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Supplementary Material

In this Supplementary Material, Section @ presents a collection of technical lemmas and some of their
proofs. Section [B]presents the proofs of Theorems|[I]to[f]in the main paper. Section[C] presents some additional

simulation and real data analysis results.

A Auxiliary Lemmas

To facilitate the theoretical development, we introduce the oracle estimators, where the
covariance matrix () is treated as known. That is, we plug the true covariance 2
in to estimate ), and denote it as (3°)). We then plug (5°)®) in to
estimate the test statistics J, J,% ;» and denote them as J°, (J;? j)2. In contrast, we view
and where we use the estimated covariance %) given data as the data-
driven estimators, and denote them as (Bd)(r), Je, (J;fj)Q, respectively. In our theoretical

development, we first study the oracle case, then show that the data-driven case is

asymptotically equivalent.



Lemma 1. (Bonferroni inequality) Let B = \J)_, B;. For any k < p/2,

2k 2k—1

ST <PB) < ()R,

t=1 t=1

where F, = Zlgil<...z‘t§p P(B;,---Bi,)-

Lemma 2. (Lemma 6 of |Cai et al.| (2014)) Let (Zy,...,Z,)" be a multivariate normal
random vector with mean zero and covariance ¥ and all diagonal elements Y;; = 1
for 1 <i < p. Suppose max;4; |¥;;| < Cy < 1, and max; y &, Z?j < Cy,, for some
constants C1,Cy. Then for any ¢ € R,

1
P (111<1?<);Zi2 — 2logp + loglogp < gb) — exp {_ﬁ exp (—g) } .

Lemma 3. (Lemma 2 of Berman (1962)) Suppose X and Y follow a bivariate normal

distribution with zero mean, unit variance and correlation coefficient p. Then,

P(X Y
. (X >c¢Y >0 _

e (L= p) PP} T exp(— L+ p) L+ p) 2

uniformly for all p such that [p| <9, 0 < < 1.

Lemma 4. Let A be any subset of {(r,j) : 1 <r < R/ 1 < j <2p+ 2}, and let |A|

denote the cardinality. Then, for some constant C' > 0,

30\(r) _ 5(r)y2
IP)( (?j?é\ {(;Ef;(aﬂ}ﬁ;))l}m 2 1172> < C|A|{1 - (I)(;p)} + O(p_l),

uniformly for 0 < x < (8logp)"/? and A C {(r,j) : 1 <r < R,1 <j < 2p+2}. For
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the sub-Gaussian case, this result holds under Condition|(C7).

Lemma 5. (Lemma 3 of|Chen et al. (2025)) Let X = (X1,...,X,)  andY = (Y1,...,Y,)"
be two random vectors with independent entries, and EX; = EY; = 0, max; (|| X ||y [|Yill 1)
< K, where || X ||y, = sup,s, p~*(E|X|P)V/P denotes the sub-exponential norm of X. Let

A be an n x n matrixz. Then, for some constant ¢ > 0, and every t > 0,

t° t
P(|XTAY — EXTAY| Zt)SQeXp{—cmin( : )}
KA A[[5 K2 Al

Lemma 6. Suppose Conditions|(C1), [(C2) and|(C4) hold. Then, for any ¢ € R,

Py, (J° —2logp + loglogp < ¢) — exp {—W’l/Q exp(—gb/Q)} , as NT and p — oo.

Proof: We prove this lemma in three steps. First, we formulate the correlation matrix
of the oracle test statistic. Second, we show that it satisfies the correlation conditions
of Lemma 2] Finally, we apply Lemma 2] to complete the proof.

Step 1: Since J° is the maximum of the square of p standardized normal variables, we
first consider the correlation matrix ¥ of (S g5 s I apyar 0 S Jhs s JRopia)-

We note that the diagonals of 3 are all 1. In addition, it can be written in the following

block matrix form:
»an o RO

M«
I

SRD L SRR)

where each block is a (2p 4+ 2) x (2p + 2) matrix.



Next, for 1 < j; < 2p+2, 1 < jo < 2p + 2, we have,

~1/2
Ji,

(Ee0] = [(XEy T [(e{E 0O [(XT{E(T)}AX)A]ES’

where X is as defined in (2.6). For 1 < j; <2p+2,1<j, <2p+2,1<7r <R,

1 <ry <R, and r; # 1y, we have,

[, = [(X{E X)X SO e X (s 0 T
Ty =1y =172 1y ()1 —1 yy =17 /2
X [(X {E( 1)} X> ]j11j1 [<X {Z( 2)} X> L’zﬂé !

where Y("172) is as defined in Condition
Step 2: By Condition |(C4)|, the maximum absolute value of the off-diagonal entries of
> is bounded by a positive constant smaller than 1. We show in this step that, for each

column of 3, the sum of squares for all entries is upper bounded by a positive constant

¢, i.e., max,; y. {[2(7’“2)]3@}2 < ec.

72,52
~1/2
J:J

<242 1<r <R Write (X{2"}1X)"! = ) Then we need to show

First, we show that [(X™{Z("}~1X)] = O{(NT)'/?} uniformly for 1 <
that |[{X}1;;] = O(NT). At the same time, we obtain the bounds for || X)|],,
{23 |o, [|27)]|2, and [|[{3)} 1|4, which are useful in the proof of both this lemma

and Theorem [2

We begin with the bounds for ||X™)||; and ||[{3™}~||,. By Conditions , ,

IG(UN@E)G 2 < GIEIIN®El2 < max [|Gil[3] 2]l < 2T max || Gil[pulZell2 = O(1).
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By Condition , we have
MaX Amax ([Zrrr27) = max[Xglrr Amax (57) < Amax(X7) Amax(Xr) = O(1).
Similarly, we have
mrin Amin([ER]rr X7) = mrin[ER]r,r)‘min(ZT) > Amin(S7) Amin (Sr) > 5.

By Weyl’s inequality and the definition of ) in (2.6), we have Ana(27)) = O(1),
and Apin(2T) > ¢ uniformly for » = 1,..., R. This implies that [|X™)||, = O(1) and

{2} 1|ly = O(1). Note that

(E 1 = XX = A ({ZOFHXX + X7 ({203 = A ({20} N Iyr) X

= A (SN XX + X7 ({S0} 1 = AL (B7) Ivr) X

max max

By Condition |(C1), we have

Amax{ (X{ET}1X) ™) = AL (B} X)) < AL (B XX

min max

(A1)
= )\I:l:iln(XTX))\maX(Z(r)) = O(NilTil)v
uniformly for » = 1,..., R. Similarly, we have
Amin {(X{E} X)) = A (X{EOFX) > A () XX}
(A.2)

= A (X" X)) A (2)) > T PN

max

uniformly for r = 1,..., R. Together, (A.1)) and (A.2)) imply that




IS0, = ONTTY), {EO} o = O(NT),  [{E0} ]| = O(NT),

uniformly for 1 < j <2p+2, 1 <r <R.

Next, we show that max, ;> - {[X072)];. 12 < ¢ foreach 1 <r < R, 1 < j <

72,52

2p + 2. We note that

2p+2 2p+2
D AEC Y = D AR 4 )0 Y AR,
2,52 J2=1 roFr j2=1

2p+2

= Z{ 132} {Z(r ]]]} 1{[Z(r ]sz} '
J2=1
2p+2 ~ ~ 9 ~ ~
+> Y [E(T)XT{Z(T)}AE(T’”){E(”)}flxz(m)] B HE s
roFr jo=1 )2

By the fact that {[X];;}71 < [{X"}71];, = O(NT) for 1 < j < 2p + 2, we have,

2p+2 2p+2 )
$(rra)] . 2 _ N2T2 . 2 + |:E XTI 12(7“,1“2) y(r2) lei(Tz):| )
S (S 23 [ ey s

72,52 Jo=1 roFr jo=1

So it suffices to show that

2p+2 2p+2 i )
Z{ 332}2 + Z Z [ T)XT{E 7")} Ly (ryr {E(Tz } Ly (ra) = O(N_zT_Q),
Ja=1 ro#r jo=1 J:J2

(A.3)
uniformly for 1 < j <2p+2, 1 <r <R.
To bound the first term in the left-hand-side of ([A.3)), because |2, = O(N—'T1),

we have,
2p+2

D AEDLLYE < IEVE =0T ).

