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S1. Assumptions

We need the following regularity conditions for our asymptotic theory.

Assumption S1. X is continuously distributed on a compact and convex

support X ⊂ Rk. The density of X is bounded and bounded away from

zero on X .

Assumption S2.

1. (i) D is independent of {Y (0), Y (1)} conditional on X = x for al-

most every x.

(ii) There exists c > 0 such that c < pr(D = 1 | X = x) < 1− c for

almost every x.
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2. {Yi, Di, Xi}Ni=1 is an independent and identically distributed sample

of (Y,D,X).

Assumption S3.

1. (i) D is independent of Y (0) conditional on X = x for almost every

x.

(ii) There exists c > 0 such that pr(D = 1 | X = x) < 1 − c for

almost every x.

2. Conditional on Di = d, {(Yi, Xi)}Nd
i=1 is an independent and identically

distributed sample from the distribution of (Y,X | D = d) for each

d ∈ {0, 1}. For some r ≥ 1, N r
1/N0 → θ with θ ∈ R+.

Assumption S4. For each d ∈ {0, 1},

1. x 7→ µ(d, x) and x 7→ σ2(d, x) are Lipschitz continuous in X ,

2. x 7→ E(Y 4 | D = d,X = x) is bounded uniformly on X , and

3. x 7→ σ2(d, x) is bounded away from zero on X .

As is prevalent in this literature, analyses are based on Assumption

S2.1 that (i) assignment to treatment is independent of potential outcomes

conditional on observed pretreatment variables, and (ii) there is sufficient
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overlap in the support of the conditional distribution of Xi given Di = 0 and

that of the conditional distribution of Xi given Di = 1. The combination of

the unconfoundedness assumption in S2.1.(i) and the overlap assumption in

S2.1.(ii) is referred to as strong ignorability (Rosenbaum and Rubin, 1983).

These two assumptions are strong and may not be satisfied in some cases.

However, according to Imbens and Wooldridge (2009), there is no general

approach to estimating treatment effects without unconfoundedness, and

they describe several methods for assessing its plausibility. The assumption

of compactness and convexity of the support of the covariates in Assumption

S1 are convenient regularity conditions. Assumption S2.2 assumes that

the sampling is random. And Assumption S4 requires weak smoothness

restrictions on the conditional distribution of Y given X.

Let λ = (λ1, . . . , λk)
T be a k-dimensional vector of non-negative inte-

gers. The following assumptions are needed for deriving asymptotic prop-

erties of τ̂bc and τ̂ tbc

Assumption S5. Let |λ| =
∑k

`=1 λ` and xλ =
∏k

`=1 x
λ`
` , where x` is

the `th element of x. Define a series {λ(q)}∞q=1 that contains all distinct

vectors such that |λ(q)| is non-decreasing. Let Q be the series length and

pQ(x) = (xλ(1), . . . , xλ(Q))T. And let N 7→ Q(N) be an increasing function
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of N . A non-parametric series regression estimator µ̂(d, x) is given by

µ̂(d, x) = pQ(N)(x)T

( ∑
i:Di=d

pQ(N)(Xi)p
Q(N)(Xi)

T

)− ∑
i:Di=d

pQ(N)(Xi)Yi,

where (·)− is a generalized inverse.

Assumption S6.

1. The support of X, X ⊂ Rk, is a Cartesian product of compact inter-

vals.

2. Q(N) = N ν , with 0 < ν < min{2/(4k + 3), 2/(4k2 − k)}.

3. There is a C such that for each multi-index λ the λth partial derivative

of µ(d, x) exists for d = 0, 1 and is bounded by C |λ|.

Here, Assumption S5 summarises the conditions for the series estima-

tor µ̂(d, x) employed by Abadie and Imbens (2011), and Assumption S6

is used to establish the asymptotic behaviour of bias-corrected rematching

estimators τ̂bc and τ̂ tbc.

S2. Proof

Proposition 1 follows directly from Equation (3.6), and its proof is therefore

omitted.
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S2.1 Proof of Proposition 2

First, it can be proven that

τ̂ =
1

N

N∑
i=1

Ỹi(1)− Ỹi(0)

=
1

N


∑

1≤i≤N
Di=1

Yi − 1

M(i)

∑
j∈J (i)

Yj

+
∑

1≤i≤N
Di=0

 1

M(i)

∑
j∈J (i)

Yj − Yi




=
1

N

N∑
i=1

(2Di − 1)Yi −
∑

1≤i≤N
Di=1

∑
1≤j≤N
Dj=0

1

M0 +Mre(i)
1{j ∈ J (i)}Yj

+
∑

1≤i≤N
Di=0

∑
1≤j≤N
Dj=1

1

M0 +Mre(i)
1{j ∈ J (i)}Yj.

Note that

∑
1≤i≤N
Di=0

∑
1≤j≤N
Dj=1

1

M0 +Mre(i)
1{j ∈ J (i)}Yj

=
∑

1≤i≤N
Di=0

∑
1≤j≤N
Dj=1

1

M0 +Mre(i)
[1{j ∈ JM0(i)}+ 1{j ∈ Lre(i)}]Yj

=
∑

1≤j≤N
Dj=1

 ∑
1≤i≤N
Di=0

1{j ∈ JM0
(i)}

M0 +Mre(i)
+

∑
1≤i≤N
Di=0

1{j ∈ Lre(i)}
M0 +Mre(i)

Yj

=
∑

1≤j≤N
Dj=1

 ∑
1≤i≤N
Di=0

1{j ∈ JM0
(i)}

M0 +Mre(i)
+

∑
1≤i≤N
Di=0

1{i ∈ Jre(j)}1{KM0
(j) = 0}

M0 +Mre(Jre(j))

Yj

=
∑

1≤j≤N
Dj=1

 ∑
1≤i≤N
Di=0

1{j ∈ JM0(i)}
M0 +Mre(i)

+
1{KM0(j) = 0}
M0 +Mre(Jre(j))

Yj
=

∑
1≤j≤N
Dj=1

K(j)

M0
Yj ,
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and similarly, we have

∑
1≤i≤N
Di=1

∑
1≤j≤N
Dj=0

1

M0 +Mre(i)
1{j ∈ J (i)}Yj =

∑
1≤j≤N
Dj=0

K(j)

M0

Yj.

Hence,

τ̂ =
1

N

N∑
i=1

(2Di − 1)Yi −
∑

1≤j≤N
Dj=0

K(j)

M0

Yj +
∑

1≤j≤N
Dj=1

K(j)

M0

Yj

=
1

N

N∑
i=1

(2Di − 1)

{
1 +

K(i)

M0

}
Yi.

Similarly, we can prove that

τ̂ t =
1

N1

N∑
i=1

{
Di − (1−Di)

K(i)

M0

}
Yi,

which is the desired result.

