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The Supplementary Material provides the detailed proofs for the lemmas, theorems, and two

examples discussed in the main text.

S1 Proof of Lemma [

Recall the definition of the adversarial sup-norm loss in (2.2). By the change
of variable 2’ = x 4 0, we have 2’ € (z + A,,) N X since 6 € A,,. Therefore,

the adversarial loss can be expressed as

La(f.f)=sw sup |f(@)~ f(a")]. (S1.1)
zeX ' €(x+An)NX
To prove the equivalence ({3.5)), it remains to show
swp sup|f(@) = f@)| = sup  suwp|f(@) = f(@)|. (S12)

zeX ' €(x+An)NX r'eX ze(x/—Ap)NX
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Assume that

sup  sup |f(2) = f(@)| > sup  sup|f(x) - f(2)].
z€X o' €(z+An)NX r'€X ze(x' —Ap)NX

Then there must exist 3 € X and 2} € (z1 + A,) N X such that |f(z;) —
F@)| > supyca SUD,e(zr—annx [f(T) — f(2)|. On the other hand, based

on the definition of (z1,]), we have 2} € X and z; = 2} — §; for some

01 € A, implying that x; € (2} — A,) N X. This leads to

o) = f@)l < sup sup | f(x) = f(a))],

r'eX ze(z’—An)NX

which is a contradiction. Likewise, we can prove that sup,¢x SUp,e(zra,)na [f(2)—

fla)) < SUD,rex SUDe(—a,na | f(T) — f(2")| is also impossible. Therefore,

(S1.2)) is proved.

S2 Proof of Theorem [

Based on the results in Lemma |1| we have

La,(f, f)=sup sup [f(z)— f'(2)]. (52.3)

' eX ze(a!—An)NX



$2. PROOF OF THEOREM ]

For any given 2’ € X, note that

sup |f(x) — f'(2)]

z€(z'—An)NX

:max{

sup,, ' —Ap)NX f(fL‘) + inf:L‘E(:L"—An)ﬂX f(l’)
= |: €( n 5 N f’(x')

+Supx€(x’fAn)mX f(x) - infze(w/fAn)ﬂX f(x)}
2 Y

where the first equality follows from the fact that |f(x) — f'(z)|, as a

inf  f(x) = f'()

z€(z'—An)NX

sup  f(x) — /(<)

z€(z'—Ap)NX

?

piecewise linear function of f(z), achieves the supremum when f(z) attains
either its supremum sup,¢(,/—a,)nx f (%) or its infimum inf,c -, )nx f(2),
and the second equality is established by analyzing the relative values of
SUD e (zr—anx f (), infec@—a,nx f(x), and f'(2').

Combining (S2.3)) with (S2.4)), we obtain

SUD e (4/— x) +infie@n, x
LAn(f,f/>:Sllp|: Pae( An)n;\ff( )2 e@—annx [ )—f/(x/)
z'eX
SUPge(2/—An)NX flz) — inf e —anx f(x)}
+
2 (S2.5)

Since f’ appears only in the absolute value term in (S2.5), the infimum
infp L, (f, f') is therefore obtained when

SUPye(z/—Ap)NX f(:L‘) + infxe(x’—An)ﬂX f(:E)

fla) = 1) = ;

for any 2’ € X'. And the ideal adversarial risk is given by

1 :
— sup sup x) — inf x)|,
2 r'eX |ze(x/—An)NX f( ) z€(z’—An)NX f( )
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which completes the proof of this theorem.

S3 Proof of Theorem 2

From ([S2.5)), we see

. SUP (- ynx f (@) +infoconynx f(2)
RAn(f, fPI) — E sup { (@' —An)NX 5 €( n _ fPI(-T,)
’eX
+Supx€(az’fAn)ﬂX f(l‘) - info(x’*An)ﬂX f([lf):|
2 ' (S3.6)

Based on the definition {) of fp[(l’l ), the first term in the square bracket

of (S3.6|) can be upper bounded by

Supze(z’—An)ﬂX f(ZE) + inwa(I’—An)ﬁX f(x) i ’
9 fPI(lU )
SUPze (2 —A,)NX f($) + infxe(x’fAn)ﬁX f(x)
2

_Supxe(a:’fAn)mX f(x) + infxe(a:’fAn)ﬂX f(x)

(83.7)

Combining (S3.7)) with (S3.6), we have

Ra,(f fo) SEsup  sup |7(@) = fla)| + L4, (f)