Jo=1



Statistica Sinica Page 7

To bound the second term in the left-hand-side of (A.3), we have,

2p+2

~ - 2
3 [Z(T‘)XT{E(T)}*12(1“,?"2){2(7"2)}*1)(2(1”2)]

rar ja=1 a

. . 2
< Z H{Z(T)XT{E(V)}%E(TM){2(?2)}*1)(2(7'2)}H2
ToFET

~ ~ 2
= 3 [(EOXSO} diag ([l S HE )R} XS |
roF#r

(7 T )1 —17: o) — 2 s(r
< SISO | XSO} diag({ S )2 X, (15023,
ro#r

Recall that [|[{Z™1}~!||, = O(1). By Conditions|(C1)|and|(C2), we have that || XT{%()}~1

diag({S7} N ){X23-1X |2 = O(N?T?). Therefore, we have that,

2p+2 9
Yy [j(T)XT{E(T)}—12(M2){2(7‘2)}—1)(2(7’2)}
roFr j2=1 32
<Y SRl (N T2 (NPT?) (NPT %) < G| SR[5N T2 < N T2,
roF#r

where ('} and (5 are some positive constants. In the first inequality we use the fact
that ||20)]|, = O(N~'T1) for 1 < r < R, and in the last inequality we use Condition

(C2)} Therefore, we prove (A.3), which yields max,.; y>, - {[2"")];;,}* <.

Step 3: Applying Lemma [2] completes the proof of Lemma [6] ]

Lemma 7. Suppose Conditions |(C1) m hold. Suppose py = |Ho| < p, and for

some p >0 and § >0, |S,| > {1/(x'/?a) + 6}(logp)'/2. Then,

FDR? FDP?(7)
lim =1, lim ———=
(NTp)=oo QP /P (NT:H)—oc  aPo/P

=1 in probability,



where FDR®, FDP? are the false discovery rate and proportion under the oracle case by

plugging in the oracle test statistic (J,Zj)Q.

Proof: We first show that P(7 exists in [0,%;]) = 1. Recall that S, = {(r,j) € H :

(B2 {(X{=}1X) 1Y, > (log5)'+*}. Then, with probability tending to 1,

ZI{] > (2logp) 1/2} > {1/(z*2a) + 6} (log p) /2.
Then with probability tending to 1, we also have that,

p ~ 1/2 -1 ~\—1/2
_ - <p{1/(m/"a) + 6} (logp) '~
> T{T5 > (2log p) 2y v 1

Denoting by G(7) = 2{1 —®(7)}, we have that G(t;) ~ (2/m)"/?t5" exp(—t2/2). There-
fore, by the definition of ¢; in Algorithm |3 we have that P(7 exists in [0, ¢;]) = 1.
By the definition of 7, we have that,

pG(7)
2 L2l = T) V1

= Q.

Thus, to prove Lemma [7], it suffices to show that

>trpero LI, = 1) = G(7)}
PoG(T)

— 0 in probability, uniformly for 0 < 7 < ;.

Let 0 =ty <t < ... <1 = t5, such that th — thoy = vy for 1 < h < b—1 and
t; —t5_1 < v;, where v; = (logplog, p)~'/2. We have that b ~ t5/v;. For any 7, such

that t,_1 < 7 < t),, we have that,
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Z (r,4)€Ho (| | > 2?h—l) ( ) Z(r])e"}-[o (| O'| > T) Z(’I‘J)EHO <| Jy | > t~h—1) G(ghfl)
pOG(th) G(fh—l) PoG(T) B PG (th-1) G(tn)

Therefore, it suffices to show that

max — 0 in probability. (A.4)

1<h<b

D rpero VL (1251 = 1) — G(in) }
poG(th)

We have, for any € > 0,

ol (e 102 = ) — G0) >€]
1<h<b poG(th) -

Shz: p || Zeaen ! (]Iigl(;)th) — G(tn)} . E]

. vi /Otﬁ » Z(nj)e%{f(;;’g(!j 7)—(;(7)}‘ . 161 i
N Z ‘zw e 10 ;m - G(fw}‘ R} ] |

Since P(|.J7;| > 7) = G(7) for (r,j) € Ho, we only need to show that, for any e > 0,

tp
/p
0

D rpern LR = 7) = P25 = 7)}

> 6] dr = o(vp), (A.5)

PoG(7)
and
4 I(Je.| > ) —=P(J°.| > 7
max p |[Zeenl W 2D ZRITSIZ 00 S gy (4
0<7<t3 PoG(T)

Since the proofs of (A.5)) and (A.6) are similar, we only prove (A.5)) here.

By Markov’s inequality, it suffices to bound



2

Y epyero LU > 1) = P(1J2,1 > )}
PoG(T)
Z(rl’jl)(m J2) GHO{PO 71 ]1| > T, | 2 J2| > T) (| r1 j1| > 7') (| 7“2j2| > 7')}
) et

E

(A.7)

We next divide the index pairs (r1, j1), (re, ja) € Ho into several parts depending on the
covariance cov(J?, ; ,J7, ;,). Specifically, for some small enough constant v > 0, denote

by

Lhj(y) = {(To,jo) 2 (10, Jo) # (7,.), |C0V(Jrow Ir ]0)| > (logﬁ)_gﬂ}'

| < ¢o holds uniformly

T1,J17 7’2 Jz)

In Step 2 of the proof of Lemma@ we obtain that |cov(J¢

cov?(Jo . J°) =

for (r1,71), (r2,j2), and some constant ¢y < 1. In addition, rodor I

70,J0
O(1) for any (r, j), which implies max(, jyen, |I'v;(7)| = o(p") for any constant ¢ > 0.
Then the index pairs {(r1,j1), (2, j2) : (r1,71) € Ho, (re, j2) € Ho} can be divided
into three parts: Hor = {(r1, 1), (r2,J2) : (r1,J1) € Ho, (r2, j2) € Ho, (r1, 1) = (r2, j2) };
Hoy = {(r1,71), (12, 42) = (r1,51) € Ho, (r2,J2) € Ho, (r2,72) € T'v j,(7)} that contains
highly correlated index pairs; and Hoz = {(r1,71), (r2,72) : (r1,71) € Ho, (r2,72) €

Ho, (r2, J2) ¢ Iy, 4, (7)} that contains weakly correlated pairs.

For Hy;, we have,

| 277, 5l 2 7) = POJ7, | 2 TP(IE, 5l = 7))
PG (7)

Z{(h ,J1)5(r2,32) } € Hot {P(| 1,51

CpoG(r)  C
RG3(1)  PoG(7)’

(A.8)

For Hpy, we have |Hos| < pomax(, jyew, |I'r;(7)| = o(p'™). Because for 7 < 1, we
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have P(|.J2 ;| > 7,|J7, ;,| > 7)/G?*(1) = O(1). Therefore, by Lemma ,

r2,j2

Z{(rl J1), (T‘Q]Q)}EHQQ{P(| r1 jl‘ > T, | 7‘2]2| > 7_) (‘ 1 ]1’ > 7_) (| 7’2]2' > 7—)}

PG3(7)
< O(ﬁ—l-‘rb) + O(ﬁl-ﬂ) (7' + 1) e};%pCEQ_(;—)/(l + CO)} < O[ﬁlL{G(T)l}QCO/(1+CO)].

(A.9)

For Hys, by the proof of Lemma 6 in|Cai et al.|(2014), for any {(r1, j1), (12, j2)} € Hos,

we have,

B L e O N
Gz( ) - 0{<10gp) / }

P17 1

Then we obtain that,

Z{(Thjl)(rz]z }eHog{]P)(l 7‘1]1| > T, | ’szzl > T) (| r131| = ) (| r2]2| st )}

PRG2(7)
= o{(logp)~" %}
(A.10)
Combining , and , we prove holds. We can prove
similarly. Combining and competes the proof of Lemma . m

B Proof of Main Theorems

B.1 Proof of Theorem [

We prove the result under the sub-Gaussian condition |(C7). The result under the
normality condition in Theorem [I] follows naturally.