S2.2 Proof of Theorem 1

The proof below follows a similar argument as in the proof of Theorem 1(i)

in Abadie and Imbens (2006). Recall from Section 4.1 that the bias term

is given by

B =
1

N

N∑
i=1

(2Di − 1)

 1

M(i)

∑
j∈J (i)

{µ(1−Di, Xi)− µ (1−Di, Xj)}


=

1

N

N∑
i=1

∑
j∈J (i)

Bj,i

M(i)
,
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where M(i) = |J (i)|, and

Bj,i = (2Di − 1) {µ(1−Di, Xi)− µ (1−Di, Xj)}

is the unit-level bias for the match with index j of the unit i. Let Uj,i =

Xj−Xi be the unit-level matching discrepancy. Then Bj,i can be rewritten

as follows:

Bj,i = Di{µ(0, Xi)− µ(0, Xj)} − (1−Di){µ(1, Xi)− µ(1, Xj)}

= Di{µ(0, Xi)− µ(0, Xi + Uj,i)} − (1−Di){µ(1, Xi)− µ(1, Xi + Uj,i)},

where j ∈ J (i). Next, we prove that M(i) is bounded in probability.

Recall that M(i) = M0 + Mre(i), where Mre(i) =
∑N

j=1 1{i ∈ Jre(j)}. By

the definition of Jre(i), we know that Jre(j) ⊆ J1(j) for all j = 1, . . . , N .

So, we have 1{i ∈ Jre(j)} ≤ 1{i ∈ J1(j)} for all i, j = 1, . . . , N, implying

that

Mre(i) ≤
N∑
j=1

1{i ∈ J1(j)} ≡ K1(i),

where the inequality essentially means that the number of times unit i is

used as the nearest match among unmatched units must be bounded above

by the number of times unit i is used as the nearest match among all

units. According to Lemma 3(i) of Abadie and Imbens (2006), we have

K1(i) = Op(1). Hence, M(i) ≤M0 +K1(i) = Op(1).
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Let J(i) = arg maxj∈J (i)Bj,i, i = 1, . . . , N , denoting the index of the

farthest match in J (i). We obtain

E(N2/kB2) =N2/kE

 1

N

N∑
i=1

∑
j∈J (i)

Bj,i

M(i)

2

≤N2/kE

 1

N

N∑
i=1

∑
j∈J (i)

|BJ(i),i|
M(i)

2

=N2/kE

(
1

N

N∑
i=1

|BJ(i),i|

)2

.

Under the Lipschitz continuity assumption on µ(d,X) for d ∈ {0, 1},

we have |Bj,i| ≤ C1‖Uj,i‖, where C1 is some positive constant that is finite

by assumption. Hence, we get

E(N2/kB2) ≤N2/kE

(
1

N

N∑
i=1

C1‖UJ(i),i‖

)2

=N2/kC2
1

1

N2

N∑
i=1

N∑
j=1

E(‖UJ(i),i‖‖UJ(j),j‖)

≤N2/kC2
1

1

N2

N∑
i=1

N∑
j=1

E

(
‖UJ(i),i‖2 + ‖UJ(j),j‖2

2

)

=N2/kC2
1

2

N2
E

(
N∑
i=1

N

2
‖UJ(i),i‖2

)

=N2/k−1C2
1

N∑
i=1

E‖UJ(i),i‖2

=N2/k−1C2
1E

{
1

N
2/k
0

∑
i:Di=1

E(N
2/k
0

∥∥UJ(i),i∥∥2 | D1, . . . , DN , Xi)

+
1

N
2/k
1

∑
i:Di=0

E(N
2/k
1

∥∥UJ(i),i∥∥2 | D1, . . . , DN , Xi)

}
, (S2.1)
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where the last equality holds using the tower property.

According to Lemma 2 of Abadie and Imbens (2006), if Assumption

S1 holds, then the normalized moments of the matching discrepancies, i.e.,

N1/k‖Uj,i‖ for j ∈ Jm(i) and m < ∞, are bounded for all points in the

support. However, for our proposed rematching estimator, the matched

index set for the ith unit, i.e., J (i), is not equal to any Jm(i) with a fixed

m. To derive an upper bound for ‖UJ(i),i‖ ≤ supj∈J (i) ‖Xi − Xj‖, we will

bound the matching discrepancies and rematching discrepancies separately.

By definition, J (i) = JM0(i) ∪ Lre(i). So, it holds that

sup
j∈J (i)

‖Xi −Xj‖ ≤ sup
j∈JM0

(i)

‖Xi −Xj‖+ sup
j∈Lre(i)

‖Xi −Xj‖, (S2.2)

where supj∈∅ ‖Xi −Xj‖ := 0. Since Lre(i) = {` ∈ {1, . . . , N} : i ∈ Jre(`)},

we know that j ∈ Lre(i) implies i ∈ Jre(j). Also, note that

Jre(j) =


J1(j) if KM0(j) = 0;

∅ if KM0(j) > 0,

⊆ J1(j).

Hence, j ∈ Lre(i) further implies i ∈ J1(j). Then, let S(i) = {j : i ∈

J1(j)}. We can bound (S2.2) as follows:

sup
j∈J (i)

‖Xi −Xj‖ ≤ sup
j∈JM0

(i)

‖Xi −Xj‖+ sup
j∈S(i)

‖Xi −Xj‖. (S2.3)
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Now let κ(k) be the kissing number in dimension k, i.e., the maximum

number of non-overlapping unit spheres that can touch a common unit

sphere. By considering the ratio of volumes of k-dimensional spheres with

radii 1 and 3, it is not hard to see that κ(k) ≤ 3k is bounded for any finite k;

see, e.g., Cohn and Zhao (2014) for a sharper bound. Note that a particular

point Xi can only accommodate a limited number of the points regarding

Xi as their nearest neighbor due to spatial constraints. The value of |S(i)| is

maximized when we arrange the maximum number of unit spheres around

a unit sphere centered at Xi in a way that each sphere touches the central

sphere without overlapping. By definition, this maximum number is the

kissing number; see, e.g., Kozakova et al. (2006) and Zong (1998) for more

details. In other words, the set S(i) contains at most κ(k) points, i.e.,

|S(i)| ≤ κ(k) ≤ 3k.

Hence, j ∈ S(i) implies j ∈ J3k(i). Consequently, (S2.3) can be further

bounded as follows:

sup
j∈J (i)

‖Xi −Xj‖ ≤ sup
j∈JM0

(i)

‖Xi −Xj‖+ sup
j∈J

3k
(i)

‖Xi −Xj‖. (S2.4)

Each term on the right-hand side of (S2.4) is bounded in view of Lemma 2

of Abadie and Imbens (2006). Moreover, the conditional expectations

E(N
2/k
0

∥∥UJ(i),i∥∥2 | D1, . . . , DN , Xi) and E(N
2/k
1

∥∥UJ(i),i∥∥2 | D1, . . . , DN , Xi)

are both bounded by a constant C that does not depend on i according to
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Lemma 2 of Abadie and Imbens (2006). Thus, using this uniform bound,

we have

∑
i:Di=1

E(N
2/k
0

∥∥UJ(i),i∥∥2 | D1, . . . , DN , Xi) ≤ CN1,

∑
i:Di=0

E(N
2/k
1

∥∥UJ(i),i∥∥2 | D1, . . . , DN , Xi) ≤ CN0.

