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In this Supplementary Material, Section A presents a collection of technical lemmas and some of their

proofs. Section B presents the proofs of Theorems 1 to 5 in the main paper. Section C presents some additional

simulation and real data analysis results.

A Auxiliary Lemmas

To facilitate the theoretical development, we introduce the oracle estimators, where the

covariance matrix Σ(r) is treated as known. That is, we plug the true covariance Σ(r)

in (2.17) to estimate β(r), and denote it as (β̂o)(r). We then plug (β̂o)(r) in (2.18) to

estimate the test statistics J, J2
r,j, and denote them as Jo, (Jor,j)

2. In contrast, we view

(2.17) and (2.18) where we use the estimated covariance Σ̂(r) given data as the data-

driven estimators, and denote them as (β̂d)(r), Jd, (Jdr,j)
2, respectively. In our theoretical

development, we first study the oracle case, then show that the data-driven case is

asymptotically equivalent.



Lemma 1. (Bonferroni inequality) Let B =
⋃p
t=1 Bt. For any k ≤ p/2,

2k∑
t=1

(−1)t−1Ft ≤ P(B) ≤
2k−1∑
t=1

(−1)t−1Ft,

where Ft =
∑

1≤i1<...it≤p P(Bi1

⋂
. . . Bit).

Lemma 2. (Lemma 6 of Cai et al. (2014)) Let (Z1, . . . , Zp)
T be a multivariate normal

random vector with mean zero and covariance Σ and all diagonal elements Σi,i = 1

for 1 ≤ i ≤ p. Suppose maxi ̸=j |Σi,j| ≤ C1 < 1, and maxj
∑p

i=1Σ
2
ij ≤ C2,, for some

constants C1, C2. Then for any ϕ ∈ R,

P
(
max
1≤i≤p

Z2
i − 2 log p+ log log p ≤ ϕ

)
→ exp

{
− 1√

π
exp

(
−ϕ

2

)}
.

Lemma 3. (Lemma 2 of Berman (1962)) Suppose X and Y follow a bivariate normal

distribution with zero mean, unit variance and correlation coefficient ρ. Then,

lim
c→∞

P (X > c, Y > c)

{2π(1− ρ)1/2c2}−1 exp(−c2/(1 + ρ))(1 + ρ)1/2
= 1,

uniformly for all ρ such that |ρ| ≤ δ, 0 < δ < 1.

Lemma 4. Let Λ be any subset of {(r, j) : 1 ≤ r ≤ R, 1 ≤ j ≤ 2p + 2}, and let |Λ|

denote the cardinality. Then, for some constant C > 0,

P
(

max
(r,j)∈Λ

((β̂o)
(r)
j − β

(r)
j )2

{(XT{Σ(r)}−1X)−1}j,j
≥ x2

)
≤ C|Λ|{1− Φ(x)}+O(p−1),

uniformly for 0 ≤ x ≤ (8 log p̃)1/2 and Λ ⊆ {(r, j) : 1 ≤ r ≤ R, 1 ≤ j ≤ 2p + 2}. For
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the sub-Gaussian case, this result holds under Condition (C7).

Lemma 5. (Lemma 3 of Chen et al. (2023)) Let X = (X1, . . . , Xn)
T and Y = (Y1, . . . , Yn)

T

be two random vectors with independent entries, and EXi = EYi = 0, maxi(∥Xi∥ψ2 , ∥Yi∥ψ2)

≤ K, where ∥X∥ψ2 = supp≥1 p
−1(E|X|p)1/p denotes the sub-exponential norm of X. Let

A be an n× n matrix. Then, for some constant c > 0, and every t > 0,

P (|XTAY − EXTAY | ≥ t) ≤ 2 exp

{
−cmin

(
t2

K4∥A∥2F
,

t

K2∥A∥2

)}
.

Lemma 6. Suppose Conditions (C1), (C2) and (C4) hold. Then, for any ϕ ∈ R,

PH0 (J
o − 2 log p̃+ log log p̃ ≤ ϕ) → exp

{
−π−1/2 exp(−ϕ/2)

}
, as NT and p̃ → ∞.

Proof : We prove this lemma in three steps. First, we formulate the correlation matrix

of the oracle test statistic. Second, we show that it satisfies the correlation conditions

of Lemma 2. Finally, we apply Lemma 2 to complete the proof.

Step 1: Since Jo is the maximum of the square of p̃ standardized normal variables, we

first consider the correlation matrix Σ̌ of (Jo1,1, . . . , J
o
1,2p+2, . . . , J

o
r,j, . . . , J

o
R,1, . . . , J

o
R,2p+2).

We note that the diagonals of Σ̌ are all 1. In addition, it can be written in the following

block matrix form:

Σ̌ =


Σ̌(1,1) . . . Σ̌(1,R)

. . . . . . . . .

Σ̌(R,1) . . . Σ̌(R,R)

 ,

where each block is a (2p+ 2)× (2p+ 2) matrix.



Next, for 1 ≤ j1 ≤ 2p+ 2, 1 ≤ j2 ≤ 2p+ 2, we have,

[
Σ̌(r,r)

]
j1,j2

=
[
(XT{Σ(r)}−1X)−1

]
j1,j2

[
(XT{Σ(r)}−1X)−1

]−1/2

j1,j1

[
(XT{Σ(r)}−1X)−1

]−1/2

j2,j2
,

where Σ(r) is as defined in (2.6). For 1 ≤ j1 ≤ 2p + 2, 1 ≤ j2 ≤ 2p + 2, 1 ≤ r1 ≤ R,

1 ≤ r2 ≤ R, and r1 ̸= r2, we have,

[
Σ̌(r1,r2)

]
j1,j2

=
[
(XT{Σ(r1)}−1X)−1XT{Σ(r1)}−1Σ(r1,r2){Σ(r2)}−1X(XT{Σ(r2)}−1X)−1

]
j1,j2

×
[
(XT{Σ(r1)}−1X)−1

]−1/2

j1,j1

[
(XT{Σ(r2)}−1X)−1

]−1/2

j2,j2
,

where Σ(r1,r2) is as defined in Condition (C4).

Step 2: By Condition (C4), the maximum absolute value of the off-diagonal entries of

Σ̌ is bounded by a positive constant smaller than 1. We show in this step that, for each

column of Σ̌, the sum of squares for all entries is upper bounded by a positive constant

c, i.e., maxr,j
∑

r2,j2
{[Σ̌(r,r2)]j,j2}2 ≤ c.

First, we show that
[
(XT{Σ(r)}−1X)−1

]−1/2

j,j
= O{(NT )1/2} uniformly for 1 ≤

j ≤ 2p + 2, 1 ≤ r ≤ R. Write (XT{Σ(r)}−1X)−1 = Σ̃(r). Then we need to show

that |[{Σ̃(r)}−1]j,j| = O(NT ). At the same time, we obtain the bounds for ∥Σ(r)∥2,

∥{Σ(r)}−1∥2, ∥Σ̃(r)∥2, and ∥{Σ̃(r)}−1∥2, which are useful in the proof of both this lemma

and Theorem 2.

We begin with the bounds for ∥Σ(r)∥2 and ∥{Σ(r)}−1∥2. By Conditions (C1), (C2),

∥G(IN⊗Σζ)G
T∥2 ≤ ∥G∥22∥IN⊗Σζ∥2 ≤ max

i
∥Gi∥22∥Σζ∥2 ≤ 2T max

i
∥Gi∥2max∥Σζ∥2 = O(1).
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By Condition (C2), we have

max
r

λmax([ΣR]r,rΣT ) = max
r

[ΣR]r,rλmax(ΣT ) ≤ λmax(ΣT )λmax(ΣR) = O(1).

Similarly, we have

min
r

λmin([ΣR]r,rΣT ) = min
r
[ΣR]r,rλmin(ΣT ) ≥ λmin(ΣT )λmin(ΣR) ≥ c−2

2 .

By Weyl’s inequality and the definition of Σ(r) in (2.6), we have λmax(Σ
(r)) = O(1),

and λmin(Σ
(r)) ≥ c−2

2 uniformly for r = 1, . . . , R. This implies that ∥Σ(r)∥2 = O(1) and

∥{Σ(r)}−1∥2 = O(1). Note that

{Σ̃(r)}−1 = XT{Σ(r)}−1X = λmin({Σ(r)}−1)XTX +XT
(
{Σ(r)}−1 − λmin({Σ(r)}−1)INT

)
X

= λ−1
max(Σ

(r))XTX +XT
(
{Σ(r)}−1 − λ−1

max(Σ
(r))INT

)
X.

By Condition (C1), we have

λmax{(XT{Σ(r)}−1X)−1} = λ−1
min(X

T{Σ(r)}−1X) ≤ λ−1
min{λ−1

max(Σ
(r))XTX}

= λ−1
min(X

TX)λmax(Σ
(r)) = O(N−1T−1),

(A.1)

uniformly for r = 1, . . . , R. Similarly, we have

λmin{(XT{Σ(r)}−1X)−1} = λ−1
max(X

T{Σ(r)}−1X) ≥ λ−1
max{λ−1

min(Σ
(r))XTX}

= λ−1
max(X

TX)λmin(Σ
(r)) ≥ c−1

1 c−2
2 N−1T−1,

(A.2)

uniformly for r = 1, . . . , R. Together, (A.1) and (A.2) imply that



∥Σ̃(r)∥2 = O(N−1T−1), ∥{Σ̃(r)}−1∥2 = O(NT ), |[{Σ̃(r)}−1]j,j| = O(NT ),

uniformly for 1 ≤ j ≤ 2p+ 2, 1 ≤ r ≤ R.

Next, we show that maxr,j
∑

r2,j2
{[Σ̌(r,r2)]j,j2}2 ≤ c, for each 1 ≤ r ≤ R, 1 ≤ j ≤

2p+ 2. We note that

∑
r2,j2

{[Σ̌(r,r2)]j,j2}2 =
2p+2∑
j2=1

{[Σ̌(r,r)]j,j2}2 +
∑
r2 ̸=r

2p+2∑
j2=1

{[Σ̌(r,r2)]j,j2}2

=

2p+2∑
j2=1

{[Σ̃(r)]j,j2}2{[Σ̃(r)]j,j}−1{[Σ̃(r)]j2,j2}−1

+
∑
r2 ̸=r

2p+2∑
j2=1

[
Σ̃(r)XT{Σ(r)}−1Σ(r,r2){Σ(r2)}−1XΣ̃(r2)

]2
j,j2

{[Σ̃(r)]j,j}−1{[Σ̃(r)]j2,j2}−1.

By the fact that {[Σ̃(r)]j,j}−1 ≤ [{Σ̃(r)}−1]j,j = O(NT ) for 1 ≤ j ≤ 2p+ 2, we have,

∑
r2,j2

{[Σ̌(r,r2)]j,j2}2 = O(N2T 2)

(
2p+2∑
j2=1

{[Σ̃(r)]j,j2}2 +
∑
r2 ̸=r

2p+2∑
j2=1

[
Σ̃(r)XT{Σ(r)}−1Σ(r,r2){Σ(r2)}−1XΣ̃(r2)

]2
j,j2

)
.