Throughout the proof, we denote y;,» = ¥ir. = (Yir1,---sYirr), a0d yiy = yi.p =



(Yint,---»Yirt). Same rules apply to other notation as well. Let §;,.; = €, + €;GiG
where ¢, is a vector with the ¢th entry equal to 1 and all other entries 0. Denote X =
(X1 = X)), (Xy — X)) € RTNXCr+a+2) where X = NN X; € RT*Crtat2),
Denote X; = X; — X, and 0,y = iy — 0p4, where 6,, = N~ sz\il iy Let flj,p =
el(X; — X)B". We have Vit = it + &mu and Zfil ;e = 0. Moreover, we have
X = PX, where (I — P) = N~'(Iylyy) ® Ir, and ly is a vector of ones. Note that P is
an orthogonal projection matrix with P = Xp(X5pXp) ' X}, where Xp = 1y ® Ir. By
the Separation Theorem (Takane and Shibayamal 1991), we have amax(f( ) < Omax(X).
In addition, Condition implies that | X |2 = O(NT).
We next prove this theorem in six steps.

Step 1: We first show that p,,,’s are negligible, so that our theoretical analysis can
be based on the sample covariance matrices as given in and (| in the paper.

Denote

Yiig - YiR1 dii1 --- Oima

Yiir --- YiRT diar - OiRT
We next prove the following results:

1 R 1/2
Y, — AIA,) ZOP{CR+(CRA?§) }

max

N i spcsT spciTlog T\ '?
YT — AAD) :OP{ BB? +(B’]9VR2 ) , (B.11)

al 2 2 1/2
§ T Ty spcpl’ spcuT log T
Winbiry = i) = O { R <N—R2 ,

(r ,TQ)ES =1

iy
iy

;\H z‘H z‘H
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where S is as given in Step 2 of Algorithm

To prove the first result in (B.11]), for its entry in the r;th row and roth column,
N

% Z eqTal (YTY ATA )67"2 = ]VlT Z Z i rl,tlflz rg,t"—]\}T Z Z /flz rl,t(Sz rg,t—i_Hz rg,téz r1,t )

i=1 1=1 t=1 i=1 t=1
By Condition |(C1), we have, for 1 <r < R,
T

%izu

i=1 t=1

1 v 2(r
o= XA = Olen).

By the inequality of arithmetic and geometric means, we have, for 1 < ry,ry < R,

N T
1 S
NT Z Z fti o thtira e = O(CR)- (B.12)

i=1 t=1

In addition,

1 N T 1 N T -
NT Zl ; i r1,t irat = N Zl ; fisry it (Oirat — Orgt)
1 N T N T
Wzlgﬂ Tl,t51T2t - z;,uzmt rgt—%zlg 7’1t(szr2t Bl?))
1 N T 1 N T
= W Z_; tz; ﬂi,m,teiﬁ’z,t + ﬁ 2_; tz; ﬂi,Tl,tGZGiCi,’l‘Q'

We next bound the two terms in the last equation separately.

For the first term, we have that,

1 -
W X B(Tl 1/261 T2

1
NT

Mz

N T 1 N
; r
Mgy #€irat = Xzﬁ( ! €Z o
NT
=1 t= =1

1 =1



where €;,, = 2;1/261'7”. By the definition of €;,,, we have that €., = (¢ ,,,...,€y,,)"
has independent entries. Then (NT)~! Zfil Zthl [l ry t€iry .t 1S the weighted sum of

independent sub-Gaussian variables. By Condition |(C1), we have that,

N

2

=1

1 - 1/2
T SR

% r1)\Ty1/2
(X8 sy

2 1 & 1
< E XZ (r1) |2 21/2 2 —
) — (NT)2 p || /8 ||2|| T ||2 (NT)Q

Ch
(NT)?

Cy
SIXBS < er.

<
- NT

Therefore, by the tail distribution of the sub-Gaussian random variables, we have that,

simultaneously for 1 < rq,7y < R,

| N
NT Z Z iy t€iro t

i=1 t=1

— O { <CR;[L§ER) 1/2} | (B.14)

For the second term, we have that,

| NI N
1 i T 1/2 =
T O D i a€iGikirs = 3 (X GR

i=1 t=1 i=1

where éym = Egl/ 2@-7,,2. Similarly, this term is a weighted sum of independent sub-

Gaussian variables. By Conditions|(C1)| and |(C2)]

N

N
1 . ol 1 o 12
3 N—( ¢ sy < )QZHM RIS 2
i—1 2 —
IX BV B2 TIEIE < S X < 2
= N2T2 max® [1=¢ 2 N2T2 2= Nk

Therefore, we have that, simultaneously for 1 < ry,r, < R,
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— Op { (CRJIVO%R> 1/2} . (B.15)

By (B.12)), (B.13)), (B.14)), (B.15]), we prove the first result in (B.11)).

| N
NT Z Z iy 161 GiGiro

i=1 t=1

To prove the second result in (B.11]), for its entry in the ¢;th row and ¢sth column,

1 | MR L NI ) )
NE Z e, (VY =AjAey, = NE Z Z ﬂi,r,tlﬁi,r,t2+ﬁ Z Z(ﬂi,r,tlfsi,r,tg it 0irty ) -

=1 i=1 r=1 i=1 t=1

Recall that fi;,., = e]X;_ B ), where X;_; € RT*@r+a+1) is 4 sub-matrix of X; by

removing the first column, and ﬁ(fl) € R?+atl i obtained by removing the first entry

of B0, Denote T = Zf;l 5@{5&?}2 and X, = (XT _qet,. ., Xy q60)" € RN*@pta+1),

Then || X¢||; < || X|2 = O{(NT)"/?}. By Conditions [(C1)|and |(C2), we have that,

N N
1 1 T T 1 TV T
VR 2o 2 i = N ZZ P (BRI e = 5 Do e X T X e
NR r=1 r=1 i=1 r=1 NE =1
1 AT Lo ne1/22 1 12112 | % 112 1 o 112
= Nyt X TX]) = Tl X T < e lTIEIXz = Rt (Xl
1 spciT
< ¥E (Z 5 1||2) 1% =0 (220,

(B.16)
Next, we have that,

1 N R 1 N R -
N_RZZI;/:L ity zrtzzN_Zg ir.t1 Zrtz_(;ma)
| MR R N | &
= N—Rzlglll 3,7, t1 zrtg - Z5 Zﬂi,r,tl) = mzlzl R ’L'[‘t2 (Bl?)
N
= NLRZQLZMSU s nai,R,tl) El/zgz t2 NR ZZMZ T‘tletgG 21/2@“
=1

=1 r=1



where €;;, = 2—1/26“ . In addition, by Conditions |[(C1)| and |(C2), we have ||Xg|ls =
302 R 302 y

O(1), and ||e{2GiEé/2H2 = O(1) simultaneously for 1 < t, < 7. Similar to (B.14) and

(B.15)), (B.17) is the weighted sum of independent sub-Gaussian variables. Therefore,

. Y& spcsT
. o BtpB
m;”(ﬂi,l,tm”w,ull?tl ||2 z;r luzrtl_ ( NR2 >

Then we have that, simultaneously for 1 <t;,t, < T,

spctTlog T\ "/?
— Op (<—B ?Vm ) : (B.18)

By (B.16]) and (B.18)), we prove the second result in (B.11]).

1 N R
N_ZZ zr‘tl zrtg

The proof of the third result in (B.11]) is essentially the same as that for the second
one.

