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S1 Extension to network partially functional linear regression

Inspired by an anonymous reviewer, we discuss a natural extension in this section. Our
proposed method can be extended to handle the simultaneous presence of multiple functional
predictors and scalar covariates. Specifically, for ¢ = 1,...,n, let Y; be a scalar continuous
response, {Zy(-),{ = 1,...,J} are J functional predictors, X; = (Xj1,...,X;,)T be a p-
dimensional vector of scalar covariates. Without loss of generality, we assume that the
response, the functional predictors and the scalar covariates have been centred to have mean

zero. Then, the network partially functional linear regression is defined as

J n
Y, = ZJ Zig(t)ﬁg(t)dt—f-XiT’ﬁ-i-pzwij}/j +¢e, 1=1,...,n, (Sl)
where {8;4(:),¢ = 1,..., J} are square-integrable regression functions, ¥ = (91, ...,9,)" € R?

represents the regression coefficients of nonfunctional covariates. The term p is the network
autocorrelation coefficient, and (w;;)i=1, . nij=1,..n 1S row-normalized adjacency matrix. The

i.i.d. g; is the random error. The detailed explanation of the above terms is similar to that
in .

Based on model and motivated by the proposed method in Section we present
a modified three-step algorithm as follows.
Step 1: We perform FPCA separately to each functional predictor and use the pooled FPCA
scores as predictors. The estimator of the FPC scores of Z;(+) is denoted by {ém, . ,@-g, K}
for ¢ =1,...,J. Here, ég,k is computed as §; Zig(t)$g7k(t)dt, where $g7k<t) denotes the kth
estimated eigenfunction of Zy(-) for k = 1,..., K,. The number of principal components,

Ky, is selected according to the procedure outlined in Section [2.3] With these notations, we
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S1 Extension to network partially functional linear regression

can approximate (S.1)) as

J K n
Y; = Z Z gié,kbék + XZT’19 + ,02 UJZJY; + &5,
l=1k=1

7j=1

where by, represents the projection of 5,(+) onto the kth eigenfunction of Z(-).

Step 2: For / =1,..., L, let the estimated scores matrix 1&5 = (EM, . ,éng)T e R K serve
as the predictor variables, where é@ = (ém, e ,@g, x,) " represents the estimated FPC scores
for the (th functional predictor. Let by = (bg1,...,br )T € R¥¢ denote the corresponding
coefficient vector. At any given p, similar to (2.11), the estimator 5(p) and {Bg(p),f =

1,..., K} are obtained by solving the following least square type optimization problem:

2

(9(p),b1(p),...,by(p)) = argmin 1 S(p)Y — > Ab, — X"9

bi,....bg,9 1 (=1
1 N E
= argmin — HS(,O)Y - 779‘ ,
b1,...,bg, Y n

where Y = (V;,...,Y,)" e R", XT = (XT,...,XT) e R™?, j = (Ay,...,A;,X") ¢
R (VE+0) and @ = (bT,... bT, 9T)T ¢ R7E+p,

Step 3: Obtain the estimator p using the following composite least squares objective func-
tion:

2

J
{diagM(p)} ™" S(p)" {S(p)Y — Y1 Ab(p) - Xfﬁ(p)}
=1

1
p = argmin—
p n

On the theoretical side, similar asymptotic results for the functional regression coeffi-
cients 5y(t),¢ = 1,...,L and the network autoregression coefficient p can be established
by following the proofs of Theorem [1| and Theorem [2, with the involved eigencomponents

replaced by pooled eigencomponents. It would be interesting to also investigate the asymp-
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totic normality for the parameter regression coefficients 1 estimation, while we leave this for

future research.

S2 Some useful lemmas

This section presents additional lemmas essential for the proofs of Theorems Detailed
proofs and further explanations can be found in the Supplementary Material [S3|

The following Lemmas will be used to prove Theorem [I] which contains the
asymptotic results for the functional regression coefficient. The proof of Lemma can be
found in Hall and Horowitz (2007)), the proof of Lemma is presented in Supplementary

Material [S3.2] and the proof of Lemma is provided in Supplementary Material [S3.3]

Lemma S2.1. Suppose that Conditions (C1)-(C2) hold, Then as n — o, if k = o(nﬁ),
the following results hold:
(a) supizt [M = Ml = Op(n7172).

(b)

E|G-cP = On™).

2

I
2
3\

E HJ (é(s,t) — G, t)) n(t)dt
E {H (Gs.0) — G(s.1) gbk(s)gbk(t)dsdt}Q

I
Q
3|
—

TN

(c) |6x(t) = 6u(1)]| = Op(kn=172).

Lemma S2.2. Suppose that Conditions (C1)-(C3) hold, the following results hold:
(a) Y 2T (N = M) ™4 = O(K** 727 + logk).
(b) Xt =G N = AT = 0(1).
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(¢) s TN = AT = O(1).

Define the estimator

Q)
—

o~
SN—

an<Y prU > A

.
[y

The L? convergence rate of the estimator is given below.
Lemma S2.3. Assume that (C1) holds, then |g| is bounded and ||g(t) — g(t)| = O,(n="2).

Below, we present several lemmas that will be instrumental in proving the asymptotic

results for the network autoregression coefficient in Theorem [2]

Lemma S2.4. (a) Let 0 = minj<pcr(Ar — Api1), then
sup A — M| < |G — G, supdidr — ou] < 8%|G - G
k=1 k=1

(b) Under the Conditions (C1)-(C2), for k = o(nﬁ),

n

M= = - M€ A+ Oylk/n)

i=1

Gk =&k = D, —N) <(é - G> e, ¢k> x {1+ 0p(1)}-

L#k

In addition, if a > 2, then

Olt) = oit) = Y (- )\e)_1¢z<(@ - G) b, ¢k> + O, (n 'k logk) .

L#k
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(c) Under the Conditions (C1), (C2), assume E(E2 — \,)? < CA2, and k = o(n%+2). Then
/):k — )\k = Op(n*1/2>\k) and é\zk — fzk = Op(klia/Qnil/Z)
uniformly in k.

Note that the conditions E(£2—\;)? < CA? and k = o(n772) in Lemmawere used in
Wong et al|(2019). The proof of Lemma is provided in Supplementary Material .
The following Lemma and Lemma are devised for measuring the approximation
error of scores caused by truncation as well as the statistical estimation error. Their proofs

are deferred to Supplementary Material and Supplementary Material respectively.

Lemma S2.5. Under the Conditions (C1), (C2) and (C5), assuming E(&} — \.)? < CA;

and k = o(nﬁ), if a > 2, then

hun{ 7= (A= a7) (A= a) - 0,

Lemma S2.6. Assume that the assumptions in Lemma[S2.5 hold. (a) Under the Conditions

(C3),(C7)-(C9), we have

E %;si{&bmp}—%ﬁ;&m;b(p),p} ~o(1),

- - - (S.2)
_%ﬁ;si{&bw,p} - %ﬁ;&m;b@),p}_ — o).
(b) Under the Conditions (C7) and (C8), we have
1 « (?Si{A;b(p),p} 1 <n 0Si{A;b(p), p} —1/4
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and

Z dsS; {A b(p), p} _ %Z dSi{Az;p)(P)aP} +o0, (n71/2) _ (S.4)

i=1

Lemma S2.7. Ify is a random vector with mean p and covariance matriz 3 and if A is a

symmetric matrixz of constants, then
E (yTAy) = trace(AX) + uTAp.
Ify is N(u,X), then
var (y'Ay) = 2trace {(AX)’} + Ap" ASAp.

The above Lemma provides the expectation and variance of quadratic forms and
the proof of Lemma can be found in many textbooks, such as Rencher and Schaalje

(2008).

Lemma S2.8. (a) Let A and B be positive semidefinite n x n matrices, then
0 < trace(AB) < Apax(A)trace(B) < trace(A)trace(B).
(b) Let A and B be symmetric n x n matrices, then

A {(AB)T(AB)} < 22, (A)N2,(B).

max max
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(c) Let A be an n x n matriz, then
trace (A2) < trace (ATA)

with equality if and only if A is symmetric.

Lemma S2.9. For any n x n matrices My = (my;;) € R"™ and My = (mg;;) € R™",
and n-dimensional vectors Uy € R™! and Uy € R, Let X = (Xy,---,X,)" € R,
where X; € R(1 < ¢ < n) are identically and independently distributed variables. Write
Q1 = XTM; X + UTX, and Qy = X"M,yX + U X. Assume the following conditions are
satisfied: (1) E(X;) =0 and E(X}?) =0 fori=1,...,n; (2) E(X?) =1 and E (X}) < o,

then

cov(Q1,Q2) = {trace(M;My) + trace(M;M,)}

+trace {diag(M;)diag(M>)} { E(X}) — 3} + U] U,.

The above lemma is similar to Lemma 2 of |Huang et al.| (2019), which is used in the

proof of Theorem [2] We provide the proof of Lemma[S2.8/and Lemma in Supplementary

Material and [S3.9] respectively.

Lemma S2.10. (a) Assume Conditions (C1), (C2), (C5) and (C8) hold. Then

‘Amm(fx) - )\min(A)‘ — 0,(1) and |Amax(A) — )\maX(A)‘ — 0,(1),
where A = n_lﬁf(* Ags and A = N AT A, with K* being an arbitrary positive integer.
(b) Under Conditions (C1) and (C2), the projection matrices defined in (3.20) satisfy the
following:

8
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(i)

nl/4

K3/2—a/2
0, (—

)

(1i) Assume Conditions (C5) and (C8) hold. Then

|AZ™T — A = O,(1).

The above lemma quantifies the asymptotic orders of several key expressions that will

be used in the proofs of Theorems [3] and [4]

S3 Proof of theory

S3.1 Verifications of several claims

Note that for £k =1,..., K,

Eé?k =

i=1

SRS

Sl 3l 3l
1= L= 1=
N
% %

-
Il
—_

COV(gk, gk) = Xk
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Let Y*=SY, g(t) =n"' >, Y;*Zi(t) and g(t) = E[Y;*Z;(t)]. Equation (2.11]) leads to

Below, we show that

where Q(b, p) is defined in (2.9)). For ease of notation, let f(p) = \%(S(p)Y - ;&b), then

Qb,p) = Ffp)"f(p),

which implies that

op op
— % {S(p)Y - Ab}T 53—;”)3(
= % {YTS(p)T%Y - bTﬁT%Y} .

Recall that the mean and covariance of response Y are S~!(p)Ab and 02S~1(p)(S~(p))",

10



S3 Proof of theory

respectively. Then,

E(Y|A)

s (p)Ab

= —itrace {(WI-pwW) '}
- p :

which is not zero in general. For example, when all eigenvalues of pW satisfy |A(pW)| < 1,

we have

trace {W(I — pW) ™'}
— trace [W{T+ (0W) + (0W)? + (4W)" + -+ (0W) - }]
= trace (W + pW?2 + p*W3 4 pPW* .. )

= trace (pW2 + p*W3 4+ W 4. ) >0

in general, where the last euality is because the diagonal elements of W equal to zero, and

the last inequality is because each element of W are nonnegative, and p # 0,W # 0 in

11
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general. Hence, trace{W (I — pW)~'} # 0 unless there is no network structure. Based on

the above results, the expectation of the score function is not equal to zero.

S3.2 Proof of Lemma

(a) Let [k/2] be the largest integer less than k/2. Then

0 [k/2 =2k

]
IRECRUNEEEE b RIS YRR Y [ G IR RR]
{=1

Co#k (=[k/2]+1,64k  (=2k+1
Under Condition (C2), we note that

[k/2] [k/2]
Z £_2(a+7—)</\k _ /\ﬁ)_4 < Z E—Q(a-‘rﬂ') P‘E<1 _ )\k/)\[k/Q])]_4
/=1 {=1
[k/2]
C, Z 6_2(a+7)>\£_4
(=1
[k/2]

s Z (a2

(=1
(

N

VAN

1, if o +

N[
A
N

N

Cs 4 logk, if o +

N[ =

k,2a—27—+1’ lf o+

DO [ =
\
=

and

0 o0
Al CVE DY) e S e Gt WU PARYDYS )

(=2k+1 (=2k+1

a0
04/\];4 Z é_Q(OH_T)

{=2k+1

05 k2a—2’r+1 ]

A

N
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Again, using Condition (C2), for [k/2] < ¢ < k, we observe that

A=A =

\%

\%

k—1

D= M)

t={

k—1
-1 Z o1
t={

ke O (k= 0).

Similarly, for k < ¢ < 2k, let Cg = C~127%7! then

Me— e =

WV

\%

t=k

Cok™ 10 — K.

This implies that, for Cy = max(Cy*,C*), Cg = C7220+27

2k

Z K_Q(OH_T)()\k . AZ)_4

(=[k/2]+1,0+#k

S

2k 076—2(a+7) LAa+1)

(S.6)

(S.7)

(=[k/2]+1,0+#k

N

(k=01

i’i 07(k/2)72(a+7—) k4(a+1)

(=[k/2]+1,0+#k

-

Y
£=[k/2]+1,0+k ( f)

N

Cgk2a727'+4,

2k _
Cgk‘2a 2T7+4

13
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where the last inequality is because Z,il k=* is a convergence sequence. By combining the

above results, for Cjy = max(C3, Cs, Cy), we have

e¢]
Z g—2(a+7‘)(Ak . /\Z)_4 < Olo(k2a—27+4 + 10gl€>
Ll#k

(b) Similar to the treatment of (a), using —(7 + sa) < —(a + 1) obtained by 7 > 1+ 1, we

have

b b2l
DT AT < D R T = M Ape)] T
—1 (=1
/2
< COn Y 2!
/=1
/2
< 012Z€7§a77—>013.

=1
Again using —(7 + 1) < —(a+ 1) and o > 1, we have

a0 a0

DR PV Vi DA L P VD PRYYS )
Pyt (=2k+1
© 3
< Ot Z e
0=2k+1
< Cl5k—%a—7+1
< Cisk™e,

where the last term converges to zero for large k. Using (S.6]) and (S.7)), we have |\, —A| 7! <

Ciek®t|¢ — k|71, where Cj5 = max(C, Cg '), which implies that

2%k 2% 3o

C g « Tka+1
D e P M
0=[k/2]+1,0#k (=[k/2]+1,tk Laeltd

14
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QZk Cigl™27T

< k,oHrl
|k — ¢

0=[k/2]+1,0#k

< Ok~ 297 ogh,

Also, the last term converges to zero for large k since for any x € [1, 0] and v > 0, Inz/z7 —
0.

(c) Since 7 > o + 1, we have

[k/2] [%/2]
DT = AT < D T I = A/ Apg)]
/=1 (=1
[k/2]
< Cig Y, 077 — Chy,
/=1

and

© o0
R A PV e SR A PYIC Ep YOS

0=2k+1 =2k+1
0
< Cypdgt D) 07
0=2k+1
< 021k77+1’
where the last term converges to zero for large k.
Similarly, we have
2% 2% e
e B Cl6£ « TkOé-‘rl
Z 14 ‘)\k — )\g‘ ! < Z W
(=[k/2]+1,6+k 0=[k/2]+1,0#k
2% e
C g a—T
a+l1 16
P Y

0=[k/2)+1,0+£k
< Oyk " logk.

15
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Also, the last term converges to zero for large k since 7 > 1. This completes the proof of

Lemma [S2.2] O

S3.3 Proof of Lemma

Recall that

Q)

1

.

n

S

i=1

(t) = TLIZ(Y pzwzg > z’
Y Zi(t),

Zi(t)

and

9(t) = E{Y Zi(1)},

where Y;*’s are independent and identically distributed according to (22.6]). Using Condition

(C1), we note that

. 1/2
Il = f(t)dt}
1/2
[Em*zxm]?dt)

1/2
E{Y* W(t )}2dt)

N

N
/\/\/\,——-—\
1(;

. 1/2
(B () LB {20 ) et

< [01/2 E{Z;*(zf)}]l/%ht]l/2

16
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and

Therefore,

This leads to E |g(t)

E|g(t) - gt

—9(®)] =

f{g (1)} dt

E{g() g(t)y* dt
& [—{n]}g*zl _ By Z ()}] dt

(& (w V2 - E{Yi*Zi(t)}]> dt

i=1

(&

fn—lE [Y* Zi(t) — B{Y;* Z;(t)}] dt

[ n E{YZ;(t)} dt

w [ (e {20 )
O TR
n~'CV*C

O (n’l) )

Elgt) —g®)]* = O@m™).

O(n="2). O

17
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S3.4 Proof of Theorem [1l

We use the following facts in the proof

mPtt p>—1
ng: \logm p=—1
=1
C p<-—1
o0
2 mP?=mPH p>1
f=m+1
For i.i.d. case,
A 2

(t)) . (S.8)

Based on Condition (C3), we note that the second term on the right-hand side of (S.8) can

N
b
—
MN
w)
=
HMN
=
<
-
=
~
[\
+
[\]
—
Nl
=
<
Eal

be shown to be

J{ibk%(t)—ﬁ(t)rdt = J{ibkqﬁk ibk%(t)}gdt
_ J{

Z by (t }dt
k=K+

18
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- [ 2 et
k=K +1

—2
< 3o
k=K+1

_ O(K72T+1)

O(n(l—QT)/(oH-QT) ) )

Next we will show the convergence rate of the first term on the right-hand side of .
Recall that Bk(p) = X,;1<<$k, 9. Note also that by = A\, (%, g).

Let A = |G — G| and Qx = {A < Ax}. On the event Q, using Lemma, we can see
that sup,<g |Xk — M| < A < Ag/2 < \/2, which implies that 271\, < Ar < 2\i. Moreover,
note that A is nonnegative, Lemma (b) yields A = O,(n~%%). Condition (C2) yields

Mg = O{n=®/(@+21)} " Conditions (C3) leads to that pr(€2x) — 1. Hence it suffices to work

with bounds that are established under the event Q. We have

f(i 3 )—gbkebk(t))Zdt
>

= J ( 2 (O ERCNONG g D) i)
T 2 A e 9 {0n(t) - ¢k<t>}> K
< zi] (D0 §) = (D1, ) zi: A bk, 9)°
le: A X w, 9% dr(t) — dr (1)
< 36 Z I (<¢k,§ =" + (B = 0y’ + (B — b G- 9)°)

+32 2 or, gy + 3KZ Ao X bk, 9% 0k() — dn(8)]?

19
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K

Z 2§ —g)° +36Z>\ 2 — on.g)°

We now treat each term in (S.9)). To handle the first term in (S.9)), we note that

E{Y}Zi(t)}

g [Uﬁ(t)z-( )d } {kZ i e >H
§ |

Then by the orthonormality of {¢x()}r=1.., it yields that

[staa - f B [ 0 s)istae | aw (ot
_ E{fﬁ(t)Zi(t)dtfik}.

g(t)

Similarly,

|awawae - | {n-lin*zxt)}m(t)dt

Noting that

E ({61 —9))

20

2 G - gl + KBE) |6 (0) —¢k<t>u2+32<igl — Ak g)” (89
k=1
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_ [nlg{fﬁ dt+el}§zk— Uﬁ dtfm}]

= 0.
Now, using Condition (C1), we have

E ({61, G — 9)%)

- e [z o e [z
- lvar{ f B(t) dt{lk}Jrvar (gigik)]

411/2
< nl( E{jﬁ(t)Zi(t)dt}] (Bes)'? + (Bh)'? (Egm)l/Q)

< C’n_l)\k.