So it suffices to show that

2p+2∑
j2=1

{[Σ̃(r)]j,j2}2 +
∑
r2 ̸=r

2p+2∑
j2=1

[
Σ̃(r)XT{Σ(r)}−1Σ(r,r2){Σ(r2)}−1XΣ̃(r2)

]2
j,j2

= O(N−2T−2),

(A.3)

uniformly for 1 ≤ j ≤ 2p+ 2, 1 ≤ r ≤ R.

To bound the first term in the left-hand-side of (A.3), because ∥Σ̃(r)∥2 = O(N−1T−1),

we have,
2p+2∑
j2=1

{[Σ̃(r)]j,j2}2 ≤ ∥Σ̃(r)∥22 = O(N−2T−2).
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To bound the second term in the left-hand-side of (A.3), we have,

∑
r2 ̸=r

2p+2∑
j2=1

[
Σ̃(r)XT{Σ(r)}−1Σ(r,r2){Σ(r2)}−1XΣ̃(r2)

]2
j,j2

≤
∑
r2 ̸=r

∥∥∥{Σ̃(r)XT{Σ(r)}−1Σ(r,r2){Σ(r2)}−1XΣ̃(r2)}
∥∥∥2
2

=
∑
r2 ̸=r

∥∥∥{Σ̃(r)XT{Σ(r)}−1diag({[ΣR]r,r2ΣT}Ni=1){Σ(r2)}−1XΣ̃(r2)}
∥∥∥2
2

≤
∑
r2 ̸=r

[ΣR]
2
r,r2

∥Σ̃(r)∥22
∥∥XT{Σ(r)}−1diag({ΣT}Ni=1){Σ(r2)}−1X

∥∥2
2
∥Σ̃(r2)∥22.

Recall that ∥{Σ(r)}−1∥2 = O(1). By Conditions (C1) and (C2), we have that ∥XT{Σ(r)}−1

diag({ΣT}Ni=1){Σ(r2)}−1X∥22 = O(N2T 2). Therefore, we have that,

∑
r2 ̸=r

2p+2∑
j2=1

[
Σ̃(r)XT{Σ(r)}−1Σ(r,r2){Σ(r2)}−1XΣ̃(r2)

]2
j,j2

≤
∑
r2 ̸=r

Σ2
R,r,r2

c1(N
−2T−2)(N2T 2)(N−2T−2) ≤ C1∥ΣR∥22N−2T−2 ≤ C2N

−2T−2,

where C1 and C2 are some positive constants. In the first inequality we use the fact

that ∥Σ̃(r)∥2 = O(N−1T−1) for 1 ≤ r ≤ R, and in the last inequality we use Condition

(C2). Therefore, we prove (A.3), which yields maxr,j
∑

r2,j2
{[Σ̌(r,r2)]j,j2}2 ≤ c.

Step 3: Applying Lemma 2 completes the proof of Lemma 6.

Lemma 7. Suppose Conditions (C1) - (C5) hold. Suppose p̃0 = |H0| ≍ p̃, and for

some ρ > 0 and δ > 0, |Sρ| ≥ {1/(π1/2α) + δ}(log p̃)1/2. Then,

lim
(NT,p̃)→∞

FDRo

αp̃0/p̃
= 1, lim

(NT,p̃)→∞

FDPo(τ̂)

αp̃0/p̃
= 1 in probability,



where FDRo,FDPo are the false discovery rate and proportion under the oracle case by

plugging in the oracle test statistic (Jor,j)
2.

Proof : We first show that P (τ̂ exists in [0, tp̃]) = 1. Recall that Sρ = {(r, j) ∈ H :

{β(r)
j }2/{(XT{Σ(r)}−1X)−1}j,j ≥ (log p̃)1+ρ}. Then, with probability tending to 1,

∑
r,j

I
{
|Jor,j| > (2 log p̃)1/2

}
≥ {1/(π1/2α) + δ}(log p̃)1/2.

Then with probability tending to 1, we also have that,

p̃∑
r,j I{|Jor,j| > (2 log p̃)1/2} ∨ 1

≤ p̃{1/(π1/2α) + δ}−1(log p̃)−1/2.

Denoting by G(τ) = 2{1−Φ(τ)}, we have that G(tp̃) ∼ (2/π)1/2t−1
p̃ exp(−t2p̃/2). There-

fore, by the definition of tp̃ in Algorithm 3, we have that P(τ̂ exists in [0, tp̃]) = 1.

By the definition of τ̂ , we have that,

p̃G(τ̂)∑
r,j I(|Jor,j| ≥ τ̂) ∨ 1

= α.

Thus, to prove Lemma 7, it suffices to show that

∣∣∣∣∣
∑

(r,j)∈H0
{I(|Jor,j| ≥ τ)−G(τ)}

p̃0G(τ)

∣∣∣∣∣→ 0 in probability, uniformly for 0 ≤ τ ≤ tp̃.

Let 0 = t̃0 < t̃1 < . . . < t̃b = tp̃, such that t̃h − t̃h−1 = vp̃ for 1 ≤ h ≤ b − 1 and

t̃p̃ − t̃p̃−1 ≤ vp̃, where vp̃ = (log p̃ log4 p̃)
−1/2. We have that b ∼ tp̃/vp̃. For any τ , such

that t̃h−1 ≤ τ ≤ t̃h, we have that,
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(r,j)∈H0

I(|Jor,j| ≥ t̃h−1)

p̃0G(t̃h)

G(t̃h)

G(t̃h−1)
≤
∑

(r,j)∈H0
I(|Jor,j| ≥ τ)

p̃0G(τ)
≤
∑

(r,j)∈H0
I(|Jor,j| ≥ t̃h−1)

p̃0G(t̃h−1)

G(t̃h−1)

G(t̃h)
.

Therefore, it suffices to show that

max
1≤h≤b

∣∣∣∣∣
∑

(r,j)∈H0

{
I
(
|Jor,j| ≥ t̃h

)
−G(t̃h)

}
p̃0G(t̃h)

∣∣∣∣∣→ 0 in probability. (A.4)

We have, for any ϵ > 0,

P

[
max
1≤h≤b

∣∣∣∣∣
∑

(r,j)∈H0
{I(|Jor,j| ≥ t̃h)−G(t̃h)}

p̃0G(t̃h)

∣∣∣∣∣ ≥ ϵ

]

≤
b∑

h=1

P

[∣∣∣∣∣
∑

(r,j)∈H0
{I(|Jor,j| ≥ t̃h)−G(t̃h)}

p̃0G(t̃h)

∣∣∣∣∣ ≥ ϵ

]

≤ 1

vp̃

∫ tp̃

0

P

[∣∣∣∣∣
∑

(r,j)∈H0
{I(|Jor,j| ≥ τ)−G(τ)}

p̃0G(τ)

∣∣∣∣∣ ≥ 1

2
ϵ

]
dτ

+
b∑

h=b−1

P

[∣∣∣∣∣
∑

(r,j)∈H0
{I(|Jor,j| ≥ t̃h)−G(t̃h)}

p̃0G(t̃h)

∣∣∣∣∣ ≥ ϵ

]
.

Since P(|Jor,j| ≥ τ) = G(τ) for (r, j) ∈ H0, we only need to show that, for any ϵ > 0,

∫ tp̃

0

P

[∣∣∣∣∣
∑

(r,j)∈H0
{I(|Jor,j| ≥ τ)− P(|Jor,j| ≥ τ)}

p̃0G(τ)

∣∣∣∣∣ ≥ ϵ

]
dτ = o(vp̃), (A.5)

and

max
0≤τ≤tp̃

P

[∣∣∣∣∣
∑

(r,j)∈H0
{I(|Jor,j| ≥ τ)− P(|Jor,j| ≥ τ)}

p̃0G(τ)

∣∣∣∣∣ ≥ ϵ

]
= o(1). (A.6)

Since the proofs of (A.5) and (A.6) are similar, we only prove (A.5) here.

By Markov’s inequality, it suffices to bound



E

∣∣∣∣∣
∑

(r,j)∈H0
{I(|Jor,j| ≥ τ)− P(|Jor,j| ≥ τ)}

p̃0G(τ)

∣∣∣∣∣
2

=

∑
(r1,j1),(r2,j2)∈H0

{P(|Jor1,j1| ≥ τ, |Jor2,j2| ≥ τ)− P(|Jor1,j1| ≥ τ)P(|Jor2,j2| ≥ τ)}
p̃20G

2(τ)

(A.7)

We next divide the index pairs (r1, j1), (r2, j2) ∈ H0 into several parts depending on the

covariance cov(Jor1,j1 , J
o
r2,j2

). Specifically, for some small enough constant γ > 0, denote

by

Γr,j(γ) =
{
(r0, j0) : (r0, j0) ̸= (r, j), |cov(Jor,j, Jor0,j0)| ≥ (log p̃)−2−γ} .

In Step 2 of the proof of Lemma 6, we obtain that |cov(Jor1,j1 , J
o
r2,j2

)| ≤ c0 holds uniformly

for (r1, j1), (r2, j2), and some constant c0 < 1. In addition,
∑

r0,j0
cov2(Jor0,j0 , J

o
r,j) =

O(1) for any (r, j), which implies max(r,j)∈H0 |Γr,j(γ)| = o(p̃ι) for any constant ι > 0.

Then the index pairs {(r1, j1), (r2, j2) : (r1, j1) ∈ H0, (r2, j2) ∈ H0} can be divided

into three parts: H01 = {(r1, j1), (r2, j2) : (r1, j1) ∈ H0, (r2, j2) ∈ H0, (r1, j1) = (r2, j2)};

H02 = {(r1, j1), (r2, j2) : (r1, j1) ∈ H0, (r2, j2) ∈ H0, (r2, j2) ∈ Γr1,j1(γ)} that contains

highly correlated index pairs; and H03 = {(r1, j1), (r2, j2) : (r1, j1) ∈ H0, (r2, j2) ∈

H0, (r2, j2) /∈ Γr1,j1(γ)} that contains weakly correlated pairs.

For H01, we have,

∑
{(r1,j1),(r2,j2)}∈H01

{P(|Jor1,j1| ≥ τ, |Jor2,j2| ≥ τ)− P(|Jor1,j1| ≥ τ)P(|Jor2,j2| ≥ τ)}
p̃20G

2(τ)

≤ Cp̃0G(τ)

p̃20G
2(τ)

=
C

p̃0G(τ)
.

(A.8)

For H02, we have |H02| ≤ p̃0max(r,j)∈H0 |Γr,j(γ)| = o(p̃1+ι). Because for τ ≤ 1, we
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have P(|Jor1,j1| ≥ τ, |Jor2,j2| ≥ τ)/G2(τ) = O(1). Therefore, by Lemma 3,

∑
{(r1,j1),(r2,j2)}∈H02

{P(|Jor1,j1| ≥ τ, |Jor2,j2| ≥ τ)− P(|Jor1,j1| ≥ τ)P(|Jor2,j2| ≥ τ)}
p̃20G

2(τ)

≤ o(p̃−1+ι) + o(p̃1+ι)
(τ + 1)−2 exp{−τ 2/(1 + c0)}

p̃20G
2(τ)

≤ o[
1

p̃1−ι{G(τ)}2c0/(1+c0)
].

(A.9)

ForH03, by the proof of Lemma 6 in Cai et al. (2014), for any {(r1, j1), (r2, j2)} ∈ H03,

we have,

P(|Jor1,j1| ≥ τ, |Jor2,j2| ≥ τ)−G2(τ)

G2(τ)
= o{(log p̃)−1−γ/2}.