Combing the three results together, we prove .
Step 2: Next, we establish the convergence rate of [i R fOT 71 7 7o

We first show that |21 — 1 |[max = Op[cr+{log R/(NT)}'/?], where %, is as defined

in [2.10), and ¥, = g+ (NT) ' N, t0(Gi 8 G) Iz From (B.11), it suffices to show,

Note that the definition of A; involves 51-”, instead of d;,;. We show that, using d; ,,

= Op [{log R/(NT)}/?]. (B.19)

1 N
= > AN - X
NT £

max

to substitute 5imt in A; leads to the same convergence rate. That is, we show that,

simultaneously for 1 < ry,;ry < R,
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€ r1€l 2 ER]M 2

N
N
T
§ 17’1G 6““2
N
=1

Z‘H Z‘H

= O ({log R/(NT*)}2),

zrl

Recall the notations defined in the proofs of (B.11)), i.e., &,

251/ ®Cir. Then (B.20) is equivalent to the following,

1 N

=1

T ]./2 T 1/2~
NTZC“H ¢ GiY '

ETG’L ;T2 [ER]H ;T2

= Op ({log R/(NT)}'/?),

I(Tl —7”2

=1

By Conditions |(C1)| and |(C2)| we have ||Xr[|%2 < T||27|3 =

= O ({log R/(NT)}'?),

= Op ({log R/(NT)}"?),

1 <7 1/2 ~r 1/2 % .
NT Z C’L',Tl EC Gz GZZC Ci,T‘Q - N— Z tr G ZCG )
=1

N
GIGiCiry — % Ztr(GiECG{) = Op ({log R/(NT*)}'/?),
=1

(B.20)

~1/2 p
= Z:T €i,r and Ci,r

(B.21)

= Op ({10g R/(NTZ)}UZ) ’

O(T), and ||G:2°|[% <

G315l < 2T||Gill2aclZcllz = O(1). We apply Lemma [5| repeatedly to prove

[B21).

For the first equation in (B.21]), let X = (¢]

RERR

RN and A = diag(Zr,...,X7) € RTV*TN . Then we have ||A]|%2 = N|Z7|%

O(NT). By Lemma ] the first equation holds.

For the second equation in (B.21)), let X = (qm 07_o, f{m, 0F_gy .-

RN Y = (€ ,,.- - €nyy) € RM and A = diag(Ay, ...

gTle) € RNT, Y - (g{/’?’ ceey ng,TQ) €

=T T
€N 0P o) €

,AN) S RTNXTN, where O7_s

denotes the zero vector with length 7' — 2 and A; € RT*T in which the first two rows



are Eé/QGZTZlT/Z, whereas the other rows are 0. Then ||A|% = Zf;l ||Zé/2GZTElT/2||2F <
SV ||Zé/2GZTH%HE%F/2H§ = O(N). Therefore, by Lemma , the second equation holds.

For the third equation in (B:2)), let X = ({],,... &, ) € RN, Y = ({,,.. .., eh,,)
e R?M and A = diag(EéﬂG{GlEyQ, Y 1/2 GNEI/Q) Then we have || A% = S
||Zé/2GZTGiEé/Q||% <oy, ||Gi22/2||‘} = O(N). By Lemma , the third equation
holds.

Together, we prove , which leads to (B.20)).

Next, we turn to prove . It suffices to show that, using Sim instead of 9;,¢
in A; leads to the same result. The proof is similar to that of , which splits

dirt = €irr + €]GiG,, and proves the three equations similar as those in (B.20]). We

only prove the equation below, and the other two follow similarly.

i=1 t=1

1 N T 1 N 1 N
ﬁ Z Z €ir t€irot — (Ei,n,t - N Z Ej,m,t) (ei,’l’z,t - N Z ej,rg,t) ‘
j=1 =1 (B.22)
= op ({log R/(NT)}"/?) .

We note that,

1 NI 1 N . N
W Z Z € t€irat — (62 rit N Z EJ,rl,t> <€i,r2,t — N Z €j7r2,t>

i=1 t=1 j=1 J=1
T N
1 1 1
F3 () (3 o]
T3 i=1 j=1
1 T T T T T
= N2T (61,r17 © 6N,7"1)([T & INXN)(El,m? tty EN,TQ)
1 ~T ~T ~T ~T T
= (6L s eNm)Alm(]T ® leN)Al/Q(elm, o BN
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where Iy, y € RY*Y denotes the matrix with all entries equal to 1, and A = diag({Z7}Y,)
€ RTNXTN Moreover, we have that,

1 N 1 N 1 N
E {ﬁ Z Z €ir t€irat — (Ei,rl,t - N ; Ej,n,t) (62'772775 — N ; ej,rz,t) }

i=1 t=1

_ 1 _ -1
- N[ER]Thm - O(N )

Because || A2 (I @1y n)AY2||1% < || Ir@1nxn||2]| A2 = O(N?T). By applying Lemma

again, we obtain that,

1
N2T

(& s e A (Ir®ly N AY2(E,,, o E )T = O(N)+0p ({log R/ (NT)}/?)

which implies (B.22)) by the condition that 6y.7.zp = o(1). Therefore, we have ||, —
21 |lmax = Op (cg + {log R/(NT)}"/?). From (2.10)), this implies that,

max |[Sglry vy — [Srlrie| = Op (cr + {log R/(NT)}'/?) .

r17#£r

Step 3: Next, we establish the convergence rate of 7. That is, we aim to show that
127 — 7 |lmax = Op[{log R/(NT)}/? 4 {log T/(NR)}"/? + cg + spc3TR™Y).

By the definition of 37 in (2.12), we have that,

N
A 1 1 1 1
127 — 27|lmex < || = - — — Y Wiri1s- s Ui 1) Wisrats - - s Vi)
2R 2 \ S B ) ¥t Bt G
S Y e TS O |
5 ~ 1 Yirr 15+ 5 Yir, 7) Yigra1s -+ -5 Yiro, T — 4T
NE (r1,r2)€S [ZR]H’M i=1 1 1 2 ’

max

(B.23)



We next bound the two terms in separately.

For the first term in , from Condition and the convergence rate of
(X R]r1m fOr 71 % 79, We have, ming., ,es |[Srlmr| > ¢ and ming, mes |[Zalmm| > ¢
with probability tending to 1 for some constant ¢ > 0. In the following, we establish the
convergence rate under the event {ming, ,,)es |[Xrlr | = ¢, and ming, y,es |[iR]TM2| >

c}. We have, simultaneously for (r,7s) € S,

1 1

~

= Oplcr o 1/21 .
B, [Er, |~ Celen+ Uos BANT)}H (B.24)

Based on Step 1 and following the proof of Step 2, we have,

= 0s(1), (B.25)

max

N

1 . . T .

N Z(yi,rl,la R ayi,m,T) (yi,rz,b R a%,rz,T)
=1

simultaneously for (ri,75) € S. By (B.24]) and (B.25)), we have,

1 1 1\ 1. BN ,
R Z = - 2r] NZ(yi,T1,1a---ayi7r1,T) (israts - Yigra,T)
71,72

(r1,r2)€S [ER]TLW i=1

max

= Op (cr+ {logR/(NT)}l/z) ..
(B.26)

For the second term in (B.23)), since ming., ,yes |[Xr]r r| > ¢, similar to the proof

of Step 1, it suffices to show that,

1 1 L. 3 . .
AT D Z Z(éi,rhla cee a5i,r1,T)T(5i,T Ly e e 75i,7‘ ,T) - ZT
{NR (r1,r2)€s 2Rl =1 2 2 } (B.27)

max

= Op ({log T/(NR)}'?).
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Similar to Step 2, we only need to prove the version substituting d;,; by 52‘77‘,% ie.,

N
1 1 .
{N_R Z W Z(éi,m,l? cee 75i,r1,T) (51',7“2,17 s 76i,r2,T>} - Z]T
(ires (IR i wax (B.28)
= Op ({log T/(NR)}'?).
Again, it suffices to show simultaneously, for 1 < ty,t, < T,
;N
N_ Z Z ~ 1 Gt Ciratas T [ZT]tLtQ = O]P’ ({log T/(NR)}l/z) )
i=1 (rq, rg)es Rlrir
;N
N_ Z Z E ] ~ 7 6 r1,t1€;2GiCi,r2 = O]P ({1Og T/(NR)}l/Q) ) (B29)
i=1 (1, 7“2)65 Rri,r2
;N
NE Z Z R] o7 GinGiene,GiCir| = Op ({log T/(NR)}1/2) ‘
=1 (T1 7“2)65 T1,12

We first simplify the summation Z We put the index pairs in .S in any

7‘1 7‘2 ES
ordering, i.e., S = {(r§ ™) Tém)),m =1,..., K}. Define two matrices, Uy, Uy € REXE
such that (Uy) w = 1, (Us) w = 1, and the other entries of U, U, are all 0.
m,ry m,ry

