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S1 Extension to network partially functional linear regression

Inspired by an anonymous reviewer, we discuss a natural extension in this section. Our

proposed method can be extended to handle the simultaneous presence of multiple functional

predictors and scalar covariates. Specifically, for i “ 1, . . . , n, let Yi be a scalar continuous

response, tZi`p¨q, ` “ 1, . . . , Ju are J functional predictors, Xi “ pXi1, . . . , Xipq
T be a p-

dimensional vector of scalar covariates. Without loss of generality, we assume that the

response, the functional predictors and the scalar covariates have been centred to have mean

zero. Then, the network partially functional linear regression is defined as

Yi “

J
ÿ

`“1

ż

I
Zi`ptqβ`ptqdt`XT

i ϑ` ρ
n
ÿ

j“1

wijYj ` εi, i “ 1, . . . , n, (S.1)

where tβj`p¨q, ` “ 1, . . . , Ju are square-integrable regression functions, ϑ “ pϑ1, . . . , ϑpq
T P Rp

represents the regression coefficients of nonfunctional covariates. The term ρ is the network

autocorrelation coefficient, and pwijqi“1,...,n;j“1,...,n is row-normalized adjacency matrix. The

i.i.d. εi is the random error. The detailed explanation of the above terms is similar to that

in (2.2).

Based on model (S.1) and motivated by the proposed method in Section 2.2, we present

a modified three-step algorithm as follows.

Step 1: We perform FPCA separately to each functional predictor and use the pooled FPCA

scores as predictors. The estimator of the FPC scores of Zi`p¨q is denoted by tpξi`,1, . . . , pξi`,K`u

for ` “ 1, . . . , J . Here, pξi`,k is computed as
ş

I Zi`ptq
pφ`,kptqdt, where pφ`,kptq denotes the kth

estimated eigenfunction of Zi`p¨q for k “ 1, . . . , K`. The number of principal components,

K`, is selected according to the procedure outlined in Section 2.3. With these notations, we
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S1 Extension to network partially functional linear regression

can approximate (S.1) as

Yi “

J
ÿ

`“1

K
ÿ

k“1

pξi`,kb`k `XT
i ϑ` ρ

n
ÿ

j“1

wijYj ` εi,

where b`k represents the projection of β`p¨q onto the kth eigenfunction of Zi`p¨q.

Step 2: For ` “ 1, . . . , L, let the estimated scores matrix pA` “ p
pξ1`, . . . , pξn`q

T P RnˆK serve

as the predictor variables, where pξi` “ ppξi`,1, . . . , pξi`,K`q
T represents the estimated FPC scores

for the `th functional predictor. Let b` “ pb`,1, . . . , b`,Kq
T P RK` denote the corresponding

coefficient vector. At any given ρ, similar to (2.11), the estimator pϑpρq and tpb`pρq, ` “

1, . . . , K`u are obtained by solving the following least square type optimization problem:

ppϑpρq, pb1pρq, . . . , pbJpρqq “ argmin
b1,...,b`,ϑ

1

n

›

›

›

›

›

SpρqY ´

J
ÿ

`“1

pA`b` ´XTϑ

›

›

›

›

›

2

“ argmin
b1,...,b`,ϑ

1

n

›

›

›
SpρqY ´ pηrθ

›

›

›

2

,

where Y “ pY1, . . . , Ynq
T P Rn, XT “ pXT

1 , . . . ,X
T
n q P Rnˆp, pη “ ppA1, . . . , pAJ ,X

Tq P

RnˆpJK`pq, and rθ “ pbT
1 , . . . ,b

T
J ,ϑ

TqT P RJK`p.

Step 3: Obtain the estimator pρ using the following composite least squares objective func-

tion:

pρ “ argmin
ρ

1

n

›

›

›

›

›

tdiagMpρqu´1 SpρqT

#

SpρqY ´

J
ÿ

`“1

pA`
pb`pρq ´XT

i
pϑpρq

+
›

›

›

›

›

2

.

On the theoretical side, similar asymptotic results for the functional regression coeffi-

cients β`ptq, ` “ 1, . . . , L and the network autoregression coefficient ρ can be established

by following the proofs of Theorem 1 and Theorem 2, with the involved eigencomponents

replaced by pooled eigencomponents. It would be interesting to also investigate the asymp-
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totic normality for the parameter regression coefficients ϑ estimation, while we leave this for

future research.

S2 Some useful lemmas

This section presents additional lemmas essential for the proofs of Theorems 1-4. Detailed

proofs and further explanations can be found in the Supplementary Material S3.

The following Lemmas S2.1-S2.3 will be used to prove Theorem 1, which contains the

asymptotic results for the functional regression coefficient. The proof of Lemma S2.1 can be

found in Hall and Horowitz (2007), the proof of Lemma S2.2 is presented in Supplementary

Material S3.2, and the proof of Lemma S2.3 is provided in Supplementary Material S3.3.

Lemma S2.1. Suppose that Conditions (C1)-(C2) hold, Then as n Ñ 8, if k “ opn
1

α`2τ q,

the following results hold:

(a) supkě1 |pλk ´ λk| “ Oppn
´1{2q.

(b)

E} pG´G}2 “ Opn
´1
q,

E

›

›

›

›

ż

´

pGps, tq ´Gps, tq
¯

φkptqdt

›

›

›

›

2

“ Opn´1q,

E

"
ĳ

´

pGps, tq ´Gps, tq
¯

φkpsqφkptqdsdt

*2

“ Opn´1λ2kq.

(c) }pφkptq ´ φkptq} “ Oppkn
´1{2q.

Lemma S2.2. Suppose that Conditions (C1)-(C3) hold, the following results hold:

(a)
ř8

`:`‰k `
´2pα`τqpλk ´ λ`q

´4 “ Opk2α´2τ`4 ` logkq.

(b)
ř8

`:`‰k `
´p 3

2
α`τq |λk ´ λ`|

´1
“ Op1q.
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(c)
ř8

`:`‰k `
´pα`τq|λk ´ λ`|

´1 “ Op1q.

Define the estimator

pgptq “ n´1
n
ÿ

i“1

˜

Yi ´ ρ
n
ÿ

j“1

wijYj

¸

Ziptq

“ n´1
n
ÿ

i“1

Y ˚i Ziptq.

The L2 convergence rate of the estimator is given below.

Lemma S2.3. Assume that (C1) holds, then }g} is bounded and }pgptq ´ gptq} “ Oppn
´1{2q.

Below, we present several lemmas that will be instrumental in proving the asymptotic

results for the network autoregression coefficient in Theorem 2.

Lemma S2.4. (a) Let δk “ min1ď`ďkpλ` ´ λ``1q, then

sup
kě1

|pλk ´ λk| ď } pG´G}, sup
kě1

δk}pφk ´ φk} ď 81{2
} pG´G}.

(b) Under the Conditions (C1)-(C2), for k “ opn
1

2α`2 q,

pλk ´ λk “
1

n

n
ÿ

i“1

pξ2ik ´ λkq `Oppk{nq.

pξik ´ ξik “
ÿ

`‰k

pλk ´ λ`q
´1ξik

A´

pG´G
¯

φ`, φk

E

ˆ t1` opp1qu.

In addition, if α ą 2, then

pφkptq ´ φkptq “
ÿ

`‰k

pλk ´ λ`q
´1φ`

A´

pG´G
¯

φ`, φk

E

`Op

`

n´1kα`2logk
˘

.
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(c) Under the Conditions (C1), (C2), assume Epξ2k ´ λkq
2 ă Cλ2k, and k “ opn

1
2α`2 q. Then

pλk ´ λk “ Oppn
´1{2λkq and pξik ´ ξik “ Oppk

1´α{2n´1{2q

uniformly in k.

Note that the conditions Epξ2k´λkq
2 ă Cλ2k and k “ opn

1
2α`2 q in Lemma S2.4 were used in

Wong et al. (2019). The proof of Lemma S2.4 is provided in Supplementary Material S3.10.

The following Lemma S2.5 and Lemma S2.6 are devised for measuring the approximation

error of scores caused by truncation as well as the statistical estimation error. Their proofs

are deferred to Supplementary Material S3.6 and Supplementary Material S3.7, respectively.

Lemma S2.5. Under the Conditions (C1), (C2) and (C5), assuming Epξ2k ´ λkq
2 ă Cλ2k

and k “ opn
1

2α`2 q, if α ą 2, then

λmax

"

1
?
n

´

pAT
´AT

¯´

pA´A
¯

*

“ opp1q.

Lemma S2.6. Assume that the assumptions in Lemma S2.5 hold. (a) Under the Conditions

(C3),(C7)-(C9), we have

E

«

1
?
n

n
ÿ

i“1

SitpA; bpρq, ρu ´
1
?
n

n
ÿ

i“1

SitA; bpρq, ρu

ff

“ op1q,

var

«

1
?
n

n
ÿ

i“1

SitpA; bpρq, ρu ´
1
?
n

n
ÿ

i“1

SitA; bpρq, ρu

ff

“ Op1q.

(S.2)

(b) Under the Conditions (C7) and (C8), we have

›

›

›

›

›

1

n

n
ÿ

i“1

BSitpA; bpρq, ρu

BbpρqT
´

1

n

n
ÿ

i“1

BSitA; bpρq, ρu

BbpρqT

›

›

›

›

›

“ oppn
´1{4

q, (S.3)
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and

1

n

n
ÿ

i“1

dSitpA; bpρq, ρu

dρ
“

1

n

n
ÿ

i“1

dSitA; bpρq, ρu

dρ
` op

`

n´1{2
˘

. (S.4)

Lemma S2.7. If y is a random vector with mean µ and covariance matrix Σ and if A is a

symmetric matrix of constants, then

E
`

yTAy
˘

“ tracepAΣq ` µTAµ.

If y is N pµ,Σq, then

var
`

yTAy
˘

“ 2trace
 

pAΣq2
(

` 4µTAΣAµ.

The above Lemma S2.7 provides the expectation and variance of quadratic forms and

the proof of Lemma S2.7 can be found in many textbooks, such as Rencher and Schaalje

(2008).

Lemma S2.8. (a) Let A and B be positive semidefinite nˆ n matrices, then

0 ď tracepABq ď λmaxpAqtracepBq ď tracepAqtracepBq.

(b) Let A and B be symmetric nˆ n matrices, then

λmax

 

pABqTpABq
(

ď λ2maxpAqλ
2
maxpBq.
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(c) Let A be an nˆ n matrix, then

trace
`

A2
˘

ď trace
`

ATA
˘

with equality if and only if A is symmetric.

Lemma S2.9. For any n ˆ n matrices M1 “ pm1,ijq P Rnˆn and M2 “ pm2,ijq P Rnˆn,

and n-dimensional vectors U1 P Rnˆ1 and U2 P Rnˆ1. Let X “ pX1, ¨ ¨ ¨ , Xnq
T
P Rn,

where Xi P Rp1 ď i ď nq are identically and independently distributed variables. Write

Q1 “ XTM1X ` UT
1 X, and Q2 “ XTM2X ` UT

2 X. Assume the following conditions are

satisfied: (1) EpXiq “ 0 and EpX3
i q “ 0 for i “ 1, . . . , n; (2) EpX2

i q “ 1 and E pX4
i q ă 8,

then

cov pQ1, Q2q “
 

tracepM1M
T
2 q ` tracepM1M2q

(

`trace tdiagpM1qdiagpM2qu
 

EpX4
1 q ´ 3

(

`UT
1 U2.

The above lemma is similar to Lemma 2 of Huang et al. (2019), which is used in the

proof of Theorem 2. We provide the proof of Lemma S2.8 and Lemma S2.9 in Supplementary

Material S3.8 and S3.9, respectively.

Lemma S2.10. (a) Assume Conditions (C1), (C2), (C5) and (C8) hold. Then

ˇ

ˇ

ˇ
λminppΛq ´ λminpΛq

ˇ

ˇ

ˇ
“ opp1q and

ˇ

ˇ

ˇ
λmaxppΛq ´ λmaxpΛq

ˇ

ˇ

ˇ
“ opp1q,

where pΛ “ n´1 pAT
K˚

pAK˚ and Λ “ n´1AT
K˚AK˚, with K˚ being an arbitrary positive integer.

(b) Under Conditions (C1) and (C2), the projection matrices defined in (3.20) satisfy the

following:
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S3 Proof of theory

(i)

›

›

›

›

1
?
n

´

pAT
0 ´AT

0

¯

Ak

›

›

›

›

“ Op

ˆ

K3{2´α{2

n1{4

˙

.

(ii) Assume Conditions (C5) and (C8) hold. Then

}pAproj
k ´ Aproj

k } “ Opp1q.

The above lemma quantifies the asymptotic orders of several key expressions that will

be used in the proofs of Theorems 3 and 4.

S3 Proof of theory

S3.1 Verifications of several claims

Note that for k “ 1, . . . , K,

1

n

n
ÿ

i“1

pξ2ik “
1

n

n
ÿ

i“1

"
ż

Ziptqpφkptqdt

*2

“
1

n

n
ÿ

i“1

ˆ
ż

Ziptqpφkptqdt

˙ˆ
ż

Zipsqpφkpsqds

˙

“
1

n

n
ÿ

i“1

ĳ

ZiptqZipsqpφkptqpφkpsqdtds

“

ĳ

«

1

n

n
ÿ

i“1

ZiptqZipsq

ff

pφkptqpφkpsqdtds

“

ĳ

pGpt, sqpφkptqpφkpsqdtds

“ covppξk, pξkq “ pλk.
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Let Y˚ ” SY, pgptq ” n´1
řn
i“1 Y

˚
i Ziptq and gptq ” ErY ˚i Ziptqs. Equation (2.11) leads to

pbkpρq “ eT
k
pΛ´1

ˆ

1

n
pATY˚

˙

“ pλ´1k n´1
n
ÿ

i“1

ξikY
˚
i

“ pλ´1k n´1
n
ÿ

i“1

ż

ZiptqpφkptqdtY
˚
i

“ pλ´1k

C

n´1
n
ÿ

i“1

Y ˚i Ziptq,
pφkptq

G

“ pλ´1k

A

pgptq, pφkptq
E

. (S.5)

Below, we show that

E

"

BQpb, ρq

Bρ

*

‰ 0,

where Qpb, ρq is defined in (2.9). For ease of notation, let fpρq “ 1?
n
pSpρqY ´ pAbq, then

Qpb, ρq “ fpρqTfpρq,

which implies that

BQpb, ρq

Bρ
“ 2fpρqT

Bfpρq

Bρ

“
2

n

!

SpρqY ´ pAb
)T BSpρq

Bρ
Y

“
2

n

"

YTSpρqT
BSpρq

Bρ
Y ´ bT

pATBSpρq

Bρ
Y

*

.

Recall that the mean and covariance of response Y are S´1pρqpAb and σ2S´1pρqpS´1pρqqT,
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respectively. Then,

E

"

BQpb, ρq

Bρ
| pA

*

“
2

n
E

"

YTSpρqT
BSpρq

Bρ
Y | pA

*

´
2

n
bT

pATBSpρq

Bρ
E
´

Y | pA
¯

“
2

n
trace

"

SpρqT
BSpρq

Bρ
covpY | pAq

*

`
2

n
E
´

Y | pA
¯T

"

SpρqT
BSpρq

Bρ

*

E
´

Y | pA
¯

´
2

n
bT

pATBSpρq

Bρ
E
´

Y | pA
¯

“
2

n
trace

"

SpρqT
BSpρq

Bρ
σ2S´1pρqpS´1pρqqT

*

`
2

n
bT

pAT
pS´1pρqqT

"

SpρqT
BSpρq

Bρ

*

S´1pρqpAb

´
2

n
bT

pATBSpρq

Bρ
S´1pρqpAb

“
2σ2

n
trace

"

BSpρq

Bρ
S´1pρqpS´1pρqqTSpρqT

*

`
2

n
bT

pATBSpρq

Bρ
S´1pρqpAb

´
2

n
bT

pATBSpρq

Bρ
S´1pρqpAb

“
2σ2

n
trace

"

BSpρq

Bρ
S´1pρq

*

“ ´
2σ2

n
trace

 

WpI´ ρWq
´1
(

,

which is not zero in general. For example, when all eigenvalues of ρW satisfy |λpρWq| ă 1,

we have

trace
 

WpI´ ρWq
´1
(

“ trace
“

W
 

I` pρWq ` pρWq
2
` pρWq

3
` ¨ ¨ ¨ ` pρWq

k
` ¨ ¨ ¨

(‰

“ trace
`

W ` ρW2
` ρ2W3

` ρ3W4
` ¨ ¨ ¨

˘

“ trace
`

ρW2
` ρ2W3

` ρ3W4
` ¨ ¨ ¨

˘

ě 0

in general, where the last euality is because the diagonal elements of W equal to zero, and

the last inequality is because each element of W are nonnegative, and ρ ‰ 0,W ‰ 0 in
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general. Hence, tracetWpI ´ ρWq´1u ‰ 0 unless there is no network structure. Based on

the above results, the expectation of the score function is not equal to zero.

S3.2 Proof of Lemma S2.2

(a) Let rk{2s be the largest integer less than k{2. Then

8
ÿ

`:`‰k

`´2pα`τqpλk ´ λ`q
´4
“

¨

˝

rk{2s
ÿ

`“1

`

`“2k
ÿ

`“rk{2s`1,`‰k

`

8
ÿ

`“2k`1

˛

‚`´2pα`τqpλk ´ λ`q
´4.

Under Condition (C2), we note that

rk{2s
ÿ

`“1

`´2pα`τqpλk ´ λ`q
´4

ď

rk{2s
ÿ

`“1

`´2pα`τqrλ`p1´ λk{λrk{2sqs
´4

ď C1

rk{2s
ÿ

`“1

`´2pα`τqλ´4`

ď C2

rk{2s
ÿ

`“1

`2α´2τ

ď C3

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

1, if α ` 1
2
ă τ,

logk, if α ` 1
2
“ τ,

k2α´2τ`1, if α ` 1
2
ą τ,

and

8
ÿ

`“2k`1

`´2pα`τqpλk ´ λ`q
´4

ď

8
ÿ

`“2k`1

`´2pα`τqrλkp1´ λ2k`1{λkqs
´4

ď C4λ
´4
k

8
ÿ

`“2k`1

`´2pα`τq

ď C5k
2α´2τ`1.
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Again, using Condition (C2), for rk{2s ă ` ă k, we observe that

λ` ´ λk “

k´1
ÿ

t“`

pλt ´ λt`1q

ě C´1
k´1
ÿ

t“`

t´α´1

ě k´α´1C´1pk ´ `q. (S.6)

Similarly, for k ă ` ď 2k, let C6 “ C´12´α´1, then

λk ´ λ` “

`´1
ÿ

t“k

pλt ´ λt`1q

ě C´1
`´1
ÿ

t“k

t´α´1

ě C´1
`´1
ÿ

t“k

p2kq´α´1

“ C6k
´α´1

|`´ k|. (S.7)

This implies that, for C7 “ maxpC´46 , C4q, C8 “ C72
2α`2τ ,

2k
ÿ

`“rk{2s`1,`‰k

`´2pα`τqpλk ´ λ`q
´4

ď

2k
ÿ

`“rk{2s`1,`‰k

C7`
´2pα`τqk4pα`1q

pk ´ `q4

ď

2k
ÿ

`“rk{2s`1,`‰k

C7pk{2q
´2pα`τqk4pα`1q

pk ´ `q4

“

2k
ÿ

`“rk{2s`1,`‰k

C8k
2α´2τ`4

pk ´ `q4

ď C9k
2α´2τ`4,
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where the last inequality is because
ř8

k“1 k
´4 is a convergence sequence. By combining the

above results, for C10 “ maxpC3, C5, C9q, we have

8
ÿ

`:`‰k

`´2pα`τqpλk ´ λ`q
´4
ď C10pk

2α´2τ`4
` logkq.

(b) Similar to the treatment of (a), using ´pτ ` 1
2
αq ă ´pα` 1q obtained by τ ą 1

2
α` 1, we

have

rk{2s
ÿ

`“1

`´
3
2
α´τ
|λk ´ λ`|

´1
ď

rk{2s
ÿ

`“1

`´
3
2
α´τ
rλ`p1´ λk{λrk{2sqs

´1

ď C11

rk{2s
ÿ

`“1

`´
3
2
α´τλ´1`

ď C12

rk{2s
ÿ

`“1

`´
1
2
α´τ

Ñ C13.

Again using ´pτ ` 1
2
αq ă ´pα ` 1q and α ą 1, we have

8
ÿ

`“2k`1

`´
3
2
α´τ
|λk ´ λ`|

´1
ď

8
ÿ

`“2k`1

`´
3
2
α´τ
rλkp1´ λ2k`1{λkqs

´1

ď C14λ
´1
k

8
ÿ

`“2k`1

`´
3
2
α´τ

ď C15k
´ 1

2
α´τ`1

ď C15k
´α,

where the last term converges to zero for large k. Using (S.6) and (S.7), we have |λk´λ`|
´1 ď

C16k
α`1|`´ k|´1, where C16 “ maxpC,C´16 q, which implies that

2k
ÿ

`“rk{2s`1,`‰k

`´
3
2
α´τ
|λk ´ λ`|

´1
ď

2k
ÿ

`“rk{2s`1,`‰k

C16`
´ 3

2
α´τkα`1

|k ´ `|

14
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ď kα`1
2k
ÿ

`“rk{2s`1,`‰k

C16`
´ 3

2
α´τ

|k ´ `|

ď C17k
´ 1

2
α´τ`1logk,

Also, the last term converges to zero for large k since for any x P r1,8s and γ ą 0, lnx{xγ Ñ

0.

(c) Since τ ą 1
2
α ` 1, we have

rk{2s
ÿ

`“1

`´α´τ |λk ´ λ`|
´1

ď

rk{2s
ÿ

`“1

`´α´τ rλ`p1´ λk{λrk{2sqs
´1

ď C18

rk{2s
ÿ

`“1

`´τ Ñ C19,

and

8
ÿ

`“2k`1

`´α´τ |λk ´ λ`|
´1

ď

8
ÿ

`“2k`1

`´α´τ rλkp1´ λ2k`1{λkqs
´1

ď C20λ
´1
k

8
ÿ

`“2k`1

`´α´τ

ď C21k
´τ`1,

where the last term converges to zero for large k.

Similarly, we have

2k
ÿ

`“rk{2s`1,`‰k

`´α´τ |λk ´ λ`|
´1

ď

2k
ÿ

`“rk{2s`1,`‰k

C16`
´α´τkα`1

|k ´ `|

ď kα`1
2k
ÿ

`“rk{2s`1,`‰k

C16`
´α´τ

|k ´ `|

ď C22k
´τ`1logk.
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Also, the last term converges to zero for large k since τ ą 1. This completes the proof of

Lemma S2.2.

S3.3 Proof of Lemma S2.3

Recall that

pgptq “ n´1
n
ÿ

i“1

˜

Yi ´ ρ
n
ÿ

j“1

wijYj

¸

Ziptq

“ n´1
n
ÿ

i“1

Y ˚i Ziptq,

and

gptq “ EtY ˚i Ziptqu,

where Y ˚i ’s are independent and identically distributed according to (2.6). Using Condition

(C1), we note that

}g} “

"
ż

g2ptqdt

*1{2

“

ˆ
ż

rEtY ˚i Ziptqus
2dt

˙1{2

ď

ˆ
ż

EtY ˚i Ziptqu
2dt

˙1{2

ď

ˆ
ż

tE
`

Y ˚i
4
˘

u
1{2
rE

 

Z4
i ptq

(

s
1{2dt

˙1{2

ă

„

C1{2

ż

rE
 

Z4
i ptq

(

s
1{2dt

1{2

ă C3{4,

16
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and

E }pgptq ´ gptq}2 “ E

ż

tpgptq ´ gptqu2 dt

“

ż

E tpgptq ´ gptqu2 dt

“

ż

E

«

n´1
n
ÿ

i“1

Y ˚i Ziptq ´ EtY
˚
i Ziptqu

ff2

dt

“

ż

E

˜

n´1
n
ÿ

i“1

rY ˚i Ziptq ´ EtY
˚
i Ziptqus

¸2

dt

“

ż

n´1E rY ˚i Ziptq ´ EtY
˚
i Ziptqus

2 dt

ď

ż

n´1E tY ˚i Ziptqu
2 dt

ď n´1
ż

tE
`

Y ˚i
4
˘

u
1{2
rE

 

Z4
i ptq

(

s
1{2dt

ă n´1C1{2

ż

rE
 

Z4
i ptq

(

s
1{2dt

ă n´1C1{2C

“ O
`

n´1
˘

.

Therefore,

E }pgptq ´ gptq}2 “ Opn´1q.

This leads to E }pgptq ´ gptq} “ Opn´1{2q.

17
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S3.4 Proof of Theorem 1

We use the following facts in the proof

m
ÿ

`“1

`p —

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

mp`1 p ą ´1

logm p “ ´1

C p ă ´1

8
ÿ

`“m`1

m´p
— m´p`1 p ą 1.

For i.i.d. case,

´

pβρptq ´ βptq
¯2

“

˜

K
ÿ

k“1

pbkpρqpφkptq ´ βptq

¸2

“

˜

K
ÿ

k“1

pbkpρqpφkptq ´
K
ÿ

k“1

bkφkptq `
K
ÿ

k“1

bkφkptq ´ βptq

¸2

ď 2

˜

K
ÿ

k“1

pbkpρqpφkptq ´
K
ÿ

k“1

bkφkptq

¸2

` 2

˜

K
ÿ

k“1

bkφkptq ´ βptq

¸2

. (S.8)

Based on Condition (C3), we note that the second term on the right-hand side of (S.8) can

be shown to be

ż

#

K
ÿ

k“1

bkφkptq ´ βptq

+2

dt “

ż

#

K
ÿ

k“1

bkφkptq ´
8
ÿ

k“1

bkφkptq

+2

dt

“

ż

#

8
ÿ

k“K`1

bkφkptq

+2

dt

18
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“

ż 8
ÿ

k“K`1

b2kφ
2
kptqdt

ď

8
ÿ

k“K`1

k´2τ

“ OpK´2τ`1
q

“ Opnp1´2τq{pα`2τqq.