Then we obtain that,

∑
{(r1,j1),(r2,j2)}∈H03

{P(|Jor1,j1 | ≥ τ, |Jor2,j2| ≥ τ)− P(|Jor1,j1| ≥ τ)P(|Jor2,j2| ≥ τ)}
p̃20G

2(τ)

= o{(log p̃)−1−γ/2}.
(A.10)

Combining (A.8), (A.9) and (A.10), we prove (A.5) holds. We can prove (A.6)

similarly. Combining (A.5) and (A.6) competes the proof of Lemma 7.

B Proof of Main Theorems

B.1 Proof of Theorem 1

We prove the result under the sub-Gaussian condition (C7). The result under the

normality condition in Theorem 1 follows naturally.

Throughout the proof, we denote yi,r = yi,r,· = (yi,r,1, . . . , yi,r,T ), and yi,t = yi,·,t =



(yi,1,t, . . . , yi,R,t). Same rules apply to other notation as well. Let δi,r,t = ϵi,r,t + eT

tGiζi,r,

where et is a vector with the tth entry equal to 1 and all other entries 0. Denote X̌ =

((X1 − X̄)T, . . . , (XN − X̄))T ∈ RTN×(2p+q+2), where X̄ = N−1
∑N

i=1Xi ∈ RT×(2p+q+2).

Denote X̌i = Xi − X̄, and δ̌i,r,t = δi,r,t − δ̄r,t, where δ̄r,t = N−1
∑N

i=1 δi,r,t. Let µ̌i,r,t =

eT

t(Xi − X̄)β(r). We have y̌i,r,t = µ̌i,r,t + δ̌i,r,t, and
∑N

i=1 µ̌i,r,t = 0. Moreover, we have

X̌ = PX, where (I − P ) = N−1(lN l
T

N)⊗ IT , and lN is a vector of ones. Note that P is

an orthogonal projection matrix with P = XP (X
T

PXP )
−1XT

P , where XP = lN ⊗ IT . By

the Separation Theorem (Takane and Shibayama, 1991), we have σmax(X̌) ≤ σmax(X).

In addition, Condition (C1) implies that ∥X̌∥22 = O(NT ).

We next prove this theorem in six steps.

Step 1: We first show that µi,r,t’s are negligible, so that our theoretical analysis can

be based on the sample covariance matrices as given in (2.9) and (2.13) in the paper.

Denote

Yi =


y̌i,1,1 . . . y̌i,R,1

. . . . . . . . .

y̌i,1,T . . . y̌i,R,T

 , ∆i =


δ̌i,1,1 . . . δ̌i,R,1

. . . . . . . . .

δ̌i,1,T . . . δ̌i,R,T

 .

We next prove the following results:

∥∥∥∥∥ 1

NT

N∑
i=1

(Y T

i Yi −∆T

i∆i)

∥∥∥∥∥
max

= OP

{
cR +

(
cR logR

NT

)1/2
}
,∥∥∥∥∥ 1

NR

N∑
i=1

(YiY
T

i −∆i∆
T

i)

∥∥∥∥∥
max

= OP

{
sBc

2
BT

R
+

(
sBc

2
BT log T

NR2

)1/2
}
,∣∣∣∣∣∣ 1

NR

∑
(r1,r2)∈S

N∑
i=1

(yi,r1y
T

i,r2
− δi,r1δ

T

i,r2
)

∣∣∣∣∣∣ = OP

{
sBc

2
BT

R
+

(
sBc

2
BT log T

NR2

)1/2
}
,

(B.11)
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where S is as given in Step 2 of Algorithm 1.

To prove the first result in (B.11), for its entry in the r1th row and r2th column,

1

NT

N∑
i=1

eT

r1
(Y T

i Yi−∆T

i∆i)er2 =
1

NT

N∑
i=1

T∑
t=1

µ̌i,r1,tµ̌i,r2,t+
1

NT

N∑
i=1

T∑
t=1

(µ̌i,r1,tδ̌i,r2,t+µ̌i,r2,tδ̌i,r1,t).

By Condition (C1), we have, for 1 ≤ r ≤ R,

1

NT

N∑
i=1

T∑
t=1

µ̌2
i,r,t =

1

NT
∥X̌β(r)∥22 = O(cR).

By the inequality of arithmetic and geometric means, we have, for 1 ≤ r1, r2 ≤ R,

1

NT

N∑
i=1

T∑
t=1

µ̌i,r1,tµ̌i,r2,t = O(cR). (B.12)

In addition,

1

NT

N∑
i=1

T∑
t=1

µ̌i,r1,tδ̌i,r2,t =
1

NT

N∑
i=1

T∑
t=1

µ̌i,r1,t(δi,r2,t − δ̄r2,t)

=
1

NT

N∑
i=1

T∑
t=1

µ̌i,r1,tδi,r2,t −
1

NT

T∑
t=1

(
N∑
i=1

µ̌i,r1,t)δ̄r2,t =
1

NT

N∑
i=1

T∑
t=1

µ̌i,r1,tδi,r2,t

=
1

NT

N∑
i=1

T∑
t=1

µ̌i,r1,tϵi,r2,t +
1

NT

N∑
i=1

T∑
t=1

µ̌i,r1,te
T

tGiζi,r2 .

(B.13)

We next bound the two terms in the last equation separately.

For the first term, we have that,

1

NT

N∑
i=1

T∑
t=1

µ̌i,r1,tϵi,r2,t =
1

NT

N∑
i=1

(X̌iβ
(r1))Tϵi,r2 =

N∑
i=1

1

NT
(X̌iβ

(r1))TΣ
1/2
T ϵ̃i,r2 ,



where ϵ̃i,r2 = Σ
−1/2
T ϵi,r2 . By the definition of ϵi,r2 , we have that ϵ̃r2 = (ϵ̃T

1,r2
, . . . , ϵ̃T

N,r2
)T

has independent entries. Then (NT )−1
∑N

i=1

∑T
t=1 µ̌i,r1,tϵi,r2,t is the weighted sum of

independent sub-Gaussian variables. By Condition (C1), we have that,

N∑
i=1

∥∥∥∥ 1

NT
(X̌iβ

(r1))TΣ
1/2
T

∥∥∥∥2
2

≤ 1

(NT )2

N∑
i=1

∥X̌iβ
(r1)∥22∥Σ

1/2
T ∥22 =

1

(NT )2
∥X̌β(r1)∥22∥Σ

1/2
T ∥22

≤ C1

(NT )2
∥X̌β(r1)∥22 ≤

C2

NT
cR.

Therefore, by the tail distribution of the sub-Gaussian random variables, we have that,

simultaneously for 1 ≤ r1, r2 ≤ R,

∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

µ̌i,r1,tϵi,r2,t

∣∣∣∣∣ = OP

{(
cR logR

NT

)1/2
}
. (B.14)

For the second term, we have that,

1

NT

N∑
i=1

T∑
t=1

µ̌i,r1,te
T

tGiζi,r2 =
N∑
i=1

1

NT
(X̌iβ

(r1))TGiΣ
1/2
ζ ζ̃i,r2 ,

where ζ̃i,r2 = Σ
−1/2
ζ ζi,r2 . Similarly, this term is a weighted sum of independent sub-

Gaussian variables. By Conditions (C1) and (C2),

N∑
i=1

∥∥∥∥ 1

NT
(X̌iβ

(r1))TGiΣ
1/2
ζ

∥∥∥∥2
2

≤ 1

(NT )2

N∑
i=1

∥X̌iβ
(r1)∥22∥Gi∥22∥Σ

1/2
ζ ∥22

≤ 1

N2T 2
∥X̌β(r1)∥22∥Gi∥2maxT∥Σ

1/2
ζ ∥22 ≤

C1

N2T 2
∥X̌β(r1)∥22 ≤

C2

NT
cR.

Therefore, we have that, simultaneously for 1 ≤ r1, r2 ≤ R,
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NT

N∑
i=1

T∑
t=1

µ̌i,r1,te
T

tGiζi,r2

∣∣∣∣∣ = OP

{(
cR logR

NT

)1/2
}
. (B.15)

By (B.12), (B.13), (B.14), (B.15), we prove the first result in (B.11).

To prove the second result in (B.11), for its entry in the t1th row and t2th column,

1

NR

N∑
i=1

eT

t1
(YiY

T

i −∆i∆
T

i)et2 =
1

NR

N∑
i=1

R∑
r=1

µ̌i,r,t1µ̌i,r,t2+
1

NT

N∑
i=1

T∑
t=1

(µ̌i,r,t1 δ̌i,r,t2+µ̌i,r,t2 δ̌i,r,t1).

Recall that µ̌i,r,t = eT

tX̌i,−1β
(r)
−1 , where X̌i,−1 ∈ RT×(2p+q+1) is a sub-matrix of X̌i by

removing the first column, and β
(r)
−1 ∈ R2p+q+1 is obtained by removing the first entry

of β(r). Denote Υ =
∑R

r=1 β
(r)
−1{β

(r)
−1}T, and X̃t = (XT

1,−1et, . . . , X
T

N,−1et)
T ∈ RN×(2p+q+1).

Then ∥X̃t∥2 ≤ ∥X∥2 = O{(NT )1/2}. By Conditions (C1) and (C2), we have that,

1

NR

N∑
r=1

R∑
r=1

µ̌2
i,r,t =

1

NR

N∑
i=1

R∑
r=1

eT

tX̌i,−1(β
(r)
−1{β

(r)
−1}T)X̌T

i,−1et =
1

NR

N∑
i=1

eT

tX̌iΥX̌T

i et

=
1

NR
tr(X̃tΥX̃T

t ) =
1

NR
∥X̃tΥ

1/2∥2F ≤ 1

NR
∥Υ1/2∥2F∥X̃t∥22 =

1

NR
tr(Υ)∥X̃t∥22

≤ 1

NR

(
R∑
r=1

∥β(r)
−1∥22

)
∥X̃t∥22 = O

(
sBc

2
BT

R

)
.

(B.16)

Next, we have that,

1

NR

N∑
i=1

R∑
r=1

µ̌i,r,t1 δ̌i,r,t2 =
1

NR

N∑
i=1

R∑
r=1

µ̌i,r,t1(δi,r,t2 − δ̄r,t2)

=
1

NR

N∑
i=1

R∑
r=1

µ̌i,r,t1δi,r,t2 −
1

NR

R∑
r=1

δ̄r,t2(
N∑
i=1

µ̌i,r,t1) =
1

NR

N∑
i=1

R∑
r=1

µ̌i,r,t1δi,r,t2

=
1

NR

N∑
i=1

(µ̌i,1,t1 , . . . , µ̌i,R,t1)
TΣ

1/2
R ϵ̃i,t2 +

1

NR

N∑
i=1

R∑
r=1

µ̌i,r,t1e
T

t2
GiΣ

1/2
ζ ζ̃i,r,

(B.17)



where ϵ̃i,t2 = Σ
−1/2
R ϵi,t2 . In addition, by Conditions (C1) and (C2), we have ∥ΣR∥2 =

O(1), and ∥eT

t2
GiΣ

1/2
ζ ∥2 = O(1) simultaneously for 1 ≤ t2 ≤ T . Similar to (B.14) and

(B.15), (B.17) is the weighted sum of independent sub-Gaussian variables. Therefore,

1

(NR)2

N∑
i=1

∥(µ̌i,1,t1 , . . . , µ̌i,R,t1)T∥22 =
C1

(NR)2

N∑
i=1

R∑
r=1

µ̌2
i,r,t1

= O

(
sBc

2
BT

NR2

)
.

