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S1 Theoretical Proofs

S1.1 Proof of Lemma 2

Proof. For simplicity of notations, we suppress the iteration index t. Let

Ỹ l = bl + wlΨ(Y l−1) for l = 2, . . . , h, and let Ỹ 1 = b1 + w1X. By the

definition of the StoNet model (2.2), Y l can be written as Y l = Ỹ l+el for

l ∈ {1, 2, . . . , h}.

Since σ2
l has been set to a very small value, we have Ψ(Y l) ≈ Ψ(Ỹ l) +

∇Ỹ l
Ψ(Ỹ l) ◦ el, where ◦ denotes elementwise product. Then

Σl ≈ Var(E(Ψ(Ỹ l) +∇Ỹ l
Ψ(Ỹ l) ◦ el|Ỹ l)) + E(Var(Ψ(Ỹ l) +∇Ỹ l

Ψ(Ỹ l) ◦ el|Ỹ l))

= Var(Ψ(Ỹ l)) + diag
{
σ2
l E[∇Ỹ l

Ψ(Ỹ l) ◦ ∇Ỹ l
Ψ(Ỹ l)]

}
,

(S1.1)
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where diag{v} with v ∈ Rd denotes a d× d diagonal matrix with diagonal

elements being v.

By Assumption 3-(iii), the activation function is bounded. For example,

tanh or sigmoid is used in the model. By Assumption 1, there exists some

constant C1 such that ∥bl∥∞ < C1, ∥wl∥∞ < C1. By Assumption 3, ∥X∥∞

is bounded. Therefore, there exists some constant C2 such that for any

L ∈ {1, 2, . . . , h}, ∥Ỹ l∥∞ ≤ C1 + C1C2 holds by rescaling X by a factor

of
∏h

l=1 dl. Since both Ψ(Ỹ l) and ∇Ỹ l
Ψ(Ỹ l) are bounded, there exists a

constant κmax,l such that

ϕmax(dl,n|Σl) ≤ κmax,l.

To establish the lower bound, we note that ∥Ỹ l∥∞ ≤ C1 + C1C2. There-

fore, for an activation function which has nonzero gradients on any closed

interval, e.g., tanh and sigmoid, there exists a constant C3 > 0 such that

mini=1,...,dl ∇Ỹ l
Ψ(Ỹ l)i > C3, where ∇Ỹ l

Ψ(Ỹ l)i denotes the i-th element of

∇Ỹ l
Ψ(Ỹ l). Then we can take κmin,l = σ2

l,nC
2
3 such that

ϕmin(dl,n|Σl) ≥ κmin,l,

which completes the proof.
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S1.2 Proof of Part (i) of Theorem 1

Proof. By Lemma 2, Σ
(t)
l satisfies the requirements of Theorem 1 of Mein-

shausen and Yu (2009) and Theorem 1 of Huang et al. (2008). Then,

by Theorem 1 of Meinshausen and Yu (2009) (for linear regression) and

Theorem 1 of Huang et al. (2008) (for logistic regression), we have rn as

given in the lemma by summarizing the l2-errors of coefficient estimation

for all
∑h+1

l=1 dl regression/logistic regressions. Further, by the setting of

(σ2
1,n, . . . , σ

2
h+1,n) as specified in Assumption 3, we have rn → 0 as n → ∞.

This completes the proof of part (i) of Theorem 1.

S1.3 Proof of Part (ii) of Theorem 1

Proof. Then part (ii) of Theorem 1 directly follows from Theorem 4 of

Liang et al. (2018) that the estimator θ̂
(t)

n is consistent when both n and t

are sufficiently large.

S1.4 Proof of Corollary 1

Proof. Let θ̂
(t)

n denote the estimate of θn at iteration t, and let θ(t)
∗ denote its

“true” value at iteration t, and let θ∗ denote its true value in the StoNet. By

the proof of Theorem 4 of Liang et al. (2018) and Theorem 1 of Meinshausen

and Yu (2009), for the StoNet with the linear regression output layer, we

3



have

E∥θ̂
(t)

n − θ∗∥ ≤ 1

1− ρ∗
E∥θ̂

(t)

n − θ(t)
∗ ∥ ≺

√
rn

1− ρ∗
, as t→ ∞, (S1.2)

by summarizing all d1 + d2 + · · · + dh+1 linear regressions, where ρ∗ is a

constant as defined in Assumption 5. For the StoNet with the logistic

regression output layer, we have the same result by Theorem 1 of Huang

et al. (2008). Further, by Markov inequality, there exists a constant c such

that

P
(
∥θ̂

(t)

n − θ∗∥ > c
√
rn

)
→ 0, as n→ ∞ and t→ ∞.