Therefore, (S2.1) can be bounded as follows:

E(N2/kB2) ≤C2E

{(
N

N0

)2/k
N1

N
+

(
N

N1

)2/k
N0

N

}

for some positive constant C2. By Chernoff’s inequality, any moment of

N/N1 or N/N0 is uniformly bounded in N , as in Abadie and Imbens (2006).

Part 1 of the theorem follows from Markov’s inequality.

The proof of part 2 is similar to that of part 1 and is omitted.

S2.3 Proof of Lemma 1

By Lemma 3(i) of Abadie and Imbens (2006), KM0(i) =
∑N

`=1 1{i ∈ JM0(`)} =

Op(1). Consider

K(i) =

[
N∑
`=1

1{i ∈ JM0(`)}
M0

Mre(`) +M0

]
+ 1{KM0(i) = 0} M0

Mre(Jre(i)) +M0

=


∑N

`=1 1{i ∈ JM0(`)}M0/{Mre(`) +M0} if KM0(i) 6= 0;

M0/{Mre(Jre(i)) +M0} if KM0(i) = 0,
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where M0/{Mre(i) +M0} ∈ (0, 1] is the adjusted weight for unit i after re-

matching and M0/{Mre(Jre(i))+M0} is the weight given, after rematching,

to unit i that is unmatched in the simple matching. When KM0(i) 6= 0, we

have

K(i) =
N∑
`=1

1{i ∈ JM0(`)}
M0

Mre(`) +M0

≤ KM0(i) = Op(1).

And when KM0(i) = 0,

K(i) =
M0

Mre(Jre(i)) +M0

∈ (0, 1).

Therefore, K(i) = Op(1).

According to Lemma 3 of Abadie and Imbens (2006), the qth moment of

KM0(i) conditional on Xi = x,D1:N , which is E{KM0(i)
q | Xi = x,D1:N},

is uniformly bounded in N . Since K(i) is either ≤ KM0(i) or ∈ (0, 1),

E{K(i)q | Xi = x,D1:N} will also be bounded in N , so the first part of the

lemma follows.

Part 2 of Lemma 1 can be proven using the same argument as for

E{K(i)q}.

For part 3 of Lemma 1, because the moments of K(i) are bounded

uniformly in N , and because the variance σ2(d, x) is bounded by σ̄2 =

supx,d σ
2(d, x), which is finite by Assumption S4, E[{1+K(i)/M0}2σ2(d, x)]

is bounded by σ̄2E[{1+K(i)/M0}2] and is finite. Hence E(V R) = O(1).
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S2.4 Proof of Theorem 2

Before proving Theorem 2, we need some preliminary results given by

Abadie and Imbens (2002). First, let r̄d(x) be the number of units with

Di = d and Xi ≥ x. Define X(i,k) = Xj if r̄Di
(Xi) − r̄Di

(Xj) = k,

and r̄Di
(Xi) − limx↑Xj

r̄Di
(x) = k − 1. When X is a scalar, AM0(i) =

(Xi/2 +X(i,−M0)/2, Xi/2 +X(i,M0)/2). Then, the exact conditional distribu-

tion of KM0(i) is,

KM0(i) | D, {Xj}Dj=1, Di = 1 ∼ Bin

(
N0,

∫
AM0

(i)

f0(z)dz

)
,

KM0(i) | D, {Xj}Dj=0, Di = 0 ∼ Bin

(
N1,

∫
AM0

(i)

f1(z)dz

)
.

Next, let Gamma(α, β) denote the gamma distribution with a shape pa-

rameter α and a scale parameter β. Given Xi = x, and Di = 1,

2N1 ·
f1(x)

f0(x)
·
∫
AM0

(i)

f0(z)dz → Gamma(2M0, 1)

in distribution, and given Xi = x and Di = 0,

2N0 ·
f0(x)

f1(x)
·
∫
AM0

(i)

f1(z)dz → Gamma(2M0, 1)

in distribution.

Note that

Nvar(τ̂) =E(V R) + V τ(X)
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=E

[{
1 +

K(i)

M0

}2

σ2(Di, Xi)

]
+ V τ(X)

=E

[{
1 +

K(i)

M0

}2

σ2(1, Xi) | Di = 1

]
p

+ E

[{
1 +

K(i)

M0

}2

σ2(0, Xi) | Di = 0

]
(1− p) + V τ(X),

where p is the probability of treatment assignment. Similarly,

Nvar(τ̂0) =E(V R
0 ) + V τ(X)

=E

[{
1 +

KM0(i)

M0

}2

σ2(1, Xi) | Di = 1

]
p

+ E

[{
1 +

KM0(i)

M0

}2

σ2(0, Xi) | Di = 0

]
(1− p) + V τ(X).

The number of times a unit is used as a match is calculated as

KM0(i) =
N∑
`=1

1{i ∈ JM0(`)}

when simple matching estimators are used. Recall thatM(`) = M0+Mre(`).

By Proposition 1,

K(i) =
N∑
`=1

1{i ∈ J (`)} M0

M(`)
,

which is not comparable with KM0(i) as it is a weighted form. To obtain a

comparable form, we let

H(i) =
N∑
`=1

1{i ∈ J (`)}.
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It is the number of times a unit is used as a match when rematching esti-

mators are used. Equivalently,

H(i) = max{KM0(i), 1},

since if a unit remains unmatched after the first matching, it will be matched

to its nearest neighbour in the rematching process.

The conditional expectation of H(i) is

E[H(i) | D, {Xj}Dj=1, Di = 1]

= E[max{KM0(i), 1} | D, {Xj}Dj=1, Di = 1]

= E[KM0(i)1{KM0(i) ≥ 1} | D, {Xj}Dj=1, Di = 1]

+ E[1{KM0(i) < 1} | D, {Xj}Dj=1, Di = 1]

= E[KM0(i) | D, {Xj}Dj=1, Di = 1]

+ pr[KM0(i) < 1 | D, {Xj}Dj=1, Di = 1],

and the conditional expectation of H2(i) is

E[H2(i) | D, {Xj}Dj=1, Di = 1]

= E[K2
M0

(i) | D, {Xj}Dj=1, Di = 1]

+ pr[KM0(i) < 1 | D, {Xj}Dj=1, Di = 1]

Define PM0(i) = Di ·
∫
AM0

(i)
f0(z)dz+(1−Di)·

∫
AM0

(i)
f1(z)dz. According
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to Abadie and Imbens (2002),

E[KM0(i) | D, {Xj}Dj=1, Di = 1] = N0PM0(i),

E[K2
M0

(i) | D, {Xj}Dj=1, Di = 1] = N0PM0(i) +N0(N0 − 1)PM0(i)
2,

and therefore,

E

[{
1 +

KM0(i)

M0

}2

σ2(1, Xi)

∣∣∣∣∣Di = 1

]

= E

([
1 +

1

M2
{N0PM0(i) +N0(N0 − 1)PM0(i)

2}

+
2

M0

N0PM0(i)

]
σ2(1, Xi)

∣∣∣∣ Di = 1

)
= E

([
1 +

1

M0

{
(1− p)
p

f0(Xi)

f1(Xi)
+

(1− p)2

2p2
f0(Xi)

2

f1(Xi)2
(2M + 1)

}
+

2(1− p)
p

f0(Xi)

f1(Xi)

]
σ2(1, Xi)

∣∣∣∣ Di = 1

)
+ o(1).