Then we have that, simultaneously for 1 ≤ t1, t2 ≤ T ,

∣∣∣∣∣ 1

NR

N∑
i=1

R∑
r=1

µ̌i,r,t1 δ̌i,r,t2

∣∣∣∣∣ = OP

((
sBc

2
BT log T

NR2

)1/2
)
. (B.18)

By (B.16) and (B.18), we prove the second result in (B.11).

The proof of the third result in (B.11) is essentially the same as that for the second

one.

Combing the three results together, we prove (B.11) .

Step 2: Next, we establish the convergence rate of [Σ̂R]r1,r2 for r1 ̸= r2.

We first show that ∥Σ̂1−Σ1∥max = OP[cR+{logR/(NT )}1/2], where Σ̂1 is as defined

in (2.10), and Σ1 = ΣR + (NT )−1
∑N

i=1 tr(GiΣζG
T

i)IR. From (B.11), it suffices to show,

∥∥∥∥∥ 1

NT

N∑
i=1

∆T

i∆i − Σ1

∥∥∥∥∥
max

= OP
[
{logR/(NT )}1/2

]
. (B.19)

Note that the definition of ∆i involves δ̌i,r,t, instead of δi,r,t. We show that, using δi,r,t

to substitute δ̌i,r,t in ∆i leads to the same convergence rate. That is, we show that,

simultaneously for 1 ≤ r1, r2 ≤ R,
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NT

N∑
i=1

ϵT

i,r1
ϵi,r2 − [ΣR]r1,r2

∣∣∣∣∣ = OP
(
{logR/(NT )}1/2

)
,∣∣∣∣∣ 1

NT

N∑
i=1

ζT

i,r1
GT

iϵi,r2

∣∣∣∣∣ = OP
(
{logR/(NT 2)}1/2

)
,∣∣∣∣∣ 1

NT

N∑
i=1

ζT

i,r1
GT

iGiζi,r2 −
I(r1 = r2)

NT

N∑
i=1

tr(GiΣζG
T

i)

∣∣∣∣∣ = OP
(
{logR/(NT 2)}1/2

)
,

(B.20)

Recall the notations defined in the proofs of (B.11), i.e., ϵ̃i,r = Σ
−1/2
T ϵi,r and ζ̃i,r =

Σ
−1/2
ζ ζi,r. Then (B.20) is equivalent to the following,

∣∣∣∣∣ 1

NT

N∑
i=1

ϵ̃T

i,r1
ΣT ϵ̃i,r2 − [ΣR]r1,r2

∣∣∣∣∣ = OP
(
{logR/(NT )}1/2

)
,∣∣∣∣∣ 1

NT

N∑
i=1

ζ̃T

i,r1
Σ

1/2
ζ GT

iΣ
1/2
T ϵ̃i,r2

∣∣∣∣∣ = OP
(
{logR/(NT 2)}1/2

)
,∣∣∣∣∣ 1

NT

N∑
i=1

ζ̃T

i,r1
Σ

1/2
ζ GT

iGiΣ
1/2
ζ ζ̃i,r2 −

I(r1 = r2)

NT

N∑
i=1

tr(GiΣζG
T

i)

∣∣∣∣∣ = OP
(
{logR/(NT 2)}1/2

)
,

(B.21)

By Conditions (C1) and (C2), we have ∥ΣT∥2F ≤ T∥ΣT∥22 = O(T ), and ∥GiΣ
1/2
ζ ∥2F ≤

∥Gi∥22∥Σζ∥F ≤ 2T∥Gi∥2max∥Σζ∥2 = O(1). We apply Lemma 5 repeatedly to prove

(B.21).

For the first equation in (B.21), letX = (ϵ̃T

1,r1
, . . . , ϵ̃T

N,r1
) ∈ RNT , Y = (ϵ̃T

1,r2
, . . . , ϵ̃T

N,r2
) ∈

RNT , and A = diag(ΣT , . . . ,ΣT ) ∈ RTN×TN . Then we have ∥A∥2F = N∥ΣT∥2F =

O(NT ). By Lemma 5, the first equation holds.

For the second equation in (B.21), let X = (ζ̃T

1,r1
, 0T

T−2, ζ̃
T

1,r2
, 0T

T−2, . . . , ϵ̃
T

N,r1
, 0T

T−2) ∈

RNT , Y = (ϵ̃T

1,r2
, . . . , ϵ̃T

N,r2
) ∈ RNT , and A = diag(A1, . . . , AN) ∈ RTN×TN , where 0T−2

denotes the zero vector with length T − 2 and Ai ∈ RT×T , in which the first two rows



are Σ
1/2
ζ GT

iΣ
1/2
T , whereas the other rows are 0. Then ∥A∥2F =

∑N
i=1 ∥Σ

1/2
ζ GT

iΣ
1/2
T ∥2F ≤∑N

i=1 ∥Σ
1/2
ζ GT

i∥2F∥Σ
1/2
T ∥22 = O(N). Therefore, by Lemma 5, the second equation holds.

For the third equation in (B.21), letX = (ζ̃T

1,r1
, . . . , ϵ̃T

N,r1
) ∈ R2N , Y = (ζ̃T

1,r2
, . . . , ϵ̃T

N,r2
)

∈ R2N , and A = diag(Σ
1/2
ζ GT

1G1Σ
1/2
ζ , . . . ,Σ

1/2
ζ GT

NGNΣ
1/2
ζ ). Then we have ∥A∥2F =

∑N
i=1

∥Σ1/2
ζ GT

iGiΣ
1/2
ζ ∥2F ≤ C

∑N
i=1 ∥GiΣ

1/2
ζ ∥4F = O(N). By Lemma 5, the third equation

holds.

Together, we prove (B.21), which leads to (B.20).

Next, we turn to prove (B.19). It suffices to show that, using δ̌i,r,t instead of δi,r,t

in ∆i leads to the same result. The proof is similar to that of (B.20), which splits

δi,r,t = ϵi,r,T + eT

iGiζi,r, and proves the three equations similar as those in (B.20). We

only prove the equation below, and the other two follow similarly.

∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

ϵi,r1,tϵi,r2,t −

(
ϵi,r1,t −

1

N

N∑
j=1

ϵj,r1,t

)(
ϵi,r2,t −

1

N

N∑
j=1

ϵj,r2,t

)∣∣∣∣∣
= oP

(
{logR/(NT )}1/2

)
.

(B.22)

We note that,

1

NT

N∑
i=1

T∑
t=1

ϵi,r1,tϵi,r2,t −

(
ϵi,r1,t −

1

N

N∑
j=1

ϵj,r1,t

)(
ϵi,r2,t −

1

N

N∑
j=1

ϵj,r2,t

)

=
1

T

T∑
t=1

(
1

N

N∑
i=1

ϵi,r1,t

)(
1

N

N∑
j=1

ϵj,r2,t

)

=
1

N2T
(ϵT

1,r1
, . . . , ϵT

N,r1
)(IT ⊗ lN×N)(ϵ

T

1,r2
, . . . , ϵT

N,r2
)T

=
1

N2T
(ϵ̃T

1,r1
, . . . , ϵ̃T

N,r1
)A1/2(IT ⊗ lN×N)A

1/2(ϵ̃T

1,r2
, . . . , ϵ̃T

N,r2
)T,
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where lN×N ∈ RN×N denotes the matrix with all entries equal to 1, andA = diag({ΣT}Ni=1)

∈ RTN×TN . Moreover, we have that,

E

{
1

NT

N∑
i=1

T∑
t=1

ϵi,r1,tϵi,r2,t −

(
ϵi,r1,t −

1

N

N∑
j=1

ϵj,r1,t

)(
ϵi,r2,t −

1

N

N∑
j=1

ϵj,r2,t

)}

=
1

N
[ΣR]r1,r2 = O(N−1).

Because ∥A1/2(IT⊗ lN×N)A
1/2∥2F ≤ ∥IT⊗ lN×N∥2F∥A∥22 = O(N2T ). By applying Lemma

5 again, we obtain that,

1

N2T
(ϵ̃T

1,r1
, . . . , ϵ̃T

N,r1
)A1/2(IT⊗lN×N)A

1/2(ϵ̃T

1,r2
, . . . , ϵ̃T

N,r2
)T = O(N−1)+OP

(
{logR/(NT )}1/2

)
,

which implies (B.22) by the condition that θN,T,R,B = o(1). Therefore, we have ∥Σ̂1 −

Σ1∥max = OP
(
cR + {logR/(NT )}1/2

)
. From (2.10), this implies that,

max
r1 ̸=r2

|[Σ̂R]r1,r2 − [ΣR]r1,r2| = OP
(
cR + {logR/(NT )}1/2

)
.

Step 3: Next, we establish the convergence rate of Σ̂T . That is, we aim to show that

∥Σ̂T − ΣT∥max = OP[{logR/(NT )}1/2 + {log T/(NR)}1/2 + cR + sBc
2
BTR

−1].

By the definition of Σ̂T in (2.12), we have that,

∥Σ̂T − ΣT∥max ≤

∥∥∥∥∥∥ 1R
∑

(r1,r2)∈S

(
1

[Σ̂R]r1,r2
− 1

[ΣR]r1,r2

)
1

N

N∑
i=1

(y̌i,r1,1, . . . , y̌i,r1,T )
T(y̌i,r2,1, . . . , y̌i,r2,T )

∥∥∥∥∥∥
max

+

∥∥∥∥∥∥
 1

NR

∑
(r1,r2)∈S

1

[ΣR]r1,r2

N∑
i=1

(y̌i,r1,1, . . . , y̌i,r1,T )
T(y̌i,r2,1, . . . , y̌i,r2,T )

− ΣT

∥∥∥∥∥∥
max

(B.23)



We next bound the two terms in (B.23) separately.

For the first term in (B.23), from Condition (C3) and the convergence rate of

[Σ̂R]r1,r2 for r1 ̸= r2, we have, min(r1,r2)∈S |[ΣR]r1,r2| ≥ c and min(r1,r2)∈S |[Σ̂R]r1,r2| ≥ c

with probability tending to 1 for some constant c > 0. In the following, we establish the

convergence rate under the event {min(r1,r2)∈S |[ΣR]r1,r2| ≥ c, and min(r1,r2)∈S |[Σ̂R]r1,r2| ≥

c}. We have, simultaneously for (r1, r2) ∈ S,∣∣∣∣∣ 1

[Σ̂R]r1,r2
− 1

[ΣR]r1,r2

∣∣∣∣∣ = OP[cR + {logR/(NT )}1/2]. (B.24)

Based on Step 1 and following the proof of Step 2, we have,

∥∥∥∥∥ 1

N

N∑
i=1

(y̌i,r1,1, . . . , y̌i,r1,T )
T(y̌i,r2,1, . . . , y̌i,r2,T )

∥∥∥∥∥
max

= OP(1), (B.25)

simultaneously for (r1, r2) ∈ S. By (B.24) and (B.25), we have,

∥∥∥∥∥∥ 1R
∑

(r1,r2)∈S

(
1

[Σ̂R]r1,r2
− 1

[ΣR]r1,r2

)
1

N

N∑
i=1

(y̌i,r1,1, . . . , y̌i,r1,T )
T(y̌i,r2,1, . . . , y̌i,r2,T )

∥∥∥∥∥∥
max

= OP
(
cR + {logR/(NT )}1/2

)
, .