This implies that

K K
DN G =97 = Opn™' YA
k=1

Next we deal with the second term in (S.9). Write g(t) = Y., gx¢r(t), where g, = {g, ¢y) =

Axbr. Using (5.4) in Hall and Horowitz (2007), we have

0

Ot) = o) = D (k= M) 0et)(n, (G = G, b0)) + du(t){0k — bk, D).

0:4#k

21
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Hence, combing the orthonormality of {¢(t)}x=1..., we deduce that

<$k — bk, 9)

= f { > Ak = M) @e(t)0k, (G — G, b)) + Bt} — n, ¢k>} { > 9k/¢k/(t)} dt

LA#k
0

= . 9\ = M) 70w (G = G 600y + gilon — bk, D)

Ll#k

= Rp1+ Rio + Rps + Rk4, (810)

where

R

Ry

Rk3

R4

b (e = M) ™ = (e = M) T K, (G — G,

0:l#k

Z AebeOAk — M) "Hon, (G — G, o)),

0:l#k

Z >\Zb£</)\\k - Az)71<$k — Ok, <@ — G, d,)),

0:0#k

Mebil b — bry Di)-

Next we will first focus on the convergence rate of Ry;. Define the set of realizations such

that, for constant C’ and sample size n,

Fr = {Q_I(Xk CA)TE< O = N) P O g 1K ﬁ} .

We note that, by Lemma [S2.1]

22

M= A = = Ak + A — A
= [0p(n™2) + X = A

= (A = A{1 + 0, (1)},
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hence 2*1(/A\k — M) 72 < (A — A\¢) 2. Further,

A=) = min{(M_1 — )2, (A — Arrn)?}
> O_2k_2(a+1)

> 072K72(a+1)’

2(a+1)

hence (A — )2 < C2Ke+D) < C'nevzr for sufficiently large n. Thus, we have P(Fg) — 1

as n — oo.
Hence it suffices to work with bounds that are established under the event Fj. Using

conditions (C2) and (C3),

2
Mk — A ~
R, = Aby——F— CF (G -G,
i1 {”%:k ! e()\k_)\é)<)\k_)\f><¢k ( ¢e>>}

{ PP A a0 } { S (6 (G - G, ¢z>>2}

PR OV VA LT0 VD VS L N v

< { Z 20 2(etT) 8\’;—} {Z<¢k,<G G ¢z>>2}

Ll#£k

= 20% (A= M)? Y 2 (N = M) TG = G
Ul+#k

N

where the last equation is because Parseval’s identity asserts that for any x and orthonormal
basis e, in Hilbert space, Y, [(z,e,)|* = |x|?. Based on Lemma and Lemma [S2.2| we

have

K K
VACRL < 200 YN = MG = Goopl* Y T (g = A

k=1 0:A+#k
K

< 20% 3 (N = M)?I(G = G, PR DT 72 (= A~
k=1 Ll#£k

23



Xingyu Yan and Yanyuan Ma

A

K
C1 Y (= M)2IKG = G )| (K*logn + k*o27+4)
k=1

nfl

M=

:Op

{

_ Op {7172 (K2a+1logn + K4a72T+5)}

E(|(G — G, ¢ |*) (K*ogn + k““”‘*)}

e
I
—_

M=

(k?QalOg’I'L + k4a—27+4>}

Ee
I
—

_ OP{TL_(ZT_l)/(a+2T)}.

In the following, we use Lemma and the assumption 7 > «/2 + 1 in (C3) repetitively

to show the similar result for Ry, Ri3 and Ry as for Ry,. For Ry, observe that for all /, k,

because
A, if k=1,
E(&kée) = fj G(s,t)r(s)e(t)dsdt =
0, ifk#/,
for ¢ # k,
ff {@(S’ t) = G(s, t)} o1 (s)pe(t)dsdt
= Jf [%Z Zi(s)Zi(t) — G(snﬁ)] b1 (8)de(t)dsdt
- % Z Eirie-
Thus,

n o0
Riy = n_lz Z b — o) e,
i1 G0k
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S3 Proof of theory

and F Ry = 0, we can get

2
0¢]
nE(Ry,) < 2E {&k D1 Aebe(Ay — )\z)l&z}
Ll#k
4712

< 2(EE)Y? E{ i Adbe( M. — Ae)lée} )
Ll#k

where (F&)Y2 < C32k~ by condition (C1). It is easy to see that

E{ D Abe(A — m—l@}

:0#k

< D0 DT P Ok = Aa) T b e = M) T B (€08 éel)
01:01#k la:la#k

< CP Y ) ’gl_(am()‘k_)‘41)_1’""5(Q+T)(>\k—/\44)_1‘E(|§£1&2&35z4|),

01:01#k Ly:l4#k

and repeated application of Holder’s inequality yields that

B(lenéuitl) < B} (Be1)"
< ([B((En&a) Y PP B (el )
< {B(&n8)?}P(BE,) (B,

1/4

< (Beh)" - (Bet)

< 0361—04/2 L &Iaﬂ.

Hence we have

41/2

(BE)Y? E{ i Aebe(Ar; — )\e)lfe}

0:l#k

1/2
< 03/2’6"“{08 ) ORRRED M (raal SV VA ot T OV PR o E(r&lf@&smr)}

l1:01#k Ca:la#k
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N

1/2
03/2k:‘“{011 > 2 Tk = )T k= A e;"‘”---&z“}

01:41#k La:ly#k

p-Sar 4 12
ol e L
{ (MZ#:k A — M) }
2

N

The last equality follows from Lemma [S2.2l We conclude that E(RZ,) = O(n~'k™%), which

implies that

=

MRy = Op(n KM

E
Il
—

o Op (n7(2771)/(a+2‘r)).

It is seen that under Fp,

Ry < 2 Nebe[ Ak — M| Mo — 61, (G — G, b))
C:h+#k
< V2 Y Abelh - )\g|_1ff{@(s,t) —G(s,t)} {&k(s) —gbk(s)}dsqbg(t)dt
C:A#k

0
< \/502 Z g—(a+’r)|)\k . )\é|_1

Cl#k
1/2

<[|[{een- s} ol - {00 ao) as| oo

< vac? i g_(a+T)|)‘k - )‘é\_l [J {Cgk(é‘) - ¢k(3)}2 ds] v

Ll#k

><J[J{@(s,t)—G(s,t)}st]I/Qm(t)dt

[ee}
V202 Z TN — N b — o

Ll#k

N
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S3 Proof of theory

[t ol ] (fon]

V202 3 7D N = AT ok — il |G - G

C:l#k

< Colde — &G - G|,

Here the last equality is due to Lemma [52.2]

Then we have

k220" CY|on — ¢i[*|G — G

—4743
n o+2r

Mw

K
YINCRE, < C?
k=1

1

I
/‘\T

I
/N

_ Op<n—(2'r—l)/(oz+2'r)).

Similarly, by (C3),

K K
Z&%@=:ZWM—%MV
k=1

K
< Z loe — onl? o]
k=1
K
< DOk or — ol
k=1
K
_ Op n —1 Z k' 2(r—1) )
k=1
_ Op (n —(27'—1)/(01-‘,-27'))'

The last equality obtained by Zszl k271 is a convergence sequence. Combining the results
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regarding Ry, Ry, Ri3, Rrs, we get

K
Z )\;2 (<$k B ¢k’g>2> —0, (n7(2771)/(a+27)) .
k=1

We next consider the third term in (S.9)). By combining Conditions (C2), (C3), Lemma

and invoking Lemma [S52.3] we have

=

K
2 NP1G = gl + K6 o — dnl? < G2 Y (K0~ + Kk727) |y, — o
k=1 k=1

= O (K*"n~ 2+ Kn™)

_ Op<n7(2771)/(a+2’r))'

For the last term of (S.9), given Condition (C2), we have &' < Ck**!, where §, =
ming<p<x(Ar — Apy1). Provided that event Qg holds, according to (5.7) in |Hall and Horowitz

(2007), we have

‘/\k _ )\k

<[] (660 - Gts.0) ants )qbk(t)dsdt‘ FaA A+ @@l ).

Combing above results and Lemma [S2.1], repeatedly using Conditions (C2) and (C3), we

obtain,

A\

K K /R 2
Z()\,gl A o, 9> < Z ( ) ¢k,9>
=1 b1 A\

K
< 4N e — A)?

< i v b {JJ (s, ) )> Or(s )¢k(t)d3dt}2

F 1687 307 {87+ (@ - Gyl

k=1

[y
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S3 Proof of theory

K K
- 0, {n_l PRI AYERTEDY 5,;%;%,3}

k=1 k=1

K K
_ Op {nl Z ka‘r + n72 Z k4a27’+2}
k=1 k=1

_ Op(n_lK + n—2K4o¢—2T+3)

= o, (n—(QT—l)/(a-‘rQT)) )

This completes the proof of Theorem [T} ]

S3.5 Proof of Lemma

Part (a) is the results from [Bhatia et al.| (1983).

(b) Under k = o(nﬁlﬁ), according to the result of (S.1) in Wong et al.| (2019), we have

Mo A = <(é - G) O, ¢k> +0,(k/n), (S.11)

=8 = 0= M) ((G—G) dnor) x {1+0,(1)}

L#k

and

Pi(t) = du(t) = {Z(Ak — )0 (G- 6) o ¢k>} {140,257}, (S.12)

l#k

where 6, = 3 ming ., |\ — Ag|, which is no less than C~'k~*"" under condition (C2). Let
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Ak = SO = 20) 710 (G — Q) by, b1y Note that for k # ¢,

f CA? (s,t) — G(s t)} Or(5)Pe(t)dsdt = Z&e&k E(&ubir) = Zfzefum

and
1 ¢ ’ 1 1 1
- LE. N 202 — 4 4\11/2 -
B {n i;ng&k} = nE(fw ") < n{E(gzZ>E(§k)} < Cn)\z/\k;,
where the last inequality is due to Condition (C1). Thus,
~ 2 )
E{(G=0sno0} = O™ AN,

We have, by Condition (C4),

A = O, {n—l/2 Z()\k - )\g)_l(ﬁg)\;/?)\,lf} =0, {n_l/Q Z()\k - )\6)_1/\;/2)\;/2} :

L#k L#k

Write

D - M) TN

0+£k
k/2 [3k/2]
(Z+ 2 >+ 2 + Z)Ak )AL (S13)
[k/2]+1 l=k+1 =[3k/2]+1 0=2k+1

To examine the first summation in (S.13)), by Condition (C2), we have

Ak2 = A = Agg— Agjogpr + o+ A1 — M
> CYk/2)~ @t 4. 07 (k- 1)t
> C—l(k/2)k—(a+1)

30



S3 Proof of theory

and
“k/2)* < 1/ Mg < C(k/2)"
This leads to
L= Mfhga = T k0 (k/2)" = 2700,

Then, under Condition (C2),

[%/2] 1212 [%/2] )\1/2 )\1/2
M— M) I AN — _ Tk
;1 ( k Z) l k ~ )\ (1 o )\k/)\f)

[%/2] )\1/2/\1/2
Z Ae(1 = Xe/Agj2)

[k/2]
2o 3NN
/=1

A

N

[k/2]
21+a03k,fa/2 Z ga/2

/=1

A

N

Csk,

for some constant Cj.

For the second summation in (S.13]), under Condition (C2), Ay — A\, = C~ k=2~ 1(k —
for ¢ < k, and
k-1 _ _
Cl/2k 0‘/201/2£ /2
Z ’)\k B )\A—l)\zﬂ)\i/? < Z C«ka-i-l -
0=[k/2]+1 =[k/2]+ B

f)
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k—1 _ _
k a/2€ a/2
_ 02 Z potil -
0=[k/2]+1 k— ¢
k-1 —a/2 —a/2
< C? Z kaJrlk (k/Q)
k—1{
=[k/2]+1
k—1
= 2% N k/(k—0)
=[k/2]+1
< Cyklogh,

for some constant Cj.
We now examine the third term in (S.13)). From Condition (C2), Ay — A, = C~1~>1 (¢ —
k)= C71(2k)=1(¢ — k) for 3k/2 = £ > k. Thus, let C; = C?2>" incorporating Condition

(C2), we have

[3k/2] [3k/2] /\1/2 )\1/2
DMw= )TN < 0 ) 2k
l=k+1 l=k+1 £ k
[3k/2]
< O Z pott -
l=k+1
[3%/2]
< Cuk ) 1/(C—k)
l=k+1

< Csklogk,

k— a/2€ a/2

for some constant Cf.

Consider the fourth summation in (S.13). By condition (C2), for ¢ > k,

/-1

AL — AN = Z()\t — At41)
t=k

/—1
C—l Z t—a—l
t=k

¢
c! J Y
k

A\

\%
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Hence, by a > 1,

2k

2

0=[3k/2]+1

e — Ao) 702N

for some constant Cg.

N

VAN

N

N

1
- (k- ),
Ca< )
2k _ _
k a/2£ /2
CQa Z - gfa
0=[3k/2]+1 N
R UL
k 0=[3k/2]+1 (€/k)> —1
r2 $a/2
C’2ozkj dx
3/2 ZL‘O‘ - 1
r2 pe
C’2ozkj dx
3/2 IL‘O‘ - 1
r2 a 2 1
C?ak J dr + C*ak f da
3/2 {L‘O‘— 1 3/2 :L‘Oé_l

2
C’%zk% + C’%zkf 1 dz

3/2 L —

Csk,

For the last term in summation in (S.13]). Using Condition (C2) and ¢ > 2k + 1, we have

A — N = )\k—>\k+1+"'+)\g_1—)\g
> Ot 4 o2k o o (e — 1)t
> O 7'k x (2k)~(@+D
_ 0—12—(a+1)k—a.
This implies that
A 07127(a+1)k7a
Mfhe = F
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> 14 ¢ gt p—ag—1pa
> 1+ C722 (@+Dg=e(gf)e
> 14+C %227

= 1+ (20%)71,

which leads to ﬁ)xk < A\, — N < A\, when ¢ > 2k + 1. When « > 2, we have

o0 0 )\1/2)\1/2
M= M TNAN? < et Y Sk
(=2k+1 =2k+1 P
0
= (207+1) Y AN
{=2k+1

< (2C7+1)CKRP N e

{=2k+1

N

Crk,
for some constant C%7. Thus, according to (S.13)), we conclude that, if a > 2,

e — A) "IN = O(Klogh). S.14
l k
Z35

Now, it follows that

t+k
= 0, {n_l/20(klogkz)}

Ak = op{nWZ(Ak—Az)u;/?A}/?}

= O,(n"?klogk).

34



S3 Proof of theory

Combing (S.12) and &, ' < 20k**!, we have

or(t) — o) = DOw = A)T'0e(G — G)r, by + Op(Api x n~V2571)

- Z(Ak - )\z)*1¢g<(é — G)(bg, ¢k> + Op(nflkaﬂlogk)_
t#k
Noting that
JJ S ¢k( Yo (t)dsdt
- H [ Z Zils $,t) | Or(s)r(t)dsdt

- 525316 — i, (S.15)
=1

incorporating ([S.11)), we get

n

M- A — %Z( 2\ + O, (k/n). (S.16)
(¢) Using (S.15)),
E [ |[{éen - o) qﬁk(s)qﬁk(t)dsdt]
- E{n—li@fk - m}
-0
and

Uf @ (%) ¢k( )¢k(t)d8dt]2
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2
= F {n_l Z({fk - )\kz)}
i=1

= B - )

—142
< COn ),

where the last inequality is established by condition E(& — \)? < CAi. Hence, by (S.16)),

for some constant Cg,

2
E(Xk — )\k)Q < 2F {n‘l Z( ZZk - )\k)} + Cng/nZ

i=1
= O(n'\2) + O(k*/n?)
= O(n™'Ap),
where the last equality is because k = o(nﬁ). Finally, the last equation
Gk — & = Op(K'™n7'0%)

is a result in the proof of Proposition 1 in Wong et al. (2019). This completes the proof. [

S3.6 Proof of Lemma

By Theorem 5.6.9. of Horn and Johnson| (2012)), it is obvious that

)
1

1 A7 T ~ 1 A7 T ~
_ — — < _ — —
Amax {\/ﬁ (A A > <A A) }‘ H \/ﬁ (A A ) <A A)
where H : Hl is the maximum column sum matrix norm. By Lemma (C), we have

1 K n

< N > ‘(gzkl — &) (Eiks — Eiks)

k1=1i=1

[ (3 x) ()

1
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S3 Proof of theory

<

1<ke<K

K
r1—a/2 -1/2 11—a/2
C’(Z K} n ) <1£3§Kk2 >,

ki=1

K
C' max Z e e e
ki1=1

for some constant C'. Note that, for any 1 < k < K,

K
Z klfa/anl/Z - ’)/(TL),

k=1

where

-

K?ol2p=12 9 < o < 4,

V() = {logKkn"2 =4,

\

n-1/2

a > 4.

Based on Condition (C5), we know ~(n) — 0. Furthermore, max;<p<x k,'~*? = O(1) by

a > 2. Hence, it follows that Ay {Viﬁ (AT - AT> (A . A)} — 0,(1). O

S3.7 Proof of Lemma

The detailed arguments of (S.2)), (S.3) and (S.4)) are shown below, respectively.

Proof of (S.2). Denote f(A) =n~Y23"" | S;{A;b(p), p}. According to (2.15)), taking deriva-

tive of f(A) with respect to A, we have

o/(A)
0A
- o= (-swpw [{
_{(9D P)S T
op

0+ D) Ty

TS (67 + Do) (-WT) | Ab(s) - DAL bip)”

op
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{50 WD) | {D(IM()Y - DS()" b)) b(r)

~S(p)D(p) {D(X)M(p)Y — D(p)S()" Ab(p)} %) .