Similarly, we derive that

E[H(i) | D, {Xj}Dj=1, Di = 1] = N0PM0(i) + {1− PM0(i)}N0 ,

E[H2(i) | D, {Xj}Dj=1, Di = 1]

= N0PM0(i) +N0(N0 − 1)PM0(i)
2 + {1− PM0(i)}N0 .

And

E

[{
1 +

K(i)

M0

}2

σ2(1, Xi)

∣∣∣∣∣Di = 1

]

≤ E

[{
1 +

H(i)

M0

}2

σ2(1, Xi)

∣∣∣∣∣Di = 1

]
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= E

{(
1 +

1

M2
[N0PM0(i) +N0(N0 − 1)PM0(i)

2 + {1− PM0(i)}N0 ]

+
2

M0

{N0PM0(i) + (1− PM0(i))
N0}
)
σ2(1, Xi)

∣∣∣∣Di = 1

}
.

The first inequality holds because K(i)/M0 =
∑N

`=1 1{i ∈ J (`)}/M(`),

H(i)/M0 =
∑N

`=1 1{i ∈ J (`)}/M0, and M(`) ≥ M0 for all `. Since {1 −

PM0(i)} ∈ [0, 1) when M < min(N0, N1), we know that {1 − PM0(i)}N0 =

o(1). So, similarly, we know that

E

[(
1 +

H(i)

M0

)2

σ2(1, Xi) | Di = 1

]

= E

[(
1 +

1

M0

{
(1− p)
p

f0(Xi)

f1(Xi)
+

(1− p)2

2p2
f0(Xi)

2

f1(Xi)2
(2M + 1)

}
+

2(1− p)
p

f0(Xi)

f1(Xi)

)
σ2(1, Xi)

∣∣∣∣ Di = 1

]
+ o(1)

= E

[{
1 +

KM0(i)

M0

}2

σ2(1, Xi)

∣∣∣∣∣Di = 1

]
.

That is,

E

[{
1 +

K(i)

M0

}2

σ2(1, Xi)

∣∣∣∣∣Di = 1

]

≤ E

[{
1 +

KM0(i)

M0

}2

σ2(1, Xi)

∣∣∣∣∣Di = 1

]
.

Similarly,

E

[{
1 +

K(i)

M0

}2

σ2(0, Xi) | Di = 0

]

≤ E

[{
1 +

KM0(i)

M0

}2

σ2(0, Xi) | Di = 0

]
.
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Then, it is obvious that Nvar(τ̂) ≤ Nvar(τ̂0).

S2.5 Proof of Theorem 3

Note that

Nvar(τ̂)

= E(V R) + V τ(X)

= E

[{
1 +

K(i)

M0

}2

σ2(Di, Xi)

]
+ V τ(X)

= E

[{
1 +

K(i)

M0

}2

σ2(1, Xi) | Di = 1

]
p

+ E

[{
1 +

K(i)

M0

}2

σ2(0, Xi) | Di = 0

]
(1− p) + V τ(X),

where p is the probability of treatment assignment. Similarly,

Nvar(τ̂0) = E(V R
0 ) + V τ(X)

= E

[{
1 +

KM0(i)

M0

}2

σ2(1, Xi) | Di = 1

]
p

+ E

[{
1 +

KM0(i)

M0

}2

σ2(0, Xi) | Di = 0

]
(1− p) + V τ(X).

It is known that

KM0(i) =
N∑
`=1

1{i ∈ JM0(`)}

and

K(i)

M0

=
N∑
`=1

1{i ∈ JM0(`)}
1

Mre(`) +M0

+ 1{KM0(i) = 0} 1

Mre(Jre(i)) +M0
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=


∑N

`=1 1{i ∈ JM0(`)}1/{Mre(`) +M0} if KM0(i) 6= 0;

1/{Mre(Jre(i)) +M0} if KM0(i) = 0.

Then we state the results below given the values of N0 and N1. Under

the assumptions that k = 1, f0(x) = f1(x), and M0N1 < N0, we have, for

Di = 1,

K(i) = KM0(i) ∼ Bin(M0N0, 1/N1).

For Di = 0, given that f0(x) = f1(x), the term KM0(i) can only take values

in {0, 1} when there exist unmatched points. When KM0(i) = 1 for the

control unit i, exactly one of 1{i ∈ JM0(`)} (` = 1, . . . , N) is 1. Since the

number of matched control is M0N1, we have KM0(i) ∼ Bern(M0N1/N0),

and

K(i)

M0

=


∑N

`=1 1{i ∈ JM0(`)}1/{Mre(`) +M0} if KM0(i) = 1;

1/{Mre(Jre(i)) +M0} if KM0(i) = 0.

And also,

[KM0(i) | D = 1] ∼ Bin(M0N0, 1/N1),

[1{KM0(i) = 1} | D = 0] ∼ Bern(M0N1/N0),

[Mre(`) | KM0(i) = 1, D = 0] ∼ Bin(N0 −M0N1, 1/N1),

[{Mre(Jre(i))− 1} | KM0(i) = 0, D = 0] ∼ Bin(N0 −M0N1 − 1, 1/N1).
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Denoting [KM0(i) | D = 1] as K, [1{KM0(i) = 1} | D = 0] as I, [Mre(`) |

KM0(i) = 1, D = 0] and [Mre(Jre(i)) − 1 | KM0(i) = 0, D = 0] as [H | I],

we have

K ∼ Bin(M0N0, 1/N1),

I ∼ Bern(M0N1/N0),

[H | I] ∼ Bin(N0 −M0N1 − 1(I = 0), 1/N1).

Now, using the assumption that σ2(d, x) = σ2
d is a constant as a function

of x for each d ∈ {0, 1}, we have that

Nvar(τ̂)→ E

[{
1 +

K(i)

M0

}2

σ2(1, Xi) | Di = 1

]
p

+ E

[{
1 +

K(i)

M0

}2

σ2(0, Xi) | Di = 0

]
(1− p) + V τ(X)

= σ2
0(1− p)E

{1 + N∑
`=1

1{i ∈ JM0
(`)}

Mre(`) +M0
+

1{KM0
(i) = 0}

Mre(Jre(i)) +M0

}2

| Di = 0


+ σ2

1pE

[{
1 +

K(i)

M0

}2

| Di = 1

]
+ V τ(X)

= σ2
1pE

(
1 +

K

M0

)2

+ σ2
0(1− p)E

(
1 +

I

H +M0
+

1− I
H + 1 +M0

)2

+ V τ(X).

For comparison, Nvar(τ̂0) can be written as

Nvar(τ̂0)→ E

[{
1 +

KM0(i)

M0

}2

σ2(1, Xi) | Di = 1

]
p

+ E

[{
1 +

KM0(i)

M0

}2

σ2(0, Xi) | Di = 0

]
(1− p) + V τ(X)

= σ2
1pE

(
1 +

K

M0

)2

+ σ2
0(1− p)E

(
1 +

I

M0

)2

+ V τ(X).
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Similarly, we have

N1var(τ̂ t)→ σ2
1p+ σ2

0(1− p)E
(

I

H +M0

+
1− I

H + 1 +M0

)2

+ V τ(X),t,

N1var(τ̂ t0)→ σ2
1p+ σ2

0(1− p)E
(
I

M0

)2

+ V τ(X),t.