Then, by Assumption 6,

• For any i ∈ γ∗, ∥θ̂
(t)

n − θ∗∥ ≤ c
√
rn implies |θ̂

(t)

i,n| > c
√
rn.

• For any i /∈ γ∗, ∥θ̂
(t)

n − θ∗∥ ≤ c
√
rn implies |θ̂

(t)

i,n| < c
√
rn.

Therefore,

P (γ̂ = γ∗) ≥ P ((∥θ̂
(t)

n − θ∗∥ ≤ c
√
rn) → 1, as n→ ∞ and t→ ∞,

(S1.3)

which concludes the proof.
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S1.5 Proof of Corollary 2

Proof. This proof involves several notations, including Σ̂, θ̂, and ςh+1,j. As

noted in the main text, their dependence on the sample size n is implicit and

has been depressed for notational simplicity. As implied by (S4.9)-(S4.11),

we have Σ̂i → 0, i ∈ {1, 2, . . . , h}, as n→ ∞. Additionally, as n→ ∞,

∥µ(z, θ̂)− µ(z,θ∗)∥ p→ 0,

for any test point z, and

ς2h+1,j − σ2
h+1

p→ 0, j ∈ {1, 2, . . . , dh+1}.

Therefore, the nominal coverage rate 1−α is asymptotically guaranteed as

n→ ∞.

S2 The Imputation Regularized-Optimization Algo-

rithm for StoNet Training

This algorithm is given in Algorithm S1.
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Algorithm S1: IRO Algorithm for StoNet

Input: Dataset Dn = (Y,X), total iteration number T , and Monte Carlo step
number tMC .

Initialization: Randomly initialize the network parameters

θ̂
(0)

= (θ̂
(0)

1 , . . . , θ̂
(0)

h+1).
for t = 1, 2, . . . , T do

• Imputation: For each sample (X(i),Y (i)), draw Y
(i,t)
mis from

π(Y
(i)
mis|Y

(i),X(i), θ̂
(t−1)

n ,σ2
n) with a Metropolis or Langevin dynamics

kernel by iterating for tMC steps.
• Regularized optimization: Based on the pseudo-complete data

{(Y (i),Y
(i,t)
mis ,X

(i)) : i = 1, 2, . . . , n}, update θ̂
(t−1)

n by minimizing a
penalized loss function, i.e., setting

θ̂
(t)

n = argmin
θ

{
− 1

n

n∑
i=1

log π(Y (i),Y
(i,t)
mis

∣∣X(i),θ,σ2
n) + Pλn

(θ)
}
, (S2.4)

where the penalty Pλn
(θ) is chosen such that θ̂

(t)

n forms a consistent
estimator of

θ(t)
∗ = argmax

θ
E
θ
(t−1)
n

log π(Y ,Y mis|X,θ,σ2
n)

= argmax
θ

∫
log π(Y mis,Y |X,θ,σ2

n)π(Y mis|Y ,X,θ(t−1)
n ,σ2

n)

× π(Y |X,θ∗,σ2
n)dY misdY ,

(S2.5)

where θ(t)
∗ is called the working true parameter at iteration t.

Output: θ̂
(T )
n
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S3 Adaptive Stochastic Gradient MCMC for Efficient

StoNet Training

The IRO algorithm requires computation on the full dataset at each iter-

ation and, therefore, it is less scalable with respect to big data. In prac-

tice, we can train the sparse StoNet using the adaptive stochastic gradient

MCMC algorithm as proposed in (Liang et al., 2022). To make the paper

self-contained, we give a review of the adaptive stochastic gradient MCMC

algorithm below.