By Taylor’s expansion,

fA) = f(A)+ vec” {%} vec <A - A>

+27 vec” {826]1?) } vec { <A - A) ® <A - A) } , (S.17)

where 0% f(A)/0A? does not depend on A, and

of (A ~
ecT{%}vec<A—A> = W + Do + 3 (S.18)

where

= vec (= s(oD(e) | { 2 M) + D B v

5 v op
_ {%/()'O)S(P)T + D(p) (—WT> } Ab(p) — D(p)S(p)TAag_(pp)] b(p)T)
Xvec (A — A) 7
Sy = vec! —%{S(p)ag—gp)—WD(p)}

and
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~ ~ . T
We now consider the term 7,;. Let d; = <§1k — &k e ke — énk) and (B),. ; denote the

7th column of B for any n x m matrix B. For succinct presentation, we write

_ = —1 dD(p) , IM(p) T
u - 3, = itnlo), . o) M)+ PDG) Do
By = ) \/Lﬁ { 2 Sl (P)br(p), - Y é‘nkfbkf(p)bk(p)}

k=1 k'=1 k=1

; {s@ ) —WD<p>} D()S(p)".

and

By - Z%{Zslk/abg(p)m, B W ARLE >}s<p>D<p>QS<p>T
Then we have
Aoy = Zl—ins(p)D(p){ag/gp)M(p)+D(p)al\g£p>}Yb(p)T] kgk
#35 | =8D() { 280" + Do) (~W) | Ablpbi)T| B,
SIS 2 A PO ]
R R e
= (@n1+%n2+e%n3)gk~ (819)

Using the conditions &, = Op(1) for any k =1,..., K,i = 1,...,n, and sup,c_ 11 [bx(p)| <
CEk™7,sup e(—1.17 190k (p)/0p| < Ck~7 for each k > 1in Condition (C7), we have S b (p)
— 0,(1) and S5_, &0 {0be(p)/0p} = Oy(1), which indicate S5, &by (p)bi(p) = Oy(k™)

and 35, Eae b (p)/0ptbr(p) = O,(k~7), for i = 1,...,n. Thus, combing Lemma (c),
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Condition (C3),(C7) and (C8), it follows that

1
. i 0, (k") O, (k-2") [Am {E2} e (M)} + e (D09} e | P2
X Amax {D(p)} Ml {S(0)S(p)"}
" i 0, (k) 0, (") [Am {2 (SIS + A (DI N (WWT)
X Amax {D(0)} Ao {S(0)S ()"}
+ Z 0, b (%) A {D(0)?} A {S(0)S(p) "}

Op(kl_T_a/2>

I
Mw

[l
© 7

p(1)- (S.20)

where the last equality is because condition 7 > «/2 + 1 in (C7) and the assumption o > 1
n (C2).

On the other hand, by Lemma and its proof concerning (G — G) ¢y, ¢1.), we get

Gr=r = 20— ((G=G) ouon) x {1+0,(1)}

L#k

= n! Z Eikine Z(Ak —Xo) ik x {14 0,(1)}

i1 ik
= n! (Z §irk&ireSik + §i2k§ie> D k= A) T x {1+ 0,(1)}
1171 L#k

= (Girk + dizk) x {1+ 0p(1)},

where 0;1p = 07 (37, Ginninebin) Dooar (Ve — M) ™ Gioe = 018 Eie 2y (A — Ae) L. Note

that Ed;1; = 0 and by the proof of Proposition 1 in Wong et al. (2019)), Fé%, < Ck**/n,
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fori=1,...,n. With

Bl2&)| < (BEh)2(Be)

< OV
implied by Condition (C1), and

D% = A)TINN2 = O(klogk),
l#k

implied by (S.14]), we can get

E 0] < 07OV (0 — M) TN
L#k
= O(n 'k'"logk).

Let 81 = (011k, -+, 0n1k) T and 6o = (O12k, ..., 0n2k) . Based on above results, Ed;, = 0,

|18ar ]| = O, (n~Y2k'=*2logk), and Condition (C3),(C7) and (C8), (S.19) can be written as

ﬂnl = (%nl + a@nQ + %ng) (51k + (SQk) {1 + Op(l)}

= (%nl + %ng + %ng) 51k + Op(l),

where the second equality is established as follows. By Conditions (C3),(C5),(CT7),(C8) and

similar to the proof of (S.20)),

(B + Bra + Brs) 0o,

< D0, (K7) O, (72K = logk) [Am {5]3—[()’))} Amax {M(p) }
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# Do (D0 A { T A (D01 ML (818017}
K oD(p

+ Z O, (ka) 0, (nil/Zklfa/Qlogk) l)\max { } >\11n/gx {S }
k=1

+Amax {D(0)} Mie (WW )] 5 A {D(0)} Al {S(0)S ()"}

+ 220, (577) 0, (72K~ logk) Anax {D(0)*} Amax {S(0)S(p) "}

= o0,(1).

For %201y,

E ('@Tﬂallﬁ)

E [ 3 Ln { i &b (p)bi(p 2 Enkrbie (p }
x {S(p) I;p —WD(p)}D(p)S(p) 51k]

Z - Z Z Z K {gpk’bk’(f’)bk(ﬂ)@pq (n_l Zn: fnk:fn@) Eak Z(Ak - Ae)_l}

k=1 npzl q=1k'=1 117#q {#k

K 1 n n K n

D= 2000 D0 te()be(p)@pg D (A = A)T'E {fpk' (n_l > §i1k§z‘1e> qu}
S VI o s £k i1#q

where @, denotes the (p, ¢)th element of the matrix [S(p){0D(p)/dp} — WD(p)]D(p)S(p)*

and is non-random. The last equality holds because for p = ¢, by k£ # ¢ and the uncorrelation

between &, and &y,

42
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and, for p # ¢,

E {épk' (nl Z &‘lka) éqk}
117#q
= F {gpk’ (n_l Z 5@'11651'15) } E&q
117q

Similar derivation can be used to show that F (%,301x) = 0. For the term 9,101x, by

E(Y|A) = S 'Ab(py), we get

E (%n151k>

dD(p) = IM(p)

= E Z\_/—%{ku(p),m,ank(p)}{M(p) T o D(ﬁ)}D(p)S(p)Télk]

1
K n o n n
=) ;—ﬁ {Z > Yibi(p) Qs (nl 2 @-lkm> ik 2, — Ml}
k=1 j=1li=1 11#] {+k
K n o n n
- S S Sne S w e v (10 Sese) o)
k=1 \/ﬁ j=li=1 L#k 117#]
K n n n
= 2 \_/—% Z 2 bi(p)Qij Z()\k —M)'E|E {le 2 gilkgiléfjk‘A}]
k=1 j=1li=1 L#k i1#]
K n n K n
— Z \_/—% Z Z Z Z bi(p)Qijsiy b (po) Z()\k - XN)'E <n_1 Z fnkfmfjquk/>
=1 j=li=1k'=1g=1 (#k i1#j

I
o =

where s; ! is the (i, ¢)th element of S™! and Q;; is the (4, j)th element of [M(p){¢D(p)/dp} +
{OM(p)/0p}D(p)|D(p)S(p)T, both are non-random. Combining the above results, we get

Ed/y = o(1). Almost identical derivation also leads to 7,5 = O,(1), Ees = o(1), and
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s = O,(1), Egtys = o(1) and we skip the details. Hence,

E lveCT {%} vec (A - A)} — o(1). (S.21)

By (5.19),

s [ e (3 4)] = e (ID) ) (3 )

< 3EA} +3Ed % + 3E4%

— O(1). (S.22)

We now consider the last term of (S.17)). Using the fact, for any matrices A, B, and C of

sizes m x m, n x p, and p x ¢, vec(ABC) = (CT ® A)vec(B), we have

2(A)
0A?2
= 6vec{—agf)}/8vec(A)T
1 dD(p) T T T
= dvee (- [8(D( { 2807 - DT Ab(rbip)
+8(D(IS(TAT ()" + {3 72 - WD)} DS Ab(b()T
+S(D(S(0)" Ablp) L | ) Jovec(a)”
_ 1 T dD(p) T T
= —=o{ (i o8 { B s) - Diw |
b0 P @ (s(Dl ()
+ {blob(} @ {50 2 - WDl | DS )"
{0 @ (S(IDPS(T} ) ()} fovec(a)t
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© {28()D() 2 S0 + 2WD()*WT - D)W - WD(p2 )

_ L
= \/ﬁ (p),

which yields that

— 27— [vec{Q(p)}]" vec { (A - A) ® (A — A)} : (S5.23)

Recall that (w;;)i=1.. nj=1,.n is row-normalized adjacency matrix with zero diagonal and

77777

D(p) = {diagM(p)}~'. We use (ki,ks,i,5) to denote the index of vec{Q(p)}, and use
(', K., K}, 7') to denote the corresponding index of vec{(A — A)® (A — A)}. Obviously, there
is a one-to-one mapping between (ky, ko, 4,7) and (¢, k], k5, 7). Under Condition (C7) and

(C8), Lemma [S2.4{(c), Remark [2l and « > 2 imply that, for some constant C,

T[Vec{cz( Y vec{(A-A)® (A‘A)}‘
i Z 2 {bkl 5[”92 ) ablgp(p)bkg(p)}

Z#] k1=1ko=1

X
—
|
S
g

<
Eb

i(0)2 = pw;iDii(p)? + p° z”: wiﬁijD%(p)Q} { (A - A> ® <A - A) }i’k’l,k’zj’

L#1,5

=2 2 O ) P Paly, )|

op

+\/_ﬁz PIDITACLAD {2Pwia‘Da‘j(P) 8D§j[-) ) _ 2pw;i Dy (p) aDai;(P)

+ 2p? Z wiﬁwﬂDN(p)aDal;ep(p)} {(‘K N A) ® (A B A) }i'kg,kgj'

L#4,5
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46

N

+LZ 1D b (p)by () {21)%([)) (91?;(;)) N QPQZW Do) apéi)(p)}

p 0#1

®
+2P%ii i i Ok, () bk, (p Z wiew;eDee(p)* {(A B A) ® <A B A) }i/kfl,kgj/

n K
abkz (p) abkl
3130 % {0l 4 | Pl
x {|P|wz‘ijj(P)2 + [plwjiDa(p)® + p* ). wifwszez(P)Q} Op <k§17a/2k§17a/2”_3/2)
(+i,j
K K
o, by,
DIIPIN AL RRTL T,
- ) P P

X {Dii(P)Q +p° Z wfeDu(P)z} 0O, (k’ll_aﬂkél_aﬂn‘?’ﬂ)

L#q

n K K
Z Z Z bk, ()] |6k (0)] {2|p|w,~ijj(p) ’ éjp(p)‘ + 2|plw;i Dii(p) ‘ ap(p)‘
# : :

oD —a —a/2 _
+2p2 Z wiﬁijDfé(p)’ éep(p>’}0p (kil /Qkél /2n 3/2)
Z#ij

+ Z Z Z bk, ()] |brsy (0)] {QDu'(P) 'aDaZ;(p)‘ + 2p? Zw?eDez(P) ‘aDé’up(p) ‘}

i=1k1=1ko=1 0+
l—a/2;71—a/2 _
x Oy (K /2Hy )

K n
Z |0k, ()] [bx, (p)| Z wiew;eDee(p)?O, (k'll_amk;l_aﬂn_?’/?)
ko=1 4,5

ks () ks ()| {1033 Di5(0)? + w3sDia(p)*} Oy (11 2hg 2022
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N

X

—

[plwis Dji(p)* + [plwsi Dii(p)” + p* ) wiﬁwjﬁD%(p)Q} 0, (n™%?)
(+i,j

2 33 {|bk1<p>| \a”f;/f”)‘ + ‘abg/fm

X {Du‘(l))Q +p° Zn: wz'QZDM<P)2} Op (nig/Q)

(o) |

+.Z. 20 20 (o) i ()] {2|P|wz‘ijj(P) ’&D(;;(p)‘ +2|plw;i Dis(p) ‘61){;;([))‘

N dDu(p) _
2 A 3/2
+2p é;j wiywieDe(p) ’ o O, (n )

#2100 D I (o) o) {wii(p) O s 2 D) \aD—“’)\} Oy (n77)
] ko=

0£i op

+2|p|2 Z Z Z [0k, ()] 108, (p)| Z wiew;eDe(p)?0, (n™3/?)

i=1j=1k =1 ko=1 [y

+ Z Z D3 1k (p)] [bis (0)| {135 D55 (p)* + wyi Dis(p)*} O, (n~772)

n K K n
202 (Z Z k17k2r> (,mwij + |p|wﬂ +p2 Z wiﬂ%’@) Op (n73/2)

i

kﬁ@f) (1 +p° Zwl.?g) O, (n_3/2)]
1

L#1

T]{TQ_T) (wz'j + wj; + |p| Z ’LUig'lUjg) Op (n_3/2)

0#i,j

T/fET) {I(p #0)/lol + lp] Zwig} 0, (n~7)

L#1

X
2
Il
-
G
V]
Il
—_

+
M=
||MN
M=

—
ol

¥
Il

1=
G

-~
M=

el
=
Il
—_
=~
M)
Il
—_

M=
G

>
=
Il
—
>
M)
Il

M=~
M=

kakz_T) Z wigw;e0, (n=?)
1

é7é17]

x>
=
Il
—
x>
M)
Il

M=
M=

+ Zn: Zn: ( lesz> (wij + wji) Oy (”3/2)]

k1=1ko=
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where the last equality is because

n

S wiewse < (Y wie) Wyl = [w,le = 0(n™2) (3.24)
=1 (=1

due to Condition (C9), and Y, , w? < >}, wy = 1. Thus, by (S.23)), we can obtain

2 vecT {a;]l?) } vec { (A - A) ® (A - A) } = o0,(1). (S.25)

Hence, it follows from combing (S.17)), (S.21)), (S.22)) and (S.25|) that,

E \/Lﬁ 2 Si{A;b(p), p} — \/Lﬁ 2 Si{A;b(p), p}]

= e [T e (A a) o et [T e [(A-a) @ (3 )]

0A A2
- Blveet { L8 e (R~ 4) + "p(”r
- 0(1).

O
Proof of . Note that
1 & 0Si{Ab(p), p} 15 0S{Ab(p),p}
ﬁ ; ab(p)T — ﬁ ; ab(p)T = au +ta+ ans, (826)
where
an = ° {—YTM@)“?—?D@)S@)T (A-a)
#()" (A7 - A7) () 2 DS () A
+b(p) ATS(p) ag;}p)D(p)S(p)T (A - A)
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1

A, = — {_YT aM<p)
n

op
~b(p)" (A = A") WD(p)*S(p) A

D(p)S(p)" (A - A)

~b(p)"A"WD(p)*S(p)" (A - A)

A~

~b(p)" (AT~ AT) WD(p)*S(p)" (A - A)

+% (A"~ AT} S(p)D(p)*S(p)" A
+%ATS(MD(/})QS(P>T (A N A>
+% (A"~ A"} S(p)D()*S(p)" (A - A) } ’

and

a3 = % {YTM(,O)D([))QWT (A - A)
~b(p)" (AT~ A7) S()D(p)* WA
~b(p)"ATS())D(p)*W" (A - A)

~b(p)" (AT~ AT) S()D(p*WT (A - A)}.

We now treat the first term on the right-hand side of ([S.26]). We have

N
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16 oD(p)

+3b(TATS() 2 D(S()7 (& - A) (AT - AT) S()D() 28 )T A()
+25b()" (A7 - A7) () D)8 )" (& - )

< (AT~ AT) S(p)D(p)
16 mas {% (A _ A) (AT - AT> }
dD(p)

X Amax {M(p)} Amax {D ()"} Amax | § == ¢ | Amax {M(p)"} . Iy|*
op n

N

+16 M max (%AAT) Amax {M(0)} Amax {D(p)* } Ama [{@—,ﬁ”)}gl
O (SIS0} e {1 (A7 A7) (A= 2) F (o)

16 {% (A-a) (AT - aT) } Amax AM ()} Amax {D ()} Ama [{a—pﬂ
e (0181 e (FATA) IG5

F16A {% (A-a) (AT a7) } A M(0)} A {D(9)} A [{ ‘”3/()” }]

S(AT-AT) (R a) b

n

v SIS s |

= Op(n_l/Q)v

where the last equality is due to Conditions (C7)-(C8), Remark [2, and Lemma [S2.5] Similar

arguments can be used to show that |a,s|> = 0,(n™Y/2) and ||a,3)? = 0,(n~Y/?). Thus,

2

1 ¢ 0SH{Ab(p),p} 1 <5 0Si{A;b(p), p}
n 2 ob(p)T n 2, db(p)*

3
< 3 layl’
j=1

= op(n*1/2).

i=1 i=1
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Proof of (S.4). Observe that

= 5n1 + 5n2 + 5113 + 6n4 + 5n5 + 5n67

1 i dSi{A;b(p),p} 1 i dSi{A;b(p), p}
n = dp n = dp

where

= o {b()TAT = ATS() T2 4 b TAT - ATWD)
+ U (a7 &80 | { B M(p) + D) T Ly,
6112
1 T dD(p) T M(p) dD(p) T T A
=y Ry B D) | DSt 4 D) (+W) | (a - Al

#b(p)” (A7 - A7) 8 2 D5 4 D) (W) | (R~ ) b(o)
+ 2o a75() S DSt 4 D) (W) | (R~ A) bio)
+2b(p)” (A7 - A7) 5(0) D { s ()7 1 i) (-WT) | ab(r)
+b()" (A7 A7) (-W) DG { 2507+ D) (W) | (R - 4) bl
+b() AT (W) i) | DS 4 D) (W) (& - 4) bip)
+ab(s)” (A7 - A7) (-W) () { 28007 + D) (W)} Ab(y)
+ P (27— A7) 8000 { B s()7 + Do) (-W) | (R - A) bio)
L0 Arg (D) { P ) 1 Do) (-WT) | (R - A) biy)

n dp op
# P (R A7) s(pD() | 28007 + D) (-W) | Ab()

ol
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92

1

n

n

n
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. {azgp)M(p)”alg;p) al\gp(p) +2D(p) (WTW)}K

Sy { T s + 2B (cwh) | (a- Ag)

op? op

*D(p)

op

#b(p)” (A7 - A7) $(D() { 2807+ 2R (W) | (R~ ) (o)
b

Lo TS (D) { T2+ 2B (~wr) (R - ) by

op?

+1b(p)T (AT - AT) S(p)D(p) {aZD(p) S(p)" + 2aD—/()p) (—wWT) } Ab(p),
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and
b = 2Y™MEDG) { D807+ D) (W) f (- B
+2b(p)" (A7 - A7) S(D() { 28007 + Do) (-W) | (A - a) 22
+%b(p)TATS(p)D(p) {a[;;p)s(p)T +D(p) (—WT)} (A - A) 63—(;)
2" (R A7) 81D { 257+ Do) (-w) AL
We have
o« B v
+[pws” 4 A DTY H} {° E)M@“D@@?ﬁ b7
< o] g/) N (SIS | <AT—AT><A—A>} Ib(o)|
+ D (D)} N2, (WTW) AL, { (AT~ AT)(A - A)} b(s)|
A (D)) M) N { L4 p}oe
[ { TR s (M)} + e (D {(M 24 v
- o),

where the last equality is due to Conditions (C7)-(C8), Remark [2, and Lemma [S2.5 Simi-

larly,

|5n2|
2 6D<p) 1/2 T
- l)\max {T} Aunas (M)} N2, {S(0)S ()"}

# s { 2 (M)} A (D] AL (WW)
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# Ao D) s { T2 o { B2 (550500)7)
e (D0 e {0z ()|
AL, {1<AT ~ATA - R Y ibG)
+ [ i { } A2 {S(0)S(p)"} + Amax {D(p)} A2, (WWT>]

. {aD D (SIS s | (A7 = A7) (R - &) b i)
# 2| D (8807} A (AT
{5 (BT A7) (A= a) bl
N (WW) A (D)} A |+ (B = A7) (B &) i)

+ 2 )\ 3’[{2)( max

N (BT A7) (R ) bl
# s (D()) AL (SIS0} A { - (BT - A7) (B &) b 1mio) 22
D (D)} ML SIS ()} N (—ATA)

ot i (3w (3 )i |22

= 0, (n*1/2> ,

(WW) A (D)) 02 (A7A)

where the last equality is also due to Conditions (C7)-(C8), Remark [2, and Lemma [S2.5]
The same rate can also be similarly seen to hold for d,3, 0,4, 0,6 and J,,¢ and the details are

omitted. This implies that (S.4]) holds. O
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S3.8 Proof of Lemma

For part (a), let A = UAUT be the eigendecomposition of A, then

trace(AB)

= trace(UAU'B)
= trace(AUTBU)
< Amax(A)trace(UTBU)

= Amax(A)trace(B)

N

trace(A)trace(B).