' EX ze(x/—Ap)NX

< R(f,f) + Lx,(f),



S4. PROOF OF THEOREM [3]

where the first inequality follows from (S3.7)—(S3.6) and the definition of

L, (f) in (3.6), and the second inequality follows from

sup  sup | f(w) = f(2)] < sup sup| f(x) = Flw)| = sup () - fl)].
' €X ze(a'—An)NX r'eX zeX zeX

Thus, we complete the proof of (3.9).
The second part of this theorem is proved by taking upper bound on

both sides of (3.9) with respect to f € F and then using the condition
(3.10). Specifically, we have

sup Ra, (f, fer) Ssup R(f, f) +sup Ly, (f)

feF fer fer
= inf sup R(f, f) +sup L (f),
f fer feF

which leads to (3.11)).

S4 Proof of Theorem [3

Based on the relation |D we have for any f ,

{Supme(m’—An)ﬂX f(:L‘) - infxe(z’—An)ﬁX f(l')
2

Ra, (f, f) > sup
r’'eX

(S4.8)
= Ly, (f),

where the equality follows from (3.6)). In addition, the adversarial risk is

always lower bounded by the standard risk, i.e.,

Ra, (. f) = Esup sup | f(2) = f( +6)| > Esup | f(x) - f(2)| = RS, f).

TEX d€A, TeEX

(S4.9)
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Combining (S4.8) and (S4.9)) yields the lower bound ({3.12)). The minimax

lower bound ({3.13)) follows directly from (3.12]).

S5 Proof of Example 1

To simplify the notation, for any d-dimensional multi-index [ = (I3, 1o, ...,l4) €

N¢, we define |I] =1 +1lg+ -+ + g, and I! = [;!ly!...1;!. Derivatives and

ol
0210252 ..oz
1 0%g...0%y

1 il la
and ' = xi'2s ... 2,

powers of order [ are denoted by D! =
respectively.

For any function f in Fy(5, L), let

gelmt) = S 2Oy (55.10)

denote its Taylor polynomial of degree k = |3] at point ¢t. Using results
from the approximation theory (see, e.g., DeVore and Lorentz, 1993), we
know that
F@) =gl < LY pla—if o7, ($51)
li|=k
where o = f—k. For completeness, we provide a simplified proof for (55.11|)
based on the similar technique in Lemma 11.1 of Gyorfi et al.| (2002). When

k =0, we have 8 = «, then (55.11)) follows from the assumption that f is



S5. PROOF OF EXAMPLE 1

(8, L)-smooth. In the case k > 1, we have

= l—ki<w - t>l/0 (1= 2 {D'flt + 2(a — )] = D'f(t)} d=

=k

1 a
<LY ple—tl ot

=k

where the second equality follows from the integral form of the Taylor series
remainder, and the last inequality follows from the definition of (53, L).
We first construct an upper bound on L} (f) for f € Fi(3,L). Recall

the definitions

25 (f)=suwp | swp  flo)—  imf  f(a)

r’€X | ze(x'—An)NX z€(x'—An)NX

and 7, = maxszen, [0 — 8'||. In addition, define Z = (x + 2’)/2. Then we
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have

2L, (f) < sup  |f(x) — f(2)]

z—2'||<2rn

= sup |f(2) — gr(@; %) + ge(2;2) — gr(2'; 7) + gu(2';2) — f(2)]

z—2"||<2rn

< sup |[f(%) —gr(z;7)[+ sup !gk(:v;f)—gk(:v’;i'e

lz—a’ (| <2rn le—a’[| <2,

§5.12)

+  sup |ge(e;T) — f(2)].

[|le—a'|| <27y,

The first term at the right side of (S5.12) is upper bounded by

1 l «
sup 3 Le 'l

lo—ali<2rn 27 o—atl<2ra 5, 1

re 1 1
< 2,:‘ sup ) = |z — 2|
lz—a!||<2rpn =k

Lry k
= g, S, (m = al e e — )
Lagh - £S5.13)
< i (o = 24P+ g — 2ff)?
ko k
< EEBE) < catyg,

where the first inequality follows from (55.11)) and the definition of z, the
second inequality follows from ||z — z'|| < 2r, and 5 = k + «, and the third

inequality follows from Jensen’s inequality. The second term of ((S5.12) is



S5. PROOF OF EXAMPLE 1

upper bounded by

sup  |gr(z;T) — gr(a'; 7)|

[z—2'||<2rn

= s |2 gy @ gy

|
lz—a'|| <27y 1| <k [!