Let π(Y |X,θ,σ2) =
∫
π(Y ,Y mis|X,θ,σ2)dY mis denote the likelihood

function of the observed data for the StoNet model. By Fisher’s identity,

we have

∇θ log π(Y |X,θ,σ2) =

∫
∇θ log π(Y ,Y mis|X,θ,σ2)π(Y mis|Y ,X,θ,σ2)dY mis,

which implies the sparse StoNet can also be trained by solving the equation

∫
∇θ[log π(Y ,Y mis|X,θ,σ2) + logPλ(θ)]π(Y mis|Y ,X,θ,σ2)dY mis = 0,

(S3.6)

where Pλ(θ) denotes a penalty function satisfying Assumption 4. By The-

orem 1 of Liang et al. (2018), solving (S3.6) will lead to the same solution
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as solving the optimization problem specified below:

θ̂
∗
n = argmax

θ

{ 1

n

n∑
i=1

log π(Y (i),Y
(i)
mis|X

(i),θ,σ2) +
1

n
Pλ(θ)

}
.

By Deng et al. (2019) and Liang et al. (2022), the equation (S3.6) can

be solved using an adaptive stochastic gradient MCMC algorithm, which

works by iterating between the following two steps:

(a) (Sampling) Generate Y
(k+1)
mis from a transition kernel induced by a

stochastic gradient MCMC algorithm, e.g., stochastic gradient Hamil-

ton Monte Carlo (SGHMC) (Chen et al., 2014).

(b) (Parameter updating) Set θ(k+1) = θ(k) + γk+1g(Y
(k+1)
mis , Uk+1), where

γk+1 denotes the step size used in the stochastic approximation proce-

dure.

The pseudo-code of the adaptive SGHMC algorithm is given by Algo-

rithm S2, where we let θi = (wi, bi) denote the parameters associated with

layer i of the StoNet, let (Y
(s,k)
0 ,Y

(s,k)
h+1 ) = (X(s),Y (s)) denote a training

sample s, and let Y
(s,k)
mis = (Y

(s,k)
1 , . . . ,Y

(s,k)
h ) denote the latent variables

imputed for the training sample s at iteration k. Occasionally, we use the

notation Y
(s,k)
0 = Y

(s)
0 = X(s) and Y

(s,k)
h+1 = Y

(s)
h+1 = Y (s). This algorithm

is called “adaptive” as the transition kernel used in step (i) changes with
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iterations through the working estimate θ(k).

S4 Covariance of Latent Variables in the StoNet

Consider the case that we have a regression StoNet trained by the IRO

algorithm. In this case, the prediction uncertainty can be quantified by a

recursive application of Eve’s law.

Let z denote a test point at which the prediction uncertainty needs

to be quantified. For simplicity of notation, we suppress the bias term by

including it as a special column of the corresponding weight matrix. To

indicate the iterative nature of the IRO algorithm, we include the super-

script ‘t’ in the derivation. Let Z
(t)
i denote the imputed latent variable,

corresponding to the input z, for layer i at iteration t. For convenience,

we let Z
(t)
0 = z for all t. Let µ

(t)
i and Σ

(t)
i denote, respectively, the mean

and covariance matrix of Z
(t)
i . Let w

(t)
ij

denote the j-th row of the weight

matrix w
(t)
i , which represents the weights from the neurons of layer i − 1

to neuron j of layer i. By Eve’s law, for any layer i ∈ {2, 3, . . . , h+ 1}, we
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Algorithm S2: An adaptive SGHMC algorithm for training StoNet

Input: Dataset (X,Y ), total iteration number K, Monte Carlo step number
tHMC , the learning rate sequence
{ϵk,i : t = 1, 2, . . . , T ; i = 1, 2, . . . , h+ 1}, and the step size sequence
{γk,i : t = 1, 2, . . . , T ; i = 1, 2, . . . , h+ 1}.

Initialization: Randomly initialize the network parameters

θ̂
(0)

= (θ̂
(0)

1 , . . . , θ̂
(0)

h+1).
for k = 1, 2, . . . ,K do

STEP 0: Subsampling: Draw a mini-batch of data and denote it by Sk.
STEP 1: Backward Sampling: For each observation s ∈ Sk, sample

Y i’s in the order from layer h to layer 1. More explicitly, we sample Y
(s,k)
i

from the distribution

π(Y
(s,k)
i |θ̂(k−1)

i , θ̂
(k−1)
i+1 ,Y

(s,k)
i+1 ,Y

(s,k)
i−1 ) ∝ π(Y

(s,k)
i+1 |θ̂(k−1)

i+1 ,Y
(s,k)
i )π(Y

(s,k)
i |θ̂(k−1)

i ,Y
(s,k)
i−1 )

by running SGHMC for tHMC steps:

Initialize v
(s,0)
i = 0, and initialize Y

(s,k,0)
i by forward pass of DNN.