Recall that &, = X5 ey, and G, = $.7%G,. For 1<t < T, & = (& )

it =Yg €y, and G =BG, For 1 <t < T, ¢ = (Elir -5 Ent)
has independent entries. Then we have, for d = 1,2, the m-th entry of UdEgQEi,t 4
is €, m, . Similarly, for d = 1,2, denote H;q = diag({e; G;Xc}E_)) € RF2E and

[LAV B

G = (~;1, e Q:ZT’R)T € R?E. We then have that the mth entry of UdHi7d§i is equal to

e{dGiCMgm). In addition, denote

1 1 1
L =diagd — .., o .
g { [ZR]TY):TS) [ER]Tgm)’Tgm) [ER]TgK)mgK) }



Then (B.29) is equivalent to

N
5 SO e LU ) — Sl | = Or ({log T/NR)F?)
=1
N
NLR > (US4, LU HipG) | = Op ({log T/(NR)}/?) | (B.30)
=1
N
NLR Z(UlHi,lgi)TL(UQHi,Qgi) = O]p ({log T/(NR)}UQ) .
=1

By the above definitions and Condition [(C1)| we have that ||Ui]|2 = |Uz]l2 = 1, || L]|2 =
O(1), || Hialls = O(1), and || H, 4| = O(RY?). By Condition we have [|S}?2 <
R||}/?|12 = O(R). Again, we apply Lemma [5| to prove (B.30).

Specifically, for the first equation in (B.30)), let X = (Eliys-€ngy) € RNE Y =

(Fliys -+ Ehgy) € RVE and A = diag({S) U LUZ Y YY) € RVFNE for which
1/2771 1/2 1/2 1/2
1A% = NS U LU (% < NS 1200 B LIBT3 25712 = O(NR).

Then the first equation holds by Lemma [5]

For the second equation in , let X = (&1,,,0%,€.4,,0% - L EN £y 05) € R2VNE
Y = (G-, Cy) € RVR and A = diag({SY2UTLULH,}Y,) € RN whope
i}f € R2BXE has the first R rows equal to Z},{Q and the last R rows equal to 0. Then
we also have ||A]|% = O(NR). So the second equation holds by Lemma

For the last equation in (B.30), let X =Y = (&1, Cy) € R2VE and A =
diag({H; U] LU2H;5},) € R*VENE - Again we have ||A]| = O(NR), so the last

equation holds by Lemma [5]
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Therefore, (B.27)) and (B.28)) hold. Together with (B.26)), we obtain the convergence
rate of f]T.

Step 4: Next, we establish the convergence rate of <.

Note that

N N
~ Ez 1 223 iUi Zz 1 223 Ui
R=h="1N TN
Z'L 1 ZZTU’Z Zz 1 ’LZTU’L

N N - N N
SN s S uls N S ulNs Yo ulSs
- N - N N B N

Zi:l uiZTui Zz L U Uy Zz 1 Wy U Zz LU

- 1 1 Yo ul(Ssi — Sa)us
= Z U; 33U N — + N
i=1 Zz 1 ZZTul Zz 1 ZZTU’Z Zz 1 zETuZ

By the definition of u;, we have that,

| (27 — Er)ui| < ullol|Sr — Srllofluill2

= Op (T[{log R/(NT)}* + {log T/(NR)}'? + cp + spcTR™]) .

By Condition , we also have cfl < ulXru; < ¢p. Therefore, by the condition that

(T[{log R/(NT)}/? 4+ {log T/(NR)}/? + cg + spc3TR™'] = o(1), we have that,

N N
2— S Z;UZETU,Z S 2N01.

Similar to Steps 1 and 3, using the definition of 2371, we have that i, ,,’s are negligible.

By repeatedly applying Lemma [5], we can obtain that

Z{u;(ig,i — S3.)ui}| = Op (T[{log T/(NR)}? + cp + spcbTR™Y)



which implies that,

Zi\; uZ(igz — 23,1)%‘
S Ul

= Op (T{log T/(NR)}'/? + cr + spcETR™]) .
Therefore, we obtain that,
i — K| = Op (T[{log R/(NT)}'/* + {log T/(NR)}'/* + cg + spcTR™]) .

Step 5: Next, we establish the convergence rate of f]g.

We first show that ||v; 4]l = O(1) for d = 1,2. We only prove the result for d = 1,
and the proof for d = 2 follows similarly. Denote G,2 = xs1, and G;1 = as; + bso,
where 51,5, € RT are unit vectors and are orthogonal to each other. Then we have
2? = O(T) by Condition . By construction, we have v;; = b 'ss, so we only need

to show that b=! = O(1). Note that

x? ax

GG =

ar a’®+b?

By Condition |(C1)] there exists some positive constant cg, such that

422h?
2 2 2 2 2 2\2 212\11/2 __
T A A = P (@ + @ £ P — a2 = O

which implies that b*> > ¢y/2 so b=! = O(1).

Next, we obtain the convergence rate. By Condition [(C2)|and Step 3, we have that,
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simultaneously for 1 <i < N,

v 5, 2703, < g, [2[1E7[l2]lvig [l = O(1),
and

07, (B = Xp)vi g | < lvgj 20127 — Srllallvig, ]2

= Op (T[{log R/(NT)}'/* + {log T/(NR)}** + cg + spcsTR™']) .

Combining the results above, along with the convergence rate for s, we obtain that,
(0] 5, Srvi 5,) =R (V] 5, Srvi g, )| = Op(T[{log R/(NT)}+{log T/(NR)}"*+cp+spcp TR™)).

Following similar steps in Steps 1-3, we have that,

| N

N Z{?};jl Egﬂ'UZ‘,jQ — Uz'T,j1 Eg,i’ULh} = O]p (T[{log T/(NR)}l/z +cp + SBCJZBTR_l]) .

i=1
By the definition of ¥ in (2.15)), we have that,
15¢ = Zellmax = Op (T[{log R/(NT)}? + {log T/(NR)}/? + cp + spc5 TR ™) .

Step 6: Finally, we establish the convergence rate of [i] R)rr and 5,

By (2.16]), (B.21]), and Step 4, we have that,

max |[Slr~[Srlrs| = Op (T[{log R/(NT)}'? + {log T/(NR)}'/* + cp + spcTR ™)) .



Next, by Condition |[(C2)|, we have that,

1G(In ® 2C)GT — Gy @5 )G | max = ax HGZ(iC = 2¢)Gi || max

< max [|GillalEc = Zcllia = O (Tl{log R/(NT)}'? + {log T/(NR)}'/? + cg + spcpTR™]) .

T1<i<N

Then by Condition |(C2)} Steps 3 and 4, for r = 1,..., R, we have that,

|| [iR]r,riT - [ER]T,TETHmaX - |[2R]T,T|||§JT - ZT||max + HiR]r,r - [ER]r,rl”ETHmax

= Op (T[{log R/(NT)}"? + {log T/(NR)}"? + cp + spck TR ™)) .

Therefore, simultaneously for r =1, ..., R, we obtain that,
150 — SO ax = O (T[{log R/ (NT)}? + {log T/(NR)}/* + cg + spcbTR ™)),
This completes the proof of Theorem [} n

B.2 Proof of Theorem [2|

By Lemma [6] we have J° = Op(logp). Therefore, it suffices to show that
max | J2; — J| = op{(log p)""/*}. (B.31)
T, i g

Again, we prove (B.31)) under the sub-Gaussian assumption [(C7)|, then the result holds
under the normality condition.
In Step 2 of the proof of Lemma @ we have showed that [[{Z(} 1|, = O(1) uni-

formly for r = 1,..., R. Since () and £() are block diagonal, we have ||£() — S|, =
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Op(TOx1.r.B), where we recall Oy 1.pp = T[{log R/(NT)}/?+{log T/(NR)}'/? + cr +

spcsTR™. Therefore, we have that, uniformly for r =1,..., R,

HEO} = {EO3 o <180 = SO {EO3 o {E0Yl2 = Op(T0n7,5,5)-
By Condition , we have that,

IXTHEO = ZOF DXl < IXIBIHEDY = {20} o = Os(NT?0n,7,8.5)-

Again, by Step 2 of the proof of Lemmal, we have [|(X™{2")}1X) |y = O(N~'T1).