Then the desired results follow.

S2.6 Proof of Proposition 3

By Theorem 3, we have

N{var(τ̂ t0)− var(τ̂ t)} → σ2
0(1− p)

{
E

(
I

M0

)2

− E
(

I

H +M0
+

1− I
H + 1 +M0

)2
}
.

Note that

E

(
I

M0

)2

=
1

M2
0

M0N1

N0

=
N1

N0M0

,

and

E

(
I

H +M0
+

1− I
H + 1 +M0

)2

= E

{(
1

H +M0

)2

| I = 1

}
pr(I = 1) + E

{(
1

H + 1 +M0

)2

| I = 0

}
pr(I = 0)

= E

(
1

H1 +M0

)2
M0N1

N0
+ E

(
1

H0 + 1 +M0

)2(
1− M0N1

N0

)
= E

(
M0

H1 +M0

)2
N1

N0M0
+ E

(
M0

H0 + 1 +M0

)2(
1

M2
0

− N1

N0M0

)
.

We have

N{var(τ̂ t0)− var(τ̂ t)}
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= σ2
0(1− p)

[
N1

N0M0

{
1− E

(
M0

H1 +M0

)2

+ E

(
M0

H0 + 1 +M0

)2(
N0

N1M0
− 1

)}]
.

It is obvious that E
(

M0

H1+M0

)2
≤ 1 , and we have N0 > N1M0 by assump-

tion. Hence,

N{var(τ̂ t0)− var(τ̂ t)} > 0.

Then the result follows.

S2.7 Proof of Theorem 4

We consider each of the terms in (4.9) separately. For the first term, by the

law of large numbers τ̄(X)→ τ in probability. For the weighted average of

the residual R, we have NE{(R)2} = E[{1 + K(i)/M0}2σ2(d, x)] = O(1),

which is finite, hence, R = Op(N
−1/2) = op(1). And for the bias term, by

Theorem 1, B = Op(N
−1/k) = op(1). We thus prove the first part of the

theorem. The proof of the second part follows the same argument and is

therefore omitted.

S2.8 Proof of Theorem 5

Since the second part of the theorem follows the same argument as the first

part, we only prove part (i). First, (V τ(X))−1/2N1/2{τ̄(X) − τ} → N(0, 1)

in distribution by central limit theorem. Second, since E[{1 + K(i)/M0}4]
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is uniformly bounded, we then obtain

N1/2
∑N

i=1Ri

[
∑N

i=1{1 +K(i)/M0}2σ2(Di, Xi)]1/2
= (V R)−1/2N1/2R→ N(0, 1)

in distribution in a similar manner to Proof of Theorem 4 of Abadie and

Imbens (2006) using a Lindeberg-Feller central limit theorem. In addition,

(V R)−1/2N1/2R and (V τ(X))−1/2N1/2{τ̄(X) − τ} are asymptotically inde-

pendent. Therefore, the convergence to N(0, 1) of both (V R)−1/2N1/2R and

(V τ(X))−1/2N1/2{τ̄(X) − τ}, boundedness of V R and V τ(X), and bounded-

ness of V R away from zero imply that

{V R + V τ(X)}−1/2N1/2(τ̂ −B − τ)→ N(0, 1)

in distribution. Then the desired results follow.

S2.9 Proof of Theorem 6

We only prove the first part since part (ii) of the theorem follows the same

argument as part (i). Since it is proven in Section S2.2 that supj∈J (i) ‖Xi−

Xj‖ is bounded, it follows from Lemma A.2 of Abadie and Imbens (2011)

that

max
i=1,...,N

|µ̂(Di, Xi)− µ̂(Di, Xj)− {µ(Di, Xi)− µ(Di, Xj)}| = op(N
−1/2),

where j ∈ J (i). The difference |B̂ −B| can be written as

|B̂−B|



Rematching Estimators 24

≤ 1

N

N∑
i=1

1

M(i)

∑
j∈J (i)

|Di{µ̂(0, Xi)− µ̂(0, Xj)} − (1−Di){µ̂(1, Xi)− µ̂(1, Xj)}

− [Di{µ(0, Xi)− µ(0, Xj)} − (1−Di){µ(1, Xi)− µ(1, Xj)}]|

≤ max
i=1,...,N
j∈J (i)

∑
d=0,1

|µ̂(d,Xi)− µ̂(d,Xj)− {µ(d,Xi)− µ(d,Xj)}|

=op(N
−1/2).

Then the desired results follow.

S2.10 Proof of Theorem 7

First notice that∣∣∣∣∣ 1N
N∑
i=1

{
1 +

K(i)

M0

}2

{σ2(Di, Xi)− σ̂2(Di, Xi)}

∣∣∣∣∣
≤

∣∣∣∣∣ 1N
N∑
i=1

(
1 +

K(i)

M0

)2

[σ2(Di, Xi)− E{σ̂2(Di, Xi) | X1:N , D1:N}]

∣∣∣∣∣
+

∣∣∣∣∣ 1N
N∑
i=1

{
1 +

K(i)

M0

}2

[E{σ̂2(Di, Xi) | X1:N , D1:N} − σ̂2(Di, Xi)]

∣∣∣∣∣ .
Given Lemma 1.1 that all moments of K(i) are bounded uniformly in N ,

it follows from Proof of Theorem 6 of Abadie and Imbens (2002) that both

terms on the right-hand side of the above inequality converge to zero. And

thus

1

N

N∑
i=1

{
1 +

K(i)

M0

}2

σ̂2(Di, Xi)→ V R (S2.5)
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in probability. Now, consider

1

N

N∑
i=1

{Ỹi(1)− Ỹi(0)− τ̂}2 =
1

N

N∑
i=1

{Ỹi(1)− Ỹi(0)− τ}2 − (τ̂ − τ)2

=
1

N

N∑
i=1

{Ỹi(1)− Ỹi(0)− τ}2 + op(1).

We decompose

1

N

N∑
i=1

{
Ỹi(1)− Ỹi(0)− τ

}2

=
1

N

N∑
i=1

(2Di − 1)

 1

M(i)

∑
j∈J (i)

µ(Di, Xi)− µ(1−Di, Xj)

− τ
2

+
1

N

N∑
i=1

εi − 1

M(i)

∑
j∈J (i)

εj


2

+
2

N

N∑
i=1

(2Di − 1)

 1

M(i)

∑
j∈J (i)

µ(Di, Xi)− µ(1−Di, Xj)

− τ
 (2Di − 1)

εi − 1

M(i)

∑
j∈J (i)

εj

 .