for l = 1, 2, . . . , tHMC do
for i = h, h− 1, . . . , 1 do

v
(s,k,l)
i =(1− ϵk,iηi)v

(s,k,l−1)
i + ϵk,i∇Y

(s,k,l−1)
i

log π
(
Y

(s,k,l−1)
i | θ̂

(k−1)

i ,Y
(s,k,l−1)
i−1

)
+ ϵk,i∇Y

(s,k,l−1)
i

log π
(
Y

(s,k,l−1)
i+1 | θ̂

(k−1)

i+1 ,Y
(s,k,l−1)
i

)
+

√
2ϵk,iηe

(s,k,l),

Y
(s,k,l)
i =Y

(s,k,l−1)
i + ϵk,iv

(s,k,l−1)
i ,

(S3.7)

where es,k,l ∼ N(0, Idi), ϵk,i is the learning rate, and η is the friction
coefficient. The algorithm is reduced to SGLD when ϵk,iηi ≡ 1.

Set Y
(s,k)
i = Y

(s,k,tHMC)
i for i = 1, 2, . . . , h.

STEP 2: Parameter Update: Update the estimates of

θ̂
(k−1)

= (θ̂
(k−1)

1 , θ̂
(k−1)

2 , . . . , θ̂
(k−1)

h+1 ) by stochastic gradient descent

θ̂
(k)

i = θ̂
(k−1)

i + γk,i

 n

|Sk|
∑
s∈Sk

∇θi log π(Y
(s,k)
i |θ̂

(k−1)

i , Y
(s,k)
i−1 )− n∇θiPλ(θ̂i)

 ,

(S3.8)

for i = 1, 2, . . . , h+ 1, where γk,i is the step size used for updating θi.

Output: θ̂
(K)
n
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then have

Σ
(t)
i = E(Var(Z(t)

i |Z(t)
i−1)) + Var(E(Z(t)

i |Z(t)
i−1))

= Ediag
{
ψ(Z

(t)
i−1))

TVar(ŵ
(t)
ij

)ψ(Z
(t)
i−1)) : j = 1, . . . di

}
+Var

(
E(ŵi)ψ(Z

(t)
i−1)

)
= diag

{
tr(Var(ŵ

(t)
ij

))Var(ψ(Z
(t)
i−1))) + (E(ψ(Z(t)

i−1)))
T

×Var(ŵ
(t)
ij

)(E(ψ(Z(t)
i−1))) : j = 1, . . . di

}
+ E(ŵi)Var(ψ(Z

(t)
i−1))(E(ŵi))

T ,

where Var(ŵ
(t)
ij
) is calculated by the Lasso+OLS or Lasso+mLS procedure

suggested by Liu and Yu (2013). We refer to Theorem 3 of Liu and Yu

(2013) for asymptotic normality of the non-sparse components of ŵ
(t)
ij
. For

the OLS case, the non-sparse submatrix of Var(ŵ
(t)
ij
) is given by

˜
Var(ŵ

(t)
ij
) = ς̂2i,j[(ψ(Ỹ

(t))
i−1)

Tψ(Ỹ(t)
i−1)]

−1,

where ψ(Ỹ(t)
i−1) is the design matrix of the linear regression

Y(t)
i,j = ψ(Ỹ(t)

i−1)(w̃
(t)
ij
)T + ϵi,j

selected by Lasso for neuron j of layer i at iteration t, ϵi,j ∼ N(0, ς2i In), and

ς̂2i,j denotes the OLS estimator of ς2i . Here Y(t)
i−1 ∈ Rn×di−1 denotes imputed

latent variables for all neurons of layer i − 1, Y(t)
i,j ∈ Rn denotes imputed

latent variables for neuron j of layer i, Ỹ(t)
i−1 ∈ Rn×q̃i,j denotes the variables

selected by Lasso, w̃
(t)
ij

denotes the corresponding regression coefficients,

and q̃i,j denotes the number of selected variables.
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Let µ
(t)
i−1 = (µ

(t)
i−1,1, . . ., µ

(t)
i−1,di−1

)T denote the mean of Z
(t)
i−1, and let

Dψ′(µ
(t)
i−1) = diag{ψ′(µ

(t)
i−1,1), . . ., ψ

′(µ
(t)
i−1,di−1

)}, where ψ′ denotes the first

derivative of the activation function ψ. By the first order Taylor expansion,

we have

E(ψ(Z(t)
i−1)) ≈ ψ(µ

(t)
i−1), Var(ψ(Z

(t)
i−1)) ≈ Dψ′(µ

(t)
i−1)Σ

(t)
i−1Dψ′(µ

(t)
i−1).