Next we will show the convergence rate of the first term on the right-hand side of (S.8).

Recall that pbkpρq “ pλ´1k x
pφk, pgy. Note also that bk “ λ´1k xφk, gy.

Let ∆ “ } pG´G} and ΩK “ t∆ ď λKu. On the event ΩK , using Lemma S2.4, we can see

that supkďK |pλk ´ λk| ď ∆ ď λK{2 ď λk{2, which implies that 2´1λk ď pλk ď 2λk. Moreover,

note that ∆ is nonnegative, Lemma S2.1(b) yields ∆ “ Oppn
´1{2q. Condition (C2) yields

λK “ Otn´α{pα`2τqu. Conditions (C3) leads to that prpΩKq Ñ 1. Hence it suffices to work

with bounds that are established under the event ΩK . We have

ż

˜

K
ÿ

k“1

pbkpρqpφkptq ´
K
ÿ

k“1

bkφkptq

¸2

dt

“

ż

˜

K
ÿ

k“1

pλ´1k px
pφk, pgy ´ xφk, gyqpφkptq `

K
ÿ

k“1

ppλ´1k ´ λ´1k qxφk, gy
pφkptq

`

K
ÿ

k“1

λ´1k xφk, gyt
pφkptq ´ φkptqu

¸2

dt

ď 3
K
ÿ

k“1

pλ´2k px
pφk, pgy ´ xφk, gyq

2
` 3

K
ÿ

k“1

ppλ´1k ´ λ´1k q
2
xφk, gy

2

`3K
K
ÿ

k“1

λ´2k xφk, gy
2
}pφkptq ´ φkptq}

2

ď 36
K
ÿ

k“1

λ´2k

´

@

φk, pg ´ g
D2
`
@

pφk ´ φk, g
D2
`
@

pφk ´ φk, pg ´ g
D2
¯

`3
K
ÿ

k“1

ppλ´1k ´ λ´1k q
2
@

φk, g
D2
` 3K

K
ÿ

k“1

λ´2k xφk, gy
2
}pφkptq ´ φkptq}

2
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ď 36
K
ÿ

k“1

λ´2k
@

φk, pg ´ g
D2
` 36

K
ÿ

k“1

λ´2k
@

pφk ´ φk, g
D2

`36
K
ÿ

k“1

`

λ´2k }pg ´ g}
2
`Kb2k

˘

}pφkptq ´ φkptq}
2
` 3

K
ÿ

k“1

ppλ´1k ´ λ´1k q
2
@

φk, g
D2
. (S.9)

We now treat each term in (S.9). To handle the first term in (S.9), we note that

gptq “ E tY ˚i Ziptqu

“ E

«

"
ż

βptqZiptqdt

*

#

8
ÿ

k1“1

ξik1φk1ptq

+ff

“

8
ÿ

k1“1

E

"
ż

βptqZiptqdtξik1

*

φk1ptq.

Then by the orthonormality of tφkptquk“1,..., it yields that

ż

gptqφkptqdt “

ż 8
ÿ

k1“1

E

"
ż

βpsqZipsqdsξik1

*

φk1ptqφkptqdt

“ E

"
ż

βptqZiptqdtξik

*

.

Similarly,

ż

pgptqφkptqdt “

ż

#

n´1
n
ÿ

i“1

Y ˚i Ziptq

+

φkptqdt

“ n´1
n
ÿ

i“1

ż
"
ż

βptqZiptqdt` εi

*

#

8
ÿ

k1“1

ξik1φk1ptq

+

φkptqdt

“ n´1
n
ÿ

i“1

"
ż

βptqZiptqdt` εi

*

ξik.

Noting that

E pxφk, pg ´ gyq
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“ E

«

n´1
n
ÿ

i“1

"
ż

βptqZiptqdt` εi

*

ξik ´ E

"
ż

βptqZiptqdtξik

*

ff

“ 0.

Now, using Condition (C1), we have

E
`

xφk, pg ´ gy
2
˘

“ var

«

n´1
n
ÿ

i“1

"
ż

βptqZiptqdt` εi

*

ξik ´ E

"
ż

βptqZiptqdtξik

*

ff

“ n´1
„

var

"
ż

βptqZiptqdtξik

*

` var pεiξikq



ď n´1

¨

˝

«

E

"
ż

βptqZiptqdt

*4
ff1{2

`

Eξ4ik
˘1{2

`
`

Eε4i
˘1{2 `

Eξ4ik
˘1{2

˛

‚

ď Cn´1λk.

This implies that

K
ÿ

k“1

λ´2k xφk, pg ´ gy
2
“ Oppn

´1
K
ÿ

k“1

λ´1k q

“ Oppn
´1

K
ÿ

k“1

kαq

“ Oppn
´p2τ´1q{pα`2τq

q.

Next we deal with the second term in (S.9). Write gptq “
ř8

k“1 gkφkptq, where gk “ xg, φky “

λkbk. Using (5.4) in Hall and Horowitz (2007), we have

pφkptq ´ φkptq “
8
ÿ

`:`‰k

ppλk ´ λ`q
´1φ`ptqxpφk, x pG´G, φ`yy ` φkptqxpφk ´ φk, φky.
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Hence, combing the orthonormality of tφkptquk“1,..., we deduce that

@

pφk ´ φk, g
D

“

ż

#

8
ÿ

`:`‰k

ppλk ´ λ`q
´1φ`ptqxpφk, x pG´G, φ`yy ` φkptqxpφk ´ φk, φky

+#

8
ÿ

k1“1

gk1φk1ptq

+

dt

“

8
ÿ

`:`‰k

g`ppλk ´ λ`q
´1
xpφk, x pG´G, φ`yy ` gkxpφk ´ φk, φky

“ Rk1 `Rk2 `Rk3 `Rk4, (S.10)

where

Rk1 “

8
ÿ

`:`‰k

λ`b`tppλk ´ λ`q
´1
´ pλk ´ λ`q

´1
uxφk, x pG´G, φ`yy,

Rk2 “

8
ÿ

`:`‰k

λ`b`pλk ´ λ`q
´1
xφk, x pG´G, φ`yy,

Rk3 “

8
ÿ

`:`‰k

λ`b`ppλk ´ λ`q
´1
xpφk ´ φk, x pG´G, φ`yy,

Rk4 “ λkbkxpφk ´ φk, φky.

Next we will first focus on the convergence rate of Rk1. Define the set of realizations such

that, for constant C 1 and sample size n,

FK “

!

2´1ppλk ´ λ`q
´2
ď pλk ´ λ`q

´2
ď C 1n2pα`1q{pα`2τq, k, ` “ 1, . . . , K, k ‰ `

)

.

We note that, by Lemma S2.1,

|pλk ´ λ`| “ |pλk ´ λk ` λk ´ λ`|

“ |Oppn
´1{2

q ` λk ´ λ`|

“ |λk ´ λ`|t1` opp1qu,
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hence 2´1ppλk ´ λ`q
´2 ď pλk ´ λ`q

´2. Further,

pλk ´ λ`q
2
ě mintpλk´1 ´ λkq

2, pλk ´ λk`1q
2
u

ě C´2k´2pα`1q

ě C´2K´2pα`1q,

hence pλk´λ`q
´2 ď C2K2pα`1q ď C 1n

2pα`1q
α`2τ for sufficiently large n. Thus, we have P pFKq Ñ 1

as nÑ 8.

Hence it suffices to work with bounds that are established under the event FK . Using

conditions (C2) and (C3),

R2
k1 “

#

ÿ

`:`‰k

λ`b`
pλk ´ λk

ppλk ´ λ`qpλk ´ λ`q
xφk, x pG´G, φ`yy

+2

ď

#

ÿ

`:`‰k

λ2`b
2
`

ppλk ´ λkq
2

ppλk ´ λ`q2pλk ´ λ`q2

+#

ÿ

`:`‰k

xφk, x pG´G, φ`yy
2

+

ď

#

ÿ

`:`‰k

2C4`´2pα`τq
ppλk ´ λkq

2

pλk ´ λ`q4

+#

8
ÿ

`“1

xφk, x pG´G, φ`yy
2

+

“ 2C4
ppλk ´ λkq

2
ÿ

`:`‰k

`´2pα`τqpλk ´ λ`q
´4
}x pG´G, φky}

2,

where the last equation is because Parseval’s identity asserts that for any x and orthonormal

basis en in Hilbert space,
ř

n |xx, eny|
2 “ }x}2. Based on Lemma S2.1 and Lemma S2.2, we

have

K
ÿ

k“1

λ´2k R2
k1 ď 2C4

K
ÿ

k“1

λ´2k p
pλk ´ λkq

2
}x pG´G, φky}

2
ÿ

`:`‰k

`´2pα`τqpλk ´ λ`q
´4

ď 2C6
K
ÿ

k“1

ppλk ´ λkq
2
}x pG´G, φky}

2k2α
ÿ

`:`‰k

`´2pα`τqpλk ´ λ`q
´4
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ď C1

K
ÿ

k“1

ppλk ´ λkq
2
}x pG´G, φky}

2
`

k2αlogn` k4α´2τ`4
˘

“ Op

#

n´1
K
ÿ

k“1

Ep}x pG´G, φky}
2
qpk2αlogn` k4α´2τ`4q

+

“ Op

#

n´2
K
ÿ

k“1

pk2αlogn` k4α´2τ`4q

+

“ Op

 

n´2
`

K2α`1logn`K4α´2τ`5
˘(

“ optn
´p2τ´1q{pα`2τq

u.

In the following, we use Lemma S2.1 and the assumption τ ą α{2 ` 1 in (C3) repetitively

to show the similar result for Rk2, Rk3 and Rk4 as for Rk1. For Rk2, observe that for all `, k,

because

Epξkξ`q “

ĳ

Gps, tqφkpsqφ`ptqdsdt “

$

’

’

’

&

’

’

’

%

λk, if k “ `,

0, if k ‰ `,

for ` ‰ k,

ĳ

!

pGps, tq ´Gps, tq
)

φkpsqφ`ptqdsdt

“

ĳ

«

1

n

n
ÿ

i“1

ZipsqZiptq ´Gps, tq

ff

φkpsqφ`ptqdsdt

“
1

n

n
ÿ

i“1

ξikξi`.

Thus,

Rk2 “ n´1
n
ÿ

i“1

8
ÿ

`:`‰k

λ`b`pλk ´ λ`q
´1ξikξi`,
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and ERk2 “ 0, we can get

nEpR2
k2q ď 2E

#

ξik

8
ÿ

`:`‰k

λ`b`pλk ´ λ`q
´1ξi`

+2

ď 2pEξ4kq
1{2

»

–E

#

8
ÿ

`:`‰k

λ`b`pλk ´ λ`q
´1ξ`

+4
fi

fl

1{2

,

where pEξ4kq
1{2 ď C3{2k´α by condition (C1). It is easy to see that

E

#

8
ÿ

`:`‰k

λ`b`pλk ´ λ`q
´1ξ`

+4

ď
ÿ

`1:`1‰k

¨ ¨ ¨
ÿ

`4:`4‰k

ˇ

ˇλ`1b`1pλk ´ λ`1q
´1
ˇ

ˇ ¨ ¨ ¨
ˇ

ˇλ`4b`4pλk ´ λ`4q
´1
ˇ

ˇEp|ξ`1ξ`2ξ`3ξ`4 |q

ď C8
ÿ

`1:`1‰k

¨ ¨ ¨
ÿ

`4:`4‰k

ˇ

ˇ

ˇ
`
´pα`τq
1 pλk ´ λ`1q

´1
ˇ

ˇ

ˇ
¨ ¨ ¨

ˇ

ˇ

ˇ
`
´pα`τq
4 pλk ´ λ`4q

´1
ˇ

ˇ

ˇ
E p|ξ`1ξ`2ξ`3ξ`4 |q ,

and repeated application of Hölder’s inequality yields that

Ep|ξ`1ξ`2ξ`3ξ`4 |q ď

!

E |ξ`1ξ`2ξ`3 |
4{3
)3{4

pEξ4`4q
1{4

ď prEtpξ`1ξ`2q
4{3
u
3{2
s
2{3
tEpξ

4{3
`3
q
3
u
1{3
q
3{4
pEξ4`4q

1{4

ď tEpξ`1ξ`2q
2
u
1{2
pEξ4`3q

1{4
pEξ4`4q

1{4

ď
`

Eξ4`1
˘1{4

¨ ¨ ¨
`

Eξ4`4
˘1{4

ď C3`
´α{2
1 ¨ ¨ ¨ `

´α{2
4 .

Hence we have

pEξ4kq
1{2

»

–E

#

8
ÿ

`:`‰k

λ`b`pλk ´ λ`q
´1ξ`

+4
fi

fl

1{2

ď C3{2k´α

#

C8
ÿ

`1:`1‰k

¨ ¨ ¨
ÿ

`4:`4‰k

ˇ

ˇ

ˇ
`
´pα`τq
1 pλk ´ λ`1q

´1
ˇ

ˇ

ˇ
¨ ¨ ¨

ˇ

ˇ

ˇ
`
´pα`τq
4 pλk ´ λ`4q

´1
ˇ

ˇ

ˇ
E p|ξ`1ξ`2ξ`3ξ`4 |q

+1{2
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ď C3{2k´α

#

C11
ÿ

`1:`1‰k

¨ ¨ ¨
ÿ

`4:`4‰k

ˇ

ˇ

ˇ
`
´pα`τq
1 pλk ´ λ`1q

´1
ˇ

ˇ

ˇ
¨ ¨ ¨

ˇ

ˇ

ˇ
`
´pα`τq
4 pλk ´ λ`4q

´1
ˇ

ˇ

ˇ
`
´α{2
1 ¨ ¨ ¨ `

´α{2
4

+1{2

ď C7k´α

$

&

%

˜

ÿ

`:`‰k

`´
3
2
α´τ

|λk ´ λ`|

¸4
,

.

-

1{2

“ C7k´α

˜

ÿ

`:`‰k

`´
3
2
α´τ

|λk ´ λ`|

¸2

“ Opk´αq.

The last equality follows from Lemma S2.2. We conclude that EpR2
k2q “ Opn´1k´αq, which

implies that

K
ÿ

k“1

λ´2k R2
k2 “ Oppn

´1Kα`1
q

“ Oppn
´p2τ´1q{pα`2τq

q.

It is seen that under FK ,

Rk3 ď

8
ÿ

`:`‰k

λ`b`|pλk ´ λ`|
´1
xpφk ´ φk, x pG´G, φ`yy

ď
?

2
8
ÿ

`:`‰k

λ`b`|λk ´ λ`|
´1

ĳ

!

pGps, tq ´Gps, tq
)!

pφkpsq ´ φkpsq
)

dsφ`ptqdt

ď
?

2C2
8
ÿ

`:`‰k

`´pα`τq|λk ´ λ`|
´1

ˆ

ż
„
ż

!

pGps, tq ´Gps, tq
)2

ds

1{2 „ż
!

pφkpsq ´ φkpsq
)2

ds

1{2

φ`ptqdt

ď
?

2C2
8
ÿ

`:`‰k

`´pα`τq|λk ´ λ`|
´1

„
ż

!

pφkpsq ´ φkpsq
)2

ds

1{2

ˆ

ż
„
ż

!

pGps, tq ´Gps, tq
)2

ds

1{2

φ`ptqdt

ď
?

2C2
8
ÿ

`:`‰k

`´pα`τq|λk ´ λ`|
´1
}pφk ´ φk}
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ˆ

„
ż ż

!

pGps, tq ´Gps, tq
)2

dsdt

1{2 "ż

φ2
`ptqdt

*1{2

“
?

2C2
8
ÿ

`:`‰k

`´pα`τq|λk ´ λ`|
´1
}pφk ´ φk}} pG´G}

ď C2}
pφk ´ φk}} pG´G},

Here the last equality is due to Lemma S2.2.

Then we have

K
ÿ

k“1

λ´2k R2
k3 ď C2

K
ÿ

k“1

k2α2C4C2
1}
pφk ´ φk}

2
} pG´G}2

“ Op

˜

n´2
K
ÿ

k“1

k2α`2

¸

“ Op

´

n
´4τ`3
α`2τ

¯

“ oppn
´p2τ´1q{pα`2τq

q.

Similarly, by (C3),

K
ÿ

k“1

λ´2k R2
k4 “

K
ÿ

k“1

b2kx
pφk ´ φk, φky

2

ď

K
ÿ

k“1

b2k}
pφk ´ φk}

2
}φk}

2

ď

K
ÿ

k“1

C2k´2τ}pφk ´ φk}
2

“ Op

˜

n´1
K
ÿ

k“1

k´2pτ´1q

¸

“ Op

`

n´1
˘

“ oppn
´p2τ´1q{pα`2τq

q.

The last equality obtained by
řK
k“1 k

´2pτ´1q is a convergence sequence. Combining the results
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regarding Rk1, Rk2, Rk3, Rk4, we get

K
ÿ

k“1

λ´2k

´

@

pφk ´ φk, g
D2
¯

“ Op

`

n´p2τ´1q{pα`2τq
˘

.

We next consider the third term in (S.9). By combining Conditions (C2), (C3), Lemma S2.1

and invoking Lemma S2.3, we have

K
ÿ

k“1

`

λ´2k }pg ´ g}
2
`Kb2k

˘

}pφk ´ φk}
2
ď C2

K
ÿ

k“1

pk2αn´1 `Kk´2τ q}pφk ´ φk}
2

“ OppK
2α`3n´2 `Kn´1q

“ oppn
´p2τ´1q{pα`2τq

q.

For the last term of (S.9), given Condition (C2), we have δ´1k ď Ckα`1, where δk “

min1ď`ďkpλ`´λ``1q. Provided that event ΩK holds, according to (5.7) in Hall and Horowitz

(2007), we have

ˇ

ˇ

ˇ

pλk ´ λk

ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ

ˇ

ĳ

´

pGps, tq ´Gps, tq
¯

φkpsqφkptqdsdt

ˇ

ˇ

ˇ

ˇ

` δ´1k ∆
!

∆` }p pG´Gqφk}
)

.

Combing above results and Lemma S2.1, repeatedly using Conditions (C2) and (C3), we

obtain,

K
ÿ

k“1

ppλ´1k ´ λ´1k q
2
@

φk, g
D2

ď

K
ÿ

k“1

˜

pλk ´ λk
pλkλk

¸2
@

φk, g
D2

ď 4
K
ÿ

k“1

λ´2k b2kp
pλk ´ λkq

2

ď 8
K
ÿ

k“1

λ´2k b2k

"
ĳ

´

pGps, tq ´Gps, tq
¯

φkpsqφkptqdsdt

*2

` 16∆2
K
ÿ

k“1

δ´2k λ´2k b2k

!

∆2
` }p pG´Gqφk}

2
)
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“ Op

#

n´1
K
ÿ

k“1

λ´2k b2kλ
2
k ` n

´2
K
ÿ

k“1

δ´2k λ´2k b2k

+

“ Op

#

n´1
K
ÿ

k“1

k´2τ ` n´2
K
ÿ

k“1

k4α´2τ`2

+

“ Oppn
´1K ` n´2K4α´2τ`3

q

“ op
`

n´p2τ´1q{pα`2τq
˘

.

This completes the proof of Theorem 1.

S3.5 Proof of Lemma S2.4

Part (a) is the results from Bhatia et al. (1983).

(b) Under k “ opn
1

2α`2 q, according to the result of (S.1) in Wong et al. (2019), we have

pλk ´ λk “

A´

pG´G
¯

φk, φk

E

`Oppk{nq, (S.11)

pξik ´ ξik “
ÿ

`‰k

pλk ´ λ`q
´1ξik

A´

pG´G
¯

φ`, φk

E

ˆ t1` opp1qu,

and

pφkptq ´ φkptq “

#

ÿ

`‰k

pλk ´ λ`q
´1φ`

A´

pG´G
¯

φ`, φk

E

+

ˆ
 

1`Oppn
´1{2δ1´1k q

(

, (S.12)

where δ1k “
1
2

mink1‰k |λk1 ´ λk|, which is no less than 1
2
C´1k´α´1 under condition (C2). Let
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Λnk “
ř

`‰kpλk ´ λ`q
´1φ`xp pG´Gqφ`, φky. Note that for k ‰ `,

ĳ

!

pGps, tq ´Gps, tq
)

φkpsqφ`ptqdsdt “
1

n

n
ÿ

i“1

ξi`ξik ´ Epξi`ξikq “
1

n

n
ÿ

i“1

ξi`ξik,

and

E

#

1

n

n
ÿ

i“1

ξi`ξik

+2

“
1

n
Epξ2i`ξ

2
ikq ď

1

n
tEpξ4i`qEpξ

4
ikqu

1{2
ď C

1

n
λ`λk,

where the last inequality is due to Condition (C1). Thus,

E
!

xp pG´Gqφ`, φky
)2

“ Opn´1λ`λkq.

We have, by Condition (C4),

Λnk “ Op

#

n´1{2
ÿ

`‰k

pλk ´ λ`q
´1φ`λ

1{2
` λ

1{2
k

+

“ Op

#

n´1{2
ÿ

`‰k

pλk ´ λ`q
´1λ

1{2
` λ

1{2
k

+

.

Write

ÿ

`‰k

pλk ´ λ`q
´1λ

1{2
` λ

1{2
k

“

¨

˝

rk{2s
ÿ

`“1

`

k´1
ÿ

`“rk{2s`1

`

r3k{2s
ÿ

`“k`1

`

2k
ÿ

`“r3k{2s`1

`

8
ÿ

`“2k`1

˛

‚pλk ´ λ`q
´1λ

1{2
` λ

1{2
k . (S.13)

To examine the first summation in (S.13), by Condition (C2), we have

λk{2 ´ λk “ λk{2 ´ λk{2`1 ` ¨ ¨ ¨ ` λk´1 ´ λk

ě C´1pk{2q´pα`1q ` ¨ ¨ ¨ ` C´1pk ´ 1q´pα`1q

ě C´1pk{2qk´pα`1q
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“ C´1
1

2
k´α.

and

C´1pk{2qα ď 1{λk{2 ď Cpk{2qα.

This leads to

1´ λk{λk{2 ě C´1
1

2
k´αC´1pk{2qα “ 2´α´1C´2.

Then, under Condition (C2),

rk{2s
ÿ

`“1

pλk ´ λ`q
´1λ

1{2
` λ

1{2
k “

rk{2s
ÿ

`“1

λ
1{2
` λ

1{2
k

λ`p1´ λk{λ`q

ď

rk{2s
ÿ

`“1

λ
1{2
` λ

1{2
k

λ`p1´ λk{λk{2q

ď 21`αC2

rk{2s
ÿ

`“1

λ
´1{2
` λ

1{2
k

ď 21`αC3k´α{2
rk{2s
ÿ

`“1

`α{2

ď C2k,

for some constant C2.

For the second summation in (S.13), under Condition (C2), λ` ´ λk ě C´1k´α´1pk ´ `q

for ` ă k, and

k´1
ÿ

`“rk{2s`1

|λk ´ λ`|
´1λ

1{2
` λ

1{2
k ď

k´1
ÿ

`“rk{2s`1

Ckα`1
C1{2k´α{2C1{2`´α{2

k ´ `
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“ C2
k´1
ÿ

`“rk{2s`1

kα`1
k´α{2`´α{2

k ´ `

ď C2
k´1
ÿ

`“rk{2s`1

kα`1
k´α{2pk{2q´α{2

k ´ `

“ C22α{2
k´1
ÿ

`“rk{2s`1

k{pk ´ `q

ď C3klogk,

for some constant C3.

We now examine the third term in (S.13). From Condition (C2), λk´λ` ě C´1`´α´1p`´

kq ě C´1p2kq´α´1p`´ kq for 3k{2 ě ` ą k. Thus, let C4 “ C22α`1, incorporating Condition

(C2), we have

r3k{2s
ÿ

`“k`1

pλk ´ λ`q
´1λ

1{2
` λ

1{2
k ď C

r3k{2s
ÿ

`“k`1

p2kqα`1
λ
1{2
` λ

1{2
k

`´ k

ď C4

r3k{2s
ÿ

`“k`1

kα`1
k´α{2`´α{2

`´ k

ď C4k

r3k{2s
ÿ

`“k`1

1{p`´ kq

ď C5klogk,

for some constant C5.

Consider the fourth summation in (S.13). By condition (C2), for ` ą k,

λk ´ λ` “

`´1
ÿ

t“k

pλt ´ λt`1q

ě C´1
`´1
ÿ

t“k

t´α´1

ě C´1
ż `

k

x´α´1dx
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“
1

Cα
pk´α ´ `´αq.

Hence, by α ą 1,

2k
ÿ

`“r3k{2s`1

pλk ´ λ`q
´1λ

1{2
` λ

1{2
k ď C2α

2k
ÿ

`“r3k{2s`1

k´α{2`´α{2

k´α ´ `´α

“ C2αk
1

k

2k
ÿ

`“r3k{2s`1

p`{kqα{2

p`{kqα ´ 1

ď C2αk

ż 2

3{2

xα{2

xα ´ 1
dx

ď C2αk

ż 2

3{2

xα

xα ´ 1
dx

“ C2αk

ż 2

3{2

xα ´ 1

xα ´ 1
dx` C2αk

ż 2

3{2

1

xα ´ 1
dx

ď C2αk
1

2
` C2αk

ż 2

3{2

1

x´ 1
dx

ď C6k,

for some constant C6.

For the last term in summation in (S.13). Using Condition (C2) and ` ą 2k`1, we have

λk ´ λ` ě λk ´ λk`1 ` ¨ ¨ ¨ ` λ`´1 ´ λ`

ě C´1k´pα`1q ` ¨ ¨ ¨ ` C´1p2kq´pα`1q ` ¨ ¨ ¨ ` C´1p`´ 1q´pα`1q

ě C´1k ˆ p2kq´pα`1q

“ C´12´pα`1qk´α.