Similarly, we have that [|[(X™{2"}1X)"1|, = O(N~'T~1). Then,

IT{EO}X) T = (X{ET )l
< JXEDFX) T | XTHEDY T {E0F X o |(X{ET X))o (B-32)

= OIP’<N710N,T,R,B)7

uniformly for r =1,...  R.

Moreover, for the difference between (3°)) and (3%)"), we have that,
(570 =AY = LS X) X —(XH{EO ) T XS NG+
By the fact that |[{£} 71|, = O(1), Condition |(C1), and (B.32)), we have that,

|| (XT{E(T)}—1X)—1XT{Z(T‘)}—1_(XT{i(T’)}—1X)—1XT{2(7‘)}—1 ||2 _ OIP’ (N_1/2T1/29N,T,R,B> )



Denote G¢, = G(Iy ®%¢)(,, and €, = diag({ElT/2 N )&, where (, and é, have indepen-
dent entries. Then we have that,
(Bo)(r) - (Bd)(r) _ {(XT{E(T)}71X)71XT{2(T‘)}71 _ (XT{XA](T‘)}71X)71XT{2(T)}71}

[y 5V + ding((S)X )&}

By Conditions |(C1){and |(C2)| [|G(Iy®%?)[l2 = O(1), and [|diag({S5/*}X,) [l = O(1).

So each entry of ((6°)") — (84)") is also sub-Gaussian with the variance of order

Op(N™'T0% 1 g ). By the maximal inequality for sub-Gaussian variables, we have,

max !(BO)E-” - (Bd)ﬁ”\ = OP{N_WTW(10g15)1/29N,T,R,B}, (B.33)

r?]

By (B.32)), (B-33)), and min,; [{(X{S™}71X)" 1}, ;| > ¢(NT)~! for some constant

¢ > 0, we obtain that,
o _ 7d | _ ~\1/2
max | J7; — Jy;| = Op{T (log ) "“On.1.n.5}-

By Condition |(C5)}, we prove (B.31]).

This completes the proof of Theorem [2] m

B.3 Proof of Theorem 3

First, we define

PR () /O
(XSO}
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By Lemma [4 (B.32), (B.33), and Condition [(C5)| we have that,

1
P (Jl < 2logp — §loglog]5) — 1.

By the fact that {5]@} € U(2v/2), we have,

(r)y2 (r)y2
max 10, — > 8logp, and max A{ﬂj ) <2J' 427
{(XH{EO}X) r {(XH{EOFX)

Using (B.32)) again, we obtain that,
P(J? > q, + 2logp — loglogp) — 1,

as (NT,p) — oo. This completes the proof of Theorem [3] ]

B.4 Proof of Theorem {4

By (B.31) and the assumption on S, in Theorem , we have that, with probability

tending to 1,

ZI{I Tt > (21ogp)' 2} = {1/(x"2a) + 8} (log p)' /2.

Similarly as the proof of Lemma 7| we have P(7 exists in [0,¢5]) = 1, so we focus on the

event {7 exists in [0,75]}. Then it suffices to show that, with probability tending to 1,

. I(lJt | >7) =G
s | Zeen WIS 27 =Gy
0<7<t; PG (T)




Following the proofs of Lemmal7} (B-31), and the fact that G[r+o{(log p)~"/?}]/G(r) =

1+ o(1) uniformly in 0 < 7 < \/2logp, we complete the proof of Theorem ]

B.5 Proof of Theorem [5l

Recall that, by the proofs of Theorem [I] and Theorem [2| we have the following results

under sub-Gaussian Assumption |(C7)},
max |J7; — Ji;| = op{(logp) %},
T, ’

Therefore, we focus on the oracle case for J° = max,—i__ g =1,., 2p+2(J°’-)2 under the
sub-Gaussian condition. Then, by the proofs of Theorems [2] to [ the result for the
data-driven case follows.

For (i), we note that, under H,

~

(3°)) = 7 + (X{EO} LX) XSO} GG + )
= B + (XS} X)X} HG Iy @ BY)G + diag({Z 1Y) ),
where ¢, and ¢, are as defined in the proof of Theorem , and they have independent

sub-Gaussian entries with the variance of order O(1) simultaneously for r = 1,... R

by Conditions [[C2)| and [[C7)l We arrange the index pairs {(r,7) : 1 < r < R;1 <

Jj < 2p+ 2} in any ordering and set them as {(r,,jm) : m = 1,...,p}. Let 6, =

(XT{Z(M)}*lX);’jm. In Step 2 of the proof of Lemma |§|, we have shown that |6,,,|~"/? =

O{(NT) Y2}, [ {Z0)} [, = O(1), and [[(X*{E¢)}~1X)" [, = O(N-'T"1). Then,
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I(XT{BU X)L = O({max(p, ) }'NTIT).

Therefore, we have that,

IE{ZC 30 X e < HT{EC 330 X nax

=0 ({max(p, q)}l/zN_lT_l) )

Furthermore, by the proofs of Lemma@ we have that || {E(’"m)}_lG(IN@Eém) la =0O(1).

Then its block-diagonal form implies that ||[{X)}~1G(Iy ® 22/2)||1 = O(T"?).

By Conditions |(C1)|and |(C2)} we have that,

T} )7 X} G @ 5 e = O ({max(p, )} PN T772)

JXT{ECW X XS diag ({552 s = O ({max(p, @)} 2N TY%)
Ford=1,2,¢=1,...,Nand t=1,...,T, define
Vidma =NT{e] (X{SC} X)X {20 1G(Iy @ B¢ %) esira2}riar

Viegma = NTlep (X{E0}1X) 7 X0} diag ({7 ) eirsi-1]ery, v

Note that 63(.;’”) = 0 under Hy. Then we can express J?, by

N 2 N T
7o, = (NT) 6] (z S Vo £ 373" vm> |
=1 d=1 =1 t=1

Denote ‘v/;,d,m,l = %,d,m,l/(é{max(p7 Q)T}1/2)7 and v;,t,mz = W,t,m,Z/(é{maX(p7 Q)T}1/2)7



) < C uni-

2,t,m,2

where C' is sufficiently large, so that Eexp(qude) < C and Eexp(vV?
formly for alld =1,2,¢=1,...,Nand t =1,...,T, where v and C are as defined in
(CT) Let Viami = Vidmi I (Viamal < 0) = E{Viami I ([Viamal < 0)}, and Viymo =
‘V/i,t,m,2 [(|‘7i,t,m,2| < Q)_E{‘vfi,t,mﬂju‘z,t,m,ﬂ < Q)}v with o = 101/21/_1/2{log(TN+]5)}1/2.

Denote

N 2 N
o= (NT) 7 |f,| 7 /2(C {max(p, q)T}?) (Z D Vidma+ ) A,-,t,m;) -

We next show E{V; gm1l(|Viami| < 0)} and E{V; 1 mol(|Virme| < 0)} are negligible.

Note that, by the facts that Eexp(vV?,, 1) < C, and Eexp(vV3

i,t,m,2

)< C,

N 2
maxicmep  (NT) 0| /2 (C{max(p, ) T}?) ZZE{Hfzdml’[ Viamal > 0)}

i=1 d=1

1/2 1/2 >
= O(N*{max(p, ¢)}'"*) max_ max max E{|Viami|l(|Viama] = 0)}

= O(N'"*{max(p, ¢)}'/*)(NT + p)~°,

N T
maxi<mey  (NT)7 || ™/(C{max(p, ¢)TH?) ZZ E{ Vil (Viemez| > 0)}

= O(N'?T{max(p, ¢)}'/*) max max max E{|V;m2ll([Visme| > 0)}

1<m<p 1<i<N 1<t<T

= O(N'*T{max(p, ) }'/*)(NT + p)°

Therefore, we have that,

P {max |5, — Jo| = (logp) ™" |
" (B.34)
<P (max max max Vidmi] > Q) +P (max max max Vitma| > Q> =o(p ).

