Σ∆}op
,

t2

κ4 }Σ∆}2F

��

¤ 2 exp

�
�Cmin

�
t

κ2κk
U

,
t2

κ4Tκk
U
2

��
.

(S5.1)

Then we have the pointwise bound for fixed p∆ and B,

P

#�����x 1T
Ţ

n�1

p p∆p1qxnx
J
nK� p∆p1qq,Bp1qy

����� ¥ t

+
¤ 2 exp

�
�Cmin

�
Tt

κ2κk
U

,
T t2

κ4κk
U
2

��
.

(S5.2)

Following the proof of Lemma 2, let S̄ to be an ϵ-covering net of Sp2r1, 2r2, 2r3, 2r4q.

To construct the union bound, we rewrite HT as HT � x°T
n�1 xnx

J
nK, p∆J

p1qBp1qy and

let Xk � °T
n�1 xnx

J
nK� Ep°T

n�1 xnx
J
nKq.

By Lemma 1 (ii), then

P
"

max
∆PS̄p2r1,2r2,2r3,2r4q

max
BPS̄pR1,R2,R3,R4q

1

T
xXk,∆J

p1qBp1qy ¥ t

*
¥ P

#
sup

∆PSp2r1,2r2,2r3,2r4q
max

BPS̄pR1,R2,R3,R4q

1

T
xXk,∆J

p1qBp1qy ¥ t{p1� 4ϵq
+

¥ P

#
sup

∆PSp2r1,2r2,2r3,2r4q
sup

BPS̄pR1,R2,R3,R4q

1

T
xXk,∆J

p1qBp1qy ¥ t{p1� 4ϵq2
+
.

Choose ϵ � 1{8 andB P SpR1, R2, R3, R4q, we have that for all∆ P Sp2r1, 2r2, 2r3, 2r4q,

P

#�����x 1T
Ţ

n�1

p p∆p1qxnx
J
nK� p∆p1qq,Bp1qy

����� ¥ t

+
¤ 2 exp

�
CdMdB � Cmin

�
Tt

κ2κk
U

,
T t2

κ4κk
U
2

��
.

This accomplishes the proof.
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Lemma 6. (Deviation bound of the estimated low-Tucker-rank linear form) Suppose

Assumptions 1 and 2 hold, then

sup
uPR

�����P
�

Ţ

n�1

xεnxJnK,Bp1qy ¤ u

�
� P pg ¤ uq

����� À σ

T 1{9
}K}2}Bp1q}F

where g � N p0, T�1trpBp1qKBJ
p1qΣεqq.

Proof. If Assumptions 1 and 2 hold, then the sequence tynu is α-mixing, and txnu is

α-mixing. Since tεnu is independent of txnu, xεnxJnK,Bp1qy is α-mixing by Theorem

5.2 of Bradley (2005). By Theorem 1 in Chang et al. (2024), and let }Bp1q}F � 1, we

have for all Bp1q,

sup
uPR

�����P
�

1?
T

Ţ

n�1

xεnxJnK,Bp1qy ¤ u

�
� P pg ¤ uq

����� À σ

T 1{9
}K}2

where g � N p0, trpBp1qKBJ
p1qΣεqq, σ is the ϕ2 norm of xεnxJnK,Bp1qy.

S6 Simulation results for the MLR-TT-HAR model

The third experiment is for evaluating the non-asymptotic estimation error bound for

MLR-TT-HAR models. The realized volatilities are generated using the model de-

scribed by equations (4.1) and (4.2), and the coefficient tensor is generated from (2.5)

with P � 22. The coefficient tensor A has the form A � G�U1�U2�U3 P RN�N�P ,

where the core tensor G, the factor matrices Ui are generated by the similar method

as in the first experiment.

For the MLR-TT-HAR model, }pAMLR �A}F � Opp
a
dM{T q with dM � r1r2r3 �

Nr1 � Nr2 � Pr3, and hence it is roughly linear with respect to T�1 and N , given
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fixed values of r1, r2, r3, P . We consider four settings to verify the relationship: (a)

pP, r1, r2, r3q is fixed at p22, 2, 2, 2q, the dimensionality is limited to N � 10, 13, 15, while

the sample size T varies among the set of t550, 600, 650, 700, 750u such that the values of

T�1 are approximately and evenly spaced from 13�10�4 to 18�10�4; (b) pP, r1, r2, r3q

is fixed at p22, 2, 2, 3q, with the dimensionality and sample size the same as in (a); (c)

pP, r1, r2, r3q is fixed at p22, 2, 2, 2q, the sample size is limited to T � 100, 300, 500, while

the dimensionality N varies among the set to t8, 10, 13, 18, 30u such that the values of

?
N are approximately and evenly spaced from 2.8 to 5.5; (d) pP, r1, r2, r3q is fixed at

p22, 2, 2, 3q with the dimensionality and sample size the same as in (c).