This implies that

λk{λ` ě
λ` ` C

´12´pα`1qk´α

λ`
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ě 1` C´12´pα`1qk´αC´1`α

ě 1` C´22´pα`1qk´αp2kqα

ě 1` C´22´1

“ 1` p2C2
q
´1,

which leads to 1
2C2`1

λk ď λk ´ λ` ď λk when ` ą 2k ` 1. When α ą 2, we have

8
ÿ

`“2k`1

pλk ´ λ`q
´1λ

1{2
` λ

1{2
k ď p2C2

` 1q
8
ÿ

`“2k`1

λ
1{2
` λ

1{2
k

λk

“ p2C2
` 1q

8
ÿ

`“2k`1

λ
1{2
` λ

´1{2
k

ď p2C2
` 1qCkα{2

8
ÿ

`“2k`1

`´α{2

ď C7k,

for some constant C7. Thus, according to (S.13), we conclude that, if α ą 2,

ÿ

`‰k

pλk ´ λ`q
´1λ

1{2
` λ

1{2
k “ Opklogkq. (S.14)

Now, it follows that

Λnk “ Op

#

n´1{2
ÿ

`‰k

pλk ´ λ`q
´1λ

1{2
` λ

1{2
k

+

“ Op

 

n´1{2Opklogkq
(

“ Oppn
´1{2klogkq.
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Combing (S.12) and δ1´1k ď 2Ckα`1, we have

pφkptq ´ φkptq “
ÿ

`‰k

pλk ´ λ`q
´1φ`xp pG´Gqφ`, φky `OppΛnk ˆ n

´1{2δ1´1k q

“
ÿ

`‰k

pλk ´ λ`q
´1φ`xp pG´Gqφ`, φky `Oppn

´1kα`2logkq.

Noting that

ĳ

!

pGps, tq ´Gps, tq
)

φkpsqφkptqdsdt

“

ĳ

«

1

n

n
ÿ

i“1

ZipsqZiptq ´Gps, tq

ff

φkpsqφkptqdsdt

“
1

n

n
ÿ

i“1

ξ2ik ´ λk, (S.15)

incorporating (S.11), we get

pλk ´ λk “
1

n

n
ÿ

i“1

pξ2ik ´ λkq `Oppk{nq. (S.16)

(c) Using (S.15),

E

„
ĳ

!

pGps, tq ´Gps, tq
)

φkpsqφkptqdsdt



“ E

#

n´1
n
ÿ

i“1

pξ2ik ´ λkq

+

“ 0

and

E

„
ĳ

!

pGps, tq ´Gps, tq
)

φkpsqφkptqdsdt

2
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“ E

#

n´1
n
ÿ

i“1

pξ2ik ´ λkq

+2

“ n´1Epξ2ik ´ λkq
2

ď Cn´1λ2k,

where the last inequality is established by condition Epξ2k ´ λkq
2 ă Cλ2k. Hence, by (S.16),

for some constant C8,

Eppλk ´ λkq
2
ď 2E

#

n´1
n
ÿ

i“1

pξ2ik ´ λkq

+2

` C8k
2
{n2

“ Opn´1λ2kq `Opk
2
{n2
q

“ Opn´1λ2kq,

where the last equality is because k “ opn
1

2α`2 q. Finally, the last equation

pξik ´ ξik “ Oppk
1´α{2n´1{2q

is a result in the proof of Proposition 1 in Wong et al. (2019). This completes the proof.

S3.6 Proof of Lemma S2.5

By Theorem 5.6.9. of Horn and Johnson (2012), it is obvious that

ˇ

ˇ

ˇ

ˇ

λmax

"

1
?
n

´

pAT
´AT

¯´

pA´A
¯

*ˇ

ˇ

ˇ

ˇ

ď

›

›

›

›

1
?
n

´

pAT
´AT

¯´

pA´A
¯

›

›

›

›

1

,

where } ¨ }1 is the maximum column sum matrix norm. By Lemma S2.4 (c), we have

›

›

›

›

1
?
n

´

pAT
´AT

¯´

pA´A
¯

›

›

›

›

1

ď
1
?
n

max
1ďk2ďK

K
ÿ

k1“1

n
ÿ

i“1

ˇ

ˇ

ˇ
ppξik1 ´ ξik1qp

pξik2 ´ ξik2q
ˇ

ˇ

ˇ
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ď C max
1ďk2ďK

K
ÿ

k1“1

k11
1´α{2

k12
1´α{2

n´1{2

“ C

˜

K
ÿ

k1“1

k11
1´α{2

n´1{2

¸

ˆ

max
1ďk2ďK

k12
1´α{2

˙

,

for some constant C. Note that, for any 1 ď k ď K,

K
ÿ

k“1

k1´α{2n´1{2 — γpnq,

where

γpnq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

K2´α{2n´1{2 2 ă α ă 4,

logKn´1{2 α “ 4,

n´1{2 α ą 4.

Based on Condition (C5), we know γpnq Ñ 0. Furthermore, max1ďk2ďK k
1
2
1´α{2

“ Op1q by

α ą 2. Hence, it follows that λmax

!

1?
n

´

pAT ´AT
¯´

pA´A
¯)

“ opp1q.

S3.7 Proof of Lemma S2.6

The detailed arguments of (S.2), (S.3) and (S.4) are shown below, respectively.

Proof of (S.2). Denote fpAq “ n´1{2
řn
i“1 SitA; bpρq, ρu. According to (2.15), taking deriva-

tive of fpAq with respect to A, we have

BfpAq

BA

“
1
?
n

ˆ

´SpρqDpρq

„"

BDpρq

Bρ
Mpρq `Dpρq

BMpρq

Bρ

*

Y

´

"

BDpρq

Bρ
SpρqT `Dpρq

`

´WT
˘

*

Abpρq ´DpρqSpρqTA
Bbpρq

Bρ



bpρqT
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´

"

Spρq
BDpρq

Bρ
´WDpρq

*

 

DpρqMpρqY ´DpρqSpρqTAbpρq
(

bpρqT

´ SpρqDpρq
 

DpρqMpρqY ´DpρqSpρqTAbpρq
( BbpρqT

Bρ

˙

.

By Taylor’s expansion,

fppAq “ fpAq ` vecT
"

BfpAq

BA

*

vec
´

pA´A
¯

`2´1vecT
"

B2fpAq

BA2

*

vec
!´

pA´A
¯

b

´

pA´A
¯)

, (S.17)

where B2fpAq{BA2 does not depend on A, and

vecT
"

BfpAq

BA

*

vec
´

pA´A
¯

“ An1 `An2 `An3 (S.18)

where

An1 “ vecT
ˆ

´
1
?
n

SpρqDpρq

„"

BDpρq

Bρ
Mpρq `Dpρq

BMpρq

Bρ

*

Y

´

"

BDpρq

Bρ
SpρqT `Dpρq

`

´WT
˘

*

Abpρq ´DpρqSpρqTA
Bbpρq

Bρ



bpρqT
˙

ˆvec
´

pA´A
¯

,

An2 “ vecT
„

´
1
?
n

"

Spρq
BDpρq

Bρ
´WDpρq

*

ˆ
 

DpρqMpρqY ´DpρqSpρqTAbpρq
(

bpρqT
‰

vec
´

pA´A
¯

,

and

An3 “ vecT
„

´
1
?
n

SpρqDpρq
 

DpρqMpρqY ´DpρqSpρqTAbpρq
( BbpρqT

Bρ



vec
´

pA´A
¯

.
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We now consider the term An1. Let pδk “
´

pξ1k ´ ξ1k, . . . , pξnk ´ ξnk

¯T

and pBq‚,j denote the

jth column of B for any nˆm matrix B. For succinct presentation, we write

Bn1 “

K
ÿ

k“1

´1
?
n
tY1bkpρq, . . . , Ynbkpρqu

"

Mpρq
BDpρq

Bρ
`
BMpρq

Bρ
Dpρq

*

DpρqSpρqT,

Bn2 “

K
ÿ

k“1

1
?
n

#

K
ÿ

k1“1

ξ1k1bk1pρqbkpρq, . . . ,
K
ÿ

k1“1

ξnk1bk1pρqbkpρq

+

ˆ

"

Spρq
BDpρq

Bρ
´WDpρq

*

DpρqSpρqT,

and

Bn3 “

K
ÿ

k“1

1
?
n

#

K
ÿ

k1“1

ξ1k1
Bbk1pρq

Bρ
bkpρq, . . . ,

K
ÿ

k1“1

ξnk1
Bbk1pρq

Bρ
bkpρq

+

SpρqDpρq2SpρqT.

Then we have

An1 “

K
ÿ

k“1

„

´
1
?
n

SpρqDpρq

"

BDpρq

Bρ
Mpρq `Dpρq

BMpρq

Bρ

*

YbpρqT
T

‚,k

pδk

`

K
ÿ

k“1

„

1
?
n

SpρqDpρq

"

BDpρq

Bρ
SpρqT `Dpρq

`

´WT
˘

*

AbpρqbpρqT
T

‚,k

pδk

`

K
ÿ

k“1

1
?
n

"

SpρqDpρq2SpρqTA
Bbpρq

Bρ
bpρqT

*T

‚,k

pδk

“ pBn1 `Bn2 `Bn3q
pδk. (S.19)

Using the conditions ξik “ Opp1q for any k “ 1, . . . , K, i “ 1, . . . , n, and supρPr´1,1s |bkpρq| ď

Ck´τ , supρPr´1,1s |Bbkpρq{Bρ| ď Ck´τ for each k ě 1 in Condition (C7), we have
řK
k1“1 ξik1bk1pρq

“ Opp1q and
řK
k1“1 ξik1tBbk1pρq{Bρu “ Opp1q, which indicate

řK
k1“1 ξik1bk1pρqbkpρq “ Oppk

´τ q

and
řK
k1“1 ξik1tBbk1pρq{Bρubkpρq “ Oppk

´τ q, for i “ 1, . . . , n. Thus, combing Lemma S2.4 (c),
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Condition (C3),(C7) and (C8), it follows that

An1

ď

K
ÿ

k“1

Op

`

k´τ
˘

Op

`

k1´α{2
˘

„

λmax

"

BDpρq

Bρ

*

λmax tMpρqu ` λmax tDpρquλmax

"

BMpρq

Bρ

*

ˆ λmax tDpρquλ
1{2
max

 

SpρqSpρqT
(

`

K
ÿ

k“1

Op

`

k´τ
˘

Op

`

k1´α{2
˘

„

λmax

"

BDpρq

Bρ

*

λ1{2max

 

SpρqSpρqT
(

` λmax tDpρquλ
1{2
max

`

WWT
˘



ˆ λmax tDpρquλ
1{2
max

 

SpρqSpρqT
(

`

K
ÿ

k“1

Op

`

k´τ
˘

Op

`

k1´α{2
˘

λmax

 

Dpρq2
(

λmax

 

SpρqSpρqT
(

“

K
ÿ

k“1

Oppk
1´τ´α{2

q

“ Opp1q. (S.20)

where the last equality is because condition τ ą α{2` 1 in (C7) and the assumption α ą 1

in (C2).

On the other hand, by Lemma S2.4 and its proof concerning xp pG´Gqφ`, φky, we get

pξik ´ ξik “
ÿ

`‰k

pλk ´ λ`q
´1ξik

A´

pG´G
¯

φ`, φk

E

ˆ t1` opp1qu

“ n´1
n
ÿ

i1“1

ξi1kξi1`
ÿ

`‰k

pλk ´ λ`q
´1ξik ˆ t1` opp1qu

“ n´1

˜

n
ÿ

i1‰i

ξi1kξi1`ξik ` ξ
2
ikξi`

¸

ÿ

`‰k

pλk ´ λ`q
´1
ˆ t1` opp1qu

“ pδi1k ` δi2kq ˆ t1` opp1qu ,

where δi1k “ n´1
`
řn
i1‰i

ξi1kξi1`ξik
˘
ř

`‰kpλk ´ λ`q
´1, δi2k “ n´1ξ2ikξi`

ř

`‰kpλk ´ λ`q
´1. Note

that Eδi1k “ 0 and by the proof of Proposition 1 in Wong et al. (2019), Eδ2i1k ď Ck2´α{n,
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for i “ 1, . . . , n. With

E
ˇ

ˇξ2ikξi`
ˇ

ˇ ď pEξ4ikq
1{2
pEξ2i`q

1{2

ď C1{2λkλ
1{2
`

implied by Condition (C1), and

ÿ

`‰k

pλk ´ λ`q
´1λ

1{2
` λ

1{2
k “ Opklogkq,

implied by (S.14), we can get

E |δi2k| ď n´1C1{2
ÿ

`‰k

pλk ´ λ`q
´1λ

1{2
` λk

“ Opn´1k1´α{2logkq.

Let δ1k “ pδ11k, . . . , δn1kq
T and δ2k “ pδ12k, . . . , δn2kq

T. Based on above results, Eδ1k “ 0,

}δ2k} “ Oppn
´1{2k1´α{2logkq, and Condition (C3),(C7) and (C8), (S.19) can be written as

An1 “ pBn1 `Bn2 `Bn3q pδ1k ` δ2kq t1` opp1qu

“ pBn1 `Bn2 `Bn3q δ1k ` opp1q,

where the second equality is established as follows. By Conditions (C3),(C5),(C7),(C8) and

similar to the proof of (S.20),

pBn1 `Bn2 `Bn3q δ2k

ď

K
ÿ

k“1

Op

`

k´τ
˘

Op

`

n´1{2k1´α{2logk
˘

„

λmax

"

BDpρq

Bρ

*

λmax tMpρqu
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` λmax tDpρquλmax

"

BMpρq

Bρ

*

λmax tDpρquλ
1{2
max

 

SpρqSpρqT
(

`

K
ÿ

k“1

Op

`

k´τ
˘

Op

`

n´1{2k1´α{2logk
˘

„

λmax

"

BDpρq

Bρ

*

λ1{2max

 

SpρqSpρqT
(

`λmax tDpρquλ
1{2
max

`

WWT
˘‰

ˆ λmax tDpρquλ
1{2
max

 

SpρqSpρqT
(

`

K
ÿ

k“1

Op

`

k´τ
˘

Op

`

n´1{2k1´α{2logk
˘

λmax

 

Dpρq2
(

λmax

 

SpρqSpρqT
(

“ opp1q.

For Bn2δ1k,

E pBn2δ1kq

“ E

«

K
ÿ

k“1

1
?
n

#

K
ÿ

k1“1

ξ1k1bk1pρqbkpρq, . . . ,
K
ÿ

k1“1

ξnk1bk1pρqbkpρq

+

ˆ

"

Spρq
BDpρq

Bρ
´WDpρq

*

DpρqSpρqTδ1k



“

K
ÿ

k“1

1
?
n

n
ÿ

p“1

n
ÿ

q“1

K
ÿ

k1“1

E

#

ξpk1bk1pρqbkpρqQpq

˜

n´1
n
ÿ

i1‰q

ξi1kξi1`

¸

ξqk
ÿ

`‰k

pλk ´ λ`q
´1

+

“

K
ÿ

k“1

1
?
n

n
ÿ

p“1

n
ÿ

q“1

K
ÿ

k1“1

bk1pρqbkpρqQpq

ÿ

`‰k

pλk ´ λ`q
´1E

#

ξpk1

˜

n´1
n
ÿ

i1‰q

ξi1kξi1`

¸

ξqk

+

“ 0,

where Qpq denotes the pp, qqth element of the matrix rSpρqtBDpρq{Bρu´WDpρqsDpρqSpρqT

and is non-random. The last equality holds because for p “ q, by k ‰ ` and the uncorrelation

between ξi1k and ξi1`,

E

#

ξpk1

˜

n´1
n
ÿ

i1‰q

ξi1kξi1`

¸

ξqk

+

“ E

#

ξqk1ξqk

˜

n´1
n
ÿ

i1‰q

ξi1kξi1`

¸+

“ E pξqk1ξqkq

#

n´1
n
ÿ

i1‰q

E pξi1kξi1`q

+

“ E pξqk1ξqkq 0 “ 0,
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and, for p ‰ q,

E

#

ξpk1

˜

n´1
n
ÿ

i1‰q

ξi1kξi1`

¸

ξqk

+

“ E

#

ξpk1

˜

n´1
n
ÿ

i1‰q

ξi1kξi1`

¸+

Eξqk

“ 0.

Similar derivation can be used to show that E pBn3δ1kq “ 0. For the term Bn1δ1k, by

EpY|Aq “ S´1Abpρ0q, we get

E pBn1δ1kq

“ E

«

K
ÿ

k“1

´1
?
n
tY1bkpρq, . . . , Ynbkpρqu

"

Mpρq
BDpρq

Bρ
`
BMpρq

Bρ
Dpρq

*

DpρqSpρqTδ1k

ff

“

K
ÿ

k“1

´1
?
n
E

#

n
ÿ

j“1

n
ÿ

i“1

YibkpρqQij

˜

n´1
n
ÿ

i1‰j

ξi1kξi1`

¸

ξjk
ÿ

`‰k

pλk ´ λ`q
´1

+

“

K
ÿ

k“1

´1
?
n

n
ÿ

j“1

n
ÿ

i“1

bkpρqQij

ÿ

`‰k

pλk ´ λ`q
´1E

#

Yi

˜

n´1
n
ÿ

i1‰j

ξi1kξi1`

¸

ξjk

+

“

K
ÿ

k“1

´1
?
n

n
ÿ

j“1

n
ÿ

i“1

bkpρqQij

ÿ

`‰k

pλk ´ λ`q
´1E

«

E

#

Yin
´1

n
ÿ

i1‰j

ξi1kξi1`ξjk

ˇ

ˇ

ˇ
A

+ff

“

K
ÿ

k“1

´1
?
n

n
ÿ

j“1

n
ÿ

i“1

K
ÿ

k1“1

n
ÿ

q“1

bkpρqQijs
´1
iq bk1pρ0q

ÿ

`‰k

pλk ´ λ`q
´1E

˜

n´1
n
ÿ

i1‰j

ξi1kξi1`ξjkξqk1

¸

“ 0,

where s´1iq is the pi, qqth element of S´1 and Qij is the pi, jqth element of rMpρqtBDpρq{Bρu`

tBMpρq{BρuDpρqsDpρqSpρqT, both are non-random. Combining the above results, we get

EAn1 “ op1q. Almost identical derivation also leads to An2 “ Opp1q, EAn2 “ op1q, and
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An3 “ Opp1q, EAn3 “ op1q and we skip the details. Hence,

E

„

vecT
"

BfpAq

BA

*

vec
´

pA´A
¯



“ op1q. (S.21)

By (S.18),

var

„

vecT
"

BfpAq

BA

*

vec
´

pA´A
¯



ď E

„

vecT
"

BfpAq

BA

*

vec
´

pA´A
¯

2

ď 3EA 2
n1 ` 3EA 2

n2 ` 3EA 2
n3

“ Op1q. (S.22)

We now consider the last term of (S.17). Using the fact, for any matrices A, B, and C of

sizes mˆ n, nˆ p, and pˆ q, vecpABCq “ pCT bAqvecpBq, we have

B2fpAq

BA2

“ Bvec

"

BfpAq

BA

*

M

BvecpAqT

“ Bvec

ˆ

1
?
n

„

SpρqDpρq

"

BDpρq

Bρ
SpρqT ´DpρqWT

*

AbpρqbpρqT

`SpρqDpρq2SpρqTA
Bbpρq

Bρ
bpρqT `

"

Spρq
BDpρq

Bρ
´WDpρq

*

DpρqSpρqTAbpρqbpρqT

`SpρqDpρq2SpρqTAbpρq
BbpρqT

Bρ

˙

M

BvecpAqT

“
1
?
n
B

"ˆ

 

bpρqbpρqT
(

b

„

SpρqDpρq

"

BDpρq

Bρ
SpρqT ´DpρqWT

*

`

"

bpρq
BbpρqT

Bρ

*

b
 

SpρqDpρq2SpρqT
(

`
 

bpρqbpρqT
(

b

"

Spρq
BDpρq

Bρ
´WDpρq

*

DpρqSpρqT

`

"

Bbpρq

Bρ
bpρqT

*

b
 

SpρqDpρq2SpρqT
(

˙

vecpAq

*

M

BvecpAqT

“
1
?
n

˜

B
 

bpρqbpρqT
(

Bρ
b
 

SpρqDpρq2SpρqT
(

`
 

bpρqbpρqT
(
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b

"

2SpρqDpρq
BDpρq

Bρ
SpρqT ` 2ρWDpρq2WT

´Dpρq2WT
´WDpρq2

*˙

”
1
?
n

Qpρq,

which yields that

2´1vecT
"

B2fpAq

BA2

*

vec
!´

pA´A
¯

b

´

pA´A
¯)

“ 2´1
1
?
n
rvec tQpρqusT vec

!´

pA´A
¯

b

´

pA´A
¯)

. (S.23)

Recall that pwijqi“1,...,n;j“1,...,n is row-normalized adjacency matrix with zero diagonal and

Dpρq “ tdiagMpρqu´1. We use pk1, k2, i, jq to denote the index of vectQpρqu, and use

pi1, k11, k
1
2, j

1q to denote the corresponding index of vectppA´AqbppA´Aqu. Obviously, there

is a one-to-one mapping between pk1, k2, i, jq and pi1, k11, k
1
2, j

1q. Under Condition (C7) and

(C8), Lemma S2.4(c), Remark 2 and α ą 2 imply that, for some constant C,

ˇ

ˇ

ˇ

ˇ

1
?
n
rvec tQpρqusT vec

!´

pA´A
¯

b

´

pA´A
¯)

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

1
?
n

n
ÿ

i‰j

K
ÿ

k1“1

K
ÿ

k2“1

"

bk1pρq
Bbk2pρq

Bρ
`
Bbk1pρq

Bρ
bk2pρq

*

ˆ

#

´ρwijDjjpρq
2
´ ρwjiDiipρq

2
` ρ2

n
ÿ

`‰i,j

wi`wj`D``pρq
2

+

!´

pA´A
¯

b

´

pA´A
¯)

i1k11,k
1
2j
1

`
1
?
n

n
ÿ

i“1

K
ÿ

k1“1

K
ÿ

k2“1

"

bk1pρq
Bbk2pρq

Bρ
`
Bbk1pρq

Bρ
bk2pρq

*

ˆ

#

Diipρq
2
` ρ2

n
ÿ

`‰i

w2
i`D``pρq

2

+

!´

pA´A
¯

b

´

pA´A
¯)

i1k11,k
1
2j
1

`
1
?
n

n
ÿ

i‰j

K
ÿ

k1“1

K
ÿ

k2“1

bk1pρqbk2pρq

"

´2ρwijDjjpρq
BDjjpρq

Bρ
´ 2ρwjiDiipρq

BDiipρq

Bρ

` 2ρ2
n
ÿ

`‰i,j

wi`wj`D``pρq
BD``pρq

Bρ

+

!´

pA´A
¯

b

´

pA´A
¯)

i1k11,k
1
2j
1
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`
1
?
n

n
ÿ

i“1

K
ÿ

k1“1

K
ÿ

k2“1

bk1pρqbk2pρq

#

2Diipρq
BDiipρq

Bρ
` 2ρ2

n
ÿ

`‰i

w2
i`D``pρq

BD``pρq

Bρ

+

ˆ

!´

pA´A
¯

b

´

pA´A
¯)

i1k11,k
1
2j
1

`2ρ
1
?
n

n
ÿ

i“1

n
ÿ

j“1

K
ÿ

k1“1

K
ÿ

k2“1

bk1pρqbk2pρq
n
ÿ

`‰i,j

wi`wj`D``pρq
2
!´

pA´A
¯

b

´

pA´A
¯)

i1k11,k
1
2j
1

´
1
?
n

n
ÿ

i“1

n
ÿ

j“1

K
ÿ

k1“1

K
ÿ

k2“1

bk1pρqbk2pρq
 

wijDjjpρq
2
` wjiDiipρq

2
(

ˆ

!´

pA´A
¯

b

´

pA´A
¯)

i1k11,k
1
2j
1

ˇ

ˇ

ˇ

ˇ

ˇ

ď

n
ÿ

i‰j

K
ÿ

k1“1

K
ÿ

k2“1

"

|bk1pρq|

ˇ

ˇ

ˇ

ˇ

Bbk2pρq

Bρ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

Bbk1pρq

Bρ

ˇ

ˇ

ˇ

ˇ

|bk2pρq|

*

ˆ

#

|ρ|wijDjjpρq
2
` |ρ|wjiDiipρq

2
` ρ2

n
ÿ

`‰i,j

wi`wj`D``pρq
2

+

Op

´

k11
1´α{2

k12
1´α{2

n´3{2
¯

`

n
ÿ

i“1

K
ÿ

k1“1

K
ÿ

k2“1

"

|bk1pρq|

ˇ

ˇ

ˇ

ˇ

Bbk2pρq

Bρ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

Bbk1pρq

Bρ

ˇ

ˇ

ˇ

ˇ

|bk2pρq|

*

ˆ

#

Diipρq
2
` ρ2

n
ÿ

`‰i

w2
i`D``pρq

2

+

Op

´

k11
1´α{2

k12
1´α{2

n´3{2
¯

`

n
ÿ

i‰j

K
ÿ

k1“1

K
ÿ

k2“1

|bk1pρq| |bk2pρq|

"