(2
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Given the fact that | max,,(J2)? — max,,(J¢)?| < 2max,, |.J% | max,, |J%, — J¢| + max,,

|Jo — j%|2, it suffices to show that, under H, for any fixed ¢,

A 1
P <m£X(Jf;)2 — 2logp +loglogp < qﬁ) — exp {—ﬁ exp(—%)} : (B.35)
By Lemma [l we have that, for any fixed k < p/2,
2%
S Y {2 0n o () 2 65 < P {max(J5)? = 65
b1 1<mi <..<mp<p "

2%—1

<SS Y P{Un) 0 ()P 2 6
b=1 1<my <...<my<p

(B.36)

where ¢5 = 2logp — loglog p + ¢. Define |a|min = minj< <y |as| for any vector a € R?,

and let Vi = (NTI6)™"* (Clmax(p, ) T}2) (L3ey Vitoma + S0y Vima ), and

Wi tmamyy = Vimas - - -5 f/zmb) Then we have that,

By Theorem 1.1 in [Zaitsev| (1987)), we have that,

z¢}5/2}

<P{|Zkin > 6)/* — enrslogp) 2} + b exp {—

N
P { ‘ (NT>71/2 Z ‘/Viﬂ{ml ..... mp}

(NT)2enr;
cob*{max(p, ¢)T}/2o(logp)/2 |’
(B.37)

where ¢; and ¢, are some positive constants, ey — 0 that is to be specified later,

and Zy = (Zpmy, - -, Zm,)" 1s a normal vector with mean zero and the covariance matrix



-----

we let ex7 5 — 0 sufficiently slowly, so that for any large constant C >0,

NT)1/2€NT 5 A
b5/2 _ ( P =0 ~—C )
Qv e { cab*{max(p, )T} /2glog p ()

By (B.36]), we have that,

P {max(jfn)Q > ¢>~} <S (-t Y P {|Zb\mm > ¢5/* — eNT,ﬁ(logﬁ)*W} +o(1).
m b=1 1<mi<...<mp<p
(B.38)
Similarly, we also obtain that,
2k
]Ib{max(t],?])2 > ¢~} > Z(—l)bfl Z P {’Zb‘min > ¢%/2 + €NT,;3(108§25)71/2} +o(1).
m b=1 1<mi<...<mp<p
(B.39)

Then it suffices to show that, for any fixed integer b and any ¢,

. I _
> P{1Zknin = 6}/ + enrllogp) 2 = a7 exp(=be/2){1 + o(1)}.
1<mi<...<mp<p '
(B.40)
Then by Lemma [2] the result in (i) follows.
For (ii), the result follows based on the proofs above and the proof in Theorem [3}

For (iii), similarly as the proof of Lemma (7] it suffices to show that

tp
['r
0

D rpern LT = 1) = P(|J2;] = 7)}
PoG(T)

> e] dr = o(vy).
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Using the Markov inequality, we only need to bound

Z(Tl,jl),(rg7j2)EH0{P(|J’I(’)l,jl| 2 T, ’Jﬁg,j2| 2 7-) - IP)(|J7"01,]1| Z T)P(|J’I(’)2,]2| Z 7-)}
PRG3(T) '

Following the proof of Lemma [7] we divide the index pairs (r1,j1), (r2, j2) € Ho into

[e] ]

three subsets based on the magnitude of the covariance cov(Jy, ; , J7, ;,

). For each sub-

set, by employing the truncations from (i) and the proof of Lemma 7 in the supplement

of Sun et al.| (2023), the result in (iii) follows under (logp)""* = O(N/max(p, q)).

This completes the proof of Theorem [5] O]

C Additional Numerical Results

C.1 Experiment results when 7' =8

We present the additional estimation and multiple testing results for T" = 8 in Tables

and respectively.

C.2 Experiment results under non-Gaussian error distribution

We carry out a simulation in which the error terms in follow a heavy-tailed distri-
bution, with the entries of 2;1/2@21;1/2 and 251/26“ drawn from a t-distribution with
6 degrees of freedom. We consider 7" = 4, while all other settings are the same as in
Section .4}

Table [S3] presents the multiple-testing results. It shows that our proposed method

continues to control the FDR at the target level a = 0.1, whereas the REML fails to do



Table S1: Parameter estimation: the bias and standard error based on 200 data replications for the
autoregressive and moving average temporal structures with 7" = 8.

Temporal structure Autoregressive Moving average
w =0.03 w =0.05 w =0.03 w = 0.05
R N method hub small hub small hub small hub small
Bias and SE of covariance estimation
100 Bias 0.0541 0.0555 0.0991 0.0994 0.0535 0.0547 0.0991 0.0985
50 SE 0.1759 0.1405 0.1765 0.1934 0.1862 0.1516 0.1890 0.2051
9200 Bias 0.0550 0.0550 0.1195 0.1201 0.0542 0.0544 0.1192 0.1201
SE 0.1342 0.1315 0.1565 0.1523 0.1427 0.1367 0.1638 0.1607
100 Bias 0.0785 0.0768 0.1262 0.1273 0.0780 0.0759 0.1252 0.1270
100 SE 0.1687 0.1912 0.2275 0.1752 0.1811 0.2037 0.2344 0.1868
9200 Bias 0.0626 0.0617 0.1022 0.1034 0.0623 0.0616 0.1018 0.1032
SE 0.1193 0.1192 0.1517 0.1284 0.1268 0.1269 0.1590 0.1366
Bias and SE of coefficient estimation

100 Bias  -0.0002 -0.0002 0.0006 0.0002 -0.0002 -0.0002 0.0006 0.0001
50 SE 0.1131 0.1129 0.1130 0.1140 0.1124 0.1121 0.1124 0.1134
9200 Bias 0.0000 0.0001 -0.0002 0.0004 0.0000 0.0001 -0.0002 0.0004
SE 0.0755 0.0755 0.0755 0.0753 0.0749 0.0750 0.0750 0.0748
100 Bias  -0.0001 0.0001 -0.0004 -0.0002 -0.0001 0.0002 -0.0004 -0.0002
100 SE 0.1131 0.1131 0.1134 0.1133 0.1124 0.1125 0.1127 0.1126
200 Bias  -0.0001 -0.0001 -0.0002 0.0001 -0.0001 -0.0001 -0.0002 0.0001
SE 0.0754 0.0755 0.0752 0.0755 0.0748 0.0749 0.0747 0.0749

so in certain cases. In terms of empirical power, our method is generally more powerful

than REML, and this advantage becomes increasingly pronounced as N or 1" grows.

C.3 Experiment results under misspecification of Kronecker structure

We carry out a simulation in which the covariance of random error ¢;,; does not follow

a Kronecker structure as in ([2.3)), but instead,

(67‘,,1,17 .-

Enon—scp(f/lv 1, t27 T2) - (1 - )\k)[ZT]tl,t‘z {ER]”L”‘Z + )\k‘

-5 €1,T -

)
s €iRm1s -5 € rr) ~ Normal(0, Xponsep), where

(Tl — 7”2)2

(t1 —t2)?+ 1 p{ (t1 — )2+ 1

}



Statistica Sinica

Page 37

Table S2: Multiple testing: the empirical FDR and power in percentage based on 200 data replication
for the autoregressive and moving average temporal structures with 7'= 8 and the FDR level a = 0.1.

Temporal structure Autoregressive Moving average
w =0.03 w =0.05 w =0.03 w =0.05
R N method hub small hub small hub small hub small
Empirical FDR
100 Proposed 8.52 7.89 6.46 7.83 9.21 830 6.87 8.77
50 REML 12.74 12.81 11.55 11.75 12.74 12.43 11.40 11.82
200 Proposed 7.09 7.47 596 6.15 7.03 7.64 599 6.10
REML 10.50 10.27 10.17 10.43 10.50 10.42 10.15 10.20
100 Proposed 7.34 7.95 6.84 594 7.77 889 753 6.21
100 REML 12.03 12.32 11.61 11.58 11.84 12.27 11.61 11.57
200 Proposed 6.38 7.10 5.83 5.79 6.57 7.04 5.83 5.76
REML 9.60 10.23 10.13 9.88 9.65 10.22 10.07 9.98
Empirical Power

100 Proposed 87.08 86.09 86.95 88.27 87.59 86.95 87.74 88.78
50 REML 83.29 81.88 84.92 85.84 83.39 81.83 84.87 85.38
9200 Proposed 99.80 99.70 99.88 99.91 99.88 99.77 99.91 99.92
REML  99.58 98.59 99.79 99.64 99.67 98.67 99.79 99.67
100 Proposed 89.44 88.52 90.60 89.77 89.83 89.30 91.22 90.32
100 REML 85.08 85.15 87.84 86.78 84.69 84.36 87.67 86.14
200 Proposed 99.87 99.92 99.90 99.87 99.88 99.94 99.93 99.89
REML  99.48 99.74 99.74 99.59 99.57 99.75 99.76 99.62

for 1 <ty,ts < T and 1 < ry,ry < R, and the hyper-parameter \; controls the degree

of deviation from the Kronecker structure. We consider A, = {0,0.2,0.4,0.6}, with

R =100, N =100,T = 4. All other settings are the same as in Section [£.4]

We report the multiple testing results in Table[S4 We see that our proposed method

consistently maintains the empirical FDR under the pre-specified level @ = 0.1, while

the REML-based testing method shows noticeable inflation. Moreover, as A\ increases,

reflecting a greater deviation from the Kronecker structure, the empirical power of our

method only shows a modest decline, which demonstrates the robustness of our method

to departure from the Kronecker condition.