Further, if we estimate E(ŵi) by ŵi and estimate µ
(t)
i−1 by Z

(t)
i−1, then we

have the approximation:

Σ̂
(t)

i ≈ diag
{
tr
(
Var(ŵ

(t)
ij

)Dψ′(Z
(t)
i−1)Σ̂

(t)
i−1Dψ′(Z

(t)
i−1)

)
+ (ψ(Z

(t)
i−1))

TVar(ŵ
(t)
ij

)ψ(Z
(t)
i−1) : j = 1, . . . , di

}
+ ŵ

(t)
i Dψ′(Z

(t)
i−1)Σ̂

(t)
i−1Dψ′(Z

(t)
i−1)(ŵ

(t)
i )T .

(S4.9)

For the first hidden layer, it is reduced to

Σ̂
(t)

1 ≈ diag
{
tr
(
Var(ŵ

(t)
1j
)Var(z)

)
+ zTVar(ŵ

(t)
1j
)z : j = 1, . . . , d1

}
+ ŵ

(t)
1 Var(z)(ŵ

(t)
1 )T .

(S4.10)

Since Var(z) = 0 holds for any fixed test point z, Σ̂
(t)

1 can be further

reduced to

Σ̂
(t)

1 ≈ diag
{
zTVar(ŵ

(t)
1j
)z : j = 1, 2, . . . , d1

}
. (S4.11)
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S4.1 More Numerical Results

Table S1: Calibration results for CIFAR10 data, where the standard deviations of the
respective measures are given in parentheses.

Network Size Method ACC(%) NLL ECE(%) CECE(%)

DenseNet40
176K

No Calibration 92.80 (0.08) 0.3101 (0.0045) 4.45 (0.15) 0.95 (0.03)
Temp. Scaling 92.80 (0.08) 0.2205 (0.0017) 1.23 (0.09) 0.43 (0.02)
Matrix Scaling 92.36 (0.15) 0.2277 (0.0034) 1.28 (0.17) 0.41 (0.02)

Focal 92.04 (0.15) 0.2377 (0.0037) 1.36 (0.09) 0.43 (0.03)
MMCE 92.24 (0.49) 0.2362 (0.0258) 1.37 (0.35) 0.44 (0.07)

Post-Linear 92.34 (0.25) 0.2320 (0.0106) 1.04 (0.99) 0.44 (0.17)
Post-StoNet 92.63 (0.13) 0.2214 (0.0044) 0.54 (0.07) 0.31 (0.05)

ResNet110 1.7M

No Calibration 92.70 (0.90) 0.3359 (0.0472) 4.84 (0.63) 1.02 (0.13)
Temp. Scaling 92.70 (0.90) 0.2238 (0.0267) 1.29 (0.11) 0.45 (0.03)
Matrix Scaling 92.15 (0.42) 0.2377 (0.0096) 1.56 (0.14) 0.46 (0.02)

Focal 91.97 (0.29) 0.2399 (0.0107) 0.87 (0.11) 0.44 (0.03)
MMCE 91.81 (0.38) 0.2476 (0.0216) 1.57 (0.25) 0.49 (0.07)

Post-Linear 92.59 (0.44) 0.2230(0.0108) 1.12 (0.29) 0.39 (0.03)
Post-StoNet 92.66 (0.84) 0.2210 (0.0269) 0.47 (0.23) 0.32 (0.06)

WideResNet-28-10
36M

No Calibration 95.84 (0.18) 0.1704 (0.0037) 2.55 (0.09) 0.56 (0.01)
Temp. Scaling 95.84 (0.18) 0.1468 (0.0029) 1.16 (0.05) 0.34 (0.02)
Matrix Scaling 93.67 (0.81) 0.1961 (0.0218) 1.47 (0.18) 0.41 (0.02)

Focal 95.43 (0.07) 0.1943 (0.0149) 6.29 (1.33) 1.37 (0.28)
MMCE 93.68 (0.81) 0.1993 (0.0236) 1.43 (0.09) 0.46 (0.03)

Post-Linear 95.77 (0.13) 0.1444 (0.0060) 0.94 (0.40) 0.30 (0.10)
Post-StoNet 95.64 (0.12) 0.1449 (0.0018) 0.87 (0.11) 0.25 (0.02)

S5 Hyper-parameter Settings for the Numerical Ex-

periments

For Algorithm S2, since the learning rates ϵk,i’s and the latent variable

variances σ2
i ’s can be largely canceled at each step of latent variable impu-

tation, their absolute values do not mean much to the convergence of the

simulation. For this reason, we often set their values to be very small in

our numerical experiments, which merely controls the size of random noise
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added to the corresponding latent variables.