2|ρ|wijDjjpρq

ˇ

ˇ

ˇ

ˇ

BDjjpρq

Bρ

ˇ

ˇ

ˇ

ˇ

` 2|ρ|wjiDiipρq

ˇ

ˇ

ˇ

ˇ

BDiipρq

Bρ

ˇ

ˇ

ˇ

ˇ

` 2ρ2
n
ÿ

`‰i,j

wi`wj`D``pρq

ˇ

ˇ

ˇ

ˇ

BD``pρq

Bρ

ˇ

ˇ

ˇ

ˇ

+

Op

´

k11
1´α{2

k12
1´α{2

n´3{2
¯

`

n
ÿ

i“1

K
ÿ

k1“1

K
ÿ

k2“1

|bk1pρq| |bk2pρq|

#

2Diipρq

ˇ

ˇ

ˇ

ˇ

BDiipρq

Bρ

ˇ

ˇ

ˇ

ˇ

` 2ρ2
n
ÿ

`‰i

w2
i`D``pρq

ˇ

ˇ

ˇ

ˇ

BD``pρq

Bρ

ˇ

ˇ

ˇ

ˇ

+

ˆOp

´

k11
1´α{2

k12
1´α{2

n´3{2
¯

`2|ρ|
n
ÿ

i“1

n
ÿ

j“1

K
ÿ

k1“1

K
ÿ

k2“1

|bk1pρq| |bk2pρq|
n
ÿ

`‰i,j

wi`wj`D``pρq
2Op

´

k11
1´α{2

k12
1´α{2

n´3{2
¯

`

n
ÿ

i“1

n
ÿ

j“1

K
ÿ

k1“1

K
ÿ

k2“1

|bk1pρq| |bk2pρq|
 

wijDjjpρq
2
` wjiDiipρq

2
(

Op

´

k11
1´α{2

k12
1´α{2

n´3{2
¯

ď

n
ÿ

i‰j

K
ÿ

k1“1

K
ÿ

k2“1

"

|bk1pρq|

ˇ

ˇ

ˇ

ˇ

Bbk2pρq

Bρ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

Bbk1pρq

Bρ

ˇ

ˇ

ˇ

ˇ

|bk2pρq|

*

46



S3 Proof of theory

ˆ

#

|ρ|wijDjjpρq
2
` |ρ|wjiDiipρq

2
` ρ2

n
ÿ

`‰i,j

wi`wj`D``pρq
2

+

Op

`

n´3{2
˘

`

n
ÿ

i“1

K
ÿ

k1“1

K
ÿ

k2“1

"

|bk1pρq|

ˇ

ˇ

ˇ

ˇ

Bbk2pρq

Bρ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

Bbk1pρq

Bρ

ˇ

ˇ

ˇ

ˇ

|bk2pρq|

*

ˆ

#

Diipρq
2
` ρ2

n
ÿ

`‰i

w2
i`D``pρq

2

+

Op

`

n´3{2
˘

`

n
ÿ

i‰j

K
ÿ

k1“1

K
ÿ

k2“1

|bk1pρq| |bk2pρq|

"

2|ρ|wijDjjpρq

ˇ

ˇ

ˇ

ˇ

BDjjpρq

Bρ

ˇ

ˇ

ˇ

ˇ

` 2|ρ|wjiDiipρq

ˇ

ˇ

ˇ

ˇ

BDiipρq

Bρ

ˇ

ˇ

ˇ

ˇ

` 2ρ2
n
ÿ

`‰i,j

wi`wj`D``pρq

ˇ

ˇ

ˇ

ˇ

BD``pρq

Bρ

ˇ

ˇ

ˇ

ˇ

+

Op

`

n´3{2
˘

`

n
ÿ

i“1

K
ÿ

k1“1

K
ÿ

k2“1

|bk1pρq| |bk2pρq|

#

2Diipρq

ˇ

ˇ

ˇ

ˇ

BDiipρq

Bρ

ˇ

ˇ

ˇ

ˇ

` 2ρ2
n
ÿ

`‰i

w2
i`D``pρq

ˇ

ˇ

ˇ

ˇ

BD``pρq

Bρ

ˇ

ˇ

ˇ

ˇ

+

Op

`

n´3{2
˘

`2|ρ|
n
ÿ

i“1

n
ÿ

j“1

K
ÿ

k1“1

K
ÿ

k2“1

|bk1pρq| |bk2pρq|
n
ÿ

`‰i,j

wi`wj`D``pρq
2Op

`

n´3{2
˘

`

n
ÿ

i“1

n
ÿ

j“1

K
ÿ

k1“1

K
ÿ

k2“1

|bk1pρq| |bk2pρq|
 

wijDjjpρq
2
` wjiDiipρq

2
(

Op

`

n´3{2
˘

ď 2C2

«

n
ÿ

i‰j

˜

K
ÿ

k1“1

K
ÿ

k2“1

k´τ1 k´τ2

¸˜

|ρ|wij ` |ρ|wji ` ρ
2

n
ÿ

`‰i,j

wi`wj`

¸

Op

`

n´3{2
˘

`

n
ÿ

i“1

˜

K
ÿ

k1“1

K
ÿ

k2“1

k´τ1 k´τ2

¸˜

1` ρ2
n
ÿ

`‰i

w2
i`

¸

Op

`

n´3{2
˘

ff

`C2

«

n
ÿ

i‰j

˜

K
ÿ

k1“1

K
ÿ

k2“1

k´τ1 k´τ2

¸˜

wij ` wji ` |ρ|
n
ÿ

`‰i,j

wi`wj`

¸

Op

`

n´3{2
˘

`

n
ÿ

i“1

˜

K
ÿ

k1“1

K
ÿ

k2“1

k´τ1 k´τ2

¸#

Ipρ ‰ 0q{|ρ| ` |ρ|
n
ÿ

`‰i

w2
i`

+

Op

`

n´3{2
˘

`2|ρ|
n
ÿ

i“1

n
ÿ

j“1

˜

K
ÿ

k1“1

K
ÿ

k2“1

k´τ1 k´τ2

¸

n
ÿ

`‰i,j

wi`wj`Op

`

n´3{2
˘

`

n
ÿ

i“1

n
ÿ

j“1

˜

K
ÿ

k1“1

K
ÿ

k2“1

k´τ1 k´τ2

¸

pwij ` wjiqOp

`

n´3{2
˘

ff

“ opp1q,
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where the last equality is because

n
ÿ

`“1

wi`wj` ď p
n
ÿ

`“1

wi`q}wj}8 “ }wj}8 “ opn´1{2q (S.24)

due to Condition (C9), and
řn
`“1w

2
i` ď

řn
`“1wi` “ 1. Thus, by (S.23), we can obtain

2´1vecT
"

B2fpAq

BA2

*

vec
!´

pA´A
¯

b

´

pA´A
¯)

“ opp1q. (S.25)

Hence, it follows from combing (S.17), (S.21), (S.22) and (S.25) that,

E

«

1
?
n

n
ÿ

i“1

SitpA; bpρq, ρu ´
1
?
n

n
ÿ

i“1

SitA; bpρq, ρu

ff2

“ E

„

vecT
"

BfpAq

BA

*

vec
´

pA´A
¯

` 2´1vecT
"

B2fpAq

BA2

*

vec
!´

pA´A
¯

b

´

pA´A
¯)

2

“ E

„

vecT
"

BfpAq

BA

*

vec
´

pA´A
¯

` opp1q

2

“ Op1q.

Proof of (S.3). Note that

1

n

n
ÿ

i“1

BSitpA; bpρq, ρu

BbpρqT
´

1

n

n
ÿ

i“1

BSitA; bpρq, ρu

BbpρqT
“ an1 ` an2 ` an3, (S.26)

where

an1 “
2

n

"

´YTMpρq
BDpρq

Bρ
DpρqSpρqT

´

pA´A
¯

`bpρqT
´

pAT
´AT

¯

Spρq
BDpρq

Bρ
DpρqSpρqTA

`bpρqTATSpρq
BDpρq

Bρ
DpρqSpρqT

´

pA´A
¯
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`bpρqT
´

pAT
´AT

¯

Spρq
BDpρq

Bρ
DpρqSpρqT

´

pA´A
¯

*

,

an2 “
1

n

"

´YTBMpρq

Bρ
Dpρq2SpρqT

´

pA´A
¯

´bpρqT
´

pAT
´AT

¯

WDpρq2SpρqTA

´bpρqTATWDpρq2SpρqT
´

pA´A
¯

´bpρqT
´

pAT
´AT

¯

WDpρq2SpρqT
´

pA´A
¯

`
BbpρqT

Bρ

´

pAT
´AT

¯

SpρqDpρq2SpρqTA

`
BbpρqT

Bρ
ATSpρqDpρq2SpρqT

´

pA´A
¯

`
BbpρqT

Bρ

´

pAT
´AT

¯

SpρqDpρq2SpρqT
´

pA´A
¯

*

,

and

an3 “
1

n

!

YTMpρqDpρq2WT
´

pA´A
¯

´bpρqT
´

pAT
´AT

¯

SpρqDpρq2WTA

´bpρqTATSpρqDpρq2WT
´

pA´A
¯

´bpρqT
´

pAT
´AT

¯

SpρqDpρq2WT
´

pA´A
¯)

.

We now treat the first term on the right-hand side of (S.26). We have

}an1}
2

ď
16

n2
YTMpρq

BDpρq

Bρ
DpρqSpρqT

´

pA´A
¯´

pAT
´AT

¯

SpρqDpρq
BDpρq

Bρ
MpρqY

`
16

n2
bpρqT

´

pAT
´AT

¯

Spρq
BDpρq

Bρ
DpρqSpρqTAATSpρqDpρq

BDpρq

Bρ
SpρqT

´

pA´A
¯

bpρq
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`
16

n2
bpρqTATSpρq

BDpρq

Bρ
DpρqSpρqT

´

pA´A
¯´

pAT
´AT

¯

SpρqDpρq
BDpρq

Bρ
SpρqTAbpρq

`
16

n2
bpρqT

´

pAT
´AT

¯

Spρq
BDpρq

Bρ
DpρqSpρqT

´

pA´A
¯

ˆ

´

pAT
´AT

¯

SpρqDpρq
BDpρq

Bρ
SpρqT

´

pA´A
¯

bpρq

ď 16λmax

"

1

n

´

pA´A
¯´

pAT
´AT

¯

*

ˆ λmax tMpρquλmax

 

Dpρq2
(

λmax

«

"

BDpρq

Bρ

*2
ff

λmax

 

Mpρq2
( 1

n
}Y}2

`16λmax

ˆ

1

n
AAT

˙

λmax tMpρquλmax

 

Dpρq2
(

λmax

«

"

BDpρq

Bρ

*2
ff

ˆ λmax

 

SpρqSpρqT
(

λmax

"

1

n

´

pAT
´AT

¯´

pA´A
¯

*

}bpρq}2

`16λmax

"

1

n

´

pA´A
¯´

pAT
´AT

¯

*

λmax tMpρquλmax

 

Dpρq2
(

λmax

«

"

BDpρq

Bρ

*2
ff

ˆ λmax

 

SpρqSpρqT
(

λmax

ˆ

1

n
ATA

˙

}bpρq}2

`16λmax

"

1

n

´

pA´A
¯´

pAT
´AT

¯

*

λmax tMpρquλmax

 

Dpρq2
(

λmax

«

"

BDpρq

Bρ

*2
ff

ˆ λmax

 

SpρqSpρqT
(

λmax

"

1

n

´

pAT
´AT

¯´

pA´A
¯

*

}bpρq}2

“ oppn
´1{2

q,

where the last equality is due to Conditions (C7)-(C8), Remark 2, and Lemma S2.5. Similar

arguments can be used to show that }an2}
2 “ oppn

´1{2q and }an3}
2 “ oppn

´1{2q. Thus,

›

›

›

›

›

1

n

n
ÿ

i“1

BSitpA; bpρq, ρu

BbpρqT
´

1

n

n
ÿ

i“1

BSitA; bpρq, ρu

BbpρqT

›

›

›

›

›

2

ď 3
3
ÿ

j“1

}anj}
2

“ oppn
´1{2

q.
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Proof of (S.4). Observe that

1

n

n
ÿ

i“1

dSitpA; bpρq, ρu

dρ
´

1

n

n
ÿ

i“1

dSitA; bpρq, ρu

dρ
“ δn1 ` δn2 ` δn3 ` δn4 ` δn5 ` δn6,

where

δn1 “
1

n

"

bpρqTpAT
´ pAT

qSpρq
BDpρq

Bρ
` bpρqTppAT

´AT
qWDpρq

`
BbpρqT

Bρ
pAT

´ pAT
qSpρqDpρq

*"

BDpρq

Bρ
Mpρq `Dpρq

BMpρq

Bρ

*

Y,

δn2

“
1

n

"

YTMpρq
BDpρq

Bρ
`YTBMpρq

Bρ
Dpρq

*"

BDpρq

Bρ
SpρqT `Dpρq

`

´WT
˘

*

pA´ pAqbpρq

`
1

n
bpρqT

´

pAT
´AT

¯

Spρq
BDpρq

Bρ

"

BDpρq

Bρ
SpρqT `Dpρq

`

´WT
˘

*

´

pA´A
¯

bpρq

`
1

n
bpρqTATSpρq

BDpρq

Bρ

"

BDpρq

Bρ
SpρqT `Dpρq

`

´WT
˘

*

´

pA´A
¯

bpρq

`
1

n
bpρqT

´

pAT
´AT

¯

Spρq
BDpρq

Bρ

"

BDpρq

Bρ
SpρqT `Dpρq

`

´WT
˘

*

Abpρq

`
1

n
bpρqT

´

pAT
´AT

¯

p´WqDpρq

"

BDpρq

Bρ
SpρqT `Dpρq

`

´WT
˘

*

´

pA´A
¯

bpρq

`
1

n
bpρqTAT

p´WqDpρq

"

BDpρq

Bρ
SpρqT `Dpρq

`

´WT
˘

*

´

pA´A
¯

bpρq

`
1

n
bpρqT

´

pAT
´AT

¯

p´WqDpρq

"

BDpρq

Bρ
SpρqT `Dpρq

`

´WT
˘

*

Abpρq

`
1

n

BbpρqT

Bρ

´

pAT
´AT

¯

SpρqDpρq

"

BDpρq

Bρ
SpρqT `Dpρq

`

´WT
˘

*

´

pA´A
¯

bpρq

`
1

n

BbpρqT

Bρ
ATSpρqDpρq

"

BDpρq

Bρ
SpρqT `Dpρq

`

´WT
˘

*

´

pA´A
¯

bpρq

`
1

n

BbpρqT

Bρ

´

pAT
´AT

¯

SpρqDpρq

"

BDpρq

Bρ
SpρqT `Dpρq

`

´WT
˘

*

Abpρq,
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δn3 “
1

n

"

YTMpρq
BDpρq

Bρ
`YTBMpρq

Bρ
Dpρq

*

DpρqSpρqTpA´ pAq
Bbpρq

Bρ

`
1

n

"

bpρqT
´

pAT
´AT

¯

Spρq
BDpρq

Bρ
DpρqSpρqT

´

pA´A
¯

Bbpρq

Bρ

*

`
1

n

"

bpρqTATSpρq
BDpρq

Bρ
DpρqSpρqT

´

pA´A
¯

Bbpρq

Bρ

*

`
1

n

"

bpρqT
´

pAT
´AT

¯

Spρq
BDpρq

Bρ
DpρqSpρqTA

Bbpρq

Bρ

*

`
1

n

"

bpρqT
´

pAT
´AT

¯

p´WqDpρq2SpρqT
´

pA´A
¯

Bbpρq

Bρ

*

`
1

n

"

bpρqTAT
p´WqDpρq2SpρqT

´

pA´A
¯

Bbpρq

Bρ

*

`
1

n

"

bpρqT
´

pAT
´AT

¯

p´WqDpρq2SpρqTA
Bbpρq

Bρ

*

`
1

n

"

BbpρqT

Bρ

´

pAT
´AT

¯

SpρqDpρq2SpρqT
´

pA´A
¯

Bbpρq

Bρ

*

`
1

n

"

BbpρqT

Bρ
ATSpρqDpρq2SpρqT

´

pA´A
¯

Bbpρq

Bρ

*

`
1

n

"

BbpρqT

Bρ

´

pAT
´AT

¯

SpρqDpρq2SpρqTA
Bbpρq

Bρ

*

,

δn4 “
1

n
bpρqTpAT

´ pAT
qSpρqDpρq

ˆ

"

B2Dpρq

Bρ2
Mpρq ` 2

BDpρq

Bρ

BMpρq

Bρ
` 2Dpρq

`

WTW
˘

*

Y,

δn5 “
1

n
YTMpρqDpρq

"

B2Dpρq

Bρ2
SpρqT ` 2

BDpρq

Bρ

`

´WT
˘

*

pA´ pAqbpρq

`
1

n
bpρqT

´

pAT
´AT

¯

SpρqDpρq

"

B2Dpρq

Bρ2
SpρqT ` 2

BDpρq

Bρ

`

´WT
˘

*

´

pA´A
¯

bpρq

`
1

n
bpρqTATSpρqDpρq

"

B2Dpρq

Bρ2
SpρqT ` 2

BDpρq

Bρ

`

´WT
˘

*

´

pA´A
¯

bpρq

`
1

n
bpρqT

´

pAT
´AT

¯

SpρqDpρq

"

B2Dpρq

Bρ2
SpρqT ` 2

BDpρq

Bρ

`

´WT
˘

*

Abpρq,
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and

δn6 “
2

n
YTMpρqDpρq

"

BDpρq

Bρ
SpρqT `Dpρq

`

´WT
˘

*

pA´ pAq
Bbpρq

Bρ

`
2

n
bpρqT

´

pAT
´AT

¯

SpρqDpρq

"

BDpρq

Bρ
SpρqT `Dpρq

`

´WT
˘

*

´

pA´A
¯

Bbpρq

Bρ

`
2

n
bpρqTATSpρqDpρq

"

BDpρq

Bρ
SpρqT `Dpρq

`

´WT
˘

*

´

pA´A
¯

Bbpρq

Bρ

`
2

n
bpρqT

´

pAT
´AT

¯

SpρqDpρq

"

BDpρq

Bρ
SpρqT `Dpρq

`

´WT
˘

*

A
Bbpρq

Bρ
.

We have

|δn1| ď

"
›

›

›

›

BDpρq

Bρ
SpρqT

1
?
n
pA´ pAqbpρq

›

›

›

›

`

›

›

›

›

Dpρq
`

´WT
˘ 1
?
n
pA´ pAqbpρq

›

›

›

›

`

›

›

›

›

DpρqSpρqT
1
?
n
pA´ pAq

Bbpρq

Bρ

›

›

›

›

* ›

›

›

›

"

BDpρq

Bρ
Mpρq `Dpρq

BMpρq

Bρ

*

1
?
n

Y

›

›

›

›

ď

„

λmax

"

BDpρq

Bρ

*

λ1{2max

 

SpρqSpρqT
(

λ1{2max

"

1

n
pAT

´ pAT
qpA´ pAq

*

}bpρq}

` λmax tDpρquλ
1{2
max

`

WTW
˘

λ1{2max

"

1

n
pAT

´ pAT
qpA´ pAq

*

}bpρq}

` λmax tDpρquλ
1{2
max tMpρquλ1{2max

"

1

n
pAT

´ pAT
qpA´ pAq

*
›

›

›

›

Bbpρq

Bρ

›

›

›

›



ˆ

„

λmax

"

BDpρq

Bρ

*

λmax tMpρqu ` λmax tDpρquλmax

"

BMpρq

Bρ

*

1
?
n
}Y}

“ op
`

n´1{2
˘

,

where the last equality is due to Conditions (C7)-(C8), Remark 2, and Lemma S2.5. Simi-

larly,

|δn2|

ď

„

λ2max

"

BDpρq

Bρ

*

λmax tMpρquλ1{2max

 

SpρqSpρqT
(

` λmax

"

BDpρq

Bρ

*

λmax tMpρquλmax tDpρquλ
1{2
max

`

WWT
˘
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` λmax tDpρquλmax

"

BMpρq

Bρ

*

λmax

"

BDpρq

Bρ

*

λ1{2max

 

SpρqSpρqT
(

` λmax

 

Dpρq2
(

λmax

"

BMpρq

Bρ

*

λ1{2max

`

WWT
˘



ˆ λ1{2max

"

1

n
pAT

´ pAT
qpA´ pAq

*

1
?
n
}Y}}bpρq}

`

„

λmax

"

BDpρq

Bρ

*

λ1{2max

 

SpρqSpρqT
(

` λmax tDpρquλ
1{2
max

`

WWT
˘



ˆ

„

λmax

"

BDpρq

Bρ

*

λ1{2max

 

SpρqSpρqT
(

λmax

"

1

n

´

pAT
´AT

¯´

pA´A
¯

*

}bpρq}2

` 2λmax

"

BDpρq

Bρ

*

λ1{2max

 

SpρqSpρqT
(

λ1{2max

ˆ

1

n
ATA

˙

ˆ λ1{2max

"

1

n

´

pAT
´AT

¯´

pA´A
¯

*

}bpρq}2

` λ1{2max

`

WWT
˘

λmax tDpρquλmax

"

1

n

´

pAT
´AT

¯´

pA´A
¯

*

}bpρq}2

` 2λ1{2max

`

WWT
˘

λmax tDpρquλ
1{2
max

ˆ

1

n
ATA

˙

ˆλ1{2max

"

1

n

´

pAT
´AT

¯´

pA´A
¯

*

}bpρq}2

` λmax tDpρquλ
1{2
max tSpρqSpρquλmax

"

1

n

´

pAT
´AT

¯´

pA´A
¯

*

}bpρq}

›

›

›

›

Bbpρq

Bρ

›

›

›

›

` 2λmax tDpρquλ
1{2
max tSpρqSpρquλ

1{2
max

ˆ

1

n
ATA

˙

ˆ λ1{2max

"

1

n

´

pAT
´AT

¯´

pA´A
¯

*

}bpρq}

›

›

›

›

Bbpρq

Bρ

›

›

›

›



“ op
`

n´1{2
˘

,

where the last equality is also due to Conditions (C7)-(C8), Remark 2, and Lemma S2.5.

The same rate can also be similarly seen to hold for δn3, δn4, δn6 and δn6 and the details are

omitted. This implies that (S.4) holds.
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S3.8 Proof of Lemma S2.8

For part (a), let A “ UΛUT be the eigendecomposition of A, then

tracepABq “ tracepUΛUTBq

“ tracepΛUTBUq

ď λmaxpΛqtracepUTBUq

“ λmaxpAqtracepBq

ď tracepAqtracepBq.

The proof of the inequality in the other direction is similar, so we omit it. For part (b), we

have

λmax

 

pABqTpABq
(

“ max
}x}“1

xT
pABqTpABqx

“ max
}x}“1

xTBAABx

ď λmax

`

A2
˘

max
}x}“1

xTBBx

ď λmax

`

A2
˘

λmax

`

B2
˘

“ λ2maxpAqλ
2
maxpBq.

The proof part (c) can be found in Abadir and Magnus (2005).

S3.9 Proof of Lemma S2.9

Note that Xi’s are independent, from which we have EpXiXjq “ 0, EpXiXjXkq “ 0 and

EpX2
iXjq “ 0 for any i ‰ j ‰ k ‰ i. Together with the conditions in Lemma S2.9, simple
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calculation implies that

cov pQ1, Q2q “ covpXTM1X,X
TM2Xq ` covpUT

1 X,UT
2 Xq,

where covpUT
1 X,UT

2 Xq “ UT
1 U2. Since EpXTM1Xq “ tracepM1q by Lemma S2.7, we have

cov
 `

XTM1X
˘ `

XTM2X
˘(

“ E
 `

XTM1X
˘ `

XTM2X
˘(

´ EpXTM1XqEpX
TM2Xq

“

n
ÿ

i“1

n
ÿ

j“1

n
ÿ

k“1

n
ÿ

`“1

m1,ijm2,k`E pXiXjXkX`q ´ tracepM1qtracepM2q

“

˜

n
ÿ

i‰j

m1,iim2,jj `

n
ÿ

i‰j

m1,ijm2,ij `

n
ÿ

i‰j

m1,ijm2,ji

¸

E
`

X2
iX

2
j

˘

`

n
ÿ

i“1

m1,iim2,iiEpX
4
i q ´ tracepM1qtracepM2q

“
 

tracepM1qtracepM2q ` tracepM1M
T
2 q ` tracepM1M2q

(

EpX2
1X

2
2 q

`trace tdiagpM1qdiagpM2qu
 

EpX4
1 q ´ 3EpX2

1X
2
2 q
(

´ tracepM1qtracepM2q.

Hence,

cov pQ1, Q2q “
 

tracepM1qtracepM2q ` tracepM1M
T
2 q ` tracepM1M2q

(

EpX2
1X

2
2 q

`trace tdiagpM1qdiagpM2qu
 

EpX4
1 q ´ 3EpX2

1X
2
2 q
(

´tracepM1qtracepM2q `U1U
T
2 .

Again, since Xi’s are independent, we have EpX2
iX

2
j q “ EpX2

i qEpX
2
j q “ 1 for i ‰ j. This

completes the proof.
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S3.10 Proof of Theorem 2

We establish Theorem 2 in three steps. First, we expand pbkpρ0q ´ bkpρ0q as independent

sums. Second, we verify that pρ is n1{4-consistent. Third, using the conclusions in the first

two steps, we derive the asymptotic normality of n1{4ppρ´ ρ0q.

Expand pbkpρ0q ´ bkpρ0q as independent sums

To employ the central limit theorem in the third step, we need to write pbkpρ0q ´ bkpρ0q as

independent sums. So we first expand this term.