The proof of the inequality in the other direction is similar, so we omit it. For part (b), we

have

Amax {(AB)"(AB)}

N

N

maxx' (AB)"(AB)x

l<ll=1

max x BAABx

[ =1

Amax (Az) max x ' BBx

Ixl=1

Amax (A?) Anax (B?) = A2 (AN

max

(B).

The proof part (c¢) can be found in |[Abadir and Magnus| (2005). O

S3.9 Proof of Lemma

Note that X’s are independent, from which we have E(X,;X;) = 0, E(X;X;X}) = 0 and

E(X?X;) =0 for any i # j # k # i. Together with the conditions in Lemma [S2.9] simple
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calculation implies that
cov (Q1,Q2) = cov(XTM; X, X"M,X) + cov(Uj X, Uy X),
where cov(UTX, UTX) = UTU,. Since E(XTM,;X) = trace(M,) by Lemma [S2.7, we have

cov { (X™M;X) (X"M,X)}
= E{(XM;X) (X"M:X)} - E(X"M;X)E(X"M,X)

X
= Z Z Z Z ma imaeel (X X; Xp Xy) — trace(M; ) trace(Ms)
k=1¢=1

=1 _]:
n n n
2 v 2
= | Do maamag; + D mugma + Y magma s | B (X7XF)
1] 1#£] 1#]

+ Z my e i E(X}) — trace(M )trace(My)
i1

= {trace(M; )trace(M,) + trace(M;My) + trace(M;M,)} E(X7X3)

+trace {diag(M,; )diag(M,)} { E(X}) — 3E(X7X3)} — trace(M, )trace(Ms).
Hence,

cov (Q1,0Q9) = {trace(Ml)trace(Mg) + trace(M; M) + trace(MlMg)} B(X2X2)
+trace {diag(M, )diag(Ma)} { E(X}) — 3E(X7X3)}

—trace(M, )trace(My) + U, Uj.

Again, since X,’s are independent, we have E(X?X?) = E(X?)E(X7) = 1 for i # j. This

completes the proof. O
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S3.10 Proof of Theorem [2

We establish Theorem [2] in three steps. First, we expand gk(po) — br(po) as independent

1/4

sums. Second, we verify that p is n'/*-consistent. Third, using the conclusions in the first

two steps, we derive the asymptotic normality of n'/4(p — py).

Expand Bk(po) — bi(po) as independent sums

To employ the central limit theorem in the third step, we need to write gk(po) — b(po) as
independent sums. So we first expand this term.

Recall that gk(p) = X;l@gk, 9> and by = A, '{(¢r, g). By Taylor’s expansion, we have

br(po) — bi(po)
= N0 — N ok )
= (W= A) G o+ (W = Act) 009 + Ac = 0, + A 005 — 0)
= =N (Xk - )\k) (o — 61, 9) + O, { (S\k - >\k>2} (b — 1, 9)

N2 (M= M) 00+ 0, { (% - Ak)Q} (61:9) + Ak — 01, 50 + A (6w 5 — 9)
= NG — 9+ Nk — b g) — A (Xk - Ak) Pr,9)

NG = 00— 9 = N2 (B = M) nG— 9)

N2 (M= M) @ = 0000 = A2 (M= M) i = 05— 9

10, (=) f G- 009+ 0, (- 0) - g - 0

+0, { (Xk - Ak>2} (D, 9>+ O, { (Xk - )\k)2} R
= AT -0+ A G b~ A (e - ) ()

+Ap — Apo — Aks — Apa + Ais + Age + Az + A,

o7
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where Ay = A ou— b1, G—9), Arz = A2 = M) br, G—9)s Ars = Ay 2(Ae— o) D — b, 9),
Aps = A2k = M)k — 81,0 — )y Aks = Opf{ (M — M) Kok — 01, 9D, Ars = Opf (M —
M ROk = 01,9 = 9, Air = O = M) Kow ), Ars = Op{(hke = W)}, § — 0). We
next use Cauchy-Schwarz inequality, Condition (C2), Lemma [S2.4{c), Lemma [S2.1fc) and

Lemma repetitively to show the order of Ay — Ays.

Ay = >\151<¢A5k*¢k7/9\—9>
< Aok — oxllg — gl

= Op(nilkaJrl)a

Apo = >\;§2 <Xk — )\k> {r: g — 9)
< A2 = Ml = gl
= O,(n"'kY)|¢nl

= O,(n k%),
where the last equality is due to { ¢3(¢)dt = 1. By Condition (C1),

Aig = N2 (Re= M) D — 0000
< A% = Mellok — exllgl
= Op(n k)]

= Op(n_lka+1>7

o8
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and

A = X7 (Xk - )\k) <$k — kg —9)
< N2 = Melldn — ol — gl

= O,(n k).

Similarly, it is easy to see that Aps = O,(n~%2k72041) Ay = O,(n~2k720tY), Ay =

O,(n7'k72%) and Ayg = O,(n~32k~2%). Thus, we observe that

Recall that

~

bi(po) — be(po)

NG — 9+ Ak — b0y = A (M= ) ()

+0,(n k) + Oy (n k%)

+0, (KT + Oy (n™¥2k )

+0,(n~ %2k~ 1 O, (n 2k 2T

+0,(n7 k7)) + 0, (n 32k 2)

Ne (009 = 0+ Nk — 0 9) = X2 (R = M) (0. 9) + Opln )

M.

Q)

1

<.

n

-ty

i=1

(t) = TLIZ(Y prw > i
Y2 Zi(),

Zi(t)
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and
g9(t) = E{Y;"Z;(1)},

where Y;*’s are independent and identically distributed according to (2.6). Note that Con-
dition (C1) implies that E{Y;*Z;(t)} < o0. By combining Lemma [S2.4(b), Condition (C2)

and Condition (C5), it follows that

M,

_ -12A | etz - £z
+A JE (Y7 Zi(t)} {Z(/\k: ~ ) 0l(G = G)e by + Op(”_lkaJrglng)} dt
ik

- {% S 2 + op<k/n>} (frs9) + Opln k)

= S [ A - Bz

+A JE {Y;"Z;(1)} [ DOk = M) ()

. J J {%Zzz(u)zz(m Glu v)} b0 (1) (v} dudv + O, (n~ K 2logk) | dt
L1y

—Af{EZ(gm M) + O, (k/n) }J¢k (t)dt + O, (n k)

_ —ZA | etz - Bz

R i >}[Z<Ak—Az>-1¢k<t> |[ 12wz - G

x¢k(u)¢g(v)dudv]dt _ %iw( 2 ) J bu(t)g (1)t
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+0,(n 'E***logk) + O, (n k™) + O, (n T k*t1).

Hence, we have

n

~ 1
bi(po) — be(po) = - Z ©ir + Op(n k> 2logk), (S.27)

=1

where

fgbk V[YFZi(t) — E (Y2 <>}]dt+A;1fEm*zi<t>}

{ Z (A= Xo) Mt Jf — E{Z;(u)Z;(v)}] ¢(u )(bg(v)dudv} dt
A J¢k (S.28)

1/4

The proof of n'/*-consistency

To prove p is n'/*-consistent, by the technique of [Fan and Li (2001), it is sufficient to show
that, for any € > 0, there exists a constant 0 < C' < o0, such that Ql{A; B(p),p} in (2.12))

satisfies

lim Pr [I i|n—fc Q1 {A, b(po + n~ ), po + n_1/4u} > {A, B(po),po}} >1—e¢ (S.29)

n—ao0

To this end, we recall that from (2.14]), for any p*,

p=p*

dQl{Ab p}‘ _ | 2Qu{Ab(p). p} | 2Qi{AD(p). p} Pb(p) |
ap ob(p)T ap |l

1 o~
= = > Si{A;b(p*), p*},
niZl

where n=1 7" | Si{A; B(p*), p*} is given in (2.15) with b, p and 1/4/n are replaced by b, p*
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and 1/n, respectively. Then, by Taylor’s expansion and |u| = C, we have

Q1 {A; b(po + n ), py + 7751/4%} — 1 {A’ b(po), Po}
dQl{A;B(Po%/)o}n_mu d2Q1{A; b(po), po} -

n—1/2,2 —-1/2, 2
i 12 + 0, (n71%u?)
A b
= —ZS{A b(,Oo) Po} n~ Y4y + —st{ dp(po) Po} 272 4 o ( _1/2)
| =1 | L
[ ] [ 1 {A;b
A SR | o [ 1395 ’d;"(’)”’(’} 2 I V2 ¢ o)
| =1 | =1 i
1 & S A Bl po) |1 e .
> _; % 0/, P0 9—1,=1/2002 _ Z A b ,00 PO} 1/4C’+0p(n 1/2)
_ 1 = dS,{AB(pO) po} _ _ ~ A~
1/2 - ) ; 9 102_ 3/4 Si A:b C
n ([n; dp n ; {A;b(po), po}
+o,(n~13).

(S.30)

To establish (S.29), by (S.30)), it suffices to show that

n~ Y S{Ab(pe). po} = O,(1),

i=1

and

dSi{A;b(po), po}
1 Z > Py

Caes
=1

where ¢, is a positive constant.

We now prove the above equations separately as follows. First, by mean value theorem,

DY Si{A;b(po), po}

i=1

= *3/425 {A;b(po), po} + 1 3/42 o5 {?b:?( (p>0) o} {B(Po) - b(Po)}
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i=1 i=1 =1

= Z Si{A;b(py), po} + [n_3/4 Z S{A;b(py), po} — n~* Z Si{A;b(po), Po}]

_3/42 05, {A b ﬂo P} B(p0) — i)} + 0,

= pM Z Si{A;b(po), o} + [n‘3/4 2 SdAb(po), po} — %" Y Si{Asb(po), po}]

N Z_: [ Z 0S; {ngfp/zo PO}] <n3/4 Z;%k) + 0,(n=4)
= _3/42 Si{A;b(po), po} + [ 3/42 Si{A;b(po), po} — ”_3/42 Si{Asb(po), '00}]
+ Z Br(A) <n—3/4 > gojk) +op(1),
k=1 j=1

where the second equality is by (S.34]), the third equality is by (S.35)), the last equality is
due to (S.44) and %y (A) is defined in (S.42)). For the second term of above equation, by

(S.2), we have

n Y S (A b(po). po 0y Si{Ab(po).po} = Opln ).

i=1 i=1

For the third term, by (S.46)), we have

where the last equality is by (S.36|) and (S.43]). Hence, we have

n Y S AB(p) o} = Y SHA (o). po} + Oyl1)

i=1 i=1
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= Op(n™"") + 0,(1)

= Op(1)7

where the second equality is by (S.47)) and (S.59). Second, by (S.4)) with b(p) and p replaced

~

by b(po) and pyg, respectively,

1 dSi{Asb(p).po} 1 <h dSi{A;b(po), po} .
3 B S oy (1)

i=1 dpo i=1 dpo
1 ¢ dSi{A;b(po), po}
= — 1 31
n ; d,OO + 01’( )7 (S )

where the second inequality is due to (S.63). Then, by (S.31) and the proof of (S.65)), we

have

Based on above results, for given A, this establishes the ([S.29)).

The proof of asymptotic normality

For preparation, we recall from (2.11)) that

be(p) =n 7t YA fq%(t) <1@- —p> winj) Z;(t)dt.
i=1 j=1

Note that Bk(p) is a linear function of p, so

85;/()9) = 0 {nl i X;;l J Ak(t) <Yz - Pi UJin;‘> Zi(t)dt} /ap

i=1 j=1
= YN f O(1) > wyY; Zi(t)dt
i=1 j=1
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and 52/Z;k(p)/0p2 — 0. Since p minimizes Q1 {A; B(p), p} based on (2.12)), it satisfies

d@l{fx;ﬁ(p),p}‘ _ [a@l{z&;ﬁ@),p} L 2Qi{A;D(p). p) aB<p>] | -0
d - 0 b(o)T 0 '
p p=p P db(p) po|le

-5

Similar to (2.14]), this is equivalently written as

n=* Y Si{A;b(p). p} = 0,

i=1

where SZ{A,IA)(/?), p} is obtained from replacing b and p in formula (2.16) with b and p,

respectively. Using Taylor’s expansion,

0 = n ¥ 5{AsB(), 7}

pu

= n‘3/4§;3¢{& b(po), po} + n_3/4§; dSi{A;fpip*)’ /) (P = po)

= SR, ) oS DA () )
+n3/4g dSi{@;(E)(*p*% Y5

= n‘?’/“i Si{A;b(po), po} + é aSi{A@;b;p(f)O)’pO} {Bup0) bk(po)}]
+n3/42": dSi{A;CE)(*p*)m*}(ﬁ_ o), (8.32)

i=1

where p* denotes the value between the py and p and b*(pg) between the b(py) and B(po),

respectively. Si{A; po, b*(py)} and 0S,{A; po, b*(po)}/2b}(po) are given ([2-16) and (2.17),

respectively, with b(p) and p replaced by b*(py) and po.

We calculate the expectation and variance of the first term of (S.32)) below. Applying
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Taylor’s expansion and Condition (C6),

0S{A;b* (po), po} _ 0Si{Asb(py), po}
b (po) db(po)

Op {[Be(o0) = belpo)] }

Recall that

bi(po) — bi(po)

= NNk T — 90+ N Ok — b, ) — A (Xk — /\k> {Pr, g) + Op(n k"),

which, together with Condition (C1) and (C5), Lemma [S2.1{c), Lemma and Lemma

S2.4(c) imply that

’Bk (po) — bk(po)

N

A 605 = 9+ I = b )] + N2 (M= M) D )] + Opn™ k)

N

A Iokll1g — gl + Aok — dxlllgl + A2 = Ml [<en, )] + Op(n~ )
= O0,(kn™V?) + O, (k*"'n7Y2) + 0, (k*n~Y?) + Oy (n~ k")

= O,(k*n=V2), (S.33)

where the last second equality is because the condition k = o{n/?**2)} used in Lemma

naturally holds under Condition (C5). Based on above results and Condition (C5),

_3/42 Z 0S; {%bl: Po), Po} {b (po) — bk(po)}

i=1k=1
_ 0S; {A b( } n K 9
3/4;’; : oby, p/()]o la {bk( 0) — bk(po) } +n 3/4;];0 [{bk po) — bk(ﬂo)} ]
_ 35 {A b }oe n K o
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_3/4;; (?S {lzb:)p)zO pO} {bk(Po) o bk(ﬂo)} ( —1/4)‘ (834)

Based on (S.27)), (S.3) and Condition (C5), we have

_3/422 0S:{A: b(po), po} {b (o) _bk(po)}

i=1 k=1 dbi(po)

_7/422 Z 05i {A b pO pO} ©jk + n—3/4ZZ 05i {A b /)0 pO}Op(n—1k2a+2logk)

i=1j=1k=1 i=1k=1 bi,(po)

_ —7/422 Z 0S:{A; b( Po Po}%k T op(n=1)

i=1j5=1k=1 abk pO
K | n
L n OSH{ A B(po), oo} _ _
_ nL n 3/4 ) + o.(n 1/4
2 _ ; Ob(po) ]Z:l%'“ )

& ‘n_l S OSHAb() oo} | (st ) g e
,;1 i Z; Bl T )] ( ;%k) +op(n="")
>

_1 i §SZ{A, b(pO)v PO}] <n3/4 i ij) + 0p<nfl/4>7 (835)

i=1 bi(po) j=1

where the second last equality is due to

sup

15 0SA Do) oo} 1 25 AD(oo), g0} ||
[52 { (p)p}_ﬁz { (p)p}]

\<h<K dbi(po) = b (po)
~ 2
1 i 0Si{A;b(po), po} 1 Z": dSi{A;b(po), po}
= n = b(po)T n & ob(py)T
= Op(n_1/2)

following (/S.3)), and the last equality can be established because

2 ("3/4i¢jk> = Op(1). (5.36)

The proof of (S.36|) is given in the Supplementary Material [S3.11] In order to demonstrate
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the expectation of (S.35)) equals to zero asymptotically, with A in (2.18) replaced by A, we

observe

3Si{A;b(po), po}
n ; b(po)*
= 2|2 ™M)~ bl A"S ()} { D) ()7

n

o {YT alv—(;;pO) + b(po)TATW abg’oo()) ATS } {D PO S(pO)TA}

+{Y"M(po) — b(po) " ATS(po) } {D(po)*W'A}]

_ 1 {_2 {Y™M(p5) — b(po)"ATS (o)} {aDa(;O)D(po)S(po)TA}

- {YTS(PO)T%ZO) + b(Po)TATW} {D(p0)*S(po)" A}

708(po)" b(po)"
syt

+{Y"M(po) — b(po) " ATS(po) } {D(po)*W'A}]

= % {2 {=Y"M(po) + b(po)"A"S(po)} {aDéffo)D(pg)S(po)TA}

———A"S(p }{D Po) S(PO)TA}

+{Y"S(p0) "W —b(po) "ATW} {D(po)*S(po) " A}

+{Y"M(po) — b(po)"ATS(po)} {D(po)*WTA}

+ {YTWTS(pO) + ab(@’;)) ATS(p }{D 00)2S( pO)TA}]

T AT ATy T (.37)

where 7,’s are K x 1 vectors with the kth element denoted by 74 for ¢ = 1,2,3,4, and

E(1e| A) =0 for £ =1,2,3. We now address first three terms of (S.37)). For 7, note that

var(7yy | A)

= E(lek | A)
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where

and

E(|m[* | A)

{=Y"M(po) + b(po)"A"S(po)} {aDa(;O)D(PO)S(PO)TA}
dD(po)

op

E

1
Ry

5

E l4i2 {=Y"M(po) + b(po)"ATS(po)} {

n

D<p0>s<po>TA}

D(w)S(0"A} {~Y™M(p) + bl "A"S(0m)} | A]

(Y ™M) + () ATS ()} { 3D (S

< ATS (D) DL} (MY + S(on) " Ab()} | A |

(XS (0] + blon) AT} { () ) D))"

dD(po)
ap

< A7 D () DL ()" {-S(w)Y + Ab(on)) |4

1
4=E (enZnen | A),

el = —Y"S(po)" +b(py)TA",

oD( dD(po)

2 = {8(n T2 DS () A | { ATS (D) TS )1 |

We next check the order of F(el.%,e, | A). Together with e, | A ~ N(0,0%L,) and Lemma

[S2.7, we note that

E(er %, | A) = o*trace(Z, | A),

where trace(.Z, | A) denotes the calculation of trace(.%,) for fixed A. Below, we drop A in
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trace(-Z, | A) for notational simplicity. Hence, we only need to check the order of trace(.Z,)

for fixed A. Since S =1— pW, we have

trace(.%,)

dD(po)
op

dD(po) T
A

D(po)(I— poW")AA™ (I — pyW)D(po)

= trace {(I — poW)

= trace(L,;) + trace(L,s) + trace(L,3) + trace(L,4) + trace(Ly,s),

where

L = {2 D(aatDm D0

= P AT P (D) AT ) DL

o} P D W AATD () I - o { W D AATD () I

0

L = | (W) 2 D) W AATD () P00
+a { (W) 2 D) AT W D) I

0t { W) 222D ) AATD ) DL W)

dD(po)
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and

oD D
L = ,04{W a(IfO)D(pO)WTAATWD(pO)O a(jo)WT}.