Since the sample maximum of the norms of the matching discrepancies

‖Xi −Xj‖ is op(1), and the regression functions µ(d, x) are Lipschitz, for

d = 0, 1, we follow a similar argument to the proof of Theorem 7 of Abadie

and Imbens (2006) to obtain

1

N

N∑
i=1

(2Di − 1)

 1

M(i)

∑
j∈J (i)

µ(Di, Xi)− µ(1−Di, Xj)

− τ
2

=
1

N

N∑
i=1

{µ(1, Xi)− µ(0, Xi)− τ}2 + op(1)

for the first term on the right-hand side of the above equation. Also similar

to Proof of Theorem 7 of Abadie and Imbens (2006), we have

1

N

N∑
i=1

εi − 1

M(i)

∑
j∈J (i)

εj


2

− 1

N

N∑
i=1

{
1 +

K(i)

M2
0

}
σ2(Di, Xi) = op(1)
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and

1

N

N∑
i=1

{Ỹi(1)− Ỹi(0)− τ̂}2 =
1

N

N∑
i=1

{µ1 (Xi)− µ0 (Xi)− τ}2

+
1

N

N∑
i=1

{
1 +

K(i)

M2
0

}
σ2(Di, Xi) + op(1)

for the second and the last terms on the right-hand side of the equation,

respectively. Similar to the convergence (S2.5), it can be obtained that∣∣∣∣∣ 1

N

N∑
i=1

{
1 +

K(i)

M2
0

}
σ2(Di, Xi)−

1

N

N∑
i=1

{
1 +

K(i)

M2
0

}
σ̂2(Di, Xi)

∣∣∣∣∣ = op(1).

Therefore,

1

N

N∑
i=1

{
Ỹi(1)− Ỹi(0)− τ̂

}2

− 1

N

N∑
i=1

{
1 +

K(i)

M2
0

}
σ̂2(Di, Xi)→ V τ(X)

(S2.6)

in probability. Since

V̂ =
1

N

N∑
i=1

{Ỹi(1)− Ỹi(0)− τ̂}2

+
1

N

N∑
i=1

[{
K(i)

M0

}2

+

(
2M − 1

M0

){
K(i)

M0

}]
σ̂2(Di, Xi)

=
1

N

N∑
i=1

{Ỹi(1)− Ỹi(0)− τ̂}2 +
1

N

N∑
i=1

{
1 +

K(i)

M0

}2

σ̂2(Di, Xi)

− 1

N

N∑
i=1

{
1 +

K(i)

M2
0

}
σ̂2(Di, Xi),

the convergences (S2.5) and (S2.6) imply that

V̂ → V R + V τ(X)
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in probability, which finishes the proof for the first part of the theorem. The

proof for the second part is similar to that of part one and is omitted.

S3. Simulation results

In our simulation designs, the average treatment effects in this simulation

design are set as τ = τ t = 1. The parameter c controls the ratio of the

treated. Since matching estimators have been used when the interest is in

τ t, and there are more controls than the treated, we adjust c to fix the ratio

of the treated roughly at 0.3 for all cases. For example, letting c = 0.4 will

lead to a treated ratio of 0.3 for all single covariate cases. For multivariate

cases, we fix c at 0.45 for Cases 2(a), 2(b), 2(d), and 2(e) and at 0.55 for

Case 2(c); see Remark S1 for more discussions. For each case, we set the

sample size as N = 100, the number of fixed matches as M0 = 1, 2, 3, 4, 5,

and the number of Monte Carlo replications as 212.

Five cases with a single covariate are considered. In particular, we let

X ∼ Beta(1.2, 1.2), where Beta(α, β) denotes the beta distribution with

parameters α, β > 0. For the mean function m(x), we consider five non-

linear curves presented in Table S1. We set P (x) = 0.15+0.7x which assigns

a unit to the treated group with higher probability if its corresponding

covariate is of a greater value. The simulation results are in Figure S1.
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Table S1: Simulation designs for m(x).

Cases m(x)

1(a) 0.1 + z/2 + exp(−200(z − 0.7)2)/2

1(b) 0.8− 2(z − 0.9)2 − 5(z − 0.7)3 − 10(z − 0.6)10

1(c) 0.2 +
√

1− z − 0.6(0.9− z)2

1(d) 0.2 +
√

1− z − 0.6(0.9− z)2 − 0.1z cos(30z)

1(e) 0.4 + 0.25 sin(8z − 5) + 0.4 exp(−16(4z − 2.5)2)

Remark S1. In a preliminary simulation study, we consider different treated

ratio and find that results are similar overall. For example, if we choose

a smaller c, the treated ratio will be larger. But as long as we have more

treated units than control units, our conclusion will not change with the

choice of c. Figure S2 shows the results with the same simulation setting

except that c = 0.3 for all cases. The same conclusions are obtained.

We also consider cases with multiple covariates XT
i = (Xi1, . . . , Xi6). In

particular, we set the number of covariates at 6 with one covariate being dis-

cretely distributed, i.e., k = 5. For the first three covariates, (Xi1, Xi2, Xi3)
T

is generated from a multivariate normal distribution with mean µx ∈ R3,

var(Xi1) = 2, var(Xi2) = var(Xi3) = cov(Xi1, Xi2) = 1, cov(Xi1, Xi3) = −1,

and cov(Xi2, Xi3) = −0.5. For the remaining three covariates, we gener-

ate Xi4 ∼ Unif(−3, 3), Xi5 ∼ χ2
1, and Xi6 ∼ Bern(0.5), where χ2

1 denotes

the chi-squared distribution with one degree of freedom. Suppose that the
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mean function admits the form m(x) = γTg(x), where x = (x1, x2, . . . , x6)
T,

γ ∈ Rh is a h-vector of coefficients, g : Rk → Rh is some link function, and

h ∈ N. The propensity score P (x) = xTη, where η ∈ Rk is a vector of

coefficient. Five cases for µx, η, g and γ are considered; see Table S2.

Since the dimension of covariate is k > 1, the bias term is non-negligible

and a bias adjustment is needed. The bias can be corrected by the ordinary

least-squares estimator via a linear regression model, which is a special

case of the power series estimator. As it is implemented by Abadie et al.

(2004), we use the weighted linear regression for correcting the bias of our

proposed estimators, i.e., µ̂(d, x) = α̂d +xTβ̂d for d = 0, 1, where (α̂d, β̂d) =

arg min(αd,βd)

∑
i:Di=d

K(i)/M0(Yi − αd − XT
i βd)

2. The weight K(i)/M0 =∑N
`=1 1{i ∈ J (`)}/M(`) is the number of times unit i is used as a match for

all units `, each time weighted by the total number of matches for unit `.

Notice that here we do the matching by Mahalanobis distance which is the

vector norm ‖x‖A = (x′Ax)1/2, where the k × k matrix A is chosen to be

the inverse of the sample covariance matrix of the covariates, corresponding

to the Mahalanobis metric:

A =

{
1

N

N∑
i=1

(Xi − X̄)(Xi − X̄)T

}−1
,

where X̄ =
∑N

i=1Xi/N . We also include in the comparison the genetic

matching estimator (Diamond and Sekhon, 2013), which uses a state-of-art
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Table S2: The values of parameters used in the simulation experiments.