Recall that pbkpρq “ pλ´1k x
pφk, pgy and bk “ λ´1k xφk, gy. By Taylor’s expansion, we have

pbkpρ0q ´ bkpρ0q

“ pλ´1k x
pφk, pgy ´ λ

´1
k xφk, gy

“

´

pλ´1k ´ λ´1k

¯

xpφk ´ φk, pgy `
´

pλ´1k ´ λ´1k

¯

xφk, pgy ` λ
´1
k x

pφk ´ φk, pgy ` λ
´1
k xφk, pg ´ gy

“ ´λ´2k

´

pλk ´ λk

¯

xpφk ´ φk, pgy `Op

"

´

pλk ´ λk

¯2
*

xpφk ´ φk, pgy

´λ´2k

´

pλk ´ λk

¯

xφk, pgy `Op

"

´

pλk ´ λk

¯2
*

xφk, pgy ` λ
´1
k x

pφk ´ φk, pgy ` λ
´1
k xφk, pg ´ gy

“ λ´1k xφk, pg ´ gy ` λ
´1
k x

pφk ´ φk, gy ´ λ
´2
k

´

pλk ´ λk

¯

xφk, gy

`λ´1k x
pφk ´ φk, pg ´ gy ´ λ

´2
k

´

pλk ´ λk

¯

xφk, pg ´ gy

´λ´2k

´

pλk ´ λk

¯

xpφk ´ φk, gy ´ λ
´2
k

´

pλk ´ λk

¯

xpφk ´ φk, pg ´ gy

`Op

"

´

pλk ´ λk

¯2
*

xpφk ´ φk, gy `Op

"

´

pλk ´ λk

¯2
*

xpφk ´ φk, pg ´ gy

`Op

"

´

pλk ´ λk

¯2
*

xφk, gy `Op

"

´

pλk ´ λk

¯2
*

xφk, pg ´ gy

“ λ´1k xφk, pg ´ gy ` λ
´1
k x

pφk ´ φk, gy ´ λ
´2
k

´

pλk ´ λk

¯

xφk, gy

`Ak1 ´ Ak2 ´ Ak3 ´ Ak4 ` Ak5 ` Ak6 ` Ak7 ` Ak8,
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where Ak1 “ λ´1k x
pφk´φk, pg´gy, Ak2 “ λ´2k p

pλk´λkqxφk, pg´gy, Ak3 “ λ´2k p
pλk´λkqxpφk´φk, gy,

Ak4 “ λ´2k p
pλk ´ λkqxpφk ´ φk, pg ´ gy, Ak5 “ Optp

pλk ´ λkq
2uxpφk ´ φk, gy, Ak6 “ Optp

pλk ´

λkq
2uxpφk ´ φk, pg ´ gy, Ak7 “ Optp

pλk ´ λkq
2uxφk, gy, Ak8 “ Optp

pλk ´ λkq
2uxφk, pg ´ gy. We

next use Cauchy-Schwarz inequality, Condition (C2), Lemma S2.4(c), Lemma S2.1(c) and

Lemma S2.3 repetitively to show the order of Ak1 ´ Ak8.

Ak1 “ λ´1k x
pφk ´ φk, pg ´ gy

ď λ´1k }
pφk ´ φk}}pg ´ g}

“ Oppn
´1kα`1q,

Ak2 “ λ´2k

´

pλk ´ λk

¯

xφk, pg ´ gy

ď λ´2k |
pλk ´ λk|}φk}}pg ´ g}

“ Oppn
´1kαq}φk}

“ Oppn
´1kαq,

where the last equality is due to
ş

φ2
kptqdt “ 1. By Condition (C1),

Ak3 “ λ´2k

´

pλk ´ λk

¯

xpφk ´ φk, gy

ď λ´2k |
pλk ´ λk|}pφk ´ φk}}g}

“ Oppn
´1kα`1q}g}

“ Oppn
´1kα`1q,
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and

Ak4 “ λ´2k

´

pλk ´ λk

¯

xpφk ´ φk, pg ´ gy

ď λ´2k |
pλk ´ λk|}pφk ´ φk}}pg ´ g}

“ Oppn
´3{2kα`1q.

Similarly, it is easy to see that Ak5 “ Oppn
´3{2k´2α`1q, Ak6 “ Oppn

´2k´2α`1q, Ak7 “

Oppn
´1k´2αq and Ak8 “ Oppn

´3{2k´2αq. Thus, we observe that

pbkpρ0q ´ bkpρ0q

“ λ´1k xφk, pg ´ gy ` λ
´1
k x

pφk ´ φk, gy ´ λ
´2
k

´

pλk ´ λk

¯

xφk, gy

`Oppn
´1kα`1q `Oppn

´1kαq

`Oppn
´1kα`1q `Oppn

´3{2kα`1q

`Oppn
´3{2k´2α`1q `Oppn

´2k´2α`1q

`Oppn
´1k´2αq `Oppn

´3{2k´2αq

“ λ´1k xφk, pg ´ gy ` λ
´1
k x

pφk ´ φk, gy ´ λ
´2
k

´

pλk ´ λk

¯

xφk, gy `Oppn
´1kα`1q

” M1.

Recall that

pgptq “ n´1
n
ÿ

i“1

˜

Yi ´ ρ
n
ÿ

j“1

wijYj

¸

Ziptq

“ n´1
n
ÿ

i“1

Y ˚i Ziptq,
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and

gptq “ EtY ˚i Ziptqu,

where Y ˚i ’s are independent and identically distributed according to (2.6). Note that Con-

dition (C1) implies that EtY ˚i Ziptqu ă 8. By combining Lemma S2.4(b), Condition (C2)

and Condition (C5), it follows that

M1

“ n´1
n
ÿ

i“1

λ´1k

ż

φkptq rY
˚
i Ziptq ´ E tY

˚
i Ziptqus dt

`λ´1k

ż

E tY ˚i Ziptqu

#

ÿ

`‰k

pλk ´ λ`q
´1φ`xp pG´Gqφ`, φky `Oppn

´1kα`2logkq

+

dt

´λ´2k

#

1

n

n
ÿ

i“1

pξ2ik ´ λkq `Oppk{nq

+

xφk, gy `Oppn
´1kα`1q

“ n´1
n
ÿ

i“1

λ´1k

ż

φkptq rY
˚
i Ziptq ´ E tY

˚
i Ziptqus dt

`λ´1k

ż

E tY ˚i Ziptqu

«

ÿ

`:`‰k

pλk ´ λ`q
´1φkptq

ˆ

ĳ

#

1

n

n
ÿ

i“1

ZipuqZipvq ´Gpu, vq

+

φkpuqφ`pvqdudv `Oppn
´1kα`2logkq

ff

dt

´λ´2k

#

1

n

n
ÿ

i“1

pξ2ik ´ λkq `Oppk{nq

+

ż

φkptqgptqdt`Oppn
´1kα`1q

“
1

n

n
ÿ

i“1

λ´1k

ż

φkptq rY
˚
i Ziptq ´ E tY

˚
i Ziptqus dt

`
1

n

n
ÿ

i“1

λ´1k

ż

E tY ˚i Ziptqu

«

ÿ

`:`‰k

pλk ´ λ`q
´1φkptq

ĳ

tZipuqZipvq ´Gpu, vqu

ˆφkpuqφ`pvqdudv

ff

dt´
1

n

n
ÿ

i“1

λ´2k pξ
2
ik ´ λkq

ż

φkptqgptqdt
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`Oppn
´1k2α`2logkq `Oppn

´1k2α`1q `Oppn
´1kα`1q.

Hence, we have

pbkpρ0q ´ bkpρ0q “
1

n

n
ÿ

i“1

ϕik `Oppn
´1k2α`2logkq, (S.27)

where

ϕik “ λ´1k

ż

φkptq rY
˚
i Ziptq ´ E tY

˚
i Ziptqus dt` λ

´1
k

ż

E tY ˚i Ziptqu

ˆ

#

ÿ

`:`‰k

pλk ´ λ`q
´1φkptq

ĳ

rZipuqZipvq ´ E tZipuqZipvqusφkpuqφ`pvqdudv

+

dt

´λ´2k pξ
2
ik ´ Eξ

2
ikq

ż

φkptqgptqdt. (S.28)

The proof of n1{4-consistency

To prove pρ is n1{4-consistent, by the technique of Fan and Li (2001), it is sufficient to show

that, for any ε ą 0, there exists a constant 0 ă C ă 8, such that Q1tpA; pbpρq, ρu in (2.12)

satisfies

lim
nÑ8

Pr

„

inf
|u|“C

Q1

!

pA; pbpρ0 ` n
´1{4uq, ρ0 ` n

´1{4u
)

ą Q1

!

pA; pbpρ0q, ρ0

)



ě 1´ ε. (S.29)

To this end, we recall that from (2.14), for any ρ˚,

dQ1tpA; pbpρq, ρu

dρ

ˇ

ˇ

ˇ

ρ“ρ˚
“

«

BQ1tpA; pbpρq, ρu

Bρ
`
BQ1tpA; pbpρq, ρu

BpbpρqT

Bpbpρq

Bρ

ff

ˇ

ˇ

ˇ

ρ“ρ˚

“
1

n

n
ÿ

i“1

SitpA; pbpρ˚q, ρ˚u,

where n´1
řn
i“1 Sit

pA; pbpρ˚q, ρ˚u is given in (2.15) with b, ρ and 1{
?
n are replaced by pb, ρ˚
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and 1{n, respectively. Then, by Taylor’s expansion and |u| “ C, we have

Q1

!

pA; pbpρ0 ` n
´1{4uq, ρ0 ` n

´1{4u
)

´Q1

!

pA; pbpρ0q, ρ0

)

“
dQ1tpA; pbpρ0q, ρ0u

dρ
n´1{4u`

d2Q1tpA; pbpρ0q, ρ0u

dρ2
2´1n´1{2u2 ` op

`

n´1{2u2
˘

“

«

1

n

n
ÿ

i“1

SitpA; pbpρ0q, ρ0u

ff

n´1{4u`

«

1

n

n
ÿ

i“1

dSitpA; pbpρ0q, ρ0u

dρ

ff

2´1n´1{2u2 ` oppn
´1{2

q

“

«

1

n

n
ÿ

i“1

SitpA; pbpρ0q, ρ0u

ff

n´1{4u`

«

1

n

n
ÿ

i“1

dSitpA; pbpρ0q, ρ0u

dρ

ff

2´1n´1{2C2
` oppn

´1{2
q

ě

«

1

n

n
ÿ

i“1

dSitpA; pbpρ0q, ρ0u

dρ

ff

2´1n´1{2C2
´

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

SitpA; pbpρ0q, ρ0u

ˇ

ˇ

ˇ

ˇ

ˇ

n´1{4C ` oppn
´1{2

q

“ n´1{2

˜«

1

n

n
ÿ

i“1

dSitpA; pbpρ0q, ρ0u

dρ

ff

2´1C2
´

ˇ

ˇ

ˇ

ˇ

ˇ

n´3{4
n
ÿ

i“1

SitpA; pbpρ0q, ρ0u

ˇ

ˇ

ˇ

ˇ

ˇ

C

¸

`oppn
´1{2

q. (S.30)

To establish (S.29), by (S.30), it suffices to show that

n´3{4
n
ÿ

i“1

SitpA; pbpρ0q, ρ0u “ Opp1q,

and

1

n

n
ÿ

i“1

dSitpA; pbpρ0q, ρ0u

dρ
Pr
Ñ c˚,

where c˚ is a positive constant.

We now prove the above equations separately as follows. First, by mean value theorem,

n´3{4
n
ÿ

i“1

SitpA; pbpρ0q, ρ0u

“ n´3{4
n
ÿ

i“1

SitpA; bpρ0q, ρ0u ` n
´3{4

n
ÿ

i“1

BSitpA; b˚pρ0q, ρ0u

Bb˚pρ0qT

!

pbpρ0q ´ bpρ0q
)
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“ n´3{4
n
ÿ

i“1

SitA; bpρ0q, ρ0u `

«

n´3{4
n
ÿ

i“1

SitpA; bpρ0q, ρ0u ´ n
´3{4

n
ÿ

i“1

SitA; bpρ0q, ρ0u

ff

`n´3{4
n
ÿ

i“1

BSitpA; bpρ0q, ρ0u

Bbpρ0qT

!

pbpρ0q ´ bpρ0q
)

` oppn
´1{4

q

“ n´3{4
n
ÿ

i“1

SitA; bpρ0q, ρ0u `

«

n´3{4
n
ÿ

i“1

SitpA; bpρ0q, ρ0u ´ n
´3{4

n
ÿ

i“1

SitA; bpρ0q, ρ0u

ff

`

K
ÿ

k“1

«

n´1
n
ÿ

i“1

BSitA; bpρ0q, ρ0u

Bbkpρ0q

ff˜

n´3{4
n
ÿ

j“1

ϕjk

¸

` oppn
´1{4

q

“ n´3{4
n
ÿ

i“1

SitA; bpρ0q, ρ0u `

«

n´3{4
n
ÿ

i“1

SitpA; bpρ0q, ρ0u ´ n
´3{4

n
ÿ

i“1

SitA; bpρ0q, ρ0u

ff

`

K
ÿ

k“1

BkpAq

˜

n´3{4
n
ÿ

j“1

ϕjk

¸

` opp1q,

where the second equality is by (S.34), the third equality is by (S.35), the last equality is

due to (S.44) and BkpAq is defined in (S.42). For the second term of above equation, by

(S.2), we have

n´3{4
n
ÿ

i“1

SitpA; bpρ0q, ρ0u ´ n
´3{4

n
ÿ

i“1

SitA; bpρ0q, ρ0u “ Oppn
´1{4

q.

For the third term, by (S.46), we have

E

«

n´3{4
n
ÿ

j“1

#

K
ÿ

k“1

BkpAqϕjk

+ff2

“ var

«

n´3{4
n
ÿ

j“1

#

K
ÿ

k“1

BkpAqϕjk

+ff

“ Op1q,

where the last equality is by (S.36) and (S.43). Hence, we have

n´3{4
n
ÿ

i“1

SitpA; pbpρ0q, ρ0u “ n´3{4
n
ÿ

i“1

SitA; bpρ0q, ρ0u `Opp1q
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“ Oppn
´1{4

q `Opp1q

“ Opp1q,

where the second equality is by (S.47) and (S.59). Second, by (S.4) with bpρq and ρ replaced

by pbpρ0q and ρ0, respectively,

1

n

n
ÿ

i“1

dSitpA; pbpρ0q, ρ0u

dρ0
“

1

n

n
ÿ

i“1

dSitA; pbpρ0q, ρ0u

dρ0
` op

`

n´1{2
˘

“
1

n

n
ÿ

i“1

dSitA; bpρ0q, ρ0u

dρ0
` opp1q, (S.31)

where the second inequality is due to (S.63). Then, by (S.31) and the proof of (S.65), we

have

1

n

n
ÿ

i“1

dSitpA; pbpρq, ρu

dρ
| A

Pr
Ñ c˚.

Based on above results, for given A, this establishes the (S.29).

The proof of asymptotic normality

For preparation, we recall from (2.11) that

pbkpρq “ n´1
n
ÿ

i“1

pλ´1k

ż

pφkptq

˜

Yi ´ ρ
n
ÿ

j“1

wijYj

¸

Ziptqdt.

Note that pbkpρq is a linear function of ρ, so

Bpbkpρq

Bρ
“ B

#

n´1
n
ÿ

i“1

pλ´1k

ż

pφkptq

˜

Yi ´ ρ
n
ÿ

j“1

wijYj

¸

Ziptqdt

+

M

Bρ

“ ´n´1
n
ÿ

i“1

pλ´1k

ż

pφkptq
n
ÿ

j“1

wijYjZiptqdt
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and B2pbkpρq{Bρ
2 “ 0. Since pρ minimizes Q1tpA; pbpρq, ρu based on (2.12), it satisfies

dQ1tpA; pbpρq, ρu

dρ

ˇ

ˇ

ˇ

ρ“pρ
“

«

BQ1tpA; pbpρq, ρu

Bρ
`
BQ1tpA; pbpρq, ρu

BpbpρqT

Bpbpρq

Bρ

ff

ˇ

ˇ

ˇ

ρ“pρ
“ 0.

Similar to (2.14), this is equivalently written as

n´3{4
n
ÿ

i“1

SitpA; pbppρq, pρu “ 0,

where SitpA; pbppρq, pρu is obtained from replacing b and ρ in formula (2.16) with pb and pρ,

respectively. Using Taylor’s expansion,

0 “ n´3{4
n
ÿ

i“1

SitpA; pbppρq, pρu

“ n´3{4
n
ÿ

i“1

SitpA; pbpρ0q, ρ0u ` n
´3{4

n
ÿ

i“1

dSitpA; pbpρ˚q, ρ˚u

dρ˚
ppρ´ ρ0q

“ n´3{4
n
ÿ

i“1

SitpA; bpρ0q, ρ0u ` n
´3{4

n
ÿ

i“1

BSitpA; b˚pρ0q, ρ0u

Bb˚pρ0qT

!

pbpρ0q ´ bpρ0q
)

`n´3{4
n
ÿ

i“1

dSitpA; pbpρ˚q, ρ˚u

dρ˚
ppρ´ ρ0q

“ n´3{4
n
ÿ

i“1

«

SitpA; bpρ0q, ρ0u `
K
ÿ

k“1

BSitpA; b˚pρ0q, ρ0u

Bb˚kpρ0q

!

pbkpρ0q ´ bkpρ0q
)

ff

`n´3{4
n
ÿ

i“1

dSitpA; pbpρ˚q, ρ˚u

dρ˚
ppρ´ ρ0q, (S.32)

where ρ˚ denotes the value between the ρ0 and pρ and b˚pρ0q between the bpρ0q and pbpρ0q,

respectively. SitpA; ρ0,b
˚pρ0qu and BSitpA; ρ0,b

˚pρ0qu{Bb
˚
kpρ0q are given (2.16) and (2.17),

respectively, with bpρq and ρ replaced by b˚pρ0q and ρ0.

We calculate the expectation and variance of the first term of (S.32) below. Applying
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Taylor’s expansion and Condition (C6),

BSitpA; b˚pρ0q, ρ0u

Bb˚kpρ0q
“
BSitpA; bpρ0q, ρ0u

Bbkpρ0q
`Op

!
ˇ

ˇ

ˇ

pbkpρ0q ´ bkpρ0q
ˇ

ˇ

ˇ

)

.

Recall that

pbkpρ0q ´ bkpρ0q

“ λ´1k xφk, pg ´ gy ` λ
´1
k x

pφk ´ φk, gy ´ λ
´2
k

´

pλk ´ λk

¯

xφk, gy `Oppn
´1kα`1q,

which, together with Condition (C1) and (C5), Lemma S2.1(c), Lemma S2.3 and Lemma

S2.4(c) imply that

ˇ

ˇ

ˇ

pbkpρ0q ´ bkpρ0q
ˇ

ˇ

ˇ

ď |λ´1k xφk, pg ´ gy| ` |λ
´1
k x

pφk ´ φk, gy| ` |λ
´2
k

´

pλk ´ λk

¯

xφk, gy| `Oppn
´1kα`1q

ď λ´1k }φk}}pg ´ g} ` λ
´1
k }

pφk ´ φk}}g} ` λ
´2
k |

pλk ´ λk||xφk, gy| `Oppn
´1kα`1q

“ Oppk
αn´1{2q `Oppk

α`1n´1{2q `Oppk
αn´1{2q `Oppn

´1kα`1q

“ Oppk
α`1n´1{2q, (S.33)

where the last second equality is because the condition k “ otn1{p2α`2qu used in Lemma S2.4

naturally holds under Condition (C5). Based on above results and Condition (C5),

n´3{4
n
ÿ

i“1

K
ÿ

k“1

BSitpA; b˚pρ0q, ρ0u

Bb˚kpρ0q

!

pbkpρ0q ´ bkpρ0q
)

“ n´3{4
n
ÿ

i“1

K
ÿ

k“1

BSitpA; bpρ0q, ρ0u

Bbkpρ0q

!

pbkpρ0q ´ bkpρ0q
)

` n´3{4
n
ÿ

i“1

K
ÿ

k“1

Op

„

!

pbkpρ0q ´ bkpρ0q
)2


“ n´3{4
n
ÿ

i“1

K
ÿ

k“1

BSitpA; bpρ0q, ρ0u

Bbkpρ0q

!

pbkpρ0q ´ bkpρ0q
)

` n´3{4
n
ÿ

i“1

K
ÿ

k“1

Oppk
2α`2n´1q
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“ n´3{4
n
ÿ

i“1

K
ÿ

k“1

BSitpA; bpρ0q, ρ0u

Bbkpρ0q

!

pbkpρ0q ´ bkpρ0q
)

` oppn
´1{4

q. (S.34)

Based on (S.27), (S.3) and Condition (C5), we have

n´3{4
n
ÿ

i“1

K
ÿ

k“1

BSitpA; bpρ0q, ρ0u

Bbkpρ0q

!

pbkpρ0q ´ bkpρ0q
)

“ n´7{4
n
ÿ

i“1

n
ÿ

j“1

K
ÿ

k“1

BSitpA; bpρ0q, ρ0u

Bbkpρ0q
ϕjk ` n

´3{4
n
ÿ

i“1

K
ÿ

k“1

BSitA; bpρ0q, ρ0u

Bbkpρ0q
Oppn

´1k2α`2logkq

“ n´7{4
n
ÿ

i“1

n
ÿ

j“1

K
ÿ

k“1

BSitpA; bpρ0q, ρ0u

Bbkpρ0q
ϕjk ` oppn

´1{4
q

“

K
ÿ

k“1

«

n´1
n
ÿ

i“1

BSitpA; bpρ0q, ρ0u

Bbkpρ0q

ff˜

n´3{4
n
ÿ

j“1

ϕjk

¸

` oppn
´1{4

q

“

K
ÿ

k“1

«

n´1
n
ÿ

i“1

BSitA; bpρ0q, ρ0u

Bbkpρ0q
` oppn

´1{4
q

ff˜

n´3{4
n
ÿ

j“1

ϕjk

¸

` oppn
´1{4

q

“

K
ÿ

k“1

«

n´1
n
ÿ

i“1

BSitA; bpρ0q, ρ0u

Bbkpρ0q

ff˜

n´3{4
n
ÿ

j“1

ϕjk

¸

` oppn
´1{4

q, (S.35)

where the second last equality is due to

sup
1ďkďK

«

1

n

n
ÿ

i“1

BSitpA; bpρ0q, ρ0u

Bbkpρ0q
´

1

n

n
ÿ

i“1

BSitA; bpρ0q, ρ0u

Bbkpρ0q

ff2

ď

›

›

›

›

›

1

n

n
ÿ

i“1

BSitpA; bpρ0q, ρ0u

Bbpρ0qT
´

1

n

n
ÿ

i“1

BSitA; bpρ0q, ρ0u

Bbpρ0qT

›

›

›

›

›

2

“ oppn
´1{2

q

following (S.3), and the last equality can be established because

K
ÿ

k“1

˜

n´3{4
n
ÿ

j“1

ϕjk

¸

“ Opp1q. (S.36)

The proof of (S.36) is given in the Supplementary Material S3.11. In order to demonstrate
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the expectation of (S.35) equals to zero asymptotically, with pA in (2.18) replaced by A, we

observe

1

n

n
ÿ

i“1

BSitA; bpρ0q, ρ0u

Bbpρ0qT

“
1

n

„

´2
 

YTMpρ0q ´ bpρ0q
TATSpρ0q

(

"

BDpρ0q

Bρ
Dpρ0qSpρ0q

TA

*

´

"

YTBMpρ0q

Bρ
` bpρ0q

TATW ´
Bbpρ0q

T

Bρ
ATSpρ0q

*

 

Dpρ0q
2Spρ0q

TA
(

`
 

YTMpρ0q ´ bpρ0q
TATSpρ0q

(  

Dpρ0q
2WTA

(‰

“
1

n

„

´2
 

YTMpρ0q ´ bpρ0q
TATSpρ0q

(

"

BDpρ0q

Bρ
Dpρ0qSpρ0q

TA

*

´

"

YTSpρ0q
TBSpρ0q

Bρ
` bpρ0q

TATW

*

 

Dpρ0q
2Spρ0q

TA
(

´

"

YTBSpρ0q
T

Bρ
Spρ0q ´

Bbpρ0q
T

Bρ
ATSpρ0q

*

 

Dpρ0q
2Spρ0q

TA
(

`
 

YTMpρ0q ´ bpρ0q
TATSpρ0q

(  

Dpρ0q
2WTA

(‰

“
1

n

„

2
 

´YTMpρ0q ` bpρ0q
TATSpρ0q

(

"

BDpρ0q

Bρ
Dpρ0qSpρ0q

TA

*

`
 

YTSpρ0q
TW ´ bpρ0q

TATW
(  

Dpρ0q
2Spρ0q

TA
(

`
 

YTMpρ0q ´ bpρ0q
TATSpρ0q

(  

Dpρ0q
2WTA

(

`

"

YTWTSpρ0q `
Bbpρ0q

T

Bρ
ATSpρ0q

*

 

Dpρ0q
2Spρ0q

TA
(



” τT
1 ` τ

T
2 ` τ

T
3 ` τ

T
4 , (S.37)

where τ`’s are K ˆ 1 vectors with the kth element denoted by τ`k for ` “ 1, 2, 3, 4, and

Epτ` | Aq “ 0 for ` “ 1, 2, 3. We now address first three terms of (S.37). For τ1, note that

varpτ1k | Aq

“ Epτ 21k | Aq
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ď Ep}τ1}
2
| Aq

“ E

«

4
1

n2

›

›

›

›

 

´YTMpρ0q ` bpρ0q
TATSpρ0q

(

"

BDpρ0q

Bρ
Dpρ0qSpρ0q

TA

*
›

›

›

›

2

| A

ff

“ E

„

4
1

n2

 

´YTMpρ0q ` bpρ0q
TATSpρ0q

(

"

BDpρ0q

Bρ
Dpρ0qSpρ0q

TA

*

ˆ

"

BDpρ0q

Bρ
Dpρ0qSpρ0q

TA

*T
 

´YTMpρ0q ` bpρ0q
TATSpρ0q

(T
| A

ff

“ E

„

4
1

n2

 

´YTMpρ0q ` bpρ0q
TATSpρ0q

(

"

BDpρ0q

Bρ
Dpρ0qSpρ0q

TA

*

ˆ

"

ATSpρ0qDpρ0q
BDpρ0q

Bρ

*

 

´Mpρ0qY ` Spρ0q
TAbpρ0q

(

| A



“ E

„

4
1

n2

 

´YTSpρ0q
T
` bpρ0q

TAT
(

"

Spρ0q
BDpρ0q

Bρ
Dpρ0qSpρ0q

TA

*

ˆ

"

ATSpρ0qDpρ0q
BDpρ0q

Bρ
Spρ0q

T

*

t´Spρ0qY `Abpρ0qu | A



“ 4
1

n2
E
`

εTnLnεn | A
˘

,

where

εTn “ ´YTSpρ0q
T
` bpρ0q

TAT,

and

Ln “

"

Spρ0q
BDpρ0q

Bρ
Dpρ0qSpρ0q

TA

*"

ATSpρ0qDpρ0q
BDpρ0q

Bρ
Spρ0q

T

*

.