Denote the (7,i)th element of the diagonal matrix %{gp)D(p) by Zii(p) for i = 1,...,n.
Through Remark, we know that Z;(p) = O(1). Together with Ziil 2 > 0and E(Zf:1 2) =

S A = O(1) by the Condition (C2), we have

K
D& =0,(1), (S-38)
k=1
and from which we obtain
trace(Ly)
N dD(po) T dD(po)
= trace{ 2 D(po)AA"D(po) o
gll(p0)22£<:1€%k gll(p())@nn(pO)Zf:lélkfnk
gzz(ﬂo)gn(m) Zszl Sonlun - 922(/)0)§nn(P0) Zszl Eorbnk
= trace
Don(p0) P11 (o) Sy Eanbre -+ Doan(p0)? Y €2,
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We now investigate the first term of L,5. For i # 7,

K 2
E(Z@@Q

k=1
K K
= ZE E.60) + Z E (i &ikalima&ins)
k=1 k1#k2
K K
- Z E Jk Z E (fjklfjkz) E (fzklﬁzkg)
k=1 k1#k2
K
= Z)\z
k=1
= 0O(1),

where the last equality is due to the Condition (C2). Thus, for any 1 <i # j < n, we get
K
D ke = Op(1). (S.39)
k=1

Combining (|S.38)) and - we have
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gll(PO) 2?21 Zszl flszikwli@ii(po)
922 (Po) Z?:l 2521 €2k£z’kw1i§ii<p0)

= —pg X trace

Don(p0) D, Zszl Enrlirw1iDii(po)

(

]kfzkwjz zz Po)

T1i(po) Sy Sor Einwni Zii(po)

922(,00) Z?:l 25:1 ’52k£ikwm'§ii(f)0)

gnn(p()) 2?21 Z}z{:l %k&'kwnigu‘(m)

where the last equality is because Y., wj; = 1. The same order can be similarly obtained

for the other three terms of L, and the proof are omitted. For the first term of L,3, we

have

D(po) (WT)AATD(PO)

op
ZL wu‘w%@u‘(/)o)

S w3 Diipo)

ZL wi@u‘(PO)

Z?:l w2iw1i§u’(Po)

= Po
ZLl wniwligii(po) 2?21 wniw%@ii(po)
S & Pulpe) Y wborD (o)
Zszl §2k§1k§11 (po) 25:1 §2Qk§22(/)0>
X

dD(po)

Zle EaréinZ11(po) Zle Ennéar D22 (po)

}

2?21 wuwm‘gu‘(Po)

Z?:l w2iwni§ii(p0)

Dy WriPii(po)

25:1 glkfnkgnn (pO)

Zszl §2k€nk§nn (pO)

ZkK: 1 fikgnn (PO)

[Z {Zwéwwﬂ ii(Po } {Z fgk&zk@em(m)}] .
= 1<l ,05<n
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Thus, by (5.39) and (5.24),

tace |t { (W) 2P D) (WA A D) P2
= 0o Zn: Zn: {Zn: ezwgz i Po } {Z éﬂ:&k-@ze ,00)}
= )2, {Z ez'wjz@ii(Po)} Op(1)
e=1j=1 (i=1
- AN Y )
/=1j=1
= Op(ng/Z)

Using the similar techniques, we can show that the order of other five terms of L,3 are also
0,(n??). For L,4, we also focus on the first term since the other three terms are of the same

order and can be dealt with similarly. Note that

) LD ) (W AAT (WD) |
Y wiZiilpo) X wiwxiPilpo) o X wiwni Diipo)
_ S wowi Dii(po) Yo whDii(po) e M waiwn Dai(po)
Sy w1 Dii(po) iy Wniwai Dii(po) -+ 2y weDii(po)
SO i) win Dua(pe) - S (S &) Win D n (o)
y S (s Eanlmwpn Dulpo) -+ 2y (S Eokit)winDom (o)

S (i G )win Zaalpo) - i (S Ekin)winDn(po)

n

n n K
= —n (2 Zwtliw& ii(Po Z 2 &kﬁjkijgtztz (p0)>
l=11=1 J=1k=1

1<ty to<n
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This implies that

trace |~ { (W) T3

n n

= _ngp X Zn: Z Z Z Wi; W W

t=1¢=1j=1i=1

For L, 5, we have

{WaD(W)D(pO)WTAATWD(pO)aD(ﬁO)WT}

op op
Z?:l wliw2i§ii(p0)

Z?:l wgigii (o)

Z:’Lzl w%igii(po)

Z?:l w2iw1i§ii(p0)

22;1 wm'wlz‘@ii(po) Z?zl wmw%@u‘(/)o)

S S o S Eua
SK wb K& S Eonbu
S Enbin Dy Eanon S &

D (p0) (W) AAT (W)D(pg) 20 H

op

n K
weg Po ZZ Zkfgkwjt-@tt Po)

Z?:l wliwm‘gii(po)

Z?:l wm’wm@n’(/)o)

S wki Dii(po)

(0]
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S

S whiZapo) X wuawsi Pi(pe) - Dy wiiwniDii(po)
2?21 wziwu§u‘(/)0) Z?:l wi-@ii(/)o) T Z?:l wmwmgn’(po)
Z;Ll wmwlz‘@iz‘(Po) Z?zl wninigii(pO) T Z?:l wnz‘@ii(pO)

S wiPiilpo) My wiwxDalpo) - 2y wiwni Dii(po)
S wywiZalpo) Xy wiPii(pe) o Yoy waiwni Pii(po)
Sy wniwi Dig(po) Dy waiwsi Dii(po) -+ i w2 Dii(po)

S S € Xy wiwni Diipo) - Xy Yy S 2y Wit Dii(po)
S Sy o iy wiiwni Dii(po) -+ Xy Dy Eoni 2oimy Wjiwni Dis(po)

S S Gk iy wiiw1i Dai(po) e X0y Yy Snkbin Sy Wjitwni P po)

n K n
Z Z wtlzlwle 1171 pO Z Z &k;fgk Z wjigwtziggizh (pO) .
j=1k=1 1<t1,ta<n

l=111=1 i2=1

Again, by (5:39) and (5:24),
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n o n n n K n
= Péz Z Z Wi, Wei, Piyiy (Po) Z Z ek Z Wiy Whir Pisi (P0)
t=10=1141=1 j=1k=1 ig=1
_ A4 QY —1/2 C —1/2
00;;0 21
= Op(nQ)
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Hence, according to above derivations, we have

N

E( sup 7o | A)

1<k<K

E(|m|* | A)
1 T
1

= 4? x 0p(n?)

= o0,(1), (S.40)
and

var(my,) = E{var(mg | A)} +var{E(r; | A)}
= E{B(r | A)}

= o(1),

uniformly for k = 1,..., K. For the terms 7 and 73 of (5.37)), similar derivations show that

T = 0p(1) and sup, g Tk = 0,(1) for £ = 2,3, so we omit the details. Now, incorporating

(S.37)) to (S.35]), we can show that

us ,1n(95¢A;b 0), Po 734n —1/4
Zln > {abk(g))”] (n /Z%k)mm /)

J=1

- 2{7_416 +0p(1)} (n_3/4 Z ijk) + Op<n_1/4)v (S.41)
k=1

j=1

where 74, is the kth element of

1
n

b(po)"
0

(YW (on) + L0 ATS () {D()*S(00)7A ).
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By model ({2.6]), we have

h(A) + Br(A),

T4k

where
1
F(A) = e S (o) WS (p)D(p0)S () A,
and

B(A) = THTATS (WS () D()S ()" Ac

1 0b(po)?t
+ - UL ATS (DS () A, (5.42)

where e, denotes K dimension zero vector except that the kth element equals to one. Note

that
(A) = O,(1/+/n), and Br(A) = 0,(1). (S.43)

For presentational continuity, the proof of ([S.43)) is relegated to the Supplementary Material

S3.12, This shows that 74 = ZBr(A) + O,(1/4/n). Together with (S.41) and (S.36)), we have

M=

-1 C dSi{A;b(po), po} —3/4 C —1/4
[n 2 Gl ] (” / ZWC) Fol

k i=1 j=1

1

I
M=

{Zr(A) + 0p(1)} <n3/4 i %’k) +op(n~")

J=1

Z,(A) <n/ 3 %k) fo)Y] <n/ 3 %k) + o

j=1 k=1 j=1

=
I
—

I
M=

=
Il

1

78



S3 Proof of theory

Z PBr(A) (n_3/4 Zn: gojk> + 0,(1), (S.44)
k=1

=1

where the second equality is because sup,<,<x 7o = 0p(1) for £ = 1,2, 3 derived from ([S.40),
so the first 0,(1) after the first equal sign of (S.44) is uniform with respect to k. Thus, the

first term of (S.32)) can be expressed as

_3/42 [S {A b(po). po) + Z 0S; {Aabt)( (/))0) , Po} {b (po) — bk(po)}]

- 0Si{A;b(po), p -
= 3/425 {A;b(po), po} +n 3/42; {(%k poo o} {bk<l)0) b (PO)} +0p(n Y1)
) 1

- n3/4;S¢{A;b(po),po} +n [\F;S{A b(po), po} — TZS{A blpo). pO}]

K 0S;{A:b(po), po _al 1/
Z[ 2 {abk<(pi>)p}]< /;%k>+o”( R

=1

_ n—i”/“ZSi{A;b(po),po} +n ZRIS{A b(po). po ZS{A b(po). po}
Vin & - Vn£

=1

+ 2 %k(A) <n3/4 i gojk> + Op(l)

Jj=1

nY S Ab(). po} + Opn~ ) + ) Bu(A) (n/ > %k) +0,(1)
k=1

i=1 j=1

= 0 Y S AB(0). po} + Y Zi(A) (n/ 2 %.k) +0p(1), (5.45)

i=1 k=1 j=1

where the first equality is due to (S.34)), the second equality is because (S.35)), the third
equality follows from (S.44)), and the last second equality is obtained by (S.2). Now, we

will focus on the first two leading terms of (S.45). For the second term of (S.45)), with

E(pjr | A) = 0 from (S.28)), it is easy to see that

E {Z By (A) <n_3/4 i sojk> }
k=1 j=1
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[ o]

— 0. (S.46)

For the first term of (S.45)), according to (2.10) with A replaced by A, it is easy to see that

S:{A;b(p), p} can be expressed as
Sl{A? b(p),p} = {Y; —F (1/1|Y*17 A)} f (Y*lﬁ A) )
where f (Y_;, A) denotes a function of Y_; and A. Thus,

ISHAD(). o] = E(E[SA: ()0} | Y . Al)
= E[f(Y_,A)E{Y, - E(Yi|[Y_;,A)|Y_;, A}]

= 0. (S.47)

Therefore, by (S.46)), (S.47)) and (S.45]), we have

( _3/42 [5 {A b(po), po} + Z 05, {%b;;(( )) . Po} {gk:(Po) - bk(ﬂo)}])
= o(l). (S.48)

This demonstrates the expectation of first term of (S.32) equals to zero asymptotically.

Next, we investigate the variance of the first two terms of (S.45)). First, for the second

term of (S.45), according to the form of (S.28), we have E(pjr@jm, | A) = E(ojm |

A)E(pj, | A) for any j # j' and ki,ky = 1,..., K, and ¢j’s are iid for j = 1,...,n.
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Then,

7j=1 k=1
1 n K K
tn-2E <E [ﬁ Z { Z Z %‘kl(A)%kQ(A)@jkl%'kQ} | A])
VESH k1=1ko=1
K 2
n\2E | E {Z %’k(A)%’k} A (5.49)
k=1

Second, for the first term of (S.45)), we have

var [n_3/4 Z Si{A;b(po), PO}]

i=1

= b

n?’/“i Si{A;b(po),po}]

=1

= n '?E [nl/ziSi{A;b(po),po}] . (S.50)

i=1

We now further rewrite n=Y23""  S;{A;b(po), po} as a quadratic form plus a linear form,

then we use Lemma to calculate (S.50). Using (2.15)) with A and B(p) replaced by A

and b(po), respectively, we have

\/Lﬁ 2 Si{A;b(po), po}
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T 0 0 0)T{S(po)Y — Ab(p
- \/Lﬁ {D(po)M(po)Y — D(p0)S(po)" Ab(po)} [D(p0)S(po) {a;,o )Y (p0)}]

T

— \/Lﬁ {D(po)M(po)Y — D(p0)S(po) " Ab(p)}

. [_f”)(ﬂo) S(0)” (S{pu)Y — Ab(p)} + Do) 2 (8()Y — Ab(im)}

op
+D(po)S(po)TaSa(50)Y - D(po)S(po)TA%gO)]

_ \/Lﬁ {D(po)M(po)Y — D(p0)S(po)"Ab(po)} "

S (po)”
op

{S(PO)Y - Ab(ﬂo)}

9 [aD—“"))SW (S(p)Y — Ab(po)} + D(p)

0

+D(P0)S(P0)Tasa(ppo) S(p0)~'S(p0)Y — D(po)S(p0)" A

— \/Lﬁ {D(pO)M(pO)Y — D(po)s(pO)TAb(pO)}T

x l—aDa(;O) S(po)T {S(po)Y — Ab(po)} + D(p) asép:) {S(po)Y — Ab(po)}

5S(P0)
op

aSa(ﬁo)s(po)lAb(po) —D(po)S(p >TAaba(ppO)]
1

NG {S(po)Y — Ab(po)}" S(po)D(po)

" {aDagfo) S(po)" + D(,))% +D{p)S(m)" s<po>-1} {S(po)Y — Ab(py)}

+D(po)S(po)" S(po) " {S(po)Y — Ab(po)}

+D(p0)S(po)"

+\% {S(po)Y — Ab(po)}" S(0)D(p0)*S (p0)" { op )S(Po)_lAb(Po) - AT }

= \/_7631\/-[71571 \/HEZU'M (851)

where

dD(po)
op

+S(po)D(p0)*S(po)"

M, = S<p0)D(p0>

0 S(po) ™, (S.52)
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Uy = S|
and
en = S(po)Y — Ab(po),

and €, | A ~ N,(0,0%L,).
Next we check trace(M2), trace(M,MY), trace {diag’(M,)}, and UL U, respectively.

By trace(AB) = trace(BA) for any compatible dimension matrices A and B, it follows that

trace(M?)

dD(po
ap

aS(Po)T
ap

= trace HS(pO)D(/)O) )S(po)T +S(po)D(po)?

+S(PO)D(P0)2S(P0)T%ZO)S(PO)A} ]

- trace{S(PO)D(Po)aD(pO)S(PO)TS(PO)D(PO)aD(m)S(PO)T}

op op

+trace {S(PO)D(p)QWS(pO)D(p)QaS(’OO)T }

+trace {s<po>D<po>QS<po>T&?D@ofs%ﬁaSWs<po>1}

+2trace S(po)D(p)2Ms(po)D(m)ZS(PO)T 88(3(50) S(pO)l}

_ trace{s<po>D<po>%smﬁswmp@)a’ﬁp"“)s%ﬁ}

+traC€{S<PO)D(p)2aS(appO) S(pO)D(p)QaS;PpO) }
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race { DS o) D g 5 ) ) |
+2trace {s Di(s0) 6]30(50)S(pO)TS(po)D(p)zaSéZO)T}
s2urace { DS () Do) L) )5 o) |
+2teace {D o) ) g p U

(S.54)

Recall that w;; = 0, >y, wi = 1. Let D(p) = aDaf()p)D(p), then the diagonal elements of the
D(p) were denoted by Z;(p) and sup,<;<, Zii(p) < C; for some constant C. For the first

term of 77, by (S.24]) and the Condition (C9), we note that

é’Da(;)o) S(/)o)TS(Po)D(/)o) 5]36550) S(IOO)T}

= trace {(I, — poW)D(po)(L, — poW ") (L, = poW)D (o) (L, — poW ") }

trace {S(pO)D(po)

= trace {(I, — poW)D(po) (I, — poW — poW" + st W W)D(po)(L, — poW")}
= trace {D(po)(In — poW — poW " + pf W W)D (o) }

+trace {D(po) (I, — poW — poW" + pg W W)D(po)(—poW ")}

+trace {(—poW)D(po) (L, — poW — poW " + ps W W)D(po) }

+trace {(—=poW)D(po) (L, — poW — poW' + pg W W)D () (—po W)}

= 2 92(00) + Z Z w?jgij(po)

+pi Z Z wflg (p0) D ii( Z Z wijw; P )Di(po)

j=li=1

=03 23 D D wiewigwe; Dee(po) D5 (o)
¢=1j=1i=1

+0 Z Z wjiwi; Pii(p0) P5(po) + py Z Z wjzzgu(P0)§JJ (po)
j=1li=1 j=1li=1
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<

—p% Z Z Z wZiwjiwjégii<p0)§M(PO>
(=1j=1i=1

er(% Z Z w?zgz?z(po) - Pg Z Z Z &wmwﬂj-@u(po)g (,00)
j=1li=1 {=1j=1i=1

Po wm)

3.
1=
NgE
=
IS
E
2
IS
S
S
§
‘Q &
M=
M=
oY
M=
8
é
£
~_
Yol
HM:

(=1j=11i=1 ¢=1j=1 \i=1
n n n n n C )
nC’f+P8J21;wzjf0f+p8§;wﬁf(]f+ 3]2_1;11%[01
n n
+|PO| Zzwzﬁ <Z wz]wﬁg) + po ZZUJWU)UC%
l=1i=1 j=1i=1
n n n n
P ZZ 3102+|90’ ZZ <Z wewj; | wiCT
j=li=1 =1j=1 \i=1
n n n
Z 2 3102 + |p | EEM& ( z]w€j>
Jj=li=1 l=11=1

)

+!Po|32

4

(Z wgiwji) wg]C + p Z (Z wéiwji> <Z w]zwﬂz>
i=1 15=1 \i=1 i=1
e et Iy Sl

C

— PRy ="

0 1 0 1
& /n 4n & /n

1j5=1

i=1/¢=1 j=1li=1
2 c C 3 ( C> 2
—C C
+p0;;wj\/ﬁ i+ [pol ;;wﬂ vn) !
, n on C o ; n o n (C ) -
+P0;;wﬁ\/— i+ [pol ;Z‘:le& Jn )
-WMZZW& )1 OZZ( )
l=1j=1 l=1j=1

Cn + 6p5CC/n + 4|po|P?CCI/n + pyC*Cin.