The step size, tolerance and initial values of Algorithm 1 are set as in the first

experiment. Both Figure S6.1 and S6.2 displays the average estimation error }pAMLR�

A}F over 500 replications. Figure S6.1 illustrates that }pAMLR �A}F exhibits an ap-

proximately linear relationship with respect to
?
T�1, while Figure S6.2 implies that

}pAMLR �A}F is proportional to
?
N .
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Figure S6.1: Estimation errors }pAMLR � A}F against with
a
1000{T . The ranks are pr1, r2, r3q �

p2, 2, 2q in the left panel, and pr1, r2, r3q � p2, 2, 3q in the right panel.
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in the left panel, and pr1, r2, r3q � p2, 2, 3q in the right panel.

Moreover, we report the estimation accuracy with the dimensionality N varies

among the set to t8, 10, 13, 18, 30u while holding T fixed at 100, 300, 500, respectively.
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The estimation accuracy is evaluated by the averaged mean squared error (MSE), cal-

culated as }pAMLR�A}2F over 500 replications. The corresponding runtime (RT) results

of first 50 interations in a single replication are also presented. All the results are sum-

marized in Table S6.1. Table S6.1 shows that the MSEs tend to increase as N increases,

while they decrease as T increases, and RTs tend to increase as N or T increases.

Table S6.1: MSEs and RTs (seconds) with N � 8, 10, 13, 18, 30, while holding T � 100, 300, 500.

pr1, r2, r3q � p2, 2, 2q pr1, r2, r3q � p2, 2, 3q

N 8 10 13 18 30 8 10 13 18 30

T � 100

MSE 2.71 3.11 3.90 4.82 6.74 3.45 4.00 4.81 5.69 7.43

RT 0.11 0.13 0.17 0.27 0.81 0.10 0.13 0.17 0.27 0.79

T � 300

MSE 0.46 0.58 0.73 1.00 1.60 0.48 0.75 0.96 1.26 2.10

RT 0.13 0.15 0.20 0.32 0.89 0.13 0.15 0.21 0.33 0.89

T � 500

MSE 0.20 0.24 0.28 0.40 0.81 0.23 0.32 0.38 0.49 0.99

RT 0.15 0.18 0.25 0.38 1.02 0.15 0.18 0.25 0.39 1.10

The fourth experiment aims to assess the convergence performance of Algorithm

1 for MLR-TT-HAR models. We generate a sample using a similar data generation

process to the third experiment. The true Tucker ranks are pr1, r2, r3q � p2, 2, 2q.

Four different running ranks are considered: pr1

1, r
1

2, r
1

3q � p2, 2, 2q, p2, 2, 3q, p3, 2, 2q,

and p3, 3, 3q. Figure S6.3 illustrates the average standardized root mean square errors
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}pAMLR �A}F{}A}F over 500 replications for the first 150 iterations. The plot shows

a similar decay pattern across all cases, indicating the convergence of the algorithm.

Additionally, specifying more accurate ranks in advance leads to lower estimation errors,

with the true ranks yielding the best results.
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Figure S6.3: Standardized mean squares errors }pAMLR �A}F{}A}F for the first 150 iterations with

running ranks pr1

1, r
1

2, r
1

3q � p2, 2, 2q, p2, 2, 3q, p3, 3, 2q or p3, 3, 3q.
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S7 One Table for the selected ranks of the MLR-FT-HAR,

MLR-TT-HAR and VHARI models in Real data analysis

Table S7.1 gives the results of the selected ranks of the MLR-FT-HAR, MLR-TT-HAR

and VHARI models.

Table S7.1: Selected ranks of the VHARI, MLR-TT-HAR and MLR-FT-HAR models with 60 stocks

and 90 stocks during the short p2011.01� 2013.12q and long periods p2009.04� 2013.12q.

Models

N period
VHARI MLR-TT-HAR MLR-FT-HAR

P � 22 P � 66 P � 22 P � 66 Q � 22, S � 3

60 short r � 2 r � 2 pr1, r2, r3q � p2, 2, 2q pr1, r2, r3q � p2, 2, 2q pr1, r2, r3, r4q � p3, 3, 1, 2q

long r � 3 r � 3 pr1, r2, r3q � p4, 4, 2q pr1, r2, r3q � p3, 3, 2q pr1, r2, r3, r4q � p3, 3, 1, 4q

90 short r � 2 r � 2 pr1, r2, r3q � p3, 3, 2q pr1, r2, r3q � p3, 3, 2q pr1, r2, r3, r4q � p3, 3, 1, 2q

long r � 3 r � 3 pr1, r2, r3q � p3, 3, 2q pr1, r2, r3q � p3, 3, 4q pr1, r2, r3, r4q � p3, 3, 1, 4q
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