S5.1 Settings for the Illustrative Example

One-hidden-layer StoNet: we tried three parameter settings:

(i) σ2
2 = 5e−5, σ2

1 = 5e−6, ϵk,1 = 5e−9, ηi =
1
ϵk,i

, tHMC = 1,
γk,1
|Sk|

= 5e−4,

γk,2
|Sk|

= 5e− 8, |Sk| = 50;

(ii) σ2
2 = 1e−4, σ2

1 = 1e−5, ϵk,1 = 1e−8, ηi =
1
ϵk,i

,tHMC = 1,
γk,1
|Sk|

= 5e−4,

γk,2
|Sk|

= 5e− 8, |Sk| = 50;

(iii) σ2
2 = 2e−4, σ2

1 = 2e−5, ϵk,1 = 2e−8, ηi =
1
ϵk,i

,tHMC = 1,
γk,1
|Sk|

= 5e−4,

γk,2
|Sk|

= 5e− 8, |Sk| = 50.

Two-hidden-layer StoNet: we tried three parameter settings:

(i) σ2
3 = 5e− 10, σ2

2 = 5e− 11, σ2
1 = 5e− 12, ϵk,2 = 5e− 14, ϵk,1 = 1e− 14,

ηi = 1
ϵk,i

,tHMC = 1,
γk,3
|Sk|

= 5e − 6,
γk,2
|Sk|

= 5e − 10,
γk,1
|Sk|

= 5e − 14,

|Sk| = 50;

(ii) σ2
3 = 1e− 9, σ2

2 = 1e− 10, σ2
1 = 1e− 11, ϵk,2 = 1e− 13, ϵk,1 = 1e− 14,

ηi = 1
ϵk,i

,tHMC = 1,
γk,3
|Sk|

= 5e − 6,
γk,2
|Sk|

= 5e − 10,
γk,1
|Sk|

= 5e − 14,

|Sk| = 50;

(iii) σ2
3 = 2e− 9, σ2

2 = 2e− 10, σ2
1 = 2e− 11, ϵk,2 = 1e− 13, ϵk,1 = 1e− 14,

ηi =
1
ϵk,i

,tHMC = 1,
γk,3
|Sk|

= 5e−6,
γk,2
|Sk|

= 5e−10,
γk,1
|Sk|

= 5e−14,|Sk| = 50.
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For both StoNets, the major difference among the settings is at σi’s.

For convenience, we call the settings (i), (ii) and (iii), respectively.

S5.2 Settings for the Experiments in Section 5

CIFAR100 and CIFAR10: Following the setting of post-calibration methods

in Guo et al. (2017), we split the training data into a training set of 45,000

images and a holdout validation set of 5,000 images. The training settings

for the three models are:

• ResNet110: The model was trained on the training set using SGD with

momentum for 200 epochs with the batch size 128, momentum 0.9, and

weight decay 0.0001. The learning rate was set to 0.1 for the first 80

epochs and divided by 10 at the 80-th and 150-th epochs.

• Densenet40: The model was trained on the training set using SGD

with momentum for 300 epochs with the batch size 128, momentum

0.9, and weight decay 0.0001. The learning rate was set to 0.1 for the

first 150 epochs and divided by 10 at the 150-th and 225-th epochs.

• WideResNet-28-10: The model was trained on the training set using

SGD with momentum for 200 epochs with momentum 0.9, and weight

decay 0.0005. The learning rate was set to 0.1 for the first 60 epochs

and divided by 10 at 60-th, 120-th, and 160-th epochs.
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After training, we extracted the outputs of the last fully connected layer

of each model on the validation set, and used them as input to a StoNet

model with one hidden layer, 100 hidden units, and the activation function

tanh. The StoNet model was trained using Algorithm (S2) with the hyper-

parameters as given in Table S2. The regularization parameter λ was set

to 1e−4 for CIFAR10 and 5e−5 for CIFAR100. As a baseline, we consider

the Post-Linear model. We used the outputs of the last fully connected

layer of each model as input features, and trained sparse multi-class logistic

regression models with LASSO penalty on the validation set. The regular-

ization parameter is selected via a 5-fold cross-validation using the default

setting in the scikit-learn package.