We next check the order of EpεTnLnεn | Aq. Together with εn | A „ N p0, σ2Inq and Lemma

S2.7, we note that

EpεTnLnεn | Aq “ σ2trace pLn | Aq ,

where tracepLn | Aq denotes the calculation of tracepLnq for fixed A. Below, we drop A in
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tracepLn | Aq for notational simplicity. Hence, we only need to check the order of tracepLnq

for fixed A. Since S “ I´ ρW, we have

tracepLnq

“ trace

"

pI´ ρ0Wq
BDpρ0q

Bρ
Dpρ0qpI´ ρ0W

T
qAAT

pI´ ρ0WqDpρ0q
BDpρ0q

Bρ
pI´ ρ0W

T
q

*

“ tracepLn1q ` tracepLn2q ` tracepLn3q ` tracepLn4q ` tracepLn5q,

where

Ln1 “

"

BDpρ0q

Bρ
Dpρ0qAATDpρ0q

BDpρ0q

Bρ

*

,

Ln2

“ ´ρ0

"

BDpρ0q

Bρ
Dpρ0qAATDpρ0q

BDpρ0q

Bρ
WT

*

´ ρ0

"

BDpρ0q

Bρ
Dpρ0qAATWDpρ0q

BDpρ0q

Bρ

*

´ρ0

"

BDpρ0q

Bρ
Dpρ0qW

TAATDpρ0q
BDpρ0q

Bρ

*

´ ρ0

"

W
BDpρ0q

Bρ
Dpρ0qAATDpρ0q

BDpρ0q

Bρ

*

,

Ln3 “ ρ20

"

pWq
BDpρ0q

Bρ
Dpρ0qpW

T
qAATDpρ0q

BDpρ0q

Bρ

*

`ρ20

"

pWq
BDpρ0q

Bρ
Dpρ0qAAT

pWqDpρ0q
BDpρ0q

Bρ

*

`ρ20

"

pWq
BDpρ0q

Bρ
Dpρ0qAATDpρ0q

BDpρ0q

Bρ
pWT

q

*

`ρ20

"

BDpρ0q

Bρ
Dpρ0qpW

T
qAAT

pWqDpρ0q
BDpρ0q

Bρ

*

`ρ20

"

BDpρ0q

Bρ
Dpρ0qpW

T
qAATDpρ0q

BDpρ0q

Bρ
pWT

q

*

`ρ20

"

BDpρ0q

Bρ
Dpρ0qAAT

pWqDpρ0q
BDpρ0q

Bρ
pWT

q

*

,
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Ln4 “ ´ρ30

"

pWq
BDpρ0q

Bρ
Dpρ0qpW

T
qAAT

pWqDpρ0q
BDpρ0q

Bρ

*

´ρ30

"

pWq
BDpρ0q

Bρ
Dpρ0qpW

T
qAATDpρ0q

BDpρ0q

Bρ
pWT

q

*

´ρ30

"

pWq
BDpρ0q

Bρ
Dpρ0qAAT

pWqDpρ0q
BDpρ0q

Bρ
pWT

q

*

´ρ30

"

BDpρ0q

Bρ
Dpρ0qpW

T
qAAT

pWqDpρ0q
BDpρ0q

Bρ
pWT

q

*

,

and

Ln5 “ ρ4
"

W
BDpρ0q

Bρ
Dpρ0qW

TAATWDpρ0q
BDpρ0q

Bρ
WT

*

.

Denote the pi, iqth element of the diagonal matrix BDpρq
Bρ

Dpρq by D iipρq for i “ 1, . . . , n.

Through Remark 2, we know that D iipρq “ Op1q. Together with
řK
k“1 ξ

2
ik ą 0 andEp

řK
k“1 ξ

2
ikq “

řK
k“1 λk “ Op1q by the Condition (C2), we have

K
ÿ

k“1

ξ2ik “ Opp1q, (S.38)

and from which we obtain

tracepLn1q

“ trace

"

BDpρ0q

Bρ
Dpρ0qAATDpρ0q

BDpρ0q

Bρ

*

“ trace

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

D11pρ0q
2
řK
k“1 ξ

2
1k ¨ ¨ ¨ D11pρ0qDnnpρ0q

řK
k“1 ξ1kξnk

D22pρ0qD11pρ0q
řK
k“1 ξ2kξ1k ¨ ¨ ¨ D22pρ0qDnnpρ0q

řK
k“1 ξ2kξnk

Dnnpρ0qD11pρ0q
řK
k“1 ξnkξ1k ¨ ¨ ¨ Dnnpρ0q

2
řK
k“1 ξ

2
nk

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚
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“

n
ÿ

i“1

D iipρ0q
2
K
ÿ

k“1

ξ2ik

“

n
ÿ

i“1

D iipρ0q
2Opp1q

“ Oppnq.

We now investigate the first term of Ln2. For i ‰ j,

E

˜

K
ÿ

k“1

ξjkξik

¸2

“

K
ÿ

k“1

E
`

ξ2jkξ
2
ik

˘

`

K
ÿ

k1‰k2

E pξjk1ξjk2ξik1ξik2q

“

K
ÿ

k“1

E
`

ξ2jk
˘

E
`

ξ2ik
˘

`

K
ÿ

k1‰k2

E pξjk1ξjk2qE pξik1ξik2q

“

K
ÿ

k“1

λ2k

“ Op1q,

where the last equality is due to the Condition (C2). Thus, for any 1 ď i ‰ j ď n, we get

K
ÿ

k“1

ξjkξik “ Opp1q. (S.39)

Combining (S.38) and (S.39), we have

trace

„

´ρ0

"

BDpρ0q

Bρ
Dpρ0qAATDpρ0q

BDpρ0q

Bρ
WT

*
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“ ´ρ0 ˆ trace

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

D11pρ0q
řn
i“1

řK
k“1 ξ1kξikw1iD iipρ0q ¨ ¨ ¨ D11pρ0q

řn
i“1

řK
k“1 ξ1kξikwniD iipρ0q

D22pρ0q
řn
i“1

řK
k“1 ξ2kξikw1iD iipρ0q ¨ ¨ ¨ D22pρ0q

řn
i“1

řK
k“1 ξ2kξikwniD iipρ0q

Dnnpρ0q
řn
i“1

řK
k“1 ξnkξikw1iD iipρ0q ¨ ¨ ¨ Dnnpρ0q

řn
i“1

řK
k“1 ξnkξikwniD iipρ0q

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“ ´ρ0

n
ÿ

j“1

D jjpρ0q
n
ÿ

i“1

K
ÿ

k“1

ξjkξikwjiD iipρ0q

“ ´ρ0Opp1q
n
ÿ

j“1

n
ÿ

i“1

wji

“ Oppnq,

where the last equality is because
řn
i“1wji “ 1. The same order can be similarly obtained

for the other three terms of Ln2 and the proof are omitted. For the first term of Ln3, we

have

ρ20

"

pWq
BDpρ0q

Bρ
Dpρ0qpW

T
qAATDpρ0q

BDpρ0q

Bρ

*

“ ρ20

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

řn
i“1w

2
1iD iipρ0q

řn
i“1w1iw2iD iipρ0q ¨ ¨ ¨

řn
i“1w1iwniD iipρ0q

řn
i“1w2iw1iD iipρ0q

řn
i“1w

2
2iD iipρ0q ¨ ¨ ¨

řn
i“1w2iwniD iipρ0q

...
...

. . .
...

řn
i“1wniw1iD iipρ0q

řn
i“1wniw2iD iipρ0q ¨ ¨ ¨

řn
i“1w

2
niD iipρ0q

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

ˆ

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

řK
k“1 ξ

2
1kD11pρ0q

řK
k“1 ξ1kξ2kD22pρ0q ¨ ¨ ¨

řK
k“1 ξ1kξnkDnnpρ0q

řK
k“1 ξ2kξ1kD11pρ0q

řK
k“1 ξ

2
2kD22pρ0q ¨ ¨ ¨

řK
k“1 ξ2kξnkDnnpρ0q

...
...

. . .
...

řK
k“1 ξnkξ1kD11pρ0q

řK
k“1 ξnkξ2kD22pρ0q ¨ ¨ ¨

řK
k“1 ξ

2
nkDnnpρ0q

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“ ρ20

«

n
ÿ

j“1

#

n
ÿ

i“1

w`1iwjiD iipρ0q

+#

K
ÿ

k“1

ξjkξ`2kD `2`2pρ0q

+ff

1ď`1,`2ďn

.
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Thus, by (S.39) and (S.24),

trace

„

ρ20

"

pWq
BDpρ0q

Bρ
Dpρ0qpW

T
qAATDpρ0q

BDpρ0q

Bρ

*

“ ρ20

n
ÿ

`“1

n
ÿ

j“1

#

n
ÿ

i“1

w`iwjiD iipρ0q

+#

K
ÿ

k“1

ξjkξ`kD ``pρ0q

+

“ ρ20

n
ÿ

`“1

n
ÿ

j“1

#

n
ÿ

i“1

w`iwjiD iipρ0q

+

Opp1q

“ ρ20

n
ÿ

`“1

n
ÿ

j“1

oppn
´1{2

q

“ oppn
3{2
q.

Using the similar techniques, we can show that the order of other five terms of Ln3 are also

oppn
3{2q. For Ln4, we also focus on the first term since the other three terms are of the same

order and can be dealt with similarly. Note that
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This implies that
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For Ln5, we have
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.

Again, by (S.39) and (S.24),
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Hence, according to above derivations, we have

E

ˆ

sup
1ďkďK

τ 21k | A

˙

ď Ep}τ1}
2
| Aq

“ 4
1

n2
EpεTnLnεn | Aq

“ 4
1

n2
ˆ oppn

2
q

“ opp1q, (S.40)

and

varpτ1kq “ Etvarpτ1k | Aqu ` vartEpτ1k | Aqu

“ E
 

Epτ 21k | Aq
(

“ op1q,

uniformly for k “ 1, . . . , K. For the terms τ2 and τ3 of (S.37), similar derivations show that

τ` “ opp1q and sup1ďkďK τ`k “ opp1q for ` “ 2, 3, so we omit the details. Now, incorporating

(S.37) to (S.35), we can show that

K
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q, (S.41)

where τ4k is the kth element of

1

n

"

YTWTSpρ0q `
Bbpρ0q

T

Bρ
ATSpρ0q

*

 

Dpρ0q
2Spρ0q

TA
(

.
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By model (2.6), we have

τ4k “ AkpAq `BkpAq,

where

AkpAq “
1

n
εTS´Tpρ0qW

TSpρ0qDpρ0q
2Spρ0q

TAek,

and

BkpAq “
1

n
bTATS´Tpρ0qW
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2Spρ0q

TAek

`
1

n

Bbpρ0q
T

Bρ
ATSpρ0qDpρ0q

2Spρ0q
TAek, (S.42)

where ek denotes K dimension zero vector except that the kth element equals to one. Note

that

AkpAq “ Opp1{
?
nq, and BkpAq “ Opp1q. (S.43)

For presentational continuity, the proof of (S.43) is relegated to the Supplementary Material

S3.12. This shows that τ4k “ BkpAq `Opp1{
?
nq. Together with (S.41) and (S.36), we have
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“
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ÿ
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¸

` opp1q, (S.44)

where the second equality is because sup1ďkďK τ`k “ opp1q for ` “ 1, 2, 3 derived from (S.40),

so the first opp1q after the first equal sign of (S.44) is uniform with respect to k. Thus, the

first term of (S.32) can be expressed as
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¸

` opp1q, (S.45)

where the first equality is due to (S.34), the second equality is because (S.35), the third

equality follows from (S.44), and the last second equality is obtained by (S.2). Now, we

will focus on the first two leading terms of (S.45). For the second term of (S.45), with

Epϕjk | Aq “ 0 from (S.28), it is easy to see that

E

#

K
ÿ

k“1
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˜

n´3{4
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j“1
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¸+
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“ E

«

K
ÿ

k“1

BkpAqE

#˜

n´3{4
n
ÿ

j“1

ϕjk

¸

| A

+ff

“ 0. (S.46)

For the first term of (S.45), according to (2.10) with pA replaced by A, it is easy to see that

SitA; bpρq, ρu can be expressed as

SitA; bpρq, ρu “ tYi ´ E pYi|Y´i,Aqu f pY´i,Aq ,

where f pY´i,Aq denotes a function of Y´i and A. Thus,

E rSitA; bpρq, ρus “ E pE rSitA; bpρq, ρu | Y´i,Asq

“ E rf pY´i,AqE tYi ´ E pYi|Y´i,Aq |Y´i,Aus

“ 0. (S.47)

Therefore, by (S.46), (S.47) and (S.45), we have

E

˜

n´3{4
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i“1
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SitpA; bpρ0q, ρ0u `
K
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k“1

BSitpA; b˚pρ0q, ρ0u

Bb˚kpρ0q

!

pbkpρ0q ´ bkpρ0q
)

ff¸

“ op1q. (S.48)

This demonstrates the expectation of first term of (S.32) equals to zero asymptotically.

Next, we investigate the variance of the first two terms of (S.45). First, for the second

term of (S.45), according to the form of (S.28), we have Epϕjk1ϕj1k2 | Aq “ Epϕjk1 |

AqEpϕj1k2 | Aq for any j ‰ j1 and k1, k2 “ 1, . . . , K, and ϕjk’s are i.i.d for j “ 1, . . . , n.
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Then,
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Second, for the first term of (S.45), we have

var

«

n´3{4
n
ÿ
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«
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ff2

. (S.50)

We now further rewrite n´1{2
řn
i“1 SitA; bpρ0q, ρ0u as a quadratic form plus a linear form,

then we use Lemma S2.9 to calculate (S.50). Using (2.15) with pA and pbpρq replaced by A

and bpρ0q, respectively, we have

1
?
n

n
ÿ

i“1

SitA; bpρ0q, ρ0u
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1
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where

Mn “ Spρ0qDpρ0q
BDpρ0q

Bρ
Spρ0q

T
` Spρ0qDpρq

2BSpρ0q
T

Bρ

`Spρ0qDpρ0q
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Bρ
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Un “ Spρ0qDpρ0q
2Spρ0q

T

"

BSpρ0q

Bρ
Spρ0q

´1Abpρ0q ´A
Bbpρ0q

Bρ

*

, (S.53)

and

εn “ Spρ0qY ´Abpρ0q,

and εn | A „ N np0, σ
2Inq.

Next we check tracepM2
nq, tracepMnM

T
n q, trace

 

diag2
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(

, and UT
nUn, respectively.
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2Spρ0q
TBSpρ0q

Bρ
Spρ0q

´1

*

`2trace

"

Spρ0qDpρ0q
BDpρ0q

Bρ
Spρ0q

TSpρ0qDpρq
2BSpρ0q

T

Bρ

*

`2trace

"

Spρ0qDpρ0q
BDpρ0q

Bρ
Spρ0q

TSpρ0qDpρ0q
2Spρ0q

TBSpρ0q

Bρ
Spρ0q

´1

*

`2trace

"

Spρ0qDpρq
2BSpρ0q

T

Bρ
Spρ0qDpρ0q

2Spρ0q
TBSpρ0q

Bρ
Spρ0q

´1

*

“ trace

"

Spρ0qDpρ0q
BDpρ0q

Bρ
Spρ0q

TSpρ0qDpρ0q
BDpρ0q

Bρ
Spρ0q

T

*

`trace

"

Spρ0qDpρq
2BSpρ0q

T

Bρ
Spρ0qDpρq

2BSpρ0q
T

Bρ

*
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`trace

"

Dpρ0q
2Spρ0q

TBSpρ0q

Bρ
Dpρ0q

2Spρ0q
TBSpρ0q

Bρ

*

`2trace

"

Spρ0qDpρ0q
BDpρ0q

Bρ
Spρ0q

TSpρ0qDpρq
2BSpρ0q

T

Bρ

*

`2trace

"

Dpρ0q
2Spρ0q

TBSpρ0q

Bρ
Dpρ0q

BDpρ0q

Bρ
Spρ0q

TSpρ0q

*

`2trace

"

Dpρ0q
2Spρ0q

TBSpρ0q

Bρ
Dpρ0q

2BSpρ0q
T

Bρ
Spρ0q

*

“ T1. (S.54)

Recall that wii “ 0,
řn
`“1wi` “ 1. Let Dpρq ” BDpρq

Bρ
Dpρq, then the diagonal elements of the

Dpρq were denoted by D iipρq and sup1ďiďn D iipρq ď C1 for some constant C1. For the first

term of T1, by (S.24) and the Condition (C9), we note that

trace

"

Spρ0qDpρ0q
BDpρ0q

Bρ
Spρ0q

TSpρ0qDpρ0q
BDpρ0q

Bρ
Spρ0q

T

*

“ trace
 

pIn ´ ρ0WqDpρ0qpIn ´ ρ0W
T
qpIn ´ ρ0WqDpρ0qpIn ´ ρ0W

T
q
(

“ trace
 

pIn ´ ρ0WqDpρ0qpIn ´ ρ0W ´ ρ0W
T
` ρ20W

TWqDpρ0qpIn ´ ρ0W
T
q
(

“ trace
 

Dpρ0qpIn ´ ρ0W ´ ρ0W
T
` ρ20W

TWqDpρ0q
(

`trace
 

Dpρ0qpIn ´ ρ0W ´ ρ0W
T
` ρ20W

TWqDpρ0qp´ρ0W
T
q
(

`trace
 

p´ρ0WqDpρ0qpIn ´ ρ0W ´ ρ0W
T
` ρ20W

TWqDpρ0q
(

`trace
 

p´ρ0WqDpρ0qpIn ´ ρ0W ´ ρ0W
T
` ρ20W

TWqDpρ0qp´ρ0W
T
q
(

“

n
ÿ

i“1

D
2

iipρ0q ` ρ
2
0

n
ÿ

j“1

n
ÿ

i“1

w2
ijD

2

jjpρ0q

`ρ20

n
ÿ

j“1

n
ÿ

i“1

w2
jiD jjpρ0qD iipρ0q ` ρ

2
0

n
ÿ

j“1

n
ÿ

i“1

wijwjiD jjpρ0qD iipρ0q

´ρ30

n
ÿ

`“1

n
ÿ

j“1

n
ÿ

i“1

wi`wijw`jD ``pρ0qD jjpρ0q

`ρ20

n
ÿ

j“1

n
ÿ

i“1

wjiwijD iipρ0qD jjpρ0q ` ρ
2
0

n
ÿ

j“1

n
ÿ

i“1

w2
jiD iipρ0qD jjpρ0q
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´ρ30

n
ÿ

`“1

n
ÿ

j“1

n
ÿ

i“1

w`iwjiwj`D iipρ0qD ``pρ0q

`ρ20

n
ÿ

j“1

n
ÿ

i“1

w2
jiD

2

iipρ0q ´ ρ
3
0

n
ÿ

`“1

n
ÿ

j“1

n
ÿ

i“1

w`iwijw`jD iipρ0qD jjpρ0q

´ρ30

n
ÿ

`“1

n
ÿ

j“1

n
ÿ

i“1

w`iwjiw`jD iipρ0qD jjpρ0q ` ρ
4
0

n
ÿ

`“1

n
ÿ

j“1

˜

n
ÿ

i“1

w`iD iipρ0qwji

¸˜

n
ÿ

i“1

wjiD iipρ0qw`i

¸

ď nC2
1 ` ρ

2
0

n
ÿ

j“1

n
ÿ

i“1

wij
C
?
n
C2

1 ` ρ
2
0

n
ÿ

j“1

n
ÿ

i“1

wji
C
?
n
C2

1 ` ρ
2
0

n
ÿ

j“1

n
ÿ

i“1

wij
C
?
n
C2

1

`|ρ0|
3

n
ÿ

`“1

n
ÿ

i“1

wi`

˜

n
ÿ

j“1

wijw`j

¸

C2
1 ` ρ

2
0

n
ÿ

j“1

n
ÿ

i“1

wjiwijC
2
1

`ρ20

n
ÿ

j“1

n
ÿ

i“1

w2
jiC

2
1 ` |ρ0|

3
n
ÿ

`“1

n
ÿ

j“1

˜

n
ÿ

i“1

w`iwji

¸

wj`C
2
1

`ρ20

n
ÿ

j“1

n
ÿ

i“1

w2
jiC

2
1 ` |ρ0|

3
n
ÿ

`“1

n
ÿ

i“1

w`i

˜

n
ÿ

j“1

wijw`j

¸

C2
1

`|ρ0|
3

n
ÿ

`“1

n
ÿ

j“1

˜

n
ÿ

i“1

w`iwji

¸

w`jC
2
1 ` ρ

4
0

n
ÿ

`“1

n
ÿ

j“1

˜

n
ÿ

i“1

w`iwji

¸˜

n
ÿ

i“1

wjiw`i

¸

C2
1

ď nC2
1 ` ρ

2
0

n
ÿ

i“1

C
?
n
C2

1 ` ρ
2
0

n
ÿ

j“1

C
?
n
C2

1 ` ρ
2
0

n
ÿ

i“1

C
?
n
C2

1

`|ρ0|
3
n
ÿ

i“1

n
ÿ

`“1

wi`

ˆ

C
?
n

˙

C2
1 ` ρ

2
0

n
ÿ

j“1

n
ÿ

i“1

wji
C
?
n
C2

1

`ρ20

n
ÿ

j“1

n
ÿ

i“1

wji
C
?
n
C2

1 ` |ρ0|
3

n
ÿ

j“1

n
ÿ

`“1

wj`

ˆ

C
?
n

˙

C2
1

`ρ20

n
ÿ

j“1

n
ÿ

i“1

wji
C
?
n
C2

1 ` |ρ0|
3

n
ÿ

`“1

n
ÿ

i“1

w`i

ˆ

C
?
n

˙

C2
1

`|ρ0|
3

n
ÿ

`“1

n
ÿ

j“1

w`j

ˆ

C
?
n

˙

C2
1 ` ρ

4
0

n
ÿ

`“1

n
ÿ

j“1

ˆ

C
?
n

˙2

C2
1

“ C2
1n` 6ρ20CC

2
1

?
n` 4|ρ0|

3CC2
1

?
n` ρ40C

2C2
1n.

For the other terms of T1, similar derivations lead to the same order Opnq, so we omit the
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details. Hence, there exists some constant κ1 such that

1

n
tracepM2

nq ď κ1.

By trace
 

pA`B`CqpAT `BT `CTq
(

ď 3trace
`

AAT `BBT `CCT
˘

for any nˆn

matrices A,B,C, it is also noticed from (S.52) that

tracepMnM
T
n q

“ trace

„"

Spρ0qDpρ0q
BDpρ0q

Bρ
Spρ0q

T
` Spρ0qDpρq

2BSpρ0q
T

Bρ

`Spρ0qDpρ0q
2Spρ0q

TBSpρ0q

Bρ
Spρ0q

´1

*

ˆ

"

Spρ0qDpρ0q
BDpρ0q

Bρ
Spρ0q

T
` Spρ0qDpρq

2BSpρ0q
T

Bρ

`Spρ0qDpρ0q
2Spρ0q

TBSpρ0q

Bρ
Spρ0q

´1

*T
ff

ď 3trace

"

Spρ0qDpρ0q
BDpρ0q

Bρ
Spρ0q

TSpρ0q
BDpρ0q

Bρ
Dpρ0qSpρ0q

T

*

`3trace

"

Spρ0qDpρq
2BSpρ0q

T

Bρ

BSpρ0q

Bρ
Dpρq2Spρ0q

T

*

`3trace

"

Spρ0qDpρ0q
2Spρ0q

TBSpρ0q

Bρ
Spρ0q

´1Spρ0q
´TBSpρ0q

T

Bρ
Spρ0qDpρ0q

2Spρ0q
T

*

“ T2. (S.55)

For the first two terms of T2 in (S.55), similar to the treatment of T1 in (S.54), it is easy to

show that they are of order Opnq, and the details are omitted. So, we only need to tackle

the third term of (S.55). For brevity, we denote the third term by T2,3. Since matrices

tBSpρ0q
TBρuSpρ0qDpρ0q

2Spρ0q
TSpρ0qDpρ0q

2Spρ0q
TtBSpρ0qBρu and Spρ0q

´1Spρ0q
´T are both
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nˆ n positive semidefinite, by Lemma S2.8, we have

T2,3

“ trace

"

Spρ0qDpρ0q
2Spρ0q

TBSpρ0q

Bρ
Spρ0q

´1Spρ0q
´TBSpρ0q

T

Bρ
Spρ0qDpρ0q

2Spρ0q
T

*

“ trace

"

Spρ0q
´1Spρ0q

´TBSpρ0q
T

Bρ
Spρ0qDpρ0q

2Spρ0q
TSpρ0qDpρ0q

2Spρ0q
TBSpρ0q

Bρ

*

ď λmax

 

Spρ0q
´1Spρ0q

´T
(

ˆtrace

"

BSpρ0q
T

Bρ
Spρ0qDpρ0q

2Spρ0q
TSpρ0qDpρ0q

2Spρ0q
TBSpρ0q

Bρ

*

. (S.56)

For the sake of notation, let

T2,3a “ λmax

 

Spρ0q
´1Spρ0q

´T
(

,

and

T2,3b “ trace

"

BSpρ0q
T

Bρ
Spρ0qDpρ0q

2Spρ0q
TSpρ0qDpρ0q

2Spρ0q
TBSpρ0q

Bρ

*

.