For the other terms of .77, similar derivations lead to the same order O(n), so we omit the
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details. Hence, there exists some constant x; such that
1 2
—trace(M;) < kKj.
n

By trace {(A + B + C)(AT + BT + C")} < 3trace (AAT + BB™ + CC") for any nxn

matrices A, B, C, it is also noticed from (S.52)) that

trace(M,, M)

dS(po)"
op

= trace [ {8(ID(0) LS + S(D (o)

+s<po>D<po>QS<po>TaS<”°>s<po>-1}

ap
X {S(PO)D(PO)aDaffO)S(pO)T + S(pO)D(p)QM

+s<po>D<po>2s<po>T58(§0>s<po>1} ]

3trace {S(PO)D(PO)&Da(;o)S(PO)TS(PO)aDa(;O)D(Po)S(PO)T}

20S(po)" 0S(po)
op op

S (po)
op

= 9. (S.55)

N

+3trace {S(po)D(p) D(P)QS(PO)T}

S(o)18(0m) " =L ) D *S(00)"

+3trace {S(po)D(po)ZS(%)T

For the first two terms of % in (S.55)), similar to the treatment of 77 in (S.54)), it is easy to
show that they are of order O(n), and the details are omitted. So, we only need to tackle

the third term of (S.55). For brevity, we denote the third term by .7 3. Since matrices

{2S(p0) " 0p}S(p0)D(£0)*S(p0) "S(p0)D(p0)*S(p0) " {2S(po)dp} and S(po)~'S(po)~" are both
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n x n positive semidefinite, by Lemma [S2.8 we have

ZE!
S(ID (S 00528 )8 () T LS D) S )}

S(p
ap
PR ) D)8 o) S D oS )

= trace

S(po) 'S(po)~

= trace

—t —

< Amax {S(p0)7'S(p0) "}

ctrace { S () D{on) S () S () Dl S () 0 | (5.56)

For the sake of notation, let

Foza = Amax {S(p0) 'S(po) "},

and

Tz = trace { aS(é’ppO) S(PO)D(PO)2S(PO)TS<PU)D(pO)QS(pO)Tasa(,OpO) } '

Note that M = S'S and for some C; = 0 and Cy > 0, we have C; < A\nin{M(p)} <
Amax{M(p)} < Cs from the Condition (C8), which implies that C5" < Apax {S(p0) 'S(p0) "}
< C;'. Hence, 53, is bounded. For the second term of (S.56)), recall that [p] < 1 and

Di;i(p) = 1/(1 + p? 2?21 wi) < 1 by Remark , then we have

T3

— trace { UL 0D 08 ) S ) D S0 2

op
= trace {(-W")(I— pgW)D?(po) (I — poW — poW" + pt W' W)

xD?(po) (I~ poW)(~W)}
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< trace {(WH)(T+ |po[W)D?(po) (T + |po|W + [po| W + pgWHW)
xD?(po) (T + | po| W) (W)}
< trace {(WI I+ W) (I+W+ W'+ W'W) (I+WHW}

= T+ T + ooy s (5.57)

where
Ty, = trace (W'W) + trace (WTWW) + trace (W' W'W)
+trace (WTWTW) + trace (WTWW) ,
5.3
= trace (WTWTWW) + trace (WTWWTW) + trace (WTWTWTW)
+trace (WTWWW) + trace (WTWWTW) + trace (WTWWTW) )
and

it = trace (WTWWTWW) + trace (W WWW'TW)
+trace (W WWWTW) + trace (W WW WTW)

+trace (W WW T WW'W) . (S.58)

Below, we first derive the orders of first and last terms of (S.58)) since these terms have five

and six W’s. For the first term of (S.58), by Cauchy-Schwarz inequality, Lemma [S2.8] it
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follows that

trace { (W W) (WTWW)}

1/2

< {trace (WTWWTW)}'”* {trace (WTW - WWTWTW)}

1/2

{trace (WTWWTW)}"* {trace (WWT - WTWWTW)}

1/2

N

Do (WTIW)trace (WTW) 12 {0 (WWT)trace (WTWWTW) }

1/2

< DWW trace (WIW) H Do (WWT) Ao (WWT)trace (WTW) }

{ A max(WWT) }3/2 trace (W'W)

= O(n),

where the last equality is due to the Condition (C8) and >, w; = 1 for any 1 < i < n.

Analogously, for the last term of (S.58)), it follows that

trace (W WWIWWTW) < Apux(WTW)trace (W WW W)
< {)\max(V\/'TW)}2 trace (W' W)

= O(n).

The other three terms of (S.58) are of the same order as the first term, so they can be
dealt with similarly. Hence, we have Z,%* = O(n). For the terms 7%, and 75%; in (S.57),

similar to the above illustration, we know immediately that 7%, = O(n) and 7%, = O(n).

Therefore, combining (S.55), (S.56)), (S.57) and the above results, we conclude that there

exists some constant ks such that

1
—trace(M,,M}) < ko.
n
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It is easy to notice that trace {diag2(Mn)} < trace (MHME) by which we also have
1 . 2
—trace {diag”’(M,,)} < *ka.
n

Below, we calculate ULU,,. By ([S.53)), we have

Uu'u,

_Tasg;()) S(p0)D(po)*S(po)"S(p0)D(p0)*S(po) "

+za—pATs<po>D<po>2s(po>TS<po>D<po>2S<P0>TAabﬁﬁo)

20 {S(0) TS (0)} A {D*(0) } e {S(20)S (0)" } Aumae {as(ap;) asa(;)o) }

dS(po)
dp

N

2b(po) " ATS(po)
b(po)"

S(po) " Ab(po)

N

X)\max {S(po)fTS(po)fl} /\max (ATA) Hb(p(])H2

2

b(po)

+2>\max {S<p0)TS(p0)} )\max {D4(p0)} )\max {S(pO)S<pO)T} )\max (ATA) ap

- Of),

where the last equality is due to the Conditions (C7) and (C8). Following the previous

results, by (S.51)) and Lemma [S2.9 we have

. 9
n~Y2E [n_1/2 Z Si{A;b(po), Po}]

i=1

1 0'4 T 2
= \/_ﬁ l? {trace(MnMn) + trace (Mn)}
+%trace {diag*(M,)} {E(c]) — 30"} + %UgUn]
1
_ 0 (75> | (5.59)
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We further obtain

( *3/42 Si{A;b(po), po} + Z = {AabE(( )> = {Bum) - b’“(p‘))}D
B (n—:v Z[ b(p0). po} + 2 o {“‘%‘;( i {Ek@o)—bk(po)}])

= L [ _3/425 {A;b(po). po} + Z B (A <n_3/4i %‘k) + Op(l)]

i=1 j=1

zE[ *3/425{}\ b(po), pg}] +2E{i%k(A)< 3/4 ZW)} +o(1

=1

— o Y?E E[{i%(A)W} AD+O(

K
= o V2E { Z

2% + o(1), (S.60)

N

N

-
SN—
_|_
=

where the first equality is by (S.45]), the second equality is by (S.59) and ([S.49)). Hence, by

(S.48) and (S.60f), we get the expectation and variance of the first term of ([S.32]).

Consequently, we rewrite ([S.32)) as follows

n'/t (/) Po)

= _3/42 [S{A b(po), ,00}~|—Z 6S{Aab;<( )) .o}

X {/b\k(pl)) - bk(po)} ]/ [E Z dSi{A;fp(*p*)’p*}]

_ [n3/4 D) S(Ab(). o} + Y, () (n3/4 > sojk)

i=1 k=1

+op(1)]/ [% 3 dSi{A;C;(*p*)m*}]

i=1
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i A)pis + 0y (n71) +0p(1)} / [l dSi{A;b(p*%p*}]

=

nia dp*

{

—3/4 Zn:

=1

where the second equality is by (S.45) and the last second equality is due to (S.47)), (S.50))

and (S59).

We start with the denominator of (S.61)). We will show that, for given A,

1 ¢ dSi{A; b(p*), p* .
—Z { (). 7} | A 23 some constant. (S5.62)
n 4 dp*
Note that p* denotes the value between the py and p, and b*(py) between b(py) and B(po).
By (S.4)), with b(p) and p replaced by B(p*) and p*, respectively and Taylor’s expansion, we

have

12": dSi{A;b(p*), p*}
n <

dp*

-1
1 < dSi{A;b(p*), p*}

= = + 0,(1
IR dSi{A;B(pO)aPO} 1< d2Si{A;B(p0)ap0}

= — —_ *_ 1
n ; dpo + " 1_21 dp% (p po) + 0p(1),

where the last equality is because p is n'/-consistent. We now handle the first two terms
of the above separately. Note that [b(po) — b(po)| = Op(K**32n=12) implied by |by(po) —

br(po)| = O, (k*1n=Y2) from (S.33). Together with the Conditions (C5) and (C6), we have

dS;{A: b(po), po
—Z {A;b(po), po}

izl dpo
- Ly dStAlm), {a [% p, LA b po}] /ab<po>T} {B(o0) ~ blpo)}
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+0, ([Boo) — b(n0)) )

1 & A
_ _ZdS’L{ 7b(p0)7p0}_|_0p
s dpo

+0p (HB(PO) - b(Po)H)

1 & dSi{A;
_ Ezd&{ 1 b(po), po} + O, (K320~ 12) 4 o, (Ko+32p~112)

%21 (a [dSi{A;dl;iﬂo)vﬂo}] /ab(m)T) H [Bow - WO)H)

i=1 dpo
1 dSH{Ab(po), po}
- - ; 1o + 0,(1), (S.63)

where the inequality is due to Cauchy-Schwarz inequality. Similarly, we have

%i dQSz{Av b(po); IOO} (p* . ,00)

= dp}

_ * 1 ¢ dQSi{A§b(Po)7P0}

) {%Z":a [dzs {Adlzopo Po}] /ab } { po) — b(ﬂo)} + 0, (HB(pO) - b(p0)|>]

= Op(n_1/4 {Op(l)+Op(KO‘+3/2n_1/2)+op(K°‘+3/2n_1/2)}

= 0p(1),

Hence, based on above results, we have

1 ¢ dSi{A;b(p*), p*} o d5i{A;b(po), po}
— = — 1). S.64
We next show that
dS;{A;b r
—Z Sid (Po). po} A 2 some constant. (S.65)

izl dpg
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Similar to the derivative of (S.51]), we have

\/Lﬁ Z SZ{A; b(ﬂO)? pO}

_ \/Lﬁ {D(po)M(po)Y — D(p0)S(po)"Ab(po)} "

| ) 80001~ AbGu)} + D)L (5(00)Y — Ao
+D{pu)S (0] LS gn) (S Y — Ab(p)
+D (S 8 ) Ab(gn) — Dipo)S (o)A |
from which we obtain that
%idsi{A§dl;(op0)va} _ %FTF_’_%FT]}—;\’ (866)
where
F = D(po)S(po)"en,
P = [ D)o, + D) e, + DS S () e,
+D () () S ) Ab(pn) — Do) AL |
o
dD(po) { S(po) 08(po) 0*M(po)
2 2 { o €n, + S(po) 2 Y} + D(po) o Y
-2 s )T AT o () S AT,
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e, = S(po)Y — Ab(py),

and €, | A ~ N(0,0%L,). To establish ([S.65), it suffices to show that

1

EFTF|A LS (S.67)
and

1 s -

“FF|A B0, (S.68)

where ¢, is some positive constant. We first prove (S.67)). Let

F = Ge,+h(A),

where

and

Then, by Lemma we have

var <1FTF ] A>

n

1
= —var {e,G"Ge, +¢,G"h(A) + h(A)"Ge, + h(A)"h(A) | A}
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= inar {e.G"Ge, +2h(A)"Ge, | A}
n
1 1 .
= ﬁ204trace(GTGGTG) + ﬁtrace [{diag(GTG)}?| {E(e]) — 30"}

+%4a2h(A)TGGTh(A). (S.69)
We now check each term of ([S.69). For the first term, by Lemma [S2.§|a), we note that
%204trace(GTGGTG) < %204trace(GTG))\max(GTG).
Since for any matrices A, B and C with compatible dimensions, we have
Maxi(A+ B+ C)TA+B+C)} < 3\ax(ATA) + 3\ nax (BTB) + 3),0,(CTC),
from which, by the Condition (C8) and Remark [2| we have

Amax (GTG)

- [{ Do) g7 4+ D) S 4 b)) S(Po)_l}

op

« {5]3&(90) S<pO)T +D(p) + D(PO)S(po)Tgsm)) S(Po)lﬂ
P

3\ [s%) {5138(;0) }2 S(,Og)T] . {as<p0)D(p)2aS(po)T}

op op
0S(po)" dS(po)

3 {800 T L ) Do S ) ) |

A

N

B [{ Dl ] Ao 1S()S(0)"} + B {D(0)7} A (WW)

+3Amax {D(00)*} Amax {S(00)S(00) " } Arnaxe (W W) [Amin {S(00)S(p0) " }]

-1

N

C,
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for some constant C', where the last equality is because the Conditions (C7) (C8) and Remark

, and the second inequality is based on the fact that .y (BTAB) < Amax (A) Amax (BTB),

where A and B are two matrices, and A is positive semidefinite matrix.

Similarly,
1
ﬁtrace (GTG)
= Lirace [{ma—(j(’)sw + Do) 2L 4 D)5 0 L S}
< P )7+ D) L D) S ()
< %trace{ (» )aD(”O) aDa(pO)S(po)T}
+3%tra0e{ 6( ) D(p ?Slp )}

N

N

po)’

)*
+3%trace{ (po)~" (a S(p0)D(po)*S(po)" 2 S(po)l}
B%trace[ p0)"S(po {

ol
+3%traee { Os(a‘;(’) 6(50)D(p)2}

+3stace { (oDl S () A8 )5 ) TS|

B%trace {S(po)TS(,Oo)} Amax [

1 S (po)" S(po) 2
—i—SEtrace { o 2 Amax {D(p) }

+3%)\max {S(po)D(p0)*S(po)" } trace {

3%trace {S(p0)"S(0)} Amax [{ e } ]

+3%traee (W'W) Apax {D(p)?}

TaS(Po)T aS(Po)}

+3%)\max {D(pO)Q} Amax {S(pO)TS(pO)} trace {S(po)IS(po) o 2
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< 3trace {S() S} Mo { T3}

+3%traee (W'W) Aax {D(p)?}

1 _ _
+3ﬁ)\max {D(pO)Q} Amax {S(pO)TS(pO)} Amax {S(po) 'S(po) T} trace (WTW) )
Note that, by > w;; = 1 for any 1 <4,j <mn,

trace {S(po) S(po)} < 2trace(L,) + 2pjtrace(W W)

/)
[\
N
_I_
DO
Do
Ingb
[+
&

A
o
_|_

DO
s
b
N

(S.70)
Thus, based on above derivation, we have

%trace (GTG)

N

3-trace (S ™S ()} Ao { 522 |

+3%traee (WTW) Apax {D(p)?}
3 A (D000} A {3(00) ™S (p0)} A {S(00) ' S(0) " trace (WTW)
g(l + PN e {&Da(;o) } + 3%Amax {D(p)’}

35 D {D(00)7} A {3(90) ™8 (00)} i {3(60)S 00)}

o)

N
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Therefore, we have

1 1
—20'trace(GTGGTG) < —20'trace(GTG)Amax(G'G)
n n
1
= 0| - S.71
() s1)

and

%traee [{diag(G'G)}*| {E(e}) — 30"} < %traee(GTGGTG) {E(e}) — 30}
1
o)) .

For the third term of (S.69), we have

1
10° —h(A)"GGTh(A)

A

402niAmax (GG")h(A)"h(A)

2

< 80 o Lo ATS(0) TS L () Do S ()" ) A
# S ATS ) DS 0" A L

N

802% x [Afm {D(p0)} Amax {S(10)S(p0)" } Anaxe (W W)

e (8() TS ()} A ( £ATA) [

N (D (P0)} Amax {S(90)S(20)" } A GATA) H aba(?) | ]

_ 0 (%) | (.73)

where the last equality is also due to the Condition (C7), (C8) and Remark [2, Combining
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(S.69), (S.71),(S.72) and (S.73)), we conclude that

var (lFTF | A) = O (l>
n n

for given A. By the law of large numbers, this implies (S.67). We next prove (|S.68]).

By the expression of F and F and (2.6, we have

} 22D
PR~ IS0 r S (e

+2e,S(po)D(po)

+e,S(po)D(po)*

—2¢7S(p0)D (o) (p)s<po>TA—

208(po)" , Ib(po)
op A op
= &, {S(ﬂo)D(Po)ag—p(fO)S(Po)T +2S(po)D(po)
dD(po) o 1S (p0)
op

—QEES(PO)D(PO)

dD(po) 3S(po)" c
op op "
M (po)
2
op? } Y

S(Po)

+ S(po)D(po)

et { 25D (o) -
db(po)

28 () Do) 5 () TA L

ap

aS(Po)TAab(P())
op op

= €'Gaoe, + € hy(A), (S.74)

—QETTLS(PO)D(PO)2

where
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and

() = {25(0D () 38 80D S(0n) A
—QS(PO)D(Po)aD(;I:O)S(PO)TA%,SO)
25 o) D(pn)? S A D)

By Lemma and Lemma [S2.8(c), we have

1
var (—FTF | A)
n
1
= ﬁvar {nggen + sghz(A)}

= %04 {trace(GgG;f) + trace (G3) } + %trace{diagz(GQ)} {E(gﬁll) _ 304}

+%02hg(A)Th2(A)
< %J%race((}g(}g) - %traee [{diag(G2)}*] {E(e]) — 30"}
+$02h2(A)Th2(A)
< %trace(GgGg) {20 + |E(ef) — 30|} + %UQhQ(A)ThQ(A). (S.75)
Note that
%trace(GQGg)
< atrace {8 D) 228 )8 () D LD ) ()" |
+16%trace {S(pg)D(po) aDa(ppO) as(a’;O)T asa(ﬁ()) aDa(;O) D(po)S(PO)T}
+16%tface {S(PO)D(PO) 6])(3(;0) S(Po)TaSa(ppo) S~ (po)

57 (n) L8 ) LD ) )
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1 2 *M(po) o -T 0>M(po) 2 T
+4ﬁtrace{S(pO)D(p0) é’—pzs (po)S (pO)TD(pO) S(po) }

0
1 0°D(po)
!