D'f(z
- ||$—S;’1||22rn Z 2‘];5?) [1 + (_1)‘l|+1:| (ilf — ,jlj/)l

<k : (S5.14)

sup Z Z ]x

|x ' ||<2ry 1<s<k |i|=s

<C sup Z (]:cl—x’llz—l—---%—\:cd—x;]?)%
llz—a’[|<2rm 1<s<k

< Cry,
where the first equality follows from (S5.10f), the second equality is due to

the definition of Z, the first inequality follows from D!f(Z) is bounded and

1L
2l

third line of (S5.13). Based on the same technique in (S5.13|), we see the

third term of (S5.12)) is upper bounded by

< 1, and the second inequality follows the similar reasoning as in the

sup  |gr(a'; T) — f(a')] < Cd>rf. (5.15)

z—a'[|<2rn

Combining ((S5.12)) with ( m m, we have for all f € F(6, L),

La, (f) < Cdsr}¥, e,

sup L (f) < Cd3ri < Cygrits,
feFi(8,L)

where Cy 3 is a constant depending on d and 3, but independent of n.
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To lower bound sup ¢ 7, 5.1,y LA, (f), it suffices to construct specific func-
tions in F1 (8, L) such that L} (f) > Cri*?. Given that A, is a closed set,
let § and ¢’ be two points in A, such that ||§ — || = r,. In addition,
define D,, = {td + (1 — )¢’ : 0 <t < 1}. Since there exists a D,, such that
D, € Ay, hence Ly (f) > Ly (f). Without loss of generality, we assume
D,Clz:xy=ax3=---=x4=0}and (§+§)/2=(1/2,0,...,0)". Oth-
erwise, we can construct new functions from the functions f; and f, defined
below by rotations of axes and shifts of origin. Note that the rotation and
transformation of a function do not change the smoothness properties of

the original function. When 5 > 1, define

fi(z) = Lexp(z; — 1), 2 ¢€[0,1]%

Note that fi(x) is an infinitely differentiable function, and

" fi

- k1 kq

" fi

k1 ka
afL’l R 8{L’d

() (2)

= |Lexp(z1 — 1) — Lexp(z1 — 1)

<Lz —z| <Ll —z[ <Lz -2,

which verifies the conditions of F1(8, L). Thus, supcz, 5.1y L', (f) is lower



S6. PROOF OF EXAMPLE 2

bounded by
sup L (f)>Lp, (f1) >C sup fi(z)
feF1(B,L) 2€{(1/2,0,...,0)T =Dy}

- inf fi(z)

2€{(1/2,0,....00T—D,}

> Cr,.
When 0 < 3 < 1, consider the function f(z) = z;. We have

o

|f2(z) — fa(2)| =

<oy -zl < o — AP
Thus, fs belong the function class F;(5, L) with 0 < 8 < 1. In this case,

we obtain

sup LA, (f) > L}, (fo) = Crl,
feFi(B,L)

which completes the proof of this example.

S6 Proof of Example 2

Combining the results in [Bertin| (2004a,b), we can obtain

_B
inf  sup  R(f,f) = (logn) - : (S6.1)

I rer(8.L) n
where 3 = d/ (Zle 1/6;). Therefore, it remains to determine the rate of

SUp e r,5.) LA, (f). Wefirst construct an upper bound on sup ez, 5.1y LA, (f)-
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For any function f in F3(8, L), we have

s (H=sw | swp  f@)- b f()
'€X |ze(a/—An)NX ze€(z'—An)NX

< sup sup | f(z) — f(z)q

r’eX |x,zex'—Ap,

<sup | sup <L1‘$1—21|Bl—|—~"+Ld|xd—zd|6d>]

r’eX |x,z€x'—Ap

< max{rfl, . ,rgd},

(96.2)

where the third step follows from the definition of F5(5, L). Now we derive

a lower bound on supjcr, 5.1y LA, (f). We just need to construct a specific

~~~~~ 7

Lja:fj . Obviously, we have

Bj
Lj

|f3(z) = f3(2)| = L;

Bj
“j

< Ljla; — 2.

B and a function fy(z) =

Thus, we see f3 € Fo(B, L). And supser,s,r) LA, (f) is lower bounded by

sup L (f) > Li, (fs) > Ljrfj = max{r’", ...

feF2(B,L)

Combining (S6.1)—(S6.3)) with (3.14)), we have

) ] 3rd
inf sup RAn<f,f>x(og”) max{r,. ey,

f reF(B,L) n

which proves the result in Example [2]

,rgd}.

(36.3)
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