(B.26)

For the second term in (B.23), since min(r1,r2)∈S |[ΣR]r1,r2 | ≥ c, similar to the proof

of Step 1, it suffices to show that,

∥∥∥∥∥∥
{ 1

NR

∑
(r1,r2)∈S

1

[ΣR]r1,r2

N∑
i=1

(δ̌i,r1,1, . . . , δ̌i,r1,T )
T(δ̌i,r2,1, . . . , δ̌i,r2,T )

}
− ΣT

∥∥∥∥∥∥
max

= OP
(
{log T/(NR)}1/2

)
.

(B.27)
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Similar to Step 2, we only need to prove the version substituting δi,r,t by δ̌i,r,t, i.e.,

∥∥∥∥∥∥
{ 1

NR

∑
(r1,r2)∈S

1

[ΣR]r1,r2

N∑
i=1

(δi,r1,1, . . . , δi,r1,T )
T(δi,r2,1, . . . , δi,r2,T )

}
− ΣT

∥∥∥∥∥∥
max

= OP
(
{log T/(NR)}1/2

)
.

(B.28)

Again, it suffices to show simultaneously, for 1 ≤ t1, t2 ≤ T ,

∣∣∣∣∣∣ 1

NR

N∑
i=1

∑
(r1,r2)∈S

1

[ΣR]r1,r2
ϵi,r1,t1ϵi,r2,t2 − [ΣT ]t1,t2

∣∣∣∣∣∣ = OP
(
{log T/(NR)}1/2

)
,

∣∣∣∣∣∣ 1

NR

N∑
i=1

∑
(r1,r2)∈S

1

[ΣR]r1,r2
ϵi,r1,t1e

T

t2
Giζi,r2

∣∣∣∣∣∣ = OP
(
{log T/(NR)}1/2

)
,

∣∣∣∣∣∣ 1

NR

N∑
i=1

∑
(r1,r2)∈S

1

[ΣR]r1,r2
ζT

i,r1
GT

iet1e
T

t2
Giζi,r2

∣∣∣∣∣∣ = OP
(
{log T/(NR)}1/2

)
.

(B.29)

We first simplify the summation
∑

(r1,r2)∈S . We put the index pairs in S in any

ordering, i.e., S =
{
(r

(m)
1 , r

(m)
2 ),m = 1, . . . , K

}
. Define two matrices, U1, U2 ∈ RK×R,

such that (U1)m,r(m)
1

= 1, (U2)m,r(m)
2

= 1, and the other entries of U1, U2 are all 0.

Recall that ϵ̃i,t = Σ
−1/2
R ϵi,t, and ζ̃i,r = Σ

−1/2
ζ ζi,r. For 1 ≤ t ≤ T , ϵ̃t = (ϵ̃T

1,t, . . . , ϵ̃
T

N,t)
T

has independent entries. Then we have, for d = 1, 2, the m-th entry of UdΣ
1/2
R ϵ̃i,td

is ϵ
i,r

(m)
d ,td

. Similarly, for d = 1, 2, denote Hi,d = diag({eT

td
GiΣζ}Rm=1) ∈ RR×2R, and

ζ̃i = (ζ̃T

i,1, . . . , ζ̃
T

i,R)
T ∈ R2R. We then have that the mth entry of UdHi,dζ̃i is equal to

eT

td
Giζi,r(m)

d
. In addition, denote

L = diag

{
1

[ΣR]r(1)1 ,r
(1)
2

, . . . ,
1

[ΣR]r(m)
1 ,r

(m)
2

, . . . ,
1

[ΣR]r(K)
1 ,r

(K)
2

}
.



Then (B.29) is equivalent to

∣∣∣∣∣ 1

NR

N∑
i=1

(U1Σ
1/2
R ϵ̃i,t1)

TL(U2Σ
1/2
R ϵ̃i,t2)− [ΣT ]t1,t2

∣∣∣∣∣ = OP
(
{log T/(NR)}1/2

)
,∣∣∣∣∣ 1

NR

N∑
i=1

(U1Σ
1/2
R ϵ̃i,t1)

TL(U2Hi,2ζ̃i)

∣∣∣∣∣ = OP
(
{log T/(NR)}1/2

)
,∣∣∣∣∣ 1

NR

N∑
i=1

(U1Hi,1ζ̃i)
TL(U2Hi,2ζ̃i)

∣∣∣∣∣ = OP
(
{log T/(NR)}1/2

)
.

(B.30)

By the above definitions and Condition (C1), we have that ∥U1∥2 = ∥U2∥2 = 1, ∥L∥2 =

O(1), ∥Hi,d∥2 = O(1), and ∥Hi,d∥F = O(R1/2). By Condition (C2), we have ∥Σ1/2
R ∥2F ≤

R∥Σ1/2
R ∥22 = O(R). Again, we apply Lemma 5 to prove (B.30).

Specifically, for the first equation in (B.30), let X = (ϵ̃T

1,t1
, . . . , ϵ̃T

N,t1
) ∈ RNR, Y =

(ϵ̃T

1,t2
, . . . , ϵ̃T

N,t2
) ∈ RNR, and A = diag({Σ1/2

R U T

1LU2Σ
1/2
R }Ni=1) ∈ RNR×NR, for which

∥A∥2F = N∥Σ1/2
R U T

1LU2Σ
1/2
R ∥2F ≤ N∥Σ1/2

R ∥2F∥U1∥22∥L∥22∥U2∥22∥Σ
1/2
R ∥22 = O(NR).

Then the first equation holds by Lemma 5.

For the second equation in (B.30), let X = (ϵ̃T

1,t1
, 0T

R, ϵ̃
T

2,t1
, 0T

R, . . . , ϵ̃
T

N,t1
, 0T

R) ∈ R2NR,

Y = (ζ̃1, . . . , ζ̃N) ∈ R2NR, and A = diag({Σ̃1/2
R U T

1LU2Hi,2}Ni=1) ∈ R2NR×2NR, where

Σ̃
1/2
R ∈ R2R×R has the first R rows equal to Σ

1/2
R and the last R rows equal to 0. Then

we also have ∥A∥2F = O(NR). So the second equation holds by Lemma 5.

For the last equation in (B.30), let X = Y = (ζ̃1, . . . , ζ̃N) ∈ R2NR, and A =

diag({HT

i,1U
T

1 LU2Hi,2}Ni=1) ∈ R2NR×2NR. Again we have ∥A∥2F = O(NR), so the last

equation holds by Lemma 5.
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Therefore, (B.27) and (B.28) hold. Together with (B.26), we obtain the convergence

rate of Σ̂T .

Step 4: Next, we establish the convergence rate of κ̂.

Note that

κ̂− κ =

∑N
i=1 u

T

iΣ̂3,iui∑N
i=1 u

T

iΣ̂Tui
−
∑N

i=1 u
T

iΣ3,iui∑N
i=1 u

T

iΣTui

=

{∑N
i=1 u

T

iΣ̂3,iui∑N
i=1 u

T

iΣ̂Tui
−
∑N

i=1 u
T

iΣ̂3,iui∑N
i=1 u

T

iΣTui

}
+

{∑N
i=1 u

T

iΣ̂3,iui∑N
i=1 u

T

iΣTui
−
∑N

i=1 u
T

iΣ3,iui∑N
i=1 u

T

iΣTui

}

=

(
N∑
i=1

uT

iΣ̂3,iui

){
1∑N

i=1 u
T

iΣ̂Tui
− 1∑N

i=1 u
T

iΣTui

}
+

∑N
i=1 u

T

i(Σ̂3,i − Σ3,i)ui∑N
i=1 u

T

iΣTui

By the definition of ui, we have that,

|uT

i(Σ̂T − ΣT )ui| ≤ ∥uT

i∥2∥Σ̂T − ΣT∥2∥ui∥2

= OP
(
T [{logR/(NT )}1/2 + {log T/(NR)}1/2 + cR + sBc

2
BTR

−1]
)
.

By Condition (C1), we also have c−1
1 ≤ uT

iΣTui ≤ c1. Therefore, by the condition that

(T [{logR/(NT )}1/2 + {log T/(NR)}1/2 + cR + sBc
2
BTR

−1] = o(1), we have that,

N

2c1
≤

N∑
i=1

uT

iΣ̂Tui ≤ 2Nc1.

Similar to Steps 1 and 3, using the definition of Σ̂3,i, we have that µi,r,t’s are negligible.

By repeatedly applying Lemma 5, we can obtain that

∣∣∣∣∣
N∑
i=1

{uT

i(Σ̂3,i − Σ3,i)ui}

∣∣∣∣∣ = OP
(
T [{log T/(NR)}1/2 + cR + sBc

2
BTR

−1]
)
,



which implies that,

∣∣∣∣∣
∑N

i=1 u
T

i(Σ̂3,i − Σ3,i)ui∑N
i=1 u

T

iΣTui

∣∣∣∣∣ = OP
(
T [{log T/(NR)}1/2 + cR + sBc

2
BTR

−1]
)
.

Therefore, we obtain that,

|κ̂− κ| = OP
(
T [{logR/(NT )}1/2 + {log T/(NR)}1/2 + cR + sBc

2
BTR

−1]
)
.

Step 5: Next, we establish the convergence rate of Σ̂ζ .

We first show that ∥vi,d∥2 = O(1) for d = 1, 2. We only prove the result for d = 1,

and the proof for d = 2 follows similarly. Denote Gi,2 = xs1, and Gi,1 = as1 + bs2,

where s1, s2 ∈ RT are unit vectors and are orthogonal to each other. Then we have

x2 = O(T ) by Condition (C1). By construction, we have vi,1 = b−1s2, so we only need

to show that b−1 = O(1). Note that

GT

iGi =

x2 ax

ax a2 + b2

 .

By Condition (C1), there exists some positive constant c0, such that

x2+a2+b2−{(x2+a2+b2)2−4x2b2}1/2 = 4x2b2

x2 + a2 + b2 + {(x2 + a2 + b2)2 − 4x2b2}1/2
≥ c0,

which implies that b2 ≥ c0/2 so b−1 = O(1).

Next, we obtain the convergence rate. By Condition (C2) and Step 3, we have that,
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simultaneously for 1 ≤ i ≤ N ,

|vT

i,j1
ΣTvi,j2| ≤ ∥vT

i,j1
∥2∥ΣT∥2∥vi,j2∥2 = O(1),

and

|vT

i,j1
(Σ̂T − ΣT )vi,j2| ≤ ∥vT

i,j1
∥2∥Σ̂T − ΣT∥2∥vi,j2∥2

= OP
(
T [{logR/(NT )}1/2 + {log T/(NR)}1/2 + cR + sBc

2
BTR

−1]
)
.

Combining the results above, along with the convergence rate for κ, we obtain that,

|κ̂(vT

i,j1
Σ̂Tvi,j2)−κ(vT

i,j1
ΣTvi,j2)| = OP(T [{logR/(NT )}1/2+{log T/(NR)}1/2+cR+sBc

2
BTR

−1]).