Note that M “ STS and for some C1 ě 0 and C2 ą 0, we have C1 ď λmintMpρqu ď

λmaxtMpρqu ď C2 from the Condition (C8), which implies that C´12 ď λmax

 

Spρ0q
´1Spρ0q

´T
(

ď C´11 . Hence, T2,3a is bounded. For the second term of (S.56), recall that |ρ| ă 1 and

Diipρq “ 1
L

p1` ρ2
řn
j“1w

2
jiq ď 1 by Remark 2, then we have

T2,3b

“ trace

"

BSpρ0q
T

Bρ
Spρ0qDpρ0q

2Spρ0q
TSpρ0qDpρ0q

2Spρ0q
TBSpρ0q

Bρ

*

“ trace
 

p´WT
qpI´ ρ0WqD2

pρ0q
`

I´ ρ0W ´ ρ0W
T
` ρ20W

TW
˘

ˆD2
pρ0qpI´ ρ0W

T
qp´Wq

(
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ď trace
 

pWT
qpI` |ρ0|WqD2

pρ0q
`

I` |ρ0|W ` |ρ0|W
T
` ρ20W

TW
˘

ˆD2
pρ0qpI` |ρ0|W

T
qpWq

(

ď trace
 

WT
pI`Wq

`

I`W `WT
`WTW

˘

pI`WT
qW

(

“ T ˚
2,3b `T ˚˚

2,3b `T ˚˚˚
2,3b , (S.57)

where

T ˚
2,3b “ trace

`

WTW
˘

` trace
`

WTWW
˘

` trace
`

WTWTW
˘

`trace
`

WTWTW
˘

` trace
`

WTWW
˘

,

T ˚˚
2,3b

“ trace
`

WTWTWW
˘

` trace
`

WTWWTW
˘

` trace
`

WTWTWTW
˘

`trace
`

WTWWW
˘

` trace
`

WTWWTW
˘

` trace
`

WTWWTW
˘

,

and

T ˚˚˚
2,3b “ trace

`

WTWWTWW
˘

` trace
`

WTWTWWTW
˘

`trace
`

WTWWWTW
˘

` trace
`

WTWWTWTW
˘

`trace
`

WTWWTWWTW
˘

. (S.58)

Below, we first derive the orders of first and last terms of (S.58) since these terms have five

and six W’s. For the first term of (S.58), by Cauchy-Schwarz inequality, Lemma S2.8, it
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follows that

trace
 `

WTW
˘ `

WTWW
˘(

ď
 

trace
`

WTWWTW
˘(1{2  

trace
`

WTW ¨WWTWTW
˘(1{2

“
 

trace
`

WTWWTW
˘(1{2  

trace
`

WWT
¨WTWWTW

˘(1{2

ď
 

λmaxpW
TWqtrace

`

WTW
˘(1{2  

λmaxpWWT
qtrace

`

WTWWTW
˘(1{2

ď
 

λmaxpWWT
qtrace

`

WTW
˘(1{2  

λmaxpWWT
qλmaxpWWT

qtrace
`

WTW
˘(1{2

“
 

λmaxpWWT
q
(3{2

trace
`

WTW
˘

“ Opnq,

where the last equality is due to the Condition (C8) and
řn
`“1wi` “ 1 for any 1 ď i ď n.

Analogously, for the last term of (S.58), it follows that

trace
`

WTWWTWWTW
˘

ď λmaxpW
TWqtrace

`

WTWWTW
˘

ď
 

λmaxpW
TWq

(2
trace

`

WTW
˘

“ Opnq.

The other three terms of (S.58) are of the same order as the first term, so they can be

dealt with similarly. Hence, we have T ˚˚˚
2,3b “ Opnq. For the terms T ˚

2,3b and T ˚˚
2,3b in (S.57),

similar to the above illustration, we know immediately that T ˚
2,3b “ Opnq and T ˚˚

2,3b “ Opnq.

Therefore, combining (S.55), (S.56), (S.57) and the above results, we conclude that there

exists some constant κ2 such that

1

n
tracepMnM

T
n q ď κ2.
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It is easy to notice that trace
 

diag2
pMnq

(

ď trace
`

MnM
T
n

˘

by which we also have

1

n
trace

 

diag2
pMnq

(

ď κ2.

Below, we calculate UT
nUn. By (S.53), we have

UT
nUn

ď 2bpρ0q
TATSpρ0q

´TBSpρ0q
T

Bρ
Spρ0qDpρ0q

2Spρ0q
TSpρ0qDpρ0q

2Spρ0q
TBSpρ0q

Bρ
Spρ0q

´1Abpρ0q

`2
Bbpρ0q

T

Bρ
ATSpρ0qDpρ0q

2Spρ0q
TSpρ0qDpρ0q

2Spρ0q
TA
Bbpρ0q

Bρ

ď 2λmax

 

Spρ0q
TSpρ0q

(

λmax

 

D4
pρ0q

(

λmax

 

Spρ0qSpρ0q
T
(

λmax

"

BSpρ0q
T

Bρ

BSpρ0q

Bρ

*

ˆλmax

 

Spρ0q
´TSpρ0q

´1
(

λmax

`

ATA
˘

}bpρ0q}
2

`2λmax

 

Spρ0q
TSpρ0q

(

λmax

 

D4
pρ0q

(

λmax

 

Spρ0qSpρ0q
T
(

λmax

`

ATA
˘

›

›

›

›

Bbpρ0q

Bρ

›

›

›

›

2

“ Opnq,

where the last equality is due to the Conditions (C7) and (C8). Following the previous

results, by (S.51) and Lemma S2.9, we have

n´1{2E

«

n´1{2
n
ÿ

i“1

SitA; bpρ0q, ρ0u

ff2

“
1
?
n

„

σ4

n

 

tracepMnM
T
n q ` trace

`

M2
n

˘(

`
1

n
trace

 

diag2
pMnq

(  

Epε41q ´ 3σ4
(

`
σ2

n
UT
nUn



“ O

ˆ

1
?
n

˙

. (S.59)
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We further obtain

var

˜

n´3{4
n
ÿ

i“1

«

SitpA; bpρ0q, ρ0u `
K
ÿ

k“1

BSitpA; b˚pρ0q, ρ0u

Bb˚kpρ0q

!

pbkpρ0q ´ bkpρ0q
)

ff¸

ď E

˜

n´3{4
n
ÿ

i“1

«

SitpA; bpρ0q, ρ0u `
K
ÿ

k“1

BSitpA; b˚pρ0q, ρ0u

Bb˚kpρ0q

!

pbkpρ0q ´ bkpρ0q
)

ff¸2

“ E

«

n´3{4
n
ÿ

i“1

SitA; bpρ0q, ρ0u `
K
ÿ

k“1

BkpAq

˜

n´3{4
n
ÿ

j“1

ϕjk

¸

` opp1q

ff2

ď 2E

«

n´3{4
n
ÿ

i“1

SitA; bpρ0q, ρ0u

ff2

` 2E

#

K
ÿ

k“1

BkpAq

˜

n´3{4
n
ÿ

j“1

ϕjk

¸+2

` op1q

“ 2n´1{2E

¨

˝E

»

–

#

K
ÿ

k“1

BkpAqϕjk

+2

| A

fi

fl

˛

‚`O

ˆ

1
?
n

˙

` op1q

“ 2n´1{2E

»

–

#

K
ÿ

k“1

BkpAqϕjk

+2
fi

fl` op1q

” 2Σ1 ` op1q, (S.60)

where the first equality is by (S.45), the second equality is by (S.59) and (S.49). Hence, by

(S.48) and (S.60), we get the expectation and variance of the first term of (S.32).

Consequently, we rewrite (S.32) as follows

n1{4
ppρ´ ρ0q

“ n´3{4
n
ÿ

i“1

«

SitpA; bpρ0q, ρ0u `
K
ÿ

k“1

BSitpA; b˚pρ0q, ρ0u

Bb˚kpρ0q

ˆ

!

pbkpρ0q ´ bkpρ0q
)

ff

M

«

1

n

n
ÿ

i“1

dSitpA; pbpρ˚q, ρ˚u

dρ˚

ff

“

«

n´3{4
n
ÿ

i“1

SitA; bpρ0q, ρ0u `
K
ÿ

k“1

BkpAq

˜

n´3{4
n
ÿ

j“1

ϕjk

¸

`opp1q

ff

M

«

1

n

n
ÿ

i“1

dSitpA; pbpρ˚q, ρ˚u

dρ˚

ff
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“

#

n´3{4
n
ÿ

i“1

K
ÿ

k“1

BkpAqϕik `Op

`

n´1{4
˘

` opp1q

+

M

«

1

n

n
ÿ

i“1

dSitpA; pbpρ˚q, ρ˚u

dρ˚

ff

“

#

n´3{4
n
ÿ

i“1

K
ÿ

k“1

BkpAqϕik ` opp1q

+

M

«

1

n

n
ÿ

i“1

dSitpA; pbpρ˚q, ρ˚u

dρ˚

ff

, (S.61)

where the second equality is by (S.45) and the last second equality is due to (S.47), (S.50)

and (S.59).

We start with the denominator of (S.61). We will show that, for given A,

1

n

n
ÿ

i“1

dSitpA; pbpρ˚q, ρ˚u

dρ˚
| A

Pr
Ñ some constant. (S.62)

Note that ρ˚ denotes the value between the ρ0 and pρ, and b˚pρ0q between bpρ0q and pbpρ0q.

By (S.4), with bpρq and ρ replaced by pbpρ˚q and ρ˚, respectively and Taylor’s expansion, we

have

1

n

n
ÿ

i“1

dSitpA; pbpρ˚q, ρ˚u

dρ˚

“
1

n

n
ÿ

i“1

dSitA; pbpρ˚q, ρ˚u

dρ˚
` opp1q

“
1

n

n
ÿ

i“1

dSitA; pbpρ0q, ρ0u

dρ0
`

1

n

n
ÿ

i“1

d2SitA; pbpρ0q, ρ0u

dρ20
pρ˚ ´ ρ0q ` opp1q,

where the last equality is because pρ is n1{4-consistent. We now handle the first two terms

of the above separately. Note that }pbpρ0q ´ bpρ0q} “ OppK
α`3{2n´1{2q implied by |pbkpρ0q ´

bkpρ0q| “ Oppk
α`1n´1{2q from (S.33). Together with the Conditions (C5) and (C6), we have

1

n

n
ÿ

i“1

dSitA; pbpρ0q, ρ0u

dρ0

“
1

n

n
ÿ

i“1

dSitA; bpρ0q, ρ0u

dρ0
`

#

B

«

1

n

n
ÿ

i“1

dSitA; bpρ0q, ρ0u

dρ0

ff

M

Bbpρ0q
T

+

!

pbpρ0q ´ bpρ0q
)
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`op

´
›

›

›

pbpρ0q ´ bpρ0q
›

›

›

¯

“
1

n

n
ÿ

i“1

dSitA; bpρ0q, ρ0u

dρ0
`Op

˜
›

›

›

›

›

1

n

n
ÿ

i“1

ˆ

B

„

dSitA; bpρ0q, ρ0u

dρ0



M

Bbpρ0q
T

˙

›

›

›

›

›

¨

›

›

›

pbpρ0q ´ bpρ0q
›

›

›

¸

`op

´
›

›

›

pbpρ0q ´ bpρ0q
›

›

›

¯

“
1

n

n
ÿ

i“1

dSitA; bpρ0q, ρ0u

dρ0
`OppK

α`3{2n´1{2q ` oppK
α`3{2n´1{2q

“
1

n

n
ÿ

i“1

dSitA; bpρ0q, ρ0u

dρ0
` opp1q, (S.63)

where the inequality is due to Cauchy-Schwarz inequality. Similarly, we have

1

n

n
ÿ

i“1

d2SitA; pbpρ0q, ρ0u

dρ20
pρ˚ ´ ρ0q

“ pρ˚ ´ ρ0q

«

1

n

n
ÿ

i“1

d2SitA; bpρ0q, ρ0u

dρ20

`

#

1

n

n
ÿ

i“1

B

„

d2SitA; bpρ0q, ρ0u

dρ20



M

Bbpρ0q
T

+

!

pbpρ0q ´ bpρ0q
)

` op

´›

›

›

pbpρ0q ´ bpρ0q
›

›

›

¯

ff

“ Oppn
´1{4

q
 

Opp1q `OppK
α`3{2n´1{2q ` oppK

α`3{2n´1{2q
(

“ opp1q,

Hence, based on above results, we have

1

n

n
ÿ

i“1

dSitpA; pbpρ˚q, ρ˚u

dρ˚
“

1

n

n
ÿ

i“1

dSitA; bpρ0q, ρ0u

dρ0
` opp1q. (S.64)

We next show that

1

n

n
ÿ

i“1

dSitA; bpρ0q, ρ0u

dρ0
| A

Pr
Ñ some constant. (S.65)
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Similar to the derivative of (S.51), we have

1
?
n

n
ÿ

i“1

SitA; bpρ0q, ρ0u

“
1
?
n

 

Dpρ0qMpρ0qY ´Dpρ0qSpρ0q
TAbpρ0q

(T

ˆ

„

BDpρ0q

Bρ
Spρ0q

T
tSpρ0qY ´Abpρ0qu `Dpρq

BSpρ0q
T

Bρ
tSpρ0qY ´Abpρ0qu

`Dpρ0qSpρ0q
TBSpρ0q

Bρ
Spρ0q

´1
tSpρ0qY ´Abpρ0qu

`Dpρ0qSpρ0q
TBSpρ0q

Bρ
Spρ0q

´1Abpρ0q ´Dpρ0qSpρ0q
TA
Bbpρ0q

Bρ



,

from which we obtain that

1

n

n
ÿ

i“1

dSitA; bpρ0q, ρ0u

dρ0
“

1

n
9FT 9F`

1

n
FT:F, (S.66)

where

F “ Dpρ0qSpρ0q
Tεn,

9F “

„

BDpρ0q

Bρ
Spρ0q

Tεn `Dpρq
BSpρ0q

T

Bρ
εn `Dpρ0qSpρ0q

TBSpρ0q

Bρ
Spρ0q

´1εn

`Dpρ0qSpρ0q
TBSpρ0q

Bρ
Spρ0q

´1Abpρ0q ´Dpρ0qSpρ0q
TA
Bbpρ0q

Bρ



,

:F “
B2Dpρ0q

Bρ2
Spρ0q

Tεn

`2
BDpρ0q

Bρ

"

BSpρ0q
T

Bρ
εn ` Spρ0q

TBSpρ0q

Bρ
Y

*

`Dpρ0q
B2Mpρ0q

Bρ2
Y

´2
BDpρ0q

Bρ
Spρ0q

TA
Bbpρ0q

Bρ
´ 2Dpρ0q

BSpρ0q
T

Bρ
A
Bbpρ0q

Bρ
,
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εn “ Spρ0qY ´Abpρ0q,

and εn | A „ N p0, σ2Inq. To establish (S.65), it suffices to show that

1

n
9FT 9F | A

Pr
Ñ c˚, (S.67)

and

1

n
FT:F | A

Pr
Ñ 0, (S.68)

where c˚ is some positive constant. We first prove (S.67). Let

9F “ Gεn ` hpAq,

where

G “
BDpρ0q

Bρ
Spρ0q

T
`Dpρq

BSpρ0q
T

Bρ
`Dpρ0qSpρ0q

TBSpρ0q

Bρ
Spρ0q

´1,

and

hpAq “ Dpρ0qSpρ0q
TBSpρ0q

Bρ
Spρ0q

´1Abpρ0q ´Dpρ0qSpρ0q
TA
Bbpρ0q

Bρ
.

Then, by Lemma S2.9, we have

var

ˆ

1

n
9FT 9F | A

˙

“
1

n2
var

 

εTnGTGεn ` ε
T
nGThpAq ` hpAqTGεn ` hpAqThpAq | A

(
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“
1

n2
var

 

εTnGTGεn ` 2hpAqTGεn | A
(

“
1

n2
2σ4tracepGTGGTGq `

1

n2
trace

“

tdiagpGTGqu2
‰  

Epε41q ´ 3σ4
(

`
1

n2
4σ2hpAqTGGThpAq. (S.69)

We now check each term of (S.69). For the first term, by Lemma S2.8(a), we note that

1

n2
2σ4tracepGTGGTGq ď

1

n2
2σ4tracepGTGqλmaxpG

TGq.

Since for any matrices A, B and C with compatible dimensions, we have

λmaxtpA`B`CqTpA`B`Cqu ď 3λmaxpA
TAq ` 3λmaxpB

TBq ` 3λmaxpC
TCq,

from which, by the Condition (C8) and Remark 2, we have

λmax

`

GTG
˘

“ λmax

«

"

BDpρ0q

Bρ
Spρ0q

T
`Dpρq

BSpρ0q
T

Bρ
`Dpρ0qSpρ0q

TBSpρ0q

Bρ
Spρ0q

´1

*T

ˆ

"

BDpρ0q

Bρ
Spρ0q

T
`Dpρq

BSpρ0q
T

Bρ
`Dpρ0qSpρ0q

TBSpρ0q

Bρ
Spρ0q

´1

*

ď 3λmax

«

Spρ0q

"

BDpρ0q

Bρ

*2

Spρ0q
T

ff

` 3λmax

"

BSpρ0q

Bρ
Dpρq2

BSpρ0q
T

Bρ

*

`3λmax

"

Spρ0q
´TBSpρ0q

T

Bρ
Spρ0qDpρ0q

2Spρ0q
TBSpρ0q

Bρ
Spρ0q

´1

*

ď 3λmax

«

"

BDpρ0q

Bρ

*2
ff

λmax

 

Spρ0qSpρ0q
T
(

` 3λmax

 

Dpρq2
(

λmax

`

WWT
˘

`3λmax

 

Dpρ0q
2
(

λmax

 

Spρ0qSpρ0q
T
(

λmax

`

WTW
˘ “

λmin

 

Spρ0qSpρ0q
T
(‰´1

ď C,
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for some constant C, where the last equality is because the Conditions (C7) (C8) and Remark

2, and the second inequality is based on the fact that λmax

`

BTAB
˘

ď λmaxpAqλmax

`

BTB
˘

,

where A and B are two matrices, and A is positive semidefinite matrix.

Similarly,

1

n2
trace

`

GTG
˘

“
1

n2
trace

«

"

BDpρ0q

Bρ
Spρ0q

T
`Dpρq

BSpρ0q
T

Bρ
`Dpρ0qSpρ0q

TBSpρ0q

Bρ
Spρ0q

´1

*T

ˆ

"

BDpρ0q

Bρ
Spρ0q

T
`Dpρq

BSpρ0q
T

Bρ
`Dpρ0qSpρ0q

TBSpρ0q

Bρ
Spρ0q

´1

*

ď 3
1

n2
trace

"

Spρ0q
BDpρ0q

Bρ

BDpρ0q

Bρ
Spρ0q

T

*

`3
1

n2
trace

"

BSpρ0q

Bρ
Dpρq2

BSpρ0q
T

Bρ

*

`3
1

n2
trace

"

Spρ0q
´TBSpρ0q

T

Bρ
Spρ0qDpρ0q

2Spρ0q
TBSpρ0q

Bρ
Spρ0q

´1

*

“ 3
1

n2
trace

«

Spρ0q
TSpρ0q

"

BDpρ0q

Bρ

*2
ff

`3
1

n2
trace

"

BSpρ0q
T

Bρ

BSpρ0q

Bρ
Dpρq2

*

`3
1

n2
trace

"

Spρ0qDpρ0q
2Spρ0q

TBSpρ0q

Bρ
Spρ0q

´1Spρ0q
´TBSpρ0q

T

Bρ

*

ď 3
1

n2
trace

 

Spρ0q
TSpρ0q

(

λmax

«

"

BDpρ0q

Bρ

*2
ff

`3
1

n2
trace

"

BSpρ0q
T

Bρ

BSpρ0q

Bρ

*

λmax

 

Dpρq2
(

`3
1

n2
λmax

 

Spρ0qDpρ0q
2Spρ0q

T
(

trace

"

BSpρ0q

Bρ
Spρ0q

´1Spρ0q
´TBSpρ0q

T

Bρ

*

ď 3
1

n2
trace

 

Spρ0q
TSpρ0q

(

λmax

«

"

BDpρ0q

Bρ

*2
ff

`3
1

n2
trace

`

WTW
˘

λmax

 

Dpρq2
(

`3
1

n2
λmax

 

Dpρ0q
2
(

λmax

 

Spρ0q
TSpρ0q

(

trace

"

Spρ0q
´1Spρ0q

´TBSpρ0q
T

Bρ

BSpρ0q

Bρ

*
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ď 3
1

n2
trace

 

Spρ0q
TSpρ0q

(

λ2max

"

BDpρ0q

Bρ

*

`3
1

n2
trace

`

WTW
˘

λmax

 

Dpρq2
(

`3
1

n2
λmax

 

Dpρ0q
2
(

λmax

 

Spρ0q
TSpρ0q

(

λmax

 

Spρ0q
´1Spρ0q

´T
(

trace
`

WTW
˘

.

Note that, by
řn
i“1wji “ 1 for any 1 ď i, j ď n,

trace
 

Spρ0q
TSpρ0q

(

ď 2tracepInq ` 2ρ20tracepWTWq

“ 2n` 2ρ20

n
ÿ

j“1

n
ÿ

i“1

w2
ij

ď 2n` 2ρ20

n
ÿ

j“1

n
ÿ

i“1

wij

ď p2` 2ρ20qn. (S.70)

Thus, based on above derivation, we have

1

n2
trace

`

GTG
˘

ď 3
1

n2
trace

 

Spρ0q
TSpρ0q

(

λ2max

"

BDpρ0q

Bρ

*

`3
1

n2
trace

`

WTW
˘

λmax

 

Dpρq2
(

`3
1

n2
λmax

 

Dpρ0q
2
(

λmax

 

Spρ0q
TSpρ0q

(

λmax

 

Spρ0q
´1Spρ0q

´T
(

trace
`

WTW
˘

ď
6

n
p1` ρ20qλ

2
max

"

BDpρ0q

Bρ

*

` 3
1

n
λmax

 

Dpρq2
(

`3
1

n
λmax

 

Dpρ0q
2
(

λmax

 

Spρ0q
TSpρ0q

(

{λmin

 

Spρ0q
TSpρ0q

(

“ O

ˆ

1

n

˙

.
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Therefore, we have

1

n2
2σ4tracepGTGGTGq ď

1

n2
2σ4tracepGTGqλmaxpG

TGq

“ O

ˆ

1

n

˙

, (S.71)

and

1

n2
trace

“

tdiagpGTGqu2
‰  

Epε41q ´ 3σ4
(

ď
1

n2
tracepGTGGTGq

 

Epε41q ´ 3σ4
(

“ O

ˆ

1

n

˙

. (S.72)

For the third term of (S.69), we have

4σ2 1

n2
hpAqTGGThpAq

ď 4σ2 1

n2
λmax

`

GGT
˘

hpAqThpAq

ď 8σ2 C

n2
ˆ

"

bpρ0q
TATSpρ0q

´TBSpρ0q
T

Bρ
Spρ0qDpρ0q

2Spρ0q
TBSpρ0q

Bρ
Spρ0q

´1Abpρ0q

`
Bbpρ0q

T

Bρ
ATSpρ0qDpρ0q

2Spρ0q
TA
Bbpρ0q

Bρ

*

ď 8σ2C

n
ˆ

«

λ2max tDpρ0quλmax

 

Spρ0qSpρ0q
T
(

λmax

`

WTW
˘

ˆλmax

 

Spρ0q
´TSpρ0q

´1
(

λmax

ˆ

1

n
ATA

˙

}bpρ0q}
2

`λ2max tDpρ0quλmax

 

Spρ0qSpρ0q
T
(

λmax

ˆ

1

n
ATA

˙
›

›

›

›

Bbpρ0q

Bρ

›

›

›

›

2
ff

“ O

ˆ

1

n

˙

. (S.73)

where the last equality is also due to the Condition (C7), (C8) and Remark 2. Combining
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(S.69), (S.71),(S.72) and (S.73), we conclude that

var

ˆ

1

n
9FT 9F | A

˙

“ O

ˆ

1

n

˙

“ op1q,

for given A. By the law of large numbers, this implies (S.67). We next prove (S.68).

By the expression of F and :F and (2.6), we have

FT:F “ εTnSpρ0qDpρ0q
B2Dpρ0q

Bρ2
Spρ0q

Tεn

`2εTnSpρ0qDpρ0q
BDpρ0q

Bρ

"

BSpρ0q
T

Bρ
εn ` Spρ0q

TBSpρ0q

Bρ
Y

*

`εTnSpρ0qDpρ0q
2B

2Mpρ0q

Bρ2
Y

´2εTnSpρ0qDpρ0q
BDpρ0q

Bρ
Spρ0q

TA
Bbpρ0q

Bρ

´2εTnSpρ0qDpρ0q
2BSpρ0q

T

Bρ
A
Bbpρ0q

Bρ

“ εTn

"

Spρ0qDpρ0q
B2Dpρ0q

Bρ2
Spρ0q

T
` 2Spρ0qDpρ0q

BDpρ0q

Bρ

BSpρ0q
T

Bρ

*

εn

`εTn

"

2Spρ0qDpρ0q
BDpρ0q

Bρ
Spρ0q

TBSpρ0q

Bρ
` Spρ0qDpρ0q

2B
2Mpρ0q

Bρ2

*

Y

´2εTnSpρ0qDpρ0q
BDpρ0q

Bρ
Spρ0q

TA
Bbpρ0q

Bρ

´2εTnSpρ0qDpρ0q
2BSpρ0q

T

Bρ
A
Bbpρ0q

Bρ

“ εTnG2εn ` ε
T
nh2pAq, (S.74)

where

G2 “ Spρ0qDpρ0q
B2Dpρ0q

Bρ2
Spρ0q

T
` 2Spρ0qDpρ0q

BDpρ0q

Bρ

BSpρ0q
T

Bρ

`

"

2Spρ0qDpρ0q
BDpρ0q

Bρ
Spρ0q

TBSpρ0q

Bρ
` Spρ0qDpρ0q

2B
2Mpρ0q

Bρ2

*

S´1pρ0q,
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and

h2pAq “

"

2Spρ0qDpρ0q
BDpρ0q

Bρ
Spρ0q

TBSpρ0q

Bρ
` Spρ0qDpρ0q

2B
2Mpρ0q

Bρ2

*

Spρ0q
´1Abpρ0q

´2Spρ0qDpρ0q
BDpρ0q

Bρ
Spρ0q

TA
Bbpρ0q

Bρ

´2Spρ0qDpρ0q
2BSpρ0q

T

Bρ
A
Bbpρ0q

Bρ
.