< 4m)\max {S(pU)TS(pO)} )\12nax {D(pﬂ)} )\IQnax { trace {S(pO)TS(pO)}

0

dD(p
op

dD(p

167 A {S(0)S(20)} A 1D (00} Vo { } trace (WW)

1625 N2 (S(00) S} Mo (D0} N | 52 AL, (8108 ) trace (W)

+16ﬁ)\max{S(po)TS(po)})\fnaX {D(p0)} Amin 1S(£0)"S(p0) } Amax (W W) trace (W W)
~o(b).
n

where the last equality is by the Condition (C8) and (S.70)).

Similarly,

%hg(A)ThQ(A)

2S(po)

dp
b(po)

- o |25t T s "

~28(p)D(m) s )4

—QS(po)D(po)2 aS(/OO> Aab(pO)]

op op
dD(po) dS(po)

[ {2500 L 0T D) $(00) A

dD(po) T, 9b(m0)

253(PO)TA5b(P0)
(Z’p op

S)” s<po>a]3&f°>D<po>s<po>T

+S(po)D(po)?

op

—QS(PO)D(PO)

—25(po)D(po)
16

N

—5b(po)" AS(po) ™
5D( 0)g

op

<8 (o)D) 2P0 g )1 (p S (0) " Ab(p0)

ib<po>TATs< ) TR D 08 ) S ) D) 3 S ) b
23 U AT ) DL 1) ) TS ) D ) L g A AL
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+ D) ATaSa(ﬁo)D<p0>28<po>TS<po>D<Po> T
. oD(po)

N

_/\maX {S pO IOO)} )\fnax {D( )} )‘max { ap } /\max {S Po pO)T}

e (WIW) AL {8 (0)S ()" A - ATA) (o)

+%)‘max {S(PO)TS(PO)} Amax 1D (00)} Amax (WTW)

e (WWT) AL, (S(S(00)} A (7ATA) (0]

+1nﬁ A {S() ™S (p0)} X2 (D0 >}Amx{a’3a(j°>}

s

max {S PO PO) })‘max < ATA>

ob(po) |
op

16 1
+?)\max {S(pO)TS<pO>} )‘;lnax {D(pO)} )‘max (WWT) )\max <5ATA) H
1
B O (_> '
n
Based on above results and (S.75|), we have
1 1
ar (—FTF | A) =0 (—> .

n n

We also verify that E(FF) = 0 in the Supplementary Material [53.13] Then we obtain (S.68).

Therefore, together with (S.67)), (S.68) and (S.66)), we conclude that

_st i{A;b(po), po} AP . (S.76)
dpo *9

=1

where ¢, is defined in (S.67). Combining (S.64)) and (S.76]), we complete the proof of (S.62]).

We next show that the asymptotic normality of numerator of (S.61). Note that

n K
n’3/42 Z Br(A) i, + 0,(1) =n 3/42‘5 + 0p(1

i=1 k=1
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where €;(A) = 3i | Bi(A) i, the expression of B (A) and gy refer to and (S.2§).
Note that 6;(A)’s are i.i.d for i = 1,...,n for given A, E{n=34>"  %;(A)} = 0 from (S.46)
and var{n=¥*3"  %;(A)} = 3y, where X is defined as (S.60). Then, by the central limit
theorem, we have n=3/4 " €/(A) 5> N(0,%) as n — .

Therefore, according to above results, (S.62)) and(S.61)), we have, for given A,
(= po) > N(0,5),
where ¥ = ¢ 2%. 0
S3.11 Proof of (S.36)
To prove the ([S.36)), we first verify the following equation.
2
E [J {Zi(u)Z;(v) — G(u,v)} (bk(s)gbg(t)dsdt] = O(ApAe). (S.77)

Since

B(éak) = TG@@@@WNMMt

r

Mo, if k=4,
= <

0, ifk=#",

\

we have, for k # /,

|[ 12920 - G0y noponterdsa
~ |2 | zwoda
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= éikgifa

and by Condition (C1),

E{(€xti)?y < {E(EL)E(EV?

< CApAe
Hence (S.77) follows. This leads to

f (Z,(u)Z(0) — Gl v)} du(s)de(t)dsdt = O,(AYAL?),

from which and combined with (S.14)), we have

Z (e — )\g)lf {Zi(u)Z;(v) — G(u,v)} g (u)de(v)dudv = O,(klogk). (S.78)

0:l#k

Next we prove (S.30). Recall that g(t) = E{Y;*Z;(t)}, § ¢2(t)dt = 1, and according to

Ep;, = 0, ¢;’s are iid for j = 1,...,n. Further incorporating Condition (C4), Lemma

and ([S.78]), we have

0 2)

1/2E{< quk V[V Zi(t) — E{Y*Z ()}]dt+Ak1fE{K-*Zi(t)}

[Z (Ae = A) " ou(t f {Zi(u)Zi(v) — G(u,v)} ¢k(u)¢g(v)dudv] dt

—X2E — M) Jdm(t)g(t)dt) }
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< snE { ([awmezn-sorzon dt)g}
+3n"PAE { (JE {Yi*Zi(t)} [ DTk = M) ()
0:4#k
H{z G, 0)} (1) ol )dudv} dt)2}
+3n~ N B — M) Uczﬁk (t)g( t)dt}2
< 3n—1/2A,;2fE[§Q*Z( ) — E{Y*Z;(t)}]* dt {fgzﬁk dt}
+3n7 12N\ Ug2(t)dt}
<E ( | szuk 3 ||z zi) - G<u,v>}¢k<u>¢e<v>dudvrdzﬁ)
q2e
+3(C — )n 722 {JgQ () dt} {ngi (t) dt}
< 3n—1/2A,;2Jvar{Y* t)}dt Uqﬁ }
+3n712N 2 {Jg%t)dt}
xE[ (Ao — Ao)™ ﬂ{z G(u,v)} dr(u)de(v dudv] febk
+3C0n 122 Ug () dt} {ngk () dt}
< 3nV2N2 fE (YV* Z,(t)}2 dt + 3Cn =2\ 2| g|? (Klogk)? + 3Cn~2) 2| g/
< 3C TV E (Y JE {Z4(t)} dt + 3CC*n~ Y2k (| g klogk)? + 3C%n =12k g|>

_ O{n_1/2k2a+2(logk)2},
where the last equality is due to the Condition (C1). Together with Ey;; = 0, this gives

3/ Z oin =0, {n_1/4ka+1(logk)} 7

j=1
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which leads to, by Condition (C5),

. <n1/4 [O%rzlog(KH)(K*l)W_(ai2)2{(K+1)a+2_1}D

This verifies (|S.36)). 0

S3.12 Proof of (S.43)

For the first part of (S.43)), using Lemma [S2.7, the Condition (C8) and cov(e) = oI, we

note that

E{ai(A) | A}

= %E {787 (p0)W'S(po)D(p0)?*S(po) " Aexe, ATS(po)D(p0)*S(po) " WS™ (po)e | A}
— Totrace {87 (o) WS()D ()8 (00) Acre ATS(p0)D ) S (00) WS () | A}
- Z—ztrace{eEATS(po)D(po)QS(po)TWS‘l(po)S‘T(po)WTS(po)D(po)QS(po)TAek | A}
= Z—zegATS(po)D(po)QS(po)TWS‘l(po)S‘T(po)WTS(po)D(po)QS(po)TAek
< 0 Amax {87 (00)S T (00) } Amax (WWT) A {S(00) "S (o) }

e (D)} de (SIS ()" A (£474) (Sefer
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2

= % [)‘min {M(pO)}]_l )‘max (WWT) >‘max {S(p0>TS(p0)}

e (D)} A (SIS ()"} A (£ATA )

1
—C,
n

N

for fixed A and some constant C, where the last equality is due to Remark [2 Hence,
E{a}(A)} = E[E{?(A) | A}] = O(1/n). This shows that «.(A) = O,(1/+/n).

For the second part of , write
Br(A) = Bri(A) + Bra(A),
where
Ba(A) = ~BTATS (o) WTS(p D) S () Ay,

and

13Jb(po)*

Pra(A) = n  op

AS(po)D(p0)*S(po) " Aey.
Similarly, by the Condition (C3),

E{%(A)| A}
= %E {bTATS (o) "W™S(p0)D(0)?S (o) Aeyet ATS(po)D(0)?S (po) "WS(po) Ab | A}

1
= ﬁbTATS(PO)_TWTS(PO)D(PO)QS(PO)TAeke;fATS(Po)D(Po)zs(PO)TWS(Po)_lAb

N

/\max (ekeg) )‘max (%AAT) /\max {S(pO)TS(pO)} )‘max {D(p0)4} )‘max {S<p0)s(p0)T}
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A (WIW) A £5(00) 7S (00) "} A (%ATA) bTh
= )\max (%AAT) )\max {S(pO)TS(pO)} >\max {D(p0)4} )\max {S(pO)S(pO)T}

X Amax (WW) Anax {S(p0) ™S (p0) ™"} Amax (%ATA) (2 bi)

N

o (2 AAT) A ()" ()} A {D(00)') A S(00)S ()"}

xAmax (WTW) i {S(00)S(00) "} ™ Amax (%ATA)

N

C.

Similar derivation can show that, for some constant Cs, E{%%,(A) | A} < Cs. Since

E{#(A) | A} <2E{%} (A) | A} + 2E{B7,(A) | A}, we have Bi(A) = O,(1). O

S3.13  Proof of E(FTF) =0

Next we show that E(FTF) = 0. Note that, by w;; = 0 for i = 1,...,n, we have

M(p) = S(p)'S(p) =1, — pW — pW" + p*WTW,

M) _ W w9 WIW
op ’
0p? ’

1

D(p) = {diagM(p)}~' = {IL, + p*diag(W W)}

_3]320) — L, + pAdiag(WTW)} " diag(20WTW)
— —{D(p)}?diag(20W W),
‘92?29) = 2{L, + p*diag(WTW)}  {diag(20W W)}’

— {1, + pPdiag(WTW)} * diag 2WTW)

= 2{D(p)}*{diag(2pW"W)}* —2{D(p)}” diag(W'W).
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By (S.74), we rewrite FTF as follows.

F'F = &' {S(po)D(po)y?p(fo) S(po)™ + 2S(po)D(po) aDa(/;OO) asg;o)T } €n
et { 280D A0 S 5 Do Ry
261D () A0 AT i S A
~ elS(mD(n) o),
+2€35(p0)D(po)aDa(pp°) {aséppO)Ten + S(ﬂo)TaSa(gO)Y}
+€ES(po)D(po)262l:£(Qp0) Y
+ {—2€ES<po)D(po)aDa(pp°) S(po)TA%ppO) ~ 2e}S(po)D( o)QaSg?TAab;;’O) }

S1+ Sy +S3+ Sy
Note that E(S, | A) =0 and

BS |A) = E {sZs<po>D<po>—

where the last equality is due to D(p) = {diagM(p)} . By (2.6, we have

op op op

= 20%trace {D(Po)éDa(ppO)aS(af/))O) S(pO)}

ES:|A) = E [2ezs<po>D<po>‘9D<”°) {@SWTE” " s<po>TaS<p°)Y} | A]
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and

Now

E(Sy; | A) = 20°trace {D(po)

126 {2 D) 3 (TS e, | 4]

dD(po) 0S(po)*
2L B s )

dD(po) 1 0S(po)
p S(po) —8,0 },

= 20°trace {D(po)

+20”trace {D(po)

262M(P0)

BG1A) = B{eIS(mD(n s e, 4

= o’trace {D(po)QM} .

op?

dD(po) S(po)"
AL S )

dD(po) T
op S(Po)

D (po) aS(Po)T}

+20”trace {D(po) M}

op

= 20’trace {D(po) o o

5 dD(po) 3S(po)*
—2po trace{D(pg) P o W}
dD(po) S(po) }

op op
ID(po) 171 08 (p0)
op W op }

= —20%trace {D(po) ODa(;O) WT}

D
+2pc’trace {D(pg) #WTW}

—20trace {D(po) aD—(pO)W}
op

dD(po)
op
dD(po)

= 4po’trace {D(pg) a—WTW}
p

+20”trace {D(po)

—2po’trace {D(pg)

+2po’trace {D(pg) WTW}
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- —4p0‘2trace [D(po) {D(p)Qdiag(QpWTW)} WTW]

—  _925%race [{D(po)}3 {diag(szTW>}2] :

where the last third equality is due to w;; = 0. It is also observed that

’WQM
E(Ss| A) = o?trace D(po)Qw
0p?
= 20”trace [{D(po) "W W],
and
0°D(po)
E(S|A) = JQtrace{ ) }

= 20%trace [{D(p)}3{diag(2pWTW)}2]

—20%trace [{D(p)}2 diag(W'W)] .

Consequently, we have

EFTF|A) = ES; +S;+S5+S,|A)

= 0.

This completes the proof. O

S3.14 Proof of Lemma

Part (a) follows from Lemma 3 of Kong et al.| (2016). For part (i) in (b), let T;s = (és—fis)&k

and define r,, = k'~%2n~1/2 for notational convenience, where 1 < s < Ky and Ky +1 < k <
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K*. Then, by Condition (C7) and Lemma [S2.4(c), it follows that T;; = O,(r,). Note that

o)
and

where U,,s = ﬁ Z#j T;Tjs. Tt is obvious that 1 L

Lemma [S2.4(c), we have

= O,(r?). Since k # s, and by

zlzs

N

|B{(&s — €5 e + 1BLET — &)éanl]
= |B{(&\ — & ea)]

= |B[{(&s — &) — €57 = G)ga ]l

= alk" P — B (n — 1)

_ O(/{:l_a/2n_3/2),

where the second equality holds because E};’] and &;; are uncorrelated, and a is a positive

constant. This leads to

E(@Un) = —ZE is)

1#]
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Further, using Lemma 5.2.1A in |Serfling (1980) and some calculations, we obtain

var(Uys) = L[Q(n — 2)(ET)*var(Tys) + {var(Ti)}? + 2(ETy,)*var(T3)]

and

Hence, by (S.79)), we have

< ZEs) = r2) + O(K**n™%) + O L(n 1/2 r2) = Op(kQ—an—l/Q)’

from which we have

1/2

K n 2 _
J3/2-a/2
2 (fZT”> -0, (5.
For part (ii) in (b), it follows that

ADProj A proj
Ak Ak

— Qo — Qo

Bi— iy + | Ao(ATAg) AT AL — Ao(ATA)) ' ATAY . (S.80)

N

By Lemma [S2.4(c), we have |Aj, — Ay = O,(k'~%/2) = 0,(1). We next show that the second
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term of ([S.80]) is bounded in probability. Note that

[Ao(ATAg) ATAL — Ao(ATA)) AT A
< H <AO _ AD> (AEA@*AOTA,CH

A0 | (ATA0) " — (AT A0 | AT A

| Ao(AT A0 (Ao - Ao) A

= (D+4(II)4(I1I). (S.81)

We now analyze each term of ([S.81)). We first consider the second term (II). For arbitrary
matrix M, let [M||g be its Frobenius norm. Note that for any conformable matrices matrices
A, B, C, the inequality |[AB|r < [|A]|B]lr and [ABC|r < |A||B|¢|C| hold. Then, by

combining Condition (C8), Lemma [S2.4|c), Lemma and part (a), we obtain that

H (AOTAO/H) = (ATAg/n) "

F

F

< 2 H (AT Ao /n) 1H ‘in (R - AO)T (\%Ao) i (Ag.&o/n)l

a2 (o )" - )| ()
< ok (AFAwn) | (AT - A0)"| A2 (0Ad/m) a2k, (R3Aun)

Ak (AT Ay/n) in (AT - A) N {% (A - AO)T (Ao - A) } Ao (AT Ro/n)
= ok (AFA0/) | T (A - a0)| M2 (AaAT/) Ak (AT &) (14 (1)
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T
Ak (AT Ag/n) 5 Ao)

5 (3
XAt (AgAg/n) {1+ 0,(1)}

min

F

n K 1/2
1 8B {1516 et} [ (aoad

1s=

A2 { (AO - A0> (Ao - A0> }] {1+ 0,(1)}

0, (n—1/2K3/2—a/2) + 0, (n—1/2K3/2—a/2)

0, (n71/2K3/27a/2) ’

and by Central Limit Theorem, we have

Consequently, by part (i) in (

1/2

Als

b), (5:82) and (583), we have

(1T)
HAO [ (ATAy) ! — (AOTAO)*l] ATAku
ATA,

(S

—1/4K3/2—a/2) + OP<K1/2)}

AO (ATAo/Tl

H (ATAy/n)"!

!f
— (ATAy/n)"

|
N2 (AoAT/n) |(AfAg/m) ™
0y (™ K97) {0, (n
O, (™ K3=%) 4 O, (n P K*7)
Op(n~'2K*12)

op(1),

K 1 n 2
= = 15Q1 = Op K1/2 .
NEDIEN (K7

A2 {% <Ao - AO)T (x&o - A0> }

(5.82)
(S.83)
AOT) Ayl + H\/LHAOTA;C >

where the last equality follows from Condition (C5). Under the same condition, for the third
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term (III) of (S.81)), we have

(1) = |Ao(ATA)) " (Ao — Ay) Ay
_ \/Lﬁ Ao (AT A /n) ™ \/iﬁ (Ao A0) A
< |l [@da0n) 7] |77 (Ro - s)
— AL (AT Ag/n) {ZZ( )2}1/2 O, (n~ VA K32o/2)
prie

- Op(1)Op(Kl/z)Op(n—1/4K3/2_a/2)
= Op(n_1/4K2—a/2)

= o0,(1).