Following similar steps in Steps 1-3, we have that,

1

N

N∑
i=1

{vT

i,j1
Σ̂3,ivi,j2 − vT

i,j1
Σ3,ivi,j2} = OP

(
T [{log T/(NR)}1/2 + cR + sBc

2
BTR

−1]
)
.

By the definition of Σ̂ζ in (2.15), we have that,

∥Σ̂ζ − Σζ∥max = OP
(
T [{logR/(NT )}1/2 + {log T/(NR)}1/2 + cR + sBc

2
BTR

−1]
)
.

Step 6: Finally, we establish the convergence rate of [Σ̂R]r,r and Σ̂(r).

By (2.16), (B.21), and Step 4, we have that,

max
r

|[Σ̂R]r,r−[ΣR]r,r| = OP
(
T [{logR/(NT )}1/2 + {log T/(NR)}1/2 + cR + sBc

2
BTR

−1]
)
.



Next, by Condition (C2), we have that,

∥G(IN ⊗ Σ̂ζ)G
T −G(IN ⊗ Σζ)G

T∥max = max
1≤i≤N

∥Gi(Σ̂ζ − Σζ)G
T

i∥max

≤ max
1≤i≤N

∥Gi∥2max∥Σ̂ζ − Σζ∥1,1 = OP
(
T [{logR/(NT )}1/2 + {log T/(NR)}1/2 + cR + sBc

2
BTR

−1]
)
.

Then by Condition (C2), Steps 3 and 4, for r = 1, . . . , R, we have that,

∥[Σ̂R]r,rΣ̂T − [ΣR]r,rΣT∥max = |[Σ̂R]r,r|∥Σ̂T − ΣT∥max + |[Σ̂R]r,r − [ΣR]r,r|∥ΣT∥max

= OP
(
T [{logR/(NT )}1/2 + {log T/(NR)}1/2 + cR + sBc

2
BTR

−1]
)
.

Therefore, simultaneously for r = 1, . . . , R, we obtain that,

∥Σ̂(r) − Σ(r)∥max = OP
(
T [{logR/(NT )}1/2 + {log T/(NR)}1/2 + cR + sBc

2
BTR

−1]
)
,

This completes the proof of Theorem 1.

B.2 Proof of Theorem 2

By Lemma 6, we have Jo = OP(log p̃). Therefore, it suffices to show that

max
r,j

|Jor,j − Jdr,j| = oP{(log p̃)−1/2}. (B.31)

Again, we prove (B.31) under the sub-Gaussian assumption (C7), then the result holds

under the normality condition.

In Step 2 of the proof of Lemma 6, we have showed that ∥{Σ(r)}−1∥2 = O(1) uni-

formly for r = 1, . . . , R. Since Σ(r) and Σ̂(r) are block diagonal, we have ∥Σ(r)−Σ̂(r)∥2 =
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OP(TθN,T,R,B), where we recall θN,T,R,B = T [{logR/(NT )}1/2+{log T/(NR)}1/2+ cR+

sBc
2
BTR

−1]. Therefore, we have that, uniformly for r = 1, . . . , R,

∥{Σ(r)}−1 − {Σ̂(r)}−1∥2 ≤ ∥Σ(r) − Σ̂(r)∥2∥{Σ(r)}−1∥2∥{Σ̂(r)}−1∥2 = OP(TθN,T,R,B).

By Condition (C1), we have that,

∥XT({Σ(r)}−1 − {Σ̂(r)}−1)X∥2 ≤ ∥X∥22∥{Σ(r)}−1 − {Σ̂(r)}−1∥2 = OP(NT 2θN,T,R,B).

Again, by Step 2 of the proof of Lemma 6, we have ∥(XT{Σ(r)}−1X)−1∥2 = O(N−1T−1).

Similarly, we have that ∥(XT{Σ̂(r)}−1X)−1∥2 = O(N−1T−1). Then,

∥(XT{Σ(r)}−1X)−1 − (XT{Σ̂(r)}−1X)−1∥2

≤ ∥(XT{Σ(r)}−1X)−1∥2∥XT({Σ(r)}−1 − {Σ̂(r)}−1)X∥2∥(XT{Σ̂(r)}−1X)−1∥2

= OP(N
−1θN,T,R,B),

(B.32)

uniformly for r = 1, . . . , R.

Moreover, for the difference between (β̂o)(r) and (β̂d)(r), we have that,

(β̂o)(r)−(β̂d)(r) = {(XT{Σ(r)}−1X)−1XT{Σ(r)}−1−(XT{Σ̂(r)}−1X)−1XT{Σ̂(r)}−1}(Gζr+ϵr).

By the fact that ∥{Σ(r)}−1∥2 = O(1), Condition (C1), and (B.32), we have that,

∥(XT{Σ(r)}−1X)−1XT{Σ(r)}−1−(XT{Σ̂(r)}−1X)−1XT{Σ̂(r)}−1∥2 = OP
(
N−1/2T 1/2θN,T,R,B

)
.



Denote Gζr = G(IN ⊗Σζ)ζ̃r, and ϵr = diag({Σ1/2
T }Ni=1)ϵ̃r, where ζ̃r and ϵ̃r have indepen-

dent entries. Then we have that,

(β̂o)(r) − (β̂d)(r) =
{
(XT{Σ(r)}−1X)−1XT{Σ(r)}−1 − (XT{Σ̂(r)}−1X)−1XT{Σ̂(r)}−1

}
{
G(IN ⊗ Σ

1/2
ζ )ζ̃r + diag({Σ1/2

T }Ni=1)ϵ̃r

}
.

By Conditions (C1) and (C2), ∥G(IN⊗Σ
1/2
ζ )∥2 = O(1), and ∥diag({Σ1/2

T }Ni=1)∥2 = O(1).

So each entry of ((β̂o)(r) − (β̂d)(r)) is also sub-Gaussian with the variance of order

OP(N
−1Tθ2N,T,R,B). By the maximal inequality for sub-Gaussian variables, we have,

max
r,j

|(β̂o)(r)j − (β̂d)
(r)
j | = OP{N−1/2T 1/2(log p̃)1/2θN,T,R,B}, (B.33)

By (B.32), (B.33), and minr,j |{(XT{Σ(r)}−1X)−1}j,j| ≥ c(NT )−1 for some constant

c > 0, we obtain that,

max
r,j

|Jor,j − Jdr,j| = OP{T (log p̃)1/2θN,T,R,B}.

By Condition (C5), we prove (B.31).

This completes the proof of Theorem 2.

B.3 Proof of Theorem 3

First, we define

J1 = max
r,j

((β̂d)
(r)
j − β

(r)
j )2

[(XT{Σ̂(r)}−1X)−1]j,j
.



Statistica Sinica Page 29

By Lemma 4, (B.32), (B.33), and Condition (C5), we have that,

P
(
J1 ≤ 2 log p̃− 1

2
log log p̃

)
→ 1.

By the fact that {β(r)
j } ∈ U(2

√
2), we have,

max
r,j

{β(r)
j }2

{(XT{Σ(r)}−1X)−1}j,j
≥ 8 log p̃, and max

r,j

{β(r)
j }2

{(XT{Σ̂(r)}−1X)−1}j,j
≤ 2J1 + 2Jd.

Using (B.32) again, we obtain that,

P(Jd ≥ qα + 2 log p̃− log log p̃) → 1,

as (NT, p̃) → ∞. This completes the proof of Theorem 3.

B.4 Proof of Theorem 4

By (B.31) and the assumption on Sρ in Theorem 4, we have that, with probability

tending to 1,

∑
r,j

I{|Jdr,j| > (2 log p̃)1/2} ≥ {1/(π1/2α) + δ}(log p̃)1/2.

Similarly as the proof of Lemma 7, we have P(τ̂ exists in [0, tp̃]) = 1, so we focus on the

event {τ̂ exists in [0, tp̃]}. Then it suffices to show that, with probability tending to 1,

max
0≤τ≤tp̃

∣∣∣∣∣
∑

(r,j)∈H0
{I(|Jdr,j| ≥ τ)−G(τ)}

p̃0G(τ)

∣∣∣∣∣→ 0.



Following the proofs of Lemma 7, (B.31), and the fact that G[τ+o{(log p̃)−1/2}]/G(τ) =

1 + o(1) uniformly in 0 ≤ τ ≤
√
2 log p̃, we complete the proof of Theorem 4.

B.5 Proof of Theorem 5

Recall that, by the proofs of Theorem 1 and Theorem 2, we have the following results

under sub-Gaussian Assumption (C7),

max
r,j

|Jor,j − Jdr,j| = oP{(log p̃)−1/2}.

Therefore, we focus on the oracle case for Jo = maxr=1,...,R,j=1,...,2p+2(J
o
r,j)

2 under the

sub-Gaussian condition. Then, by the proofs of Theorems 2 to 4, the result for the

data-driven case follows.

For (i), we note that, under H0,

(β̂o)(r) = β(r) + (XT{Σ(r)}−1X)−1XT{Σ(r)}−1(Gζr + ϵr)

= β(r) + (XT{Σ(r)}−1X)−1XT{Σ(r)}−1{G(IN ⊗ Σ
1/2
ζ )ζ̃r + diag({Σ1/2

T }Ni=1)ϵ̃r},

where ϵ̃r and ζ̃r are as defined in the proof of Theorem 2, and they have independent

sub-Gaussian entries with the variance of order O(1) simultaneously for r = 1, . . . , R

by Conditions (C2) and (C7). We arrange the index pairs {(r, j) : 1 ≤ r ≤ R, 1 ≤

j ≤ 2p + 2} in any ordering and set them as {(rm, jm) : m = 1, . . . , p̃}. Let θm =

(XT{Σ(rm)}−1X)−1
jm,jm

. In Step 2 of the proof of Lemma 6, we have shown that |θm|−1/2 =

O{(NT )1/2}, ∥{Σ(rm)}−1∥2 = O(1), and ∥(XT{Σ(rm)}−1X)−1∥2 = O(N−1T−1). Then,
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∥(XT{Σ(rm)}−1X)−1∥1 = O({max(p, q)}1/2N−1T−1).

Therefore, we have that,

∥(XT{Σ(rm)}−1X)−1XT∥max ≤ ∥(XT{Σ(rm)}−1X)−1∥1∥XT∥max

= O
(
{max(p, q)}1/2N−1T−1

)
.

Furthermore, by the proofs of Lemma 6, we have that ∥{Σ(rm)}−1G(IN⊗Σ
1/2
ζ )∥2 = O(1).

Then its block-diagonal form implies that ∥{Σ(rm)}−1G(IN ⊗ Σ
1/2
ζ )∥1 = O(T 1/2).

By Conditions (C1) and (C2), we have that,

∥(XT{Σ(rm)}−1X)−1XT{Σ(rm)}−1G(IN ⊗ Σ
1/2
ζ )∥max = O

(
{max(p, q)}1/2N−1T−1/2

)
,

∥(XT{Σ(rm)}−1X)−1XT{Σ(rm)}−1diag({Σ1/2
T }Ni=1)∥max = O

(
{max(p, q)}1/2N−1T−1/2

)
.