Table S3: Multiple testing for ¢-distribution error with 6 degrees of freedom: the empirical FDR and
power in percentage basyed on 200 data replication for the autoregressive and moving average temporal
structures with T'= 4 and the FDR level a = 0.1.

Temporal structure Autoregressive Moving average
w = 0.03 w = 0.05 w = 0.03 w = 0.05
R N method hub small hub small hub small hub small

FEmpirical FDR,
100 Proposed 8.24 10.05 7.97 5.20 7.93 9.97 7.59 6.08
50 REML 10.11 8.44 9.51 9.18 10.73 8.74 10.00 9.27
Proposed 7.99 9.13 7.94 7.70 8.20 8.96 7.91 8.02

200 REML 10.27 11.31 10.06 10.40 10.30 11.28 10.03 10.30

100 Proposed 6.29 6.07 8.25 8.47 6.49 6.52 8.04 8.41

100 REML 9.12 10.22  13.06 11.85 8.69 9.03 13.28  11.92
9200 Proposed 8.72 8.37 7.46 7.56 8.98 8.22 7.48 7.56
REML 11.19  10.14  10.02 9.89 11.11  10.20 9.93 9.94

FEmpirical Power

100 Proposed 1295 15.59 2344 17.54 12.85 15.64 23.55 17.93

50 REML 12.44 13.48 23.34 18.88 11.73 12.88 2297 18.17
9200 Proposed  74.38 74.89 75.75 76.49 75.08 75.33 76.43 77.11
REML 69.85 69.24 7235 7254 7030 69.71 73.01 73.02

100 Proposed 13.25 13.08 23.14 23.64 13.03 13.48 23.24 23.90

100 REML 14.36  15.17  26.02 25.69 13.66 15.28  25.75  25.23
200 Proposed  72.40 7282 76.26 77.86 73.45 73.77 76.80 78.53

REML 68.83 67.61 73.75 7462 69.11 68.08 73.92 75.00

C.4 Experiment results with R > N

We carry out a simulation in which the number of response variables R is much larger
than the sample size N. We consider R = {500,1000}, N = {100,200},7 = 4. All
other settings are the same as in Section [4.4]

We report the multiple testing results in Table[S5} We see that our proposed method
continues to control the FDR at the target level = 0.1, while REML fails to do so.
Moreover, as N increases from 100 to 200, both our method and REML achieve similar

levels of empirical power.
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Table S4: Multiple testing under misspecification of the Kronecker structure: the empirical FDR and
power in percentage based on 200 data replications for the autoregressive and moving average temporal
structures with R = 100, N = 100, 7' = 4 and the FDR level o = 0.1.

Temporal structure Autoregressive Moving average
w = 0.03 w = 0.05 w = 0.03 w = 0.05
AL Method hub small hub small hub small hub small

Empirical FDR
Proposed 705 785 6.78 6.85 7.02 7.60 6.68 6.73

0 REML 12.48 13.18 11.74 11.96 12.53 13.31 11.78 11.89
0.2 Proposed 813 999 753 796 861 1036 7.78 8.11
REML 12,52 13.76 11.60 12.06 12.27 13.64 11.56 11.96

0.4 Proposed 761 972 6.8 795 727 10.10 6.95 7.95
REML 12.76 13.68 11.59 12.11 12.72 13.79 11.68 12.02

0.6 Proposed 5.13 587 484 567 4.81 599 497 547
REML 12.79 13.64 11.78 12.06 12.80 13.65 11.80 12.09

Empirical Power

0 Proposed 39.76 40.09 47.05 46.87 40.29 40.54 47.49 47.36
REML 41.23 41.44 49.55 49.33 41.61 41.38 49.61 49.59

0.2 Proposed 38.02 40.27 45.81 45.25 38.67 40.77 46.15 45.76
REML 40.59 40.42 49.11 47.81 40.64 40.49 49.03 47.85

04 Proposed 34.54 37.30 42.61 42.72 34.62 37.24 42.87 42.71
REML 40.24 40.18 48.79 47.65 40.17 40.01 48.87 47.75

0.6 Proposed 26.14 27.77 36.66 35.36 25.77 27.45 36.60 34.94

REML 39.97 39.80 48.60 47.52 39.95 39.98 48.69 47.42

C.5 Model diagnosis for longitudinal neuroimaging data

We perform model diagnosis for the OASIS-2 longitudinal AD data. We focus on the
normality and linearity conditions. Specifically, for each region, we first estimate the
covariance matrices, then apply the least squares method to estimate the coefficients.
Based on the fitted model, we then compute the residuals. Figure [S1] shows the QQ-
plots of the standardized residuals for three randomly selected regions. We see that the
points lie close to the reference line. Moreover, the Shapiro-Wilk normality test shows

that, for 59 out of 68 regions, the p-value exceeds 0.05. Both results suggest that the



Table S5: Multiple testing with R being much larger than N: the empirical FDR and power in
percentage based on 200 data replication for the autoregressive and moving average temporal structures
with T'= 4 and the FDR level o = 0.1.

Temporal structure Autoregressive Moving average
w = 0.03 w = 0.05 w = 0.03 w = 0.05
R N method hub small hub small hub small hub small
Empirical FDR

100 Proposed 7.32 6.47 5.93 5.28 7.63 6.47 6.09 5.61

500 REML 13.24 12.94 12.06 12.00 13.31 13.03 12.15 12.09
Proposed 7.38 7.16 6.64 6.35 7.48 7.19 6.71 6.27
REML 10.50 10.39 10.24  10.32 10.55 10.38 10.16  10.28

100 Proposed 6.94 6.40 5.58 5.17 7.23 6.55 6.02 5.54

1000 REML 12.95 13.05 11.69 11.86 13.01 13.05 11.75 11.87
Proposed 7.16 6.70 6.78 6.32 7.23 6.77 6.80 6.34

200

200
REML 10.68  10.87 10.35 10.29 10.73 1097 10.31  10.23
Empirical Power
100 Proposed  41.78 39.31 46.39 43.43 42.45 39.72 46.88  44.45

500 REML 4290 41.81 49.93 49.66 4231 41.24 4947 48.99
Proposed  90.03 89.79 91.70 91.53 90.71  90.39 9229 92.10

REML 88.61 88.03 90.86 91.00 89.27 88.72 91.36 91.53
100 Proposed 4033  39.06 4297 42.82 40.96 39.43 44.25 43.92

1000 REML 42,17 42.04 48.22 4840 41.78 41.64 48.01  48.25
200 Proposed  89.44  89.09 92.25 9197 90.13 89.76 92.8 92.58

REML 88.32  88.27Y 91.54 91.556 88.99 8883 91.99 92.06

200

normality holds reasonably well. Figure [S52| shows the fitted values versus the Pearson
residuals for three randomly selected regions. We see that the residuals center around
the horizontal line at zero with no discernible pattern, indicating no clear evidence of

nonlinearity.
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Figure S1: Model diagnosis for longitudinal AD data: QQ-plots for the standardized residuals for three
randomly selected regions.
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Figure S2: Model diagnosis for longitudinal AD data: the fitted values versus Pearson residuals for
three randomly selected regions.
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