Table S2: Post-StoNet Hyper-Parameter Setting for CIFAR10 and CIFAR100 data

Hyper-Parameter Value

[σ2
1 , σ

2
2 ] [1e-2, 1e-3]

ϵk,1 1e-7
η1

1
ϵk,1

tHMC 1
[γk,1, γk,2] [ 5e−4

5000 ,
5e−6
5000 ]

|Sk| 50
Pλ(θ) λ∥θ∥1

Regression Examples: The data sets were from UCI machine learning

repository. For all experiments, we split the data into 40% as the training

set, 40% as the calibration/validation set (used to fit a StoNet model for
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our approach and to compute the absolute value of the residue as the non-

conformity score for Split Conformal), and 20% as the test set. The random

split was repeated 10 times. We reported the mean values and standard

deviations of the prediction interval length and coverage rate.

We modeled each dataset using a DNN with 2 hidden layers, with 1000

and 100 hidden units respectively, and the activation function tanh. The

DNN was trained using Adam (Kingma and Ba, 2015) with a batch size of

50 and a constant learning rate of 0.001. The algorithm was run for 1000

epochs for the Protein data set, 200 epochs for the Year data set, and 5000

epochs for other data sets. After the DNN was trained, we refit a StoNet on

the calibration set using the output of the last hidden layer of the DNN as

input. The StoNet had one hidden layer, 20 hidden units, and the activation

function tanh. Algorithm S2 was used to train the StoNet with the hyper-

parameters as given in Table S3. The penalty parameter λ was selected from

{1e−1, 8e−2, 5e−2, 4e−2, 3e−2, 2e−2, 1e−2, 5e−3, 2e−3, 1e−3, 5e−4} by

5-fold cross-validation, where we picked a value of λ such that the average

coverage rate on the calibration sets were closest to the target level 90%.

Specifically, we picked λ = 8e − 2 for the Liver dataset, λ = 8e − 2 for

QSAR dataset, λ = 3e − 3 for Community dataset, λ = 8e − 2 for STAR

https://archive.ics.uci.edu/dataset/60/liver+disorders

https://archive.ics.uci.edu/dataset/504/qsar+fish+toxicity

https://archive.ics.uci.edu/dataset/183/communities+and+crime
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dataset, λ = 5e− 2 for Abalone dataset, λ = 5e− 2 for Parkinson dataset,

λ = 5e− 3 for Power Plant dataset, λ = 2e− 3 for Bike dataset, λ = 5e− 3

for Protein dataset, λ = 1e− 3 for Year dataset

Table S3: StoNet Hyper-Parameter Setting for UCI data sets, where N is size of the
calibration data set.

Hyper-Parameter Value

[σ2
1 , σ

2
2 ] [1e-4, 1e-5]

ϵk,1 1e-7
η1

1
ϵk,1

tHMC 1
[γk,1, γk,2] [ 1e−3

N , 1e−5
N ]

|Sk| 50
Pλ(θ) λ∥θ∥1

S6 Consistency is Essential for the Validity of the

Post-StoNet Approach

The parameter estimation consistency is essential for the validity of the

post-StoNet approach. To demonstrate this issue, we applied the post-

StoNet modeling approach to the Community dataset without regulariza-

tion (i.e. setting λ = 0), which violates the sparsity condition of Theorem

https://github.com/yromano/cqr/tree/master/datasets

https://archive.ics.uci.edu/dataset/1/abalone

https://archive.ics.uci.edu/dataset/189/parkinsons+telemonitoring

https://archive.ics.uci.edu/dataset/294/combined+cycle+power+plant

https://archive.ics.uci.edu/ml/datasets/bike+sharing+dataset

https://archive.ics.uci.edu/dataset/265/physicochemical+properties+of+protein+

tertiary+structure

https://archive.ics.uci.edu/dataset/203/yearpredictionmsd
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1. The resulting prediction intervals have only a coverage rate of 29.25%

(with a standard deviation of 3.77%).
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