For d = 1, 2, i = 1, . . . , N and t = 1, . . . , T , define

Vi,d,m,1 =NT{eT

lm(X
T{Σ(rm)}−1X)−1XT{Σ(rm)}−1G(IN ⊗ Σ

1/2
ζ )e2i+d−2}ζ̃rm,i,d,

Vi,t,m,2 = NT [eT

lm(X
T{Σ(rm)}−1X)−1XT{Σ(rm)}−1diag({Σ1/2

T }Ni=1)eiT+t−T ]ϵ̃rm,i,t.

Note that β
(rm)
jm

= 0 under H0. Then we can express Jom by

Jom = (NT )−1|θm|−1/2

(
N∑
i=1

2∑
d=1

Vi,d,m,1 +
N∑
i=1

T∑
t=1

Vi,t,m,2

)
.

Denote V̌i,d,m,1 = Vi,d,m,1/(Č{max(p, q)T}1/2), and V̌i,t,m,2 = Vi,t,m,2/(Č{max(p, q)T}1/2),



where Č is sufficiently large, so that E exp(νV̌ 2
i,d,m,1) ≤ C and E exp(νV̌ 2

i,t,m,2) ≤ C uni-

formly for all d = 1, 2, i = 1, . . . , N and t = 1, . . . , T , where ν and C are as defined in

(C7). Let V̂i,d,m,1 = V̌i,d,m,1I(|V̌i,d,m,1| ≤ ϱ) − E{V̌i,d,m,1I(|V̌i,d,m,1| ≤ ϱ)}, and V̂i,t,m,2 =

V̌i,t,m,2 I(|V̌i,t,m,2| ≤ ϱ)−E{V̌i,t,m,2I(|V̌i,t,m,2| ≤ ϱ)}, with ϱ = 101/2ν−1/2{log(TN+p̃)}1/2.

Denote

Ĵom = (NT )−1|θm|−1/2(Č{max(p, q)T}1/2)

(
N∑
i=1

2∑
d=1

V̂i,d,m,1 +
N∑
i=1

T∑
t=1

V̂i,t,m,2

)
.

We next show E{V̌i,d,m,1I(|V̌i,d,m,1| ≤ ϱ)} and E{V̌i,t,m,2I(|V̌i,t,m,2| ≤ ϱ)} are negligible.

Note that, by the facts that E exp(νV̌ 2
i,d,m,1) ≤ C, and E exp(νV̌ 2

i,t,m,2) ≤ C,

max1≤m≤p̃ (NT )−1|θm|−1/2(Č{max(p, q)T}1/2)
N∑
i=1

2∑
d=1

E{|V̌i,d,m,1|I(|V̌i,d,m,1| ≥ ϱ)}

= O(N1/2{max(p, q)}1/2) max
1≤m≤p̃

max
1≤i≤N

max
1≤d≤2

E{|V̌i,d,m,1|I(|V̌i,d,m,1| ≥ ϱ)}

= O(N1/2{max(p, q)}1/2)(NT + p̃)−5,

max1≤m≤p̃ (NT )−1|θm|−1/2(Č{max(p, q)T}1/2)
N∑
i=1

T∑
t=1

E{|V̌i,t,m,2|I(|V̌i,t,m,2| ≥ ϱ)}

= O(N1/2T{max(p, q)}1/2) max
1≤m≤p̃

max
1≤i≤N

max
1≤t≤T

E{|V̌i,t,m,2|I(|V̌i,t,m,2| ≥ ϱ)}

= O(N1/2T{max(p, q)}1/2)(NT + p̃)−5.

Therefore, we have that,

P
{
max
m

|Jom − Ĵom| ≥ (log p̃)−1
}

≤ P
(
max
i

max
d

max
m

|V̌i,d,m,1| ≥ ϱ
)
+ P

(
max
i

max
t

max
m

|V̌i,t,m,2| ≥ ϱ
)
= o(p̃−1).

(B.34)
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Given the fact that |maxm(J
o
m)

2 −maxm(Ĵ
o
m)

2| ≤ 2maxm |Jom|maxm |Jom− Ĵom|+maxm

|Jom − Ĵom|2, it suffices to show that, under H0, for any fixed ϕ,

P
(
max
m

(Ĵom)
2 − 2 log p̃+ log log p̃ ≤ ϕ

)
→ exp

{
− 1√

π
exp(−ϕ

2
)

}
. (B.35)

By Lemma 1, we have that, for any fixed k ≤ p̃/2,

2k∑
b=1

(−1)b−1
∑

1≤m1<...<mb≤p̃

P
{
(Ĵom1

)2 ≥ ϕp̃, . . . , (Ĵ
o
mb
)2 ≥ ϕp̃

}
≤ P

{
max
m

(Ĵom)
2 ≥ ϕp̃

}
≤

2k−1∑
b=1

(−1)b−1
∑

1≤m1<...<mb≤p̃

P
{
(Ĵom1

)2 ≥ ϕp̃, . . . , (Ĵ
o
mb
)2 ≥ ϕp̃

}
,

(B.36)

where ϕp̃ = 2 log p̃ − log log p̃ + ϕ. Define |a|min = min1≤s≤b |as| for any vector a ∈ Rb,

and let Ṽi,m = (NT |θm|)−1/2 (Č{max(p, q)T}1/2
) (∑2

d=1 V̂i,d,m,1 +
∑T

t=1 V̂i,t,m,2

)
, and

Wi,{m1,...,mb} = (Ṽi,m1 , . . . , Ṽi,mb
). Then we have that,

P
{
(Ĵom1

)2 ≥ ϕp̃, . . . , (Ĵ
o
mb
)2 ≥ ϕp̃

}
= P

{∣∣∣∣∣(NT )−1/2

N∑
i=1

Wi,{m1,...,mb}

∣∣∣∣∣
min

≥ ϕ
1/2
p̃

}
.

By Theorem 1.1 in Zäıtsev (1987), we have that,

P

{∣∣∣∣∣(NT )−1/2

N∑
i=1

Wi,{m1,...,mb}

∣∣∣∣∣
min

≥ ϕ
1/2
p̃

}

≤ P
{
|Zb|min ≥ ϕ

1/2
p̃ − ϵNT,p̃(log p̃)

−1/2
}
+ c1b

5/2 exp

{
− (NT )1/2ϵNT,p̃
c2b3{max(p, q)T}1/2ϱ(log p̃)1/2

}
,

(B.37)

where c1 and c2 are some positive constants, ϵNT,p̃ → 0 that is to be specified later,

and Zb = (Zm1 , . . . , Zmb
)T is a normal vector with mean zero and the covariance matrix



cov(Wi,{m1,...,mb})/T . Because b is fixed, θN,T,R,B = o(1), and log p̃ = o{(N/max(p, q))1/4},

we let ϵNT,p̃ → 0 sufficiently slowly, so that for any large constant C̃ > 0,

c1b
5/2 exp

{
− (NT )1/2ϵNT,p̃
c2b3{max(p, q)T}1/2ϱ log p̃

}
= O

(
p̃−C̃

)
.

By (B.36), we have that,

P
{
max
m

(Ĵom)
2 ≥ ϕp̃

}
≤

2k−1∑
b=1

(−1)b−1
∑

1≤m1<...<mb≤p̃

P
{
|Zb|min ≥ ϕ

1/2
p̃ − ϵNT,p̃(log p̃)

−1/2
}
+ o(1).

(B.38)

Similarly, we also obtain that,

P
{
max
m

(Ĵom)
2 ≥ ϕp̃

}
≥

2k∑
b=1

(−1)b−1
∑

1≤m1<...<mb≤p̃

P
{
|Zb|min ≥ ϕ

1/2
p̃ + ϵNT,p̃(log p̃)

−1/2
}
+ o(1).

(B.39)

Then it suffices to show that, for any fixed integer b and any ϕ,

∑
1≤m1<...<mb≤p̃

P
{
|Zb|min ≥ ϕ

1/2
p̃ ± ϵNT,p̃(log p̃)

−1/2
}
=

1

b!
π−b/2 exp(−bϕ/2){1 + o(1)}.

(B.40)

Then by Lemma 2, the result in (i) follows.

For (ii), the result follows based on the proofs above and the proof in Theorem 3.

For (iii), similarly as the proof of Lemma 7, it suffices to show that

∫ tp̃

0

P

[∣∣∣∣∣
∑

(r,j)∈H0
{I(|Jor,j| ≥ τ)− P(|Jor,j| ≥ τ)}

p̃0G(τ)

∣∣∣∣∣ ≥ ϵ

]
dτ = o(vp̃).
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Using the Markov inequality, we only need to bound

∑
(r1,j1),(r2,j2)∈H0

{P(|Jor1,j1 | ≥ τ, |Jor2,j2| ≥ τ)− P(|Jor1,j1| ≥ τ)P(|Jor2,j2| ≥ τ)}
p̃20G

2(τ)
.

Following the proof of Lemma 7, we divide the index pairs (r1, j1), (r2, j2) ∈ H0 into

three subsets based on the magnitude of the covariance cov(Jor1,j1 , J
o
r2,j2

). For each sub-

set, by employing the truncations from (i) and the proof of Lemma 7 in the supplement

of Sun et al. (2023), the result in (iii) follows under (log p̃)7+ϵ = O(N/max(p, q)).

This completes the proof of Theorem 5.

C Additional Numerical Results

C.1 Experiment results when T = 8

We present the additional estimation and multiple testing results for T = 8 in Tables

S1 and S2, respectively.

C.2 Experiment results under non-Gaussian error distribution

We carry out a simulation in which the error terms in (2.3) follow a heavy-tailed distri-

bution, with the entries of Σ
−1/2
T ϵiΣ

−1/2
R and Σ

−1/2
ζ ζi,r drawn from a t-distribution with

6 degrees of freedom. We consider T = 4, while all other settings are the same as in

Section 4.4.

Table S3 presents the multiple-testing results. It shows that our proposed method

continues to control the FDR at the target level α = 0.1, whereas the REML fails to do



Table S1: Parameter estimation: the bias and standard error based on 200 data replications for the
autoregressive and moving average temporal structures with T = 8.

Temporal structure Autoregressive Moving average
ω = 0.03 ω = 0.05 ω = 0.03 ω = 0.05

R N method hub small hub small hub small hub small
Bias and SE of covariance estimation

50
100

Bias 0.0541 0.0555 0.0991 0.0994 0.0535 0.0547 0.0991 0.0985

SE 0.1759 0.1405 0.1765 0.1934 0.1862 0.1516 0.1890 0.2051

200
Bias 0.0550 0.0550 0.1195 0.1201 0.0542 0.0544 0.1192 0.1201

SE 0.1342 0.1315 0.1565 0.1523 0.1427 0.1367 0.1638 0.1607

100
100

Bias 0.0785 0.0768 0.1262 0.1273 0.0780 0.0759 0.1252 0.1270

SE 0.1687 0.1912 0.2275 0.1752 0.1811 0.2037 0.2344 0.1868

200
Bias 0.0626 0.0617 0.1022 0.1034 0.0623 0.0616 0.1018 0.1032

SE 0.1193 0.1192 0.1517 0.1284 0.1268 0.1269 0.1590 0.1366

Bias and SE of coefficient estimation

50
100

Bias -0.0002 -0.0002 0.0006 0.0002 -0.0002 -0.0002 0.0006 0.0001

SE 0.1131 0.1129 0.1130 0.1140 0.1124 0.1121 0.1124 0.1134

200
Bias 0.0000 0.0001 -0.0002 0.0004 0.0000 0.0001 -0.0002 0.0004

SE 0.0755 0.0755 0.0755 0.0753 0.0749 0.0750 0.0750 0.0748

100
100

Bias -0.0001 0.0001 -0.0004 -0.0002 -0.0001 0.0002 -0.0004 -0.0002

SE 0.1131 0.1131 0.1134 0.1133 0.1124 0.1125 0.1127 0.1126

200
Bias -0.0001 -0.0001 -0.0002 0.0001 -0.0001 -0.0001 -0.0002 0.0001

SE 0.0754 0.0755 0.0752 0.0755 0.0748 0.0749 0.0747 0.0749

so in certain cases. In terms of empirical power, our method is generally more powerful

than REML, and this advantage becomes increasingly pronounced as N or T grows.

