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S1 Proof of Lemma 1

Recall the definition of the adversarial sup-norm loss in (2.2). By the change

of variable x′ = x+ δ, we have x′ ∈ (x+∆n) ∩ X since δ ∈ ∆n. Therefore,

the adversarial loss can be expressed as

L∆n(f, f̂) = sup
x∈X

sup
x′∈(x+∆n)∩X

∣∣∣f(x)− f̂(x′)
∣∣∣ . (S1.1)

To prove the equivalence (3.5), it remains to show

sup
x∈X

sup
x′∈(x+∆n)∩X

∣∣∣f(x)− f̂(x′)
∣∣∣ = sup

x′∈X
sup

x∈(x′−∆n)∩X

∣∣∣f(x)− f̂(x′)
∣∣∣ . (S1.2)
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Assume that

sup
x∈X

sup
x′∈(x+∆n)∩X

|f(x)− f̂(x′)| > sup
x′∈X

sup
x∈(x′−∆n)∩X

|f(x)− f̂(x′)|.

Then there must exist x1 ∈ X and x′
1 ∈ (x1 +∆n) ∩ X such that |f(x1)−

f̂(x′
1)| > supx′∈X supx∈(x′−∆n)∩X |f(x) − f̂(x′)|. On the other hand, based

on the definition of (x1, x
′
1), we have x′

1 ∈ X and x1 = x′
1 − δ1 for some

δ1 ∈ ∆n, implying that x1 ∈ (x′
1 −∆n) ∩ X . This leads to

|f(x1)− f̂(x′
1)| ≤ sup

x′∈X
sup

x∈(x′−∆n)∩X
|f(x)− f̂(x′)|,

which is a contradiction. Likewise, we can prove that supx∈X supx′∈(x+∆n)∩X |f(x)−

f̂(x′)| < supx′∈X supx∈(x′−∆n)∩X |f(x)− f̂(x′)| is also impossible. Therefore,

(S1.2) is proved.

S2 Proof of Theorem 1

Based on the results in Lemma 1, we have

L∆n(f, f
′) = sup

x′∈X
sup

x∈(x′−∆n)∩X
|f(x)− f ′(x′)| . (S2.3)
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For any given x′ ∈ X , note that

sup
x∈(x′−∆n)∩X

|f(x)− f ′(x′)|

= max

{∣∣∣∣∣ sup
x∈(x′−∆n)∩X

f(x)− f ′(x′)

∣∣∣∣∣ ,
∣∣∣∣ inf
x∈(x′−∆n)∩X

f(x)− f ′(x′)

∣∣∣∣
}

=

[∣∣∣∣supx∈(x′−∆n)∩X f(x) + infx∈(x′−∆n)∩X f(x)

2
− f ′(x′)

∣∣∣∣
+
supx∈(x′−∆n)∩X f(x)− infx∈(x′−∆n)∩X f(x)

2

]
,

(S2.4)

where the first equality follows from the fact that |f(x) − f ′(x′)|, as a

piecewise linear function of f(x), achieves the supremum when f(x) attains

either its supremum supx∈(x′−∆n)∩X f(x) or its infimum infx∈(x′−∆n)∩X f(x),

and the second equality is established by analyzing the relative values of

supx∈(x′−∆n)∩X f(x), infx∈(x′−∆n)∩X f(x), and f ′(x′).

Combining (S2.3) with (S2.4), we obtain

L∆n(f, f
′) = sup

x′∈X

[∣∣∣∣supx∈(x′−∆n)∩X f(x) + infx∈(x′−∆n)∩X f(x)

2
− f ′(x′)

∣∣∣∣
+
supx∈(x′−∆n)∩X f(x)− infx∈(x′−∆n)∩X f(x)

2

]
.

(S2.5)

Since f ′ appears only in the absolute value term in (S2.5), the infimum

inff ′ L∆n(f, f
′) is therefore obtained when

f ′(x′) = f ∗(x′) =
supx∈(x′−∆n)∩X f(x) + infx∈(x′−∆n)∩X f(x)

2

for any x′ ∈ X . And the ideal adversarial risk is given by

1

2
sup
x′∈X

[
sup

x∈(x′−∆n)∩X
f(x)− inf

x∈(x′−∆n)∩X
f(x)

]
,
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which completes the proof of this theorem.

S3 Proof of Theorem 2

From (S2.5), we see

R∆n(f, f̂PI) = E sup
x′∈X

[∣∣∣∣supx∈(x′−∆n)∩X f(x) + infx∈(x′−∆n)∩X f(x)

2
− f̂PI(x

′)

∣∣∣∣
+
supx∈(x′−∆n)∩X f(x)− infx∈(x′−∆n)∩X f(x)

2

]
.