Similarly, for the first term (I) in (S.81)), we have

(1) = '\/Lﬁ (Ao - A0> (Agﬁo/n)—l%f;gm
< '%(Ao ) H(AEAO/n ATAk
< [22 Eis — &is) ] Ak (AT Ag/n) (H\/Lﬁ ( AT Ayl + H\F ATA, >

_ Op(n_1/2K3/2 a/2)0p(1) {Op(n—1/4K3/2—a/2) + Op(Kl/Z)}
_ Op(n—l/QKQ—a/Q)

= 0p(1),

where the third last equality follows from Lemma [S2.4(c), Condition (C8), part (i) of (b)
and (S.83)). Therefore, based on the above results, along with (S.80]) and (S.81)), we conclude

the proof of part (b), which completes the proof of Lemma [S2.10 n
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S3.15 Proof of Theorem [3

With a slight abuse of notation, we denote the true regression coefficient under the full model
by b = (89,...,5%)T and let b denote its estimator. From (S.33), we have |b — b%[2 =

O,(K***3n~1). Next, for any arbitrary candidate model, define
brx = argmin{beRK:bk:O,Vk>K*}”SY — Ab|*.
We then have

min b+ —b[> > min {|bx — b°?} — b — b
K*<Ko K*<Ko

> min (00%) — O,(K>*3n). (S.84)

1<k<Ko

By Condition (C10), we know that the right-hand side of the above inequality is guaranteed

to be positive with probability tending to 1. Next, we consider

K*<K0
= min {log (UA—IE*) + (K* = K) og(n) CZ}
K*<Kj O'K n
~9 . 1
>  min {log (032 )} _K og(n)c;:.
K*<Ko 0¥ n

Note that log(1 + #) > min{z/2,log(2)} for any # > 0. Recalling that n AT, Ax« = A
and n'A%L A+ = A, and following [Wang et al. (2009), the right-hand side of the above

equation can be written as

S
. [log {H_(bK* b)TA (b b>}]_mog<n>c*

K*<K, o2 n "
Awinl[bcs — b2 Kl
- {bg (1+ [be — bl )}_MC;
K*<Ko Ok n
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Cr, (S.85)

K*<K0

Amin[brex = b2 | Klog(n)
202 n

> min min {log(Q),
where Apin = )\min(f&). Because Klog(n)/n — 0 under Condition (C10), thus with probabil-
ity tending to 1 we must have log(2) — C* K?*"3log(n)/n > 0. Consequently, as long as we

can show that, with probability tending to 1,

K* <K 202 n "

Ao b — b2 K1
. {Amm K+ — b }_ 08(n) v (5.56)

is positive, we know that the right-hand side of expression is positive asymptotically.
Note that 0% ER o2 derived from the normality assumption (Wang et al., 2009), where RN
denotes the convergence in probability. Furthermore, by Lemma (a), we have | A (A)—
Amin(A)| = 0,(1), from which we know that Xmin L Amin = Amin(A). Applying inequality

(S.84)) to expression ([S.86]), we find that (S.86]) can be further bounded by

Amin [0 02 2043, 1 Klog(n) .,
= 20%( {1&2}(0(% ) = Op(K n=) {1+ o0p(1)} - " c
C;K2a+3log(n) Amin n ) 02 Klog(n) . poss 1
— n 202 {C;:szrslog(n) 1<r2g}<0(b’f )} {1+0,(1)} — TC” + O, (K2 *3p71),

which is guaranteed to be positive asymptotically under Condition (C10). This proves that,
with probability tending to 1, the right hand side of (S.85)) must be positive. This completes

the proof. n
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S3.16 Proof of Theorem [4]

Consider an arbitrary overfitted model, i.e., K* > K,. Note that the residual sum of squares

in the overfitted case can be written as

SSExx = ti)nf(\|§Y—AK*bK*H2)
K*

— inf (|SY — Agbk, — Afbs[?),

brcobic
where bge = (bigs1,--.,bx+)". It is easy to see that
SSEx, = |[SY — Agbg,|?

= |SY — A¢(ATA,) TAISY?

= (T— Ag(AgA¢)~'Ap)SY|?

|QoSY?,

where QO is defined below equation . For an arbitrary matrix M, we use span(M) to
denote the linear subspace that is spanned by the column vector of M. According to the
results in [Wang et al.| (2009)), we have span(_&o, 1&8) = span(.&o, ASEOj), where _&Sﬁc’j = QUAB
denotes the projection of Ag onto the orthogonal complement of span(;;g). Wang et al.
(2009) proves that

SSExs = inf (|SY — Agbx, — AR [?).

Ko Pk

Further, the minimizer of the above optimization problem is given by b Ko = (AOTAO)_I:&OTéY
and BKg = (APeIT AP -1APOT 2 where & = SY — Agbg, = QSY is an estimator of
e =(eq,... ,€n)T € R™. Recall that ;&k denotes the kth column of the score matrix AK* for
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k=Ky+1,..., K*. Then, we obtain

SSEx, — SSEx+
— |QoSY? — |QuSY — Alby
_ YTSTQOTAprOJ (AprOJTAPYOJ) Apl‘OJT ’\TApI‘OJ (AprOJTAprOJ) prOJTQ SY
ATAprOJ (AprOJTApI‘OJ) 1A8£ojTé\

= (n7V2ETARC) (n T ARTTARS) T (0 2ARE)

< Tl PET AR
K*
= T Y (AR
k=Ko+1
< +0° —1/2 AT R Proj\2( pr*
= TmaxK0+r1Il$a;chK*(n € Ak )(K KO)
< 72 max (n_l/QéTAz’roj)Q(K*—Ko),

Ko+1<k<K

_1AS§°jTAIOJ§°j) and the last inequality is because K* < K. Also, we

mln(

where 79 = )\
—1 A projT R proj —1AprojT xproj \ _ /_0°K
have Amin(n 7 AL AR) = Amin(n T AR, Alek) = (Tay) !, Where AOC % is the same as

max

A‘gi‘” defined in earlier, except that AS is replaced by ASK . Based on the above results, we

have

e (S0 =SB ) e {seripe).

Ko+1<k<K* K* — K, MaX o+ 1<k<K

By Cauchy-Schwarz inequality, we know that

1/2 2T R proj | 2
(n_ PETAP J)
1/2 2T A pProj 2 1/2 AT 7} proj 1/2 AT A proj 2
< 2<n’/s A} J) +2<n’/r-: AP 12T AP J)
1/2 2T A proj 2 1/2 2T |2 A Proj proj |2
< 2(nV2ETAR) 2 RET AR — AR
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A 2
= 2(n7 AP 4 0,1),

where the last equality is because |n~Y2&T|? = O,(1) following Wang et al. (2009) and
H,&ij — AP®|2 = 0,(1) established in Lemma [S2.10(b). Under the normality assumption

and following the proof by Wang et al.| (2009), we have

max
Ko+1<k<K*

< SSEg, — SSEj+

2 1
K~ K, > <21+ @)ok,klog(K) + Oy(1), (S.87)

where ¢ is an arbitrary positive but fixed constant, and & is a constant. By Condition (C5),

we know that the number of principal components also satisfies that

lim sup (K /n*") < 1 for some k* < 1. (S.88)

n—00

By (5.87)), (S.88) and the fact that K* < K, we obtain maxg,1<k<i* (SSEx, — SSEx+) =

O,(KlogK) = 0,(n). Thus, the Taylor series expansion leads to

TL(BICK* - BICKO)
~2
= n {log (?2{*) + (K* — KO)MC;’;}

O'KO n
- n {log (SSEKO * 22?;: — SSEKO> + (K* — Ko)logén) C:Z}
— log {1 £ (SSEg;" - SSEKo)} T (K* — Ko)log(n)C?
Ko
_ % (SSExs — SSEx, ) + (K* — Ko)log(n)C* + O,{(KlogK)?n~"}
Ko
_ é (SSExce — SSExc,) {1 + 0,(1)} + (K* — Ko)log(n)C* + 0,(1)

> (K* = Ko) [{—2(1 + ¢)r og(K) + O,(1)} {1 + 0,(1)} + log(n)C] + 0,(1),
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where the last inequality is due to (S.87]). Consequently, by (S.88)), we know that

max
Ko+1<k<K*

{TL (BICK* - BICKO)

K — Ko } > Chlog(n) + {=2(1 + ¢)r log(K) + Op(1)} {1 + 0,(1)}

> log(n) {C} —2(1+ ¢)r'k* + O,(1)} {1 + 0,(1)}

with probability tending to 1. By Condition (C10), we know that C* — co. This implies
that, with probability tending to 1, max,1<r<x+ (BICxs — BICk,) must be positive. This

completes the proof. O]

S4 Additional simulation results

To examine the effect of the network autoregression coefficient on our proposed method,
we also conduct the simulation studies when p = 0.3 for a more comprehensive comparison.
The simulation results are summarized in Tables and Figures[S.1] respectively. These
results are similar to those obtained when p = 0.1.

In addition, as suggested by an anonymous reviewer, (1) we further assess the estimation
performance under a near-boundary setting (i.e., p = 0.8), with the corresponding simulation
results reported in Tables and Figure , respectively; and (2) we evaluate the
empirical standard deviation and the asymptotic standard error of the network autoregression
coefficient. Moreover, we consider not only the boundary case p = 0.8 but also the moderate

(m)

asy

dependence case p = 0.5. Specifically, the asymptotic standard error is denoted by SE
defined as the square root of the estimated ¥ in Theorem [2]for the mth simulation replication.
The overall average asymptotic standard error is then computed as S/Easy =M! Z%:l S/EE:;),
where M denotes the number of simulation replications. Meanwhile, the empirical standard
deviation is estimated by SEemp = {M~2 M (50m) — 5232 where p = M1 YM_ 5tm),
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The simulation setup follows that described in the simulation section, with the true network
autoregression coefficient set to p = 0.5 and 0.8, respectively. The simulation results are
presented in Table . As expected, the ratios of S/Eemp to S/]:]aSy generally fluctuate around

one across different network sizes and sparsity levels. This, to some extent, demonstrates

the accuracy of our theoretical results.

Table S.1: Simulation results for n = 200, 500 with 100 replicates of the dyad independence model, stochastic
block model and power-law distribution model respectively. The results are displayed when the error follows
normal distribution and t-distribution in each scenario. The IMSE and SUP are both reported. The true

number of principal components (# PC) ranges from 2 to 50, with p = 0.3.

# PC: 2 # PC: 10 # PC: 50
Scenario n IMSE SUP IMSE SUP IMSE SUP
Case 1: Normal distribution
1 200 5.85x 1075 1.59 x 10—° 6.82 x 10°%  3.11 x 1073 1.03x 1072  7.33 x 102
500 1.25x 10=% 3.89 x 106 2.64 x 1074 1.07 x 103 1.99 x 1073 1.34 x 102
I 200 4.61x10°% 1.32x107° 6.90 x 10-%  2.96 x 101 9.93 x 103  6.75 x 10~ 2
500 1.53x10% 4.68 x 106 229 x 1074 9.43 x 10~* 1.88 x 1073 1.25 x 102
I 200 4.75x10=% 1.36 x 10~ ° 763 x10-T 337 x1073 2.32x 103 8.38x 1072
500 7.95x10~7 2.85x 1076 2.38 x 107%  9.28 x 104 1.92 x 1073 1.38 x 1072
Case 2: t-distribution
1 200 2.77x10~% 577 x 101 1.49 x 102 6.93 x 102 0.35 2.41
500 9.87 x 107%  2.06 x 10~4 5.78 x 1073 2.60 x 102 0.15 0.99
I 200 2.29x 10~%  4.81 x 10~ % 1.67 x 10j2 7.82 x 10~2 0.35 2.33
500 1.18 x 10~* 2.45 x 10~ 6.46 x 1073 2.89 x 10~2 0.14 0.95
I 200 3.17x10~% 6.58 x 10~ % 1.59 x 1072 7.33 x 10~ 2 0.35 2.50
500 1.00x 104 2.10 x 10~* 6.24 x 1073 2.86 x 102 0.15 1.07

Table S.2: Simulation results for n = 200, 500 with 100 replicates of the dyad independence model, stochastic
block model and power-law distribution model respectively. The results are displayed when the error follows
normal distribution and ¢-distribution in each scenario. The Bias and SD are both reported. The true

number of principal components (# PC) ranges from 2 to 50, with p = 0.3.

# PC: 2 # PC: 10 # PC: 50
Scenario n Bias SD Bias SD Bias SD
Case 1: Normal distribution
I 200 -0.0708 0.0662 -0.0791  0.0695 -0.0698  0.0668
500 -0.0398 0.0421 -0.0434  0.0409 -0.0450  0.0432
I 200 -0.0092 0.0127 -0.0059  0.0099 -0.0079  0.0105
500 -0.0028 0.0055 -0.0026  0.0044 -0.0031  0.0057
I 200 -0.0130 0.0224 -0.0078  0.0192 -0.0070  0.0242
500 -0.0041 0.0092 -0.0043  0.0108 -0.0042 0.0117
Case 2: t-distribution
I 200 -0.0553  0.1595 -0.0425  0.1505 -0.0486  0.1253
500 -0.0303 0.1023 -0.0144  0.0914 -0.0381  0.0824
T 200 -0.0049 0.0388 -0.0096  0.0351 -0.0061  0.0331
500 0.0015  0.0228 0.0014  0.0220 -0.0048 0.0242
I 200 -0.0117 0.0514 -0.0129  0.0522 -0.0034  0.0534
500 -0.0084 0.0320 -0.0078  0.0360 -0.0027  0.0323

124



S4 Additional simulation results

Table S.3: The results are displayed as the error follows normal distribution in three scenarios and the
sample size n is set as 200 and 500, respectively. Average numbers of K selected by four criteria as well as
the corresponding IMSE in case of p = 0.3 are shown. We report the selected K in the first line. We report
the corresponding IMSE values in the second line (The original IMSE values multiplied by 103).

n Scenario AIC BIC BIC* BIC**
. K 848 6.96 8.73 8.94
IMSE  1.80 2.02 1.68 1.92
K 579  4.85 6.17 5.89
200 I
IMSE  3.08 434 2.71 3.03
K 588 472  6.32 6.02
III

IMSE 2.89 4.30 2.62 2.79

K 10.28 8.34 10.08 9.29
IMSE 0.64  0.97 0.65 0.75

K 6.73 557 6.91 6.10
500 I
IMSE 173 275 1.61 2.18
K ) . 7.21 51
- 7.09  5.89 6.5

IMSE 1.55 2.34 1.46 1.86

Table S.4: The results are displayed as the error follows ¢ distribution in three scenarios and the sample
size n is set as 200 and 500, respectively. Average numbers of K selected by four criteria as well as the
corresponding IMSE in case of p = 0.3 are shown. We report the selected K in the first line. We report the
corresponding IMSE values in the second line (The original IMSE values multiplied by 10%).

n Scenario AIC BIC BIC* BIC**

K 530 3.73  6.43 4.30
IMSE 201 101 1.93 0.96
K 4.92 357  5.76 4.04

200 I
IMSE 231 1.12  1.92 0.95
- K 474 3.58 597 4.19
IMSE 1.16 1.05 1.55 1.07
: K 6.41 439  6.52 5.06
IMSE 1.12 059 0.88  0.52
K ) 4.1 14 4.61

500 - 5.63 6 6 6
IMSE 069 0.68 0.66  0.57
K 552 4.26  6.06 4.87

111

IMSE 0.68 0.64 0.66 0.63
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Figure S.1: The functional coefficients estimation B(t) under normal distribution and ¢ distribution, respec-
tively, with sample size n = 200 and p = 0.3. The left panels contain the results under normal distribution,
while the right panels those under t distribution. In each panel, the solid grey line is the true value, the
dashed red line is the average estimated value, and the dashed blue lines are the pointwise 2.5% and 97.5%
percentiles of the estimators based on 100 replications.
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Table S.5: Simulation results for n = 200, 500 with 100 replicates of the dyad independence model, stochastic
block model and power-law distribution model respectively. The results are displayed when the error follows
normal distribution and ¢-distribution in each scenario. The IMSE and SUP are both reported. The true
number of principal components (# PC) ranges from 2 to 50, with p = 0.8.

# PC: 2 # PC: 10 # PC: 50
Scenario n IMSE SUP IMSE SUP IMSE SUP
Case 1: Normal distribution
I 200 4.60 x 10°° 1.32x 107 ° 6.58 x 10~ 3.00 x 10~° 1.14 x 1072 8.07 x 10~ 2
500 9.71x 1077 3.27x 1076 247 x 107%  9.41 x 1074 1.89 x 1073 1.33 x 1072
I 200 5.21x10°° 1.46 x 10~° 8.79 x 10-%  3.92 x 10ﬁ3 1.19 x 1072 8.46 x 10~ 2
500 9.95x 1077  3.32x 1076 2.60 x 107  1.05 x 1073 1.81 x 107%  1.19 x 10~2
. 200 4.98x10°° 1.41x10°° 6.10 x 10°% 271 x 10~° 0.01 0.06
500 9.74 x 1077  3.23 x 10~¢ 2.63 x 107*  1.05 x 1073 2.07 x 1072 1.38 x 1072
Case 2: t-distribution
I 200 249 x10°%F 5.20x 10~ 1% 1.68 x 1072  8.07 x 10~ 2 0.37 2.5
500 1.07 x 107% 2.23 x 107 5.34 x 1072 2.52 x 1072 0.15 1.04
I 200 3.02x10°%F 6.24x 10~ % 1.92 x 1072 8.66 x 10~ 2 0.35 2.44
500 1.07 x 1074 225 x 107* 6.54 x 1072 3.10 x 1072 0.15 0.99
- 200 243 x10°T  5.09 x 10*?l 1.60 x 10*'2 7.05 x 1072 0.38 2.72
500 9.73 x 107°  2.02 x 10~ 6.17 x 1072 2.73 x 1072 0.16 1.02

Table S.6: Simulation results for n = 200, 500 with 100 replicates of the dyad independence model, stochastic
block model and power-law distribution model respectively. The results are displayed when the error follows
normal distribution and ¢-distribution in each scenario. The Bias and SD are both reported. The true
number of principal components (# PC) ranges from 2 to 50, with p = 0.8.

# PC: 2 # PC: 10 # PC: 50
Scenario n Bias SD Bias SD Bias SD
Case 1: Normal distribution
I 200 -0.0217  0.0310 0.0278 0.0301 0.0279 0.0292
500 -0.0131 0.0176 0.0129 0.0156 0.0131 0.0177
I 200 -0.0037 0.0084 -0.0039 0.0071 -0.0045 0.0081
500 -0.0013  0.0029 -0.0020  0.0036 -0.0017  0.0028
I 200 -0.0071 0.0204 -0.0103  0.0199 -0.0090  0.0170
500 -0.0036 0.0111 -0.0041 0.0093 -0.0039  0.0101
Case 2: t-distribution
I 200 -0.0372 0.1306 -0.0264  0.1354 -0.0279  0.1196
500 -0.0112 0.0917 -0.0197  0.0958 -0.0140  0.0749
I 200  -0.0041 0.0338 -0.0020  0.0288 -0.0029  0.0277
500 -0.0034 0.0197 -0.0016  0.0187 -0.0019  0.0187
I 200 -0.0053  0.0403 -0.0032  0.0471 -0.0041 0.0414
500 -0.0039 0.0304 -0.0012  0.0276 -0.0027  0.0297
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Figure S.2: The functional coefficients estimation B(t) under normal distribution and ¢ distribution, respec-
tively, with sample size n = 200 and p = 0.8. The left panels contain the results under normal distribution,
while the right panels under ¢ distribution. In each panel, the solid grey line is the true value, the dashed red
line is the average estimated value, and the dashed blue lines are the pointwise 2.5% and 97.5% percentiles
of the estimators based on 100 replications.
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Table S.7: The ratio of S/Eemp to S/I\*]asy for p = 0.5 and 0.8 across different sample sizes.

p n=100 n=200 n=300 n=400 n =>500

0.5 12063  1.8947  0.9197  1.4219 1.0810

ratio
0.8 1.1092 09133  1.0261  0.8674 1.0069
p n=600 n=700 n=800 n=900 n=1000
. 05 07842 1.2423 1.1216  0.8462 0.9221
ratio

0.8 0.9234 1.2329 0.8289  1.0455 1.3318
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