C.3 Experiment results under misspecification of Kronecker structure

We carry out a simulation in which the covariance of random error ϵi,r,t does not follow

a Kronecker structure as in (2.3), but instead,

(ϵi,1,1, . . . , ϵi,1,T , . . . , ϵi,R,1, . . . , ϵi,R,T )
T ∼ Normal(0,Σnon-sep), where

Σnon-sep(t1, r1, t2, r2) = (1− λk)[ΣT ]t1,t2 [ΣR]r1,r2 + λk
1

(t1 − t2)2 + 1
exp

{
− (r1 − r2)

2

(t1 − t2)2 + 1

}
,
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Table S2: Multiple testing: the empirical FDR and power in percentage based on 200 data replication
for the autoregressive and moving average temporal structures with T = 8 and the FDR level α = 0.1.

Temporal structure Autoregressive Moving average
ω = 0.03 ω = 0.05 ω = 0.03 ω = 0.05

R N method hub small hub small hub small hub small
Empirical FDR

50
100

Proposed 8.52 7.89 6.46 7.83 9.21 8.30 6.87 8.77

REML 12.74 12.81 11.55 11.75 12.74 12.43 11.40 11.82

200
Proposed 7.09 7.47 5.96 6.15 7.03 7.64 5.99 6.10

REML 10.50 10.27 10.17 10.43 10.50 10.42 10.15 10.20

100
100

Proposed 7.34 7.95 6.84 5.94 7.77 8.89 7.53 6.21

REML 12.03 12.32 11.61 11.58 11.84 12.27 11.61 11.57

200
Proposed 6.38 7.10 5.83 5.79 6.57 7.04 5.83 5.76

REML 9.60 10.23 10.13 9.88 9.65 10.22 10.07 9.98

Empirical Power

50
100

Proposed 87.08 86.09 86.95 88.27 87.59 86.95 87.74 88.78

REML 83.29 81.88 84.92 85.84 83.39 81.83 84.87 85.38

200
Proposed 99.80 99.70 99.88 99.91 99.88 99.77 99.91 99.92

REML 99.58 98.59 99.79 99.64 99.67 98.67 99.79 99.67

100
100

Proposed 89.44 88.52 90.60 89.77 89.83 89.30 91.22 90.32

REML 85.08 85.15 87.84 86.78 84.69 84.36 87.67 86.14

200
Proposed 99.87 99.92 99.90 99.87 99.88 99.94 99.93 99.89

REML 99.48 99.74 99.74 99.59 99.57 99.75 99.76 99.62

for 1 ≤ t1, t2 ≤ T and 1 ≤ r1, r2 ≤ R, and the hyper-parameter λk controls the degree

of deviation from the Kronecker structure. We consider λk = {0, 0.2, 0.4, 0.6}, with

R = 100, N = 100, T = 4. All other settings are the same as in Section 4.4.

We report the multiple testing results in Table S4. We see that our proposed method

consistently maintains the empirical FDR under the pre-specified level α = 0.1, while

the REML-based testing method shows noticeable inflation. Moreover, as λk increases,

reflecting a greater deviation from the Kronecker structure, the empirical power of our

method only shows a modest decline, which demonstrates the robustness of our method

to departure from the Kronecker condition.



Table S3: Multiple testing for t-distribution error with 6 degrees of freedom: the empirical FDR and
power in percentage basyed on 200 data replication for the autoregressive and moving average temporal
structures with T = 4 and the FDR level α = 0.1.

Temporal structure Autoregressive Moving average

ω = 0.03 ω = 0.05 ω = 0.03 ω = 0.05

R N method hub small hub small hub small hub small

Empirical FDR

50
100

Proposed 8.24 10.05 7.97 5.20 7.93 9.97 7.59 6.08

REML 10.11 8.44 9.51 9.18 10.73 8.74 10.00 9.27

200
Proposed 7.99 9.13 7.94 7.70 8.20 8.96 7.91 8.02

REML 10.27 11.31 10.06 10.40 10.30 11.28 10.03 10.30

100
100

Proposed 6.29 6.07 8.25 8.47 6.49 6.52 8.04 8.41

REML 9.12 10.22 13.06 11.85 8.69 9.03 13.28 11.92

200
Proposed 8.72 8.37 7.46 7.56 8.98 8.22 7.48 7.56

REML 11.19 10.14 10.02 9.89 11.11 10.20 9.93 9.94

Empirical Power

50
100

Proposed 12.95 15.59 23.44 17.54 12.85 15.64 23.55 17.93

REML 12.44 13.48 23.34 18.88 11.73 12.88 22.97 18.17

200
Proposed 74.38 74.89 75.75 76.49 75.08 75.33 76.43 77.11

REML 69.85 69.24 72.35 72.54 70.30 69.71 73.01 73.02

100
100

Proposed 13.25 13.08 23.14 23.64 13.03 13.48 23.24 23.90

REML 14.36 15.17 26.02 25.69 13.66 15.28 25.75 25.23

200
Proposed 72.40 72.82 76.26 77.86 73.45 73.77 76.80 78.53

REML 68.83 67.61 73.75 74.62 69.11 68.08 73.92 75.00

C.4 Experiment results with R > N

We carry out a simulation in which the number of response variables R is much larger

than the sample size N . We consider R = {500, 1000}, N = {100, 200}, T = 4. All

other settings are the same as in Section 4.4.

We report the multiple testing results in Table S5. We see that our proposed method

continues to control the FDR at the target level α = 0.1, while REML fails to do so.

Moreover, as N increases from 100 to 200, both our method and REML achieve similar

levels of empirical power.
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Table S4: Multiple testing under misspecification of the Kronecker structure: the empirical FDR and
power in percentage based on 200 data replications for the autoregressive and moving average temporal
structures with R = 100, N = 100, T = 4 and the FDR level α = 0.1.

Temporal structure Autoregressive Moving average
ω = 0.03 ω = 0.05 ω = 0.03 ω = 0.05

λk Method hub small hub small hub small hub small

Empirical FDR

0
Proposed 7.05 7.85 6.78 6.85 7.02 7.60 6.68 6.73

REML 12.48 13.18 11.74 11.96 12.53 13.31 11.78 11.89

0.2
Proposed 8.13 9.99 7.53 7.96 8.61 10.36 7.78 8.11

REML 12.52 13.76 11.60 12.06 12.27 13.64 11.56 11.96

0.4
Proposed 7.61 9.72 6.85 7.95 7.27 10.10 6.95 7.95

REML 12.76 13.68 11.59 12.11 12.72 13.79 11.68 12.02

0.6
Proposed 5.13 5.87 4.84 5.67 4.81 5.99 4.97 5.47

REML 12.79 13.64 11.78 12.06 12.80 13.65 11.80 12.09

Empirical Power

0
Proposed 39.76 40.09 47.05 46.87 40.29 40.54 47.49 47.36

REML 41.23 41.44 49.55 49.33 41.61 41.38 49.61 49.59

0.2
Proposed 38.02 40.27 45.81 45.25 38.67 40.77 46.15 45.76

REML 40.59 40.42 49.11 47.81 40.64 40.49 49.03 47.85

0.4
Proposed 34.54 37.30 42.61 42.72 34.62 37.24 42.87 42.71

REML 40.24 40.18 48.79 47.65 40.17 40.01 48.87 47.75

0.6
Proposed 26.14 27.77 36.66 35.36 25.77 27.45 36.60 34.94

REML 39.97 39.80 48.60 47.52 39.95 39.98 48.69 47.42

C.5 Model diagnosis for longitudinal neuroimaging data

We perform model diagnosis for the OASIS-2 longitudinal AD data. We focus on the

normality and linearity conditions. Specifically, for each region, we first estimate the

covariance matrices, then apply the least squares method to estimate the coefficients.

Based on the fitted model, we then compute the residuals. Figure S1 shows the QQ-

plots of the standardized residuals for three randomly selected regions. We see that the

points lie close to the reference line. Moreover, the Shapiro-Wilk normality test shows

that, for 59 out of 68 regions, the p-value exceeds 0.05. Both results suggest that the



Table S5: Multiple testing with R being much larger than N : the empirical FDR and power in
percentage based on 200 data replication for the autoregressive and moving average temporal structures
with T = 4 and the FDR level α = 0.1.

Temporal structure Autoregressive Moving average

ω = 0.03 ω = 0.05 ω = 0.03 ω = 0.05

R N method hub small hub small hub small hub small

Empirical FDR

500
100

Proposed 7.32 6.47 5.93 5.28 7.63 6.47 6.09 5.61

REML 13.24 12.94 12.06 12.00 13.31 13.03 12.15 12.09

200
Proposed 7.38 7.16 6.64 6.35 7.48 7.19 6.71 6.27

REML 10.50 10.39 10.24 10.32 10.55 10.38 10.16 10.28

1000
100

Proposed 6.94 6.40 5.58 5.17 7.23 6.55 6.02 5.54

REML 12.95 13.05 11.69 11.86 13.01 13.05 11.75 11.87

200
Proposed 7.16 6.70 6.78 6.32 7.23 6.77 6.80 6.34

REML 10.68 10.87 10.35 10.29 10.73 10.97 10.31 10.23

Empirical Power

500
100

Proposed 41.78 39.31 46.39 43.43 42.45 39.72 46.88 44.45

REML 42.90 41.81 49.93 49.66 42.31 41.24 49.47 48.99

200
Proposed 90.03 89.79 91.70 91.53 90.71 90.39 92.29 92.10

REML 88.61 88.03 90.86 91.00 89.27 88.72 91.36 91.53

1000
100

Proposed 40.33 39.06 42.97 42.82 40.96 39.43 44.25 43.92

REML 42.17 42.04 48.22 48.40 41.78 41.64 48.01 48.25

200
Proposed 89.44 89.09 92.25 91.97 90.13 89.76 92.8 92.58

REML 88.32 88.27 91.54 91.55 88.99 88.83 91.99 92.06

normality holds reasonably well. Figure S2 shows the fitted values versus the Pearson

residuals for three randomly selected regions. We see that the residuals center around

the horizontal line at zero with no discernible pattern, indicating no clear evidence of

nonlinearity.
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Figure S1: Model diagnosis for longitudinal AD data: QQ-plots for the standardized residuals for three
randomly selected regions.

Figure S2: Model diagnosis for longitudinal AD data: the fitted values versus Pearson residuals for
three randomly selected regions.
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