(S3.6)

Based on the definition (3.8) of f̂PI(x
′), the first term in the square bracket

of (S3.6) can be upper bounded by∣∣∣∣supx∈(x′−∆n)∩X f(x) + infx∈(x′−∆n)∩X f(x)

2
− f̂PI(x

′)

∣∣∣∣
=

∣∣∣∣supx∈(x′−∆n)∩X f(x) + infx∈(x′−∆n)∩X f(x)

2

−
supx∈(x′−∆n)∩X f̃(x) + infx∈(x′−∆n)∩X f̃(x)

2

∣∣∣∣∣
≤ 1

2

∣∣∣∣∣ sup
x∈(x′−∆n)∩X

f(x)− sup
x∈(x′−∆n)∩X

f̃(x)

∣∣∣∣∣
+

1

2

∣∣∣∣ inf
x∈(x′−∆n)∩X

f(x)− inf
x∈(x′−∆n)∩X

f̃(x)

∣∣∣∣
≤ sup

x∈(x′−∆n)∩X

∣∣∣f(x)− f̃(x)
∣∣∣ .

(S3.7)

Combining (S3.7) with (S3.6), we have

R∆n(f, f̂PI) ≤ E sup
x′∈X

sup
x∈(x′−∆n)∩X

∣∣∣f(x)− f̃(x)
∣∣∣+ L∗

∆n
(f)

≤ R(f, f̃) + L∗
∆n

(f),
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where the first inequality follows from (S3.7)–(S3.6) and the definition of

L∗
∆n

(f) in (3.6), and the second inequality follows from

sup
x′∈X

sup
x∈(x′−∆n)∩X

∣∣∣f(x)− f̃(x)
∣∣∣ ≤ sup

x′∈X
sup
x∈X

∣∣∣f(x)− f̃(x)
∣∣∣ = sup

x∈X

∣∣∣f(x)− f̃(x)
∣∣∣ .

Thus, we complete the proof of (3.9).

The second part of this theorem is proved by taking upper bound on

both sides of (3.9) with respect to f ∈ F and then using the condition

(3.10). Specifically, we have

sup
f∈F

R∆n(f, f̂PI) ≲ sup
f∈F

R(f, f̃) + sup
f∈F

L∗
∆n

(f)

≍ inf
f̂
sup
f∈F

R(f, f̂) + sup
f∈F

L∗
∆n

(f),

which leads to (3.11).

S4 Proof of Theorem 3

Based on the relation (S2.5), we have for any f̂ ,

R∆n(f, f̂) ≥ sup
x′∈X

[
supx∈(x′−∆n)∩X f(x)− infx∈(x′−∆n)∩X f(x)

2

]
= L∗

∆n
(f),

(S4.8)

where the equality follows from (3.6). In addition, the adversarial risk is

always lower bounded by the standard risk, i.e.,

R∆n(f, f̂) = E sup
x∈X

sup
δ∈∆n

∣∣∣f(x)− f̂(x+ δ)
∣∣∣ ≥ E sup

x∈X

∣∣∣f(x)− f̂(x)
∣∣∣ = R(f, f̂).

(S4.9)
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Combining (S4.8) and (S4.9) yields the lower bound (3.12). The minimax

lower bound (3.13) follows directly from (3.12).

S5 Proof of Example 1

To simplify the notation, for any d-dimensional multi-index l = (l1, l2, . . . , ld) ∈

Nd
0, we define |l| = l1 + l2 + · · · + ld, and l! = l1!l2! . . . ld!. Derivatives and

powers of order l are denoted by Dl = ∂|l|

∂x
l1
1 ∂x

l2
2 ...∂x

ld
d

and xl = xl1
1 x

l2
2 . . . xld

d ,

respectively.

For any function f in F1(β, L), let

gk(x; t) =
∑
|l|≤k

Dlf(t)

l!
(x− t)l (S5.10)

denote its Taylor polynomial of degree k = ⌊β⌋ at point t. Using results

from the approximation theory (see, e.g., DeVore and Lorentz, 1993), we

know that

|f(x)− gk(x; t)| ≤ L
∑
|l|=k

1

l!
|x− t|l · ∥x− t∥α , (S5.11)

where α = β−k. For completeness, we provide a simplified proof for (S5.11)

based on the similar technique in Lemma 11.1 of Györfi et al. (2002). When

k = 0, we have β = α, then (S5.11) follows from the assumption that f is
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(β, L)-smooth. In the case k ≥ 1, we have

|f(x)− gk(x; t)|

=

∣∣∣∣∣∣f(x)−
∑

|l|≤k−1

Dlf(t)

l!
(x− t)l −

∑
|l|=k

Dlf(t)

l!
(x− t)l

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
|l|=k

k

l!
(x− t)l

∫ 1

0

(1− z)k−1Dlf [t+ z(x− t)]dz

−
∑
|l|=k

k

l!
(x− t)l

∫ 1

0

(1− z)k−1Dlf(t)dz

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
|l|=k

k

l!
(x− t)l

∫ 1

0

(1− z)k−1
{
Dlf [t+ z(x− t)]−Dlf(t)