Cases Parameters Values

2(a) µx (0, 0, 0)T

η 0.7× (0, 1, 1, 1,−2, 1, 0.5)T

g(x) (1, xT1:2, (x3/2), exp(−200(x4 − 0.7)2), xT5:6)
T

γ (−3, 2, 1, 1, 2, 2, 2)T

2(b) µx (0, 0, 0)T

η 0.7× (0, 1, 1, 1,−2, 1, 0.5)T,

g(x) (1, x1, x
4
2, x3,

√
3− x4, xT5:6)T,

γ (−3, 2, 1, 1, 2,−1, 1)T

2(c) µx (−0.5, 0, 0)T

η 0.7× (0,−1, 1.5, 1,−0.5, 1, 0.5)T

g(x) (1, xT1:6)
T

γ (−3, 2, 1, 1, 2, 2, 2)T

2(d) µx (0, 0, 0)T

η 0.7× (0, 1, 1, 1,−2, 1, 0.5)T,

g(x) (1, x1, (0.2− x2)3, xT3:6,

γ (−3, 2, 1, 1, 2, 2, 2)T

2(e) µx (0, 0, 0)T

η 0.7× (0, 1, 1, 1,−2, 1, 0.5)T,

g(x) (1, x1, x
4
2, (1.5− x3)3,

√
3− x4, (x5 − 0.9)2, x6)

T,

γ (−3, 2, 1, 1, 2, 2, 2)T

iterative algorithm to maximize a criterion related to covariate balance and

perform the nearest neighbour matching using the scaled generalized Maha-



Rematching Estimators 31

lanobis distance. However, the genetic matching has a few tuning parame-

ters that slow the estimation for better results. For instance, a higher value

of the tuning parameter called ‘pop.size’ of the genetic matching slower the

estimation for better results. For fairness, we set ‘pop.size=20’ to make the

computational time roughly the same for all estimators. If we allow the

computational time to be longer for the genetic matching estimator, it is

likely that it will perform better in terms of the covariate balance, but at

the cost of efficiency.

Figure S3 is the performance comparison when X is multi-dimensional.

It is found that the mean squared errors of τ̂ tbc and τ̂ t0,bc are much lower com-

pared with others. Hence, we extract the results for τ̂ tbc and τ̂ t0,bc in Figure

S4 for better comparison. Interpreting the results from multi-dimensional

cases is difficult due to the bias estimation. Using more data points allows a

better fit but meanwhile introduces more bias if they are not good matches.

Intuitively, a complicated mean function requires more data for a better

bias estimation, which is the case for Case 2(d) in Figure S4. Therefore,

we may discover a decrease in bias with increasing M0 without rematching.

However, the rematching estimator performs better in terms of bias across

M0 since rematching can provide extra information for the underlying mean

function. In fact, the rematching estimator uses more information with
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Table S3: Coverage rates of the 95% and the 90% confidence intervals.

M0 = 1 M0 = 2 M0 = 3 M0 = 4 M0 = 5

CI Cases 95% 90% 95% 90% 95% 90% 95% 90% 95% 90%

Ĉt 1(a) 0.939 0.885 0.938 0.889 0.935 0.890 0.936 0.884 0.938 0.885

1(b) 0.939 0.885 0.938 0.892 0.935 0.891 0.935 0.885 0.937 0.882

1(c) 0.939 0.885 0.939 0.888 0.936 0.891 0.937 0.885 0.940 0.882

1(d) 0.937 0.885 0.939 0.890 0.935 0.891 0.939 0.886 0.939 0.885

1(e) 0.940 0.883 0.938 0.889 0.937 0.889 0.936 0.887 0.937 0.883

Ĉt
0 1(a) 0.940 0.888 0.942 0.891 0.938 0.884 0.939 0.886 0.937 0.883

1(b) 0.941 0.886 0.941 0.891 0.938 0.885 0.937 0.884 0.937 0.886

1(c) 0.941 0.888 0.941 0.890 0.938 0.888 0.939 0.884 0.939 0.882

1(d) 0.939 0.887 0.943 0.891 0.938 0.885 0.938 0.886 0.939 0.885

1(e) 0.941 0.887 0.941 0.891 0.939 0.884 0.938 0.883 0.937 0.883

more weights given to data matched with high frequency.

Case 2(e) in Figure S4 shows a decreasing trend in bias possibly because

the mean function is the most complex and increasing M0 introduces more

bias which is hard to correct since the outcome model is not well-estimated

even more data are used. Our rematching estimator performs better because

it avoids repeatedly reusing matches that are too far away and hence does

not introduce much bias when using more information.

We also evaluate the performance of the asymptotic variance estimator

proposed. The implementation of the variance estimation follows a similar
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manner to the software documented in Abadie et al. (2004). We consider

the simulation Cases 1(a)–(e). The 100(1−α)% confidence intervals for the

rematching estimator τ̂ t and the simple matching estimator τ̂ t0 are computed

as

Ĉt =
[
τ̂ t − q1−α/2(V̂ t)1/2, τ̂ t + qα/2(V̂

t)1/2
]
,

Ĉt
0 =

[
τ̂ t0 − q1−α/2(V̂ t

0 )1/2, τ̂ t0 + qα/2(V̂
t
0 )1/2

]
,

respectively, where q1−α/2 and qα/2 are the (1−α/2)th and (α/2)th quantiles

of the standard normal distribution, and V̂ t
0 is defined in Section S5.3.

For each estimator, we report the coverage rates of the 95% and the 90%

confidence intervals in Table S3. It is found that the coverages of confidence

intervals are very close to the nominal levels across different values of the

number of fixed matches and different simulation cases, which means the

matching-based variance estimator works well for both estimators.

S4. National Supported Work data

In particular, we use nine variables: RE78 (earnings in 1978), treatment

indicator (1 if treated, 0 if not treated), age, education, Black (1 if black,

0 otherwise), Hispanic (1 if Hispanic, 0 otherwise), married (1 if married, 0

otherwise), RE74 (earnings in 1974), RE75 (earnings in 1975), where RE78

is the outcome variable and the last seven variables are covariates. The
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dataset we use contains three groups including the experimental treated

and control groups from a randomized evaluation of the NSW program,

and a subset of the nonexperimental control group from the Panel Study of

Income Dynamics (PSID). According to Dehejia and Wahba (1999), there

is a lack of overlap in the pretreatment covariates of the PSID data and the

experimental treated group. A subset of the nonexperimental control group

named PSID-2 is therefore extracted by Lalonde from PSID to bridge the

gap between the treated and the nonexperimental control groups.

We compute experimental matching estimates using the experimental

treated and control groups and nonexperimental matching estimates using

the experimental treated group and PSID-2. For each pair of the treated

and control groups, we implement matching estimators based on the Ma-

halanobis distance and estimate their standard errors. The estimates in-

clude matching estimates without bias correction and bias-adjusted match-

ing estimates, first by the simple matching and then by the matching-and-

rematching procedure. For the bias correction, we estimate the regression

function µ̂(0, x) by the ordinary least squares of the linear regression on

all covariates. The computation details for finding matches, doing regres-

sion adjustments and estimating standard errors, follow a similar manner

to the software documented in Abadie et al. (2004). For the number of
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fixed matches M0, we consider the cases M0 = 1, 4, 16, 64, N0, where N0 is

260 and 253, respectively, for the experimental and the nonexperimental

controls. The matching estimates reduce to difference-in-means estimates

when M0 = N0.