By Lemma S2.9 and Lemma S2.8(c), we have

var

ˆ

1

n
FT:F | A

˙

“
1

n2
var

 

εTnG2εn ` ε
T
nh2pAq

(

“
1

n2
σ4

 

tracepG2G
T
2 q ` trace

`

G2
2

˘(

`
1

n2
tracetdiag2

pG2qu
 

Epε41q ´ 3σ4
(

`
1

n2
σ2h2pAq

Th2pAq

ď
2

n2
σ4tracepG2G

T
2 q `

1

n2
trace

“

tdiagpG2qu
2
‰  

Epε41q ´ 3σ4
(

`
1

n2
σ2h2pAq

Th2pAq

ď
1

n2
tracepG2G

T
2 q

 

2σ4
`
ˇ

ˇEpε41q ´ 3σ4
ˇ

ˇ

(

`
1

n2
σ2h2pAq

Th2pAq. (S.75)

Note that

1

n2
tracepG2G

T
2 q

ď 4
1

n2
trace

"

Spρ0qDpρ0q
B2Dpρ0q

Bρ2
Spρ0q

TSpρ0q
B2Dpρ0q

Bρ2
Dpρ0qSpρ0q

T

*

`16
1

n2
trace

"

Spρ0qDpρ0q
BDpρ0q

Bρ

BSpρ0q
T

Bρ

BSpρ0q

Bρ

BDpρ0q

Bρ
Dpρ0qSpρ0q

T

*

`16
1

n2
trace

"

Spρ0qDpρ0q
BDpρ0q

Bρ
Spρ0q

TBSpρ0q

Bρ
S´1pρ0q

ˆS´Tpρ0q
BSpρ0q

T

Bρ
Spρ0q

BDpρ0q

Bρ
Dpρ0qSpρ0q

T

*
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`4
1

n2
trace

"

Spρ0qDpρ0q
2B

2Mpρ0q

Bρ2
S´1pρ0qS

´T
pρ0q

B2Mpρ0q

Bρ2
Dpρ0q

2Spρ0q
T

*

ď 4
1

n2
λmax

 

Spρ0q
TSpρ0q

(

λ2max tDpρ0quλ
2
max

"

B2Dpρ0q

Bρ2

*

trace
 

Spρ0q
TSpρ0q

(

`16
1

n2
λmax

 

Spρ0q
TSpρ0q

(

λ2max tDpρ0quλ
2
max

"

BDpρ0q

Bρ

*

trace
`

WTW
˘

`16
1

n2
λ2max

 

Spρ0q
TSpρ0q

(

λ2max tDpρ0quλ
2
max

"

BDpρ0q

Bρ

*

λ´1min

 

Spρ0q
TSpρ0q

(

trace
`

WWT
˘

`16
1

n2
λmax

 

Spρ0q
TSpρ0q

(

λ4max tDpρ0quλ
´1
min

 

Spρ0q
TSpρ0q

(

λmax

`

WTW
˘

trace
`

WTW
˘

“ O

ˆ

1

n

˙

,

where the last equality is by the Condition (C8) and (S.70).

Similarly,

1

n2
h2pAq

Th2pAq

“
1

n2

„"

2Spρ0qDpρ0q
BDpρ0q

Bρ
Spρ0q

TBSpρ0q

Bρ
` Spρ0qDpρ0q

2B
2Mpρ0q

Bρ2

*

Spρ0q
´1Abpρ0q

´2Spρ0qDpρ0q
BDpρ0q

Bρ
Spρ0q

TA
Bbpρ0q

Bρ

´2Spρ0qDpρ0q
2BSpρ0q

T

Bρ
A
Bbpρ0q

Bρ

T

ˆ

„"

2Spρ0qDpρ0q
BDpρ0q

Bρ
Spρ0q

TBSpρ0q

Bρ
` Spρ0qDpρ0q

2B
2Mpρ0q

Bρ2

*

Spρ0q
´1Abpρ0q

´2Spρ0qDpρ0q
BDpρ0q

Bρ
Spρ0q

TA
Bbpρ0q

Bρ

´2Spρ0qDpρ0q
2BSpρ0q

T

Bρ
A
Bbpρ0q

Bρ



ď
16

n2
bpρ0q

TATSpρ0q
´TBSpρ0q

T

Bρ
Spρ0q

BDpρ0q

Bρ
Dpρ0qSpρ0q

T

ˆSpρ0qDpρ0q
BDpρ0q

Bρ
Spρ0q

TBSpρ0q

Bρ
Spρ0q

´1Abpρ0q

`
4

n2
bpρ0q

TATSpρ0q
´TB

2Mpρ0q
T

Bρ2
Dpρ0q

2Spρ0q
TSpρ0qDpρ0q

2B
2Mpρ0q

Bρ2
Spρ0q

´1Abpρ0q

`
16

n2

Bbpρ0q
T

Bρ
ATSpρ0q

BDpρ0q

Bρ
Dpρ0qSpρ0q

TSpρ0qDpρ0q
BDpρ0q

Bρ
Spρ0q

TA
Bbpρ0q

Bρ
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`
16

n2

Bbpρ0q
T

Bρ
ATBSpρ0q

Bρ
Dpρ0q

2Spρ0q
TSpρ0qDpρ0q

2BSpρ0q
T

Bρ
A
Bbpρ0q

Bρ

ď
16

n
λmax

 

Spρ0q
TSpρ0q

(

λ2max tDpρ0quλ
2
max

"

BDpρ0q

Bρ

*

λmax

 

Spρ0qSpρ0q
T
(

λmax

`

WTW
˘

λ´1min

 

Spρ0qSpρ0q
T
(

λmax

ˆ

1

n
ATA

˙

}bpρ0q}
2

`
16

n
λmax

 

Spρ0q
TSpρ0q

(

λ4max tDpρ0quλmax

`

WTW
˘

ˆλmax

`

WWT
˘

λ´1min

 

Spρ0qSpρ0q
T
(

λmax

ˆ

1

n
ATA

˙

}bpρ0q}
2

`
16

n
λmax

 

Spρ0q
TSpρ0q

(

λ2max tDpρ0quλ
2
max

"

BDpρ0q

Bρ

*

ˆλmax

 

Spρ0qSpρ0q
T
(

λmax

ˆ

1

n
ATA

˙
›

›

›

›

Bbpρ0q

Bρ

›

›

›

›

2

`
16

n
λmax

 

Spρ0q
TSpρ0q

(

λ4max tDpρ0quλmax

`

WWT
˘

λmax

ˆ

1

n
ATA

˙
›

›

›

›

Bbpρ0q

Bρ

›

›

›

›

2

“ O

ˆ

1

n

˙

.

Based on above results and (S.75), we have

var

ˆ

1

n
FT:F | A

˙

“ O

ˆ

1

n

˙

.

We also verify that EpF:Fq “ 0 in the Supplementary Material S3.13. Then we obtain (S.68).

Therefore, together with (S.67), (S.68) and (S.66), we conclude that

1

n

n
ÿ

i“1

dSitA; bpρ0q, ρ0u

dρ0
| A

Pr
Ñ c˚, (S.76)

where c˚ is defined in (S.67). Combining (S.64) and (S.76), we complete the proof of (S.62).

We next show that the asymptotic normality of numerator of (S.61). Note that

n´3{4
n
ÿ

i“1

K
ÿ

k“1

BkpAqϕik ` opp1q “ n´3{4
n
ÿ

i“1

CipAq ` opp1q,
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where CipAq “
řK
k“1 BkpAqϕik, the expression of BkpAq and ϕik refer to (S.42) and (S.28).

Note that CipAq’s are i.i.d for i “ 1, . . . , n for given A, Etn´3{4
řn
i“1 CipAqu “ 0 from (S.46)

and vartn´3{4
řn
i“1 CipAqu “ Σ1, where Σ1 is defined as (S.60). Then, by the central limit

theorem, we have n´3{4
řn
i“1 CipAq

d
Ñ N p0,Σ1q as nÑ 8.

Therefore, according to above results, (S.62) and(S.61), we have, for given A,

n1{4
ppρ´ ρ0q

d
Ñ N p0,Σq,

where Σ “ c´2˚ Σ1.

S3.11 Proof of (S.36)

To prove the (S.36), we first verify the following equation.

E

„
ĳ

tZipuqZipvq ´Gpu, vquφkpsqφ`ptqdsdt

2

“ Opλkλ`q. (S.77)

Since

Epξikξi`q “

ĳ

Gps, tqφkpsqφ`ptqdsdt

“

$

’

’

’

&

’

’

’

%

λk, if k “ `,

0, if k ‰ `,

we have, for k ‰ `,

ĳ

tZipsqZiptq ´Gps, tquφkpsqφ`ptqdsdt

“

ż

Zipsqφkpsqds

ż

Ziptqφ`ptqdt
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“ ξikξi`,

and by Condition (C1),

Etpξikξi`q
2
u ď tEpξ4ikqEpξ

4
i`qu

1{2

ď Cλkλ`.

Hence (S.77) follows. This leads to

ĳ

tZipuqZipvq ´Gpu, vquφkpsqφ`ptqdsdt “ Oppλ
1{2
k λ

1{2
` q,

from which and combined with (S.14), we have

ÿ

`:`‰k

pλk ´ λ`q
´1

ĳ

tZipuqZipvq ´Gpu, vquφkpuqφ`pvqdudv “ Oppklogkq. (S.78)

Next we prove (S.36). Recall that gptq “ EtY ˚i Ziptqu,
ş

φ2
kptqdt “ 1, and according to (S.28),

Eϕjk “ 0, ϕjk’s are i.i.d for j “ 1, . . . , n. Further incorporating Condition (C4), Lemma

S2.3 and (S.78), we have

var

˜

n´3{4
n
ÿ

j“1

ϕjk

¸

“ E

˜

n´3{4
n
ÿ

j“1

ϕjk

¸2

“ n´1{2E

"ˆ

λ´1k

ż

φkptq rY
˚
i Ziptq ´ E tY

˚
i Ziptqus dt` λ

´1
k

ż

E tY ˚i Ziptqu

ˆ

«

ÿ

`:`‰k

pλk ´ λ`q
´1φkptq

ĳ

tZipuqZipvq ´Gpu, vquφkpuqφ`pvqdudv

ff

dt

´λ´2k pξ
2
ik ´ λkq

ż

φkptqgptqdt

˙*2
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ď 3n´1{2λ´2k E

#

ˆ
ż

φkptq rY
˚
i Ziptq ´ E tY

˚
i Ziptqus dt

˙2
+

`3n´1{2λ´2k E

#˜

ż

E tY ˚i Ziptqu

«

ÿ

`:`‰k

pλk ´ λ`q
´1φkptq

ˆ

ĳ

tZipuqZipvq ´Gpu, vquφkpuqφ`pvqdudv



dt

˙2
+

`3n´1{2λ´4k Etpξ2ik ´ λkq
2
u

"
ż

φkptqgptqdt

*2

ď 3n´1{2λ´2k

ż

E rY ˚i Ziptq ´ E tY
˚
i Ziptqus

2 dt

"
ż

φ2
kptqdt

*

`3n´1{2λ´2k

"
ż

g2ptqdt

*

ˆE

¨

˝

ż

«

ÿ

`:`‰k

pλk ´ λ`q
´1φkptq

ĳ

tZipuqZipvq ´Gpu, vquφkpuqφ`pvqdudv

ff2

dt

˛

‚

`3pC ´ 1qn´1{2λ´2k

"
ż

g2ptqdt

*"
ż

φ2
kptqdt

*

ď 3n´1{2λ´2k

ż

var tY ˚i Ziptqu dt

"
ż

φ2
kptqdt

*

`3n´1{2λ´2k

"
ż

g2ptqdt

*

ˆE

«

ÿ

`:`‰k

pλk ´ λ`q
´1

ĳ

tZipuqZipvq ´Gpu, vquφkpuqφ`pvqdudv

ff2
ż

φ2
kptqdt

`3Cn´1{2λ´2k

"
ż

g2ptqdt

*"
ż

φ2
kptqdt

*

ď 3n´1{2λ´2k

ż

E tY ˚i Ziptqu
2 dt` 3 rCn´1{2λ´2k }g}

2
pklogkq2 ` 3Cn´1{2λ´2k }g}

2

ď 3C2n´1{2k2αE
`

Y ˚i
4
˘

ż

E
 

Z4
i ptq

(

dt` 3 rCC2n´1{2k2αp}g}klogkq2 ` 3C3n´1{2k2α}g}2

“ Otn´1{2k2α`2plogkq2u,

where the last equality is due to the Condition (C1). Together with Eϕjk “ 0, this gives

n´3{4
n
ÿ

j“1

ϕjk “ Op

 

n´1{4kα`1plogkq
(

,
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which leads to, by Condition (C5),

K
ÿ

k“1

˜

n´3{4
n
ÿ

j“1

ϕjk

¸

“ Op

#

n´1{4
K
ÿ

k“1

kα`1plogkq

+

“ Op

ˆ

n´1{4
ż K`1

1

xα`1logxdx

˙

“ Op

ˆ

n´1{4
„

1

α ` 2
logpK ` 1qpK ` 1qα`2 ´

1

pα ` 2q2
 

pK ` 1qα`2 ´ 1
(

˙

“ Oppn
´1{4logKKα`2

q

“ Opp1q.

This verifies (S.36).

S3.12 Proof of (S.43)

For the first part of (S.43), using Lemma S2.7, the Condition (C8) and covpεq “ σ2In, we

note that

E
 

A 2
k pAq | A

(

“
1

n2
E
 

εTS´Tpρ0qW
TSpρ0qDpρ0q

2Spρ0q
TAeke

T
kATSpρ0qDpρ0q

2Spρ0q
TWS´1pρ0qε | A

(

“
σ2

n2
trace

 

S´Tpρ0qW
TSpρ0qDpρ0q

2Spρ0q
TAeke

T
kATSpρ0qDpρ0q

2Spρ0q
TWS´1pρ0q | A

(

“
σ2

n2
trace

 

eT
kATSpρ0qDpρ0q

2Spρ0q
TWS´1pρ0qS

´T
pρ0qW

TSpρ0qDpρ0q
2Spρ0q

TAek | A
(

“
σ2

n2
eT
kATSpρ0qDpρ0q

2Spρ0q
TWS´1pρ0qS

´T
pρ0qW

TSpρ0qDpρ0q
2Spρ0q

TAek

ď σ2λmax

 

S´1pρ0qS
´T
pρ0q

(

λmax

`

WWT
˘

λmax

 

Spρ0q
TSpρ0q

(

ˆλmax

 

Dpρ0q
4
(

λmax

 

Spρ0qSpρ0q
T
(

λmax

ˆ

1

n
ATA

˙ˆ

1

n
eT
k ek

˙
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“
σ2

n
rλmin tMpρ0qus

´1 λmax

`

WWT
˘

λmax

 

Spρ0q
TSpρ0q

(

ˆλmax

 

Dpρ0q
4
(

λmax

 

Spρ0qSpρ0q
T
(

λmax

ˆ

1

n
ATA

˙

ď
1

n
C,

for fixed A and some constant C, where the last equality is due to Remark 2. Hence,

EtA 2
k pAqu “ ErEtA 2

k pAq | Aus “ Op1{nq. This shows that AkpAq “ Opp1{
?
nq.

For the second part of (S.43), write

BkpAq “ Bk1pAq `Bk2pAq,

where

Bk1pAq “
1

n
bTATS´Tpρ0qW

TSpρ0qDpρ0q
2Spρ0q

TAek,

and

Bk2pAq “
1

n

Bbpρ0q
T

Bρ
ATSpρ0qDpρ0q

2Spρ0q
TAek.

Similarly, by the Condition (C3),

E
 

B2
k1pAq | A

(

“
1

n2
E
 

bTATSpρ0q
´TWTSpρ0qDpρ0q

2Spρ0q
TAeke

T
kATSpρ0qDpρ0q

2Spρ0q
TWSpρ0q

´1Ab | A
(

“
1

n2
bTATSpρ0q

´TWTSpρ0qDpρ0q
2Spρ0q

TAeke
T
kATSpρ0qDpρ0q

2Spρ0q
TWSpρ0q

´1Ab

ď λmax

`

eke
T
k

˘

λmax

ˆ

1

n
AAT

˙

λmax

 

Spρ0q
TSpρ0q

(

λmax

 

Dpρ0q
4
(

λmax

 

Spρ0qSpρ0q
T
(
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ˆλmax

`

WTW
˘

λmax

 

Spρ0q
´TSpρ0q

´1
(

λmax

ˆ

1

n
ATA

˙

bTb

“ λmax

ˆ

1

n
AAT

˙

λmax

 

Spρ0q
TSpρ0q

(

λmax

 

Dpρ0q
4
(

λmax

 

Spρ0qSpρ0q
T
(

ˆλmax

`

WTW
˘

λmax

 

Spρ0q
´TSpρ0q

´1
(

λmax

ˆ

1

n
ATA

˙

˜

K
ÿ

k“1

b2k

¸

ď C1λmax

ˆ

1

n
AAT

˙

λmax

 

Spρ0q
TSpρ0q

(

λmax

 

Dpρ0q
4
(

λmax

 

Spρ0qSpρ0q
T
(

ˆλmax

`

WTW
˘ “

λmin

 

Spρ0qSpρ0q
T
(‰´1

λmax

ˆ

1

n
ATA

˙

ď C2.

Similar derivation can show that, for some constant C3, EtB2
k2pAq | Au ď C3. Since

EtB2
kpAq | Au ď 2EtB2

k1pAq | Au ` 2EtB2
k2pAq | Au, we have BkpAq “ Opp1q.

S3.13 Proof of EpFT:Fq “ 0

Next we show that EpFT:Fq “ 0. Note that, by wii “ 0 for i “ 1, . . . , n, we have

Mpρq “ SpρqTSpρq “ In ´ ρW ´ ρWT
` ρ2WTW,

BMpρq

Bρ
“ ´W ´WT

` 2ρWTW,

B2Mpρq

Bρ2
“ 2WTW,

Dpρq “ tdiagMpρqu´1 “
 

In ` ρ
2diagpWTWq

(´1
,

BDpρq

Bρ
“ ´

 

In ` ρ
2diagpWTWq

(´2
diagp2ρWTWq

“ ´tDpρqu2diagp2ρWTWq,

B2Dpρq

Bρ2
“ 2

 

In ` ρ
2diagpWTWq

(´3
tdiagp2ρWTWqu

2

´
 

In ` ρ
2diagpWTWq

(´2
diagp2WTWq

“ 2tDpρqu3tdiagp2ρWTWqu
2
´ 2 tDpρqu2 diagpWTWq.
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By (S.74), we rewrite FT:F as follows.

FT:F “ εTn

"

Spρ0qDpρ0q
B2Dpρ0q

Bρ2
Spρ0q

T
` 2Spρ0qDpρ0q

BDpρ0q

Bρ

BSpρ0q
T

Bρ

*

εn

`εTn

"

2Spρ0qDpρ0q
BDpρ0q

Bρ
Spρ0q

TBSpρ0q

Bρ
` Spρ0qDpρ0q

2B
2Mpρ0q

Bρ2

*

Y

´2εTnSpρ0qDpρ0q
BDpρ0q

Bρ
Spρ0q

TA
Bbpρ0q

Bρ
´ 2εTnSpρ0qDpρ0q

2BSpρ0q
T

Bρ
A
Bbpρ0q

Bρ

“ εTnSpρ0qDpρ0q
B2Dpρ0q

Bρ2
Spρ0q

Tεn

`2εTnSpρ0qDpρ0q
BDpρ0q

Bρ

"

BSpρ0q
T

Bρ
εn ` Spρ0q

TBSpρ0q

Bρ
Y

*

`εTnSpρ0qDpρ0q
2B

2Mpρ0q

Bρ2
Y

`

"

´2εTnSpρ0qDpρ0q
BDpρ0q

Bρ
Spρ0q

TA
Bbpρ0q

Bρ
´ 2εTnSpρ0qDpρ0q

2BSpρ0q
T

Bρ
A
Bbpρ0q

Bρ

*

” S1 ` S2 ` S3 ` S4.

Note that EpS4 | Aq “ 0 and

EpS1 | Aq “ E

"

εTnSpρ0qDpρ0q
B2Dpρ0q

Bρ2
Spρ0q

Tεn | A

*

“ σ2trace

"

Spρ0qDpρ0q
B2Dpρ0q

Bρ2
Spρ0q

T

*

“ σ2trace

"

B2Dpρ0q

Bρ2
Mpρ0qDpρ0q

*

“ σ2trace

"

B2Dpρ0q

Bρ2

*

,

where the last equality is due to Dpρq “ tdiagMpρqu´1. By (2.6), we have

EpS2 | Aq “ E

„

2εTnSpρ0qDpρ0q
BDpρ0q

Bρ

"

BSpρ0q
T

Bρ
εn ` Spρ0q

TBSpρ0q

Bρ
Y

*

| A



“ 2σ2trace

"

Dpρ0q
BDpρ0q

Bρ

BSpρ0q
T

Bρ
Spρ0q

*
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`2E

"

εTnSpρ0qDpρ0q
BDpρ0q

Bρ
Spρ0q

TBSpρ0q

Bρ
S´1pρ0qεn | A

*

“ 2σ2trace

"

Dpρ0q
BDpρ0q

Bρ

BSpρ0q
T

Bρ
Spρ0q

*

`2σ2trace

"

Dpρ0q
BDpρ0q

Bρ
Spρ0q

TBSpρ0q

Bρ

*

,

and

EpS3 | Aq “ E

"

εTnSpρ0qDpρ0q
2B

2Mpρ0q

Bρ2
S´1pρ0qεn | A

*

“ σ2trace

"

Dpρ0q
2B

2Mpρ0q

Bρ2

*

.

Now

EpS2 | Aq “ 2σ2trace

"

Dpρ0q
BDpρ0q

Bρ

BSpρ0q
T

Bρ
Spρ0q

*

`2σ2trace

"

Dpρ0q
BDpρ0q

Bρ
Spρ0q

TBSpρ0q

Bρ

*

“ 2σ2trace

"

Dpρ0q
BDpρ0q

Bρ

BSpρ0q
T

Bρ

*

´2ρσ2trace

"

Dpρ0q
BDpρ0q

Bρ

BSpρ0q
T

Bρ
W

*

`2σ2trace

"

Dpρ0q
BDpρ0q

Bρ

BSpρ0q

Bρ

*

´2ρσ2trace

"

Dpρ0q
BDpρ0q

Bρ
WTBSpρ0q

Bρ

*

“ ´2σ2trace

"

Dpρ0q
BDpρ0q

Bρ
WT

*

`2ρσ2trace

"

Dpρ0q
BDpρ0q

Bρ
WTW

*

´2σ2trace

"

Dpρ0q
BDpρ0q

Bρ
W

*

`2ρσ2trace

"

Dpρ0q
BDpρ0q

Bρ
WTW

*

“ 4ρσ2trace

"

Dpρ0q
BDpρ0q

Bρ
WTW

*
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“ ´4ρσ2trace
“

Dpρ0q
 

Dpρq2diagp2ρWTWq
(

WTW
‰

“ ´2σ2trace
”

tDpρ0qu
3
 

diagp2ρWTWq
(2
ı

,

where the last third equality is due to wii “ 0. It is also observed that

EpS3 | Aq “ σ2trace

"

Dpρ0q
2B

2Mpρ0q

Bρ2

*

“ 2σ2trace
“

tDpρ0qu
2WTW

‰

,

and

EpS1 | Aq “ σ2trace

"

B2Dpρ0q

Bρ2

*

“ 2σ2trace
“

tDpρqu3tdiagp2ρWTWqu
2
‰

´2σ2trace
“

tDpρqu2 diagpWTWq
‰

.

Consequently, we have

EpFT:F | Aq “ EpS1 ` S2 ` S3 ` S4 | Aq

“ 0.

This completes the proof.

S3.14 Proof of Lemma S2.10

Part (a) follows from Lemma 3 of Kong et al. (2016). For part (i) in (b), let Tis “ ppξis´ξisqξik

and define rn “ k1´α{2n´1{2 for notational convenience, where 1 ď s ď K0 and K0` 1 ď k ď
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K˚. Then, by Condition (C7) and Lemma S2.4(c), it follows that Tis “ Opprnq. Note that

›

›

›

›

1
?
n

´

pAT
0 ´AT

0

¯

Ak

›

›

›

›

“

$

&

%

K
ÿ

s“1

˜

1
?
n

n
ÿ

i“1

Tis

¸2
,

.

-

1{2

,

and

˜

1
?
n

n
ÿ

i“1

Tis

¸2

“
1

n

n
ÿ

i“1

T 2
is `

npn´ 1q

n
Uns, (S.79)

where Uns “
1

npn´1q

ř

i‰j TisTjs. It is obvious that 1
n

řn
i“1 T

2
is “ Oppr

2
nq. Since k ‰ s, and by

Lemma S2.4(c), we have

|EpTisq| “ |Etppξis ´ ξisqξiku|

ď |Etppξis ´ pξ
r´is
is qξiku| ` |Etppξ

r´is
is ´ ξisqξiku|

“ |Etppξis ´ pξ