}
dz

∣∣∣∣∣∣
≤ L

∑
|l|=k

1

l!
|x− t|l · ∥x− t∥α ,

where the second equality follows from the integral form of the Taylor series

remainder, and the last inequality follows from the definition of F1(β, L).

We first construct an upper bound on L∗
∆n

(f) for f ∈ F1(β, L). Recall

the definitions

2L∗
∆n

(f) = sup
x′∈X

[
sup

x∈(x′−∆n)∩X
f(x)− inf

x∈(x′−∆n)∩X
f(x)

]
.

and rn ≜ maxδ,δ′∈∆n ∥δ − δ′∥. In addition, define x̄ = (x + x′)/2. Then we
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have

2L∗
∆n

(f) ≤ sup
∥x−x′∥≤2rn

|f(x)− f(x′)|

= sup
∥x−x′∥≤2rn

|f(x)− gk(x; x̄) + gk(x; x̄)− gk(x
′; x̄) + gk(x

′; x̄)− f(x′)|

≤ sup
∥x−x′∥≤2rn

|f(x)− gk(x; x̄)|+ sup
∥x−x′∥≤2rn

|gk(x; x̄)− gk(x
′; x̄)|

+ sup
∥x−x′∥≤2rn

|gk(x′; x̄)− f(x′)| .

(S5.12)

The first term at the right side of (S5.12) is upper bounded by

sup
∥x−x′∥≤2rn

|f(x)− gk(x
′; x̄)| ≤ L

2β
sup

∥x−x′∥≤2rn

∑
|l|=k

1

l!
|x− x′|l · ∥x− x′∥α

≤ Lrαn
2k

sup
∥x−x′∥≤2rn

∑
|l|=k

1

l!
|x− x′|l

=
Lrαn
2kk!

sup
∥x−x′∥≤2rn

(|x1 − x′
1|+ · · ·+ |xd − x′

d|)
k

≤ Lrαnd
k
2

2kk!

(
|x1 − x′

1|2 + · · ·+ |xd − x′
d|2

) k
2

≤ Ld
k
2 rαn(2rn)

k

2kk!
≤ Cd

k
2 rβn,

(S5.13)

where the first inequality follows from (S5.11) and the definition of x̄, the

second inequality follows from ∥x−x′∥ ≤ 2rn and β = k+α, and the third

inequality follows from Jensen’s inequality. The second term of (S5.12) is
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upper bounded by

sup
∥x−x′∥≤2rn

|gk(x; x̄)− gk(x
′; x̄)|

= sup
∥x−x′∥≤2rn

∣∣∣∣∣∣
∑
|l|≤k

Dlf(x̄)

l!

[
(x− x̄)l − (x′ − x̄)l

]∣∣∣∣∣∣
= sup

∥x−x′∥≤2rn

∣∣∣∣∣∣
∑
|l|≤k

Dlf(x̄)

2|l|l!

[
1 + (−1)|l|+1

]
(x− x′)l

∣∣∣∣∣∣
≤ C sup

∥x−x′∥≤2rn

∑
1≤s≤k

∑
|l|=s

1

l!
|x− x′|l

≤ C sup
∥x−x′∥≤2rn

∑
1≤s≤k

(
|x1 − x′

1|2 + · · ·+ |xd − x′
d|2

) s
2

≤ Crn,

(S5.14)

where the first equality follows from (S5.10), the second equality is due to

the definition of x̄, the first inequality follows from Dlf(x̄) is bounded and

1
2|l|

≤ 1, and the second inequality follows the similar reasoning as in the

third line of (S5.13). Based on the same technique in (S5.13), we see the

third term of (S5.12) is upper bounded by

sup
∥x−x′∥≤2rn

|gk(x′; x̄)− f(x′)| ≤ Cd
k
2 rβn. (S5.15)

Combining (S5.12) with (S5.13)–(S5.15), we have for all f ∈ F1(β, L),

L∗
∆n

(f) ≤ Cd
k
2 r1∧βn , i.e.,

sup
f∈F1(β,L)

L∗
∆n

(f) ≤ Cd
k
2 r1∧βn ≤ Cd,βr

1∧β
n ,

where Cd,β is a constant depending on d and β, but independent of n.
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To lower bound supf∈F1(β,L) L
∗
∆n