S5. Results from Abadie and Imbens’s works

S5.1 Consistency and asymptotic normality

Abadie and Imbens (2006) showed that τ̂0 is consistent and asymptotically

normal under Assumptions S1, S2, and S4, i.e.,

(V0)
−1/2N1/2(τ̂0 −B0 − τ)→ N(0, 1)

in distribution, where B0 and V0 are asymptotic bias and variance terms,

respectively, defined as

B0 =
1

N

N∑
i=1

(2Di − 1)

 1

M0

∑
j∈JM0

(i)

{µ(1−Di, Xi)− µ(1−Di, Xj)}

 ,
V0 = V R

0 + V τ(X),

V R
0 =

1

N

N∑
i=1

{
1 +

KM0(i)

M0

}2

σ2(Di, Xi),

V τ(X) = E{µ(1, X)− µ(0, X)− τ}2.

Under Assumptions S1, S3, and S4, similar results hold for its counterpart
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for the treated population as follows:

(V t
0 )−1/2N

1/2
1 (τ̂ t0 −Bt

0 − τ t)→ N(0, 1)

in distribution, where Bt
0 and V t

0 are asymptotic bias and variance terms,

respectively, defined as

Bt
0 =

1

N1

N∑
i=1

Di

 1

M0

∑
j∈JM0

(i)

{µ(0, Xi)− µ(0, Xj)}

 ,
V t
0 = V R,t

0 + V τ(X),t,

V R,t
0 =

1

N1

N∑
i=1

{
Di − (1−Di)

KM0(i)

M0

}2

σ2(Di, Xi),

V τ(X),t = E
[
{µ(1, X)− µ(0, X)− τ t}2 | D = 1

]
.

S5.2 Bias correction

Abadie and Imbens (2011) proposed to estimate B0 and Bt
0 by

B̂0 =
1

N

N∑
i=1

(2Di − 1)

M0

∑
j∈JM0

(i)

{µ̂(1−Di, Xi)− µ̂(1−Di, Xj)},

B̂t
0 =

1

N1

N∑
i=1

Di

M0

∑
j∈JM0

(i)

{µ̂(0, Xi)− µ̂(0, Xj)},

respectively, where µ̂(d, x) is a non-parametric series regression estimator

that satisfies Assumption S5. By Theorem 2 of Abadie and Imbens (2011),

N1/2(B0 − B̂0)→ 0
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in probability, and

{V R
0 + V τ(X)}−1/2N1/2(τ̂0 − B̂0 − τ)→ N(0, 1)

in distribution, and by Theorem 2′ of Abadie and Imbens (2011),

N
1/2
1 (Bt

0 − B̂t
0)→ 0

in probability, and

{V R,t
0 + V τ(X),t}−1/2N1/2

1 (τ̂ t0 − B̂t
0 − τ t)→ N(0, 1)

in distribution, meaning that the bias adjustment does not affect the asymp-

totic variances.

S5.3 Variance estimation

As suggested by Abadie and Imbens (2006), the asymptotic variances can

be consistently estimated by

V̂0 =
1

N

N∑
i=1

{Ŷi(1)− Ŷi(0)− τ̂0}2

+
1

N

N∑
i=1

[{
KM0(i)

M0

}2

+

(
2M0 − 1

M0

){
KM0(i)

M0

}]
σ̂2(Di, Xi),

V̂ t
0 =

1

N1

∑
1≤i≤N
Di=1

{Yi − Ŷi(0)− τ̂ t0}2

+
1

N1

N∑
i=1

(1−Di)

[
KM0(i){KM0(i)− 1}

M2
0

]
σ̂2(Di, Xi),

where σ̂2(Di, Xi) is defined in the main article.
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S5.4 Martingale representation

Abadie and Imbens (2012) provide a martingale representation for matching

estimators. This martingale representation holds no matter how matching

is done. According to Abadie and Imbens (2012), this martingale represen-

tation is useful for analysing the asymptotic distribution of the estimator

and correcting the standard error of a sample mean when missing data are

imputed using the “hot deck”. However, since they are beyond the scope

of this article, we leave them for future study.
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Figure S1: A graph comparing the performance between τ̂ t0 (green triangle),

τ̂ t (red triangle) when X is a scalar.
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Figure S2: A graph comparing the performance between τ̂ t0 (green triangle),

τ̂ t (red triangle) when X is a scalar and c = 0.3.
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Figure S3: A graph comparing the performance among τ̂ t0 (green triangle),

τ̂ t (red triangle), τ̂ t0,bc (green dot), τ̂ tbc (red dot), and the genetic matching

estimator τ̂ tgen (blue triangle) when X is multi-dimensional.



Rematching Estimators 44

M0

lo
g(

M
S

E
)

−3.7

−3.6

−3.5

−3.4

−3.3

−3.2

1 2 3 4 5

Case 2(a)

M0
lo

g(
B

ia
s2 )

−15

−14

−13

−12

−11

−10

1 2 3 4 5

M0

lo
g(

V
ar

)

−3.7

−3.6

−3.5

−3.4

−3.3

−3.2

1 2 3 4 5

M0

lo
g(

M
S

E
)

1.80

1.85

1.90

1.95

1 2 3 4 5

Case 2(b)

M0

lo
g(

B
ia

s2 )

−0.8
−0.6
−0.4
−0.2

0.0
0.2
0.4
0.6

1 2 3 4 5

M0

lo
g(

V
ar

)

1.5

1.6

1.7

1.8

1 2 3 4 5

M0

lo
g(

M
S

E
)

−4.0

−3.9

−3.8

−3.7

−3.6

−3.5

1 2 3 4 5

Case 2(c)

M0

lo
g(

B
ia

s2 )

−19

−18

−17

−16

−15

−14

1 2 3 4 5

M0

lo
g(

V
ar

)

−4.0

−3.9

−3.8

−3.7

−3.6

−3.5

1 2 3 4 5

M0

lo
g(

M
S

E
)

−1.15

−1.10

−1.05

−1.00

−0.95

−0.90

1 2 3 4 5

Case 2(d)

M0

lo
g(

B
ia

s2 )

−7.5

−7.0

−6.5

−6.0

−5.5

1 2 3 4 5

M0

lo
g(

V
ar

)

−1.15

−1.10

−1.05

−1.00

−0.95

−0.90

1 2 3 4 5

M0

lo
g(

M
S

E
)

3.20

3.25

3.30

3.35

3.40

3.45

3.50

1 2 3 4 5

Case 2(e)

M0

lo
g(

B
ia

s2 )

1.5

2.0

2.5

1 2 3 4 5

M0

lo
g(

V
ar

)

2.75

2.80

2.85

2.90

2.95

3.00

1 2 3 4 5

Figure S4: A graph comparing the performance between τ̂ t0,bc (green dot)

and τ̂ tbc (red dot) when X is multi-dimensional.
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