(f), it suffices to construct specific func-

tions in F1(β, L) such that L∗
∆n

(f) ≥ Cr1∧βn . Given that ∆n is a closed set,

let δ and δ′ be two points in ∆n such that ∥δ − δ′∥ = rn. In addition,

define Dn = {tδ + (1− t)δ′ : 0 ≤ t ≤ 1}. Since there exists a Dn such that

Dn ⊆ ∆n, hence L∗
∆n

(f) ≥ L∗
Dn

(f). Without loss of generality, we assume

Dn ⊆ {x : x2 = x3 = · · · = xd = 0} and (δ + δ′)/2 = (1/2, 0, . . . , 0)⊤. Oth-

erwise, we can construct new functions from the functions f1 and f2 defined

below by rotations of axes and shifts of origin. Note that the rotation and

transformation of a function do not change the smoothness properties of

the original function. When β ≥ 1, define

f1(x) = L exp(x1 − 1), x ∈ [0, 1]d.

Note that f1(x) is an infinitely differentiable function, and

∣∣∣∣∣ ∂kf1

∂xk1
1 · · · ∂xkd

d

(x)− ∂kf1

∂xk1
1 · · · ∂xkd

d

(z)

∣∣∣∣∣
= |L exp(x1 − 1)− L exp(z1 − 1)|

≤ L |x1 − z1| ≤ L ∥x− z∥ ≤ L ∥x− z∥α ,

which verifies the conditions of F1(β, L). Thus, supf∈F1(β,L) L
∗
∆n

(f) is lower
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bounded by

sup
f∈F1(β,L)

L∗
∆n

(f) ≥ L∗
Dn

(f1) ≥ C

[
sup

x∈{(1/2,0,...,0)⊤−Dn}
f1(x)

− inf
x∈{(1/2,0,...,0)⊤−Dn}

f1(x)

]
≥ Crn.

When 0 < β < 1, consider the function f2(x) = xβ
1 . We have

|f2(x)− f2(z)| =
∣∣∣xβ

1 − zβ1

∣∣∣
≤ |x1 − z1|β ≤ ∥x− z∥β.

Thus, f2 belong the function class F1(β, L) with 0 < β < 1. In this case,

we obtain

sup
f∈F1(β,L)

L∗
∆n

(f) ≥ L∗
Dn

(f2) ≥ Crβn,

which completes the proof of this example.

S6 Proof of Example 2

Combining the results in Bertin (2004a,b), we can obtain

inf
f̂

sup
f∈F2(β,L)

R(f, f̂) ≍
(
log n

n

) β̄
2β̄+d

, (S6.1)

where β̄ = d/(
∑d

i=1 1/βi). Therefore, it remains to determine the rate of

supf∈F2(β,L) L
∗
∆n

(f). We first construct an upper bound on supf∈F2(β,L) L
∗
∆n

(f).
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For any function f in F2(β, L), we have

2L∗
∆n

(f) = sup
x′∈X

[
sup

x∈(x′−∆n)∩X
f(x)− inf

x∈(x′−∆n)∩X
f(x)

]

≤ sup
x′∈X

[
sup

x,z∈x′−∆n

|f(x)− f(z)|
]

≤ sup
x′∈X

[
sup

x,z∈x′−∆n

(
L1 |x1 − z1|β1 + · · ·+ Ld |xd − zd|βd

)]
≤ L1r

β1

1 + · · ·+ Ldr
βd

d

≲ max{rβ1

1 , . . . , rβd

d },

(S6.2)

where the third step follows from the definition of F2(β, L). Now we derive

a lower bound on supf∈F2(β,L) L
∗
∆n

(f). We just need to construct a specific

function in F2(β, L). Define j ≜ argmaxi∈{1,...,d} r
βi

i and a function f3(x) =

Ljx
βj

j . Obviously, we have

|f3(x)− f3(z)| = Lj

∣∣∣xβj

j − z
βj

j

∣∣∣ ≤ Lj |xj − zj|βj .

Thus, we see f3 ∈ F2(β, L). And supf∈F2(β,L) L
∗
∆n

(f) is lower bounded by

sup
f∈F2(β,L)

L∗
∆n

(f) ≥ L∗
∆n

(f3) ≥ Ljr
βj

j ≍ max{rβ1

1 , . . . , rβd

d }. (S6.3)

Combining (S6.1)–(S6.3) with (3.14), we have

inf
f̂

sup
f∈F2(β,L)

R∆n(f, f̂) ≍
(
log n

n

) β̄
2β̄+d

+max{rβ1

1 , . . . , rβd

d },

which proves the result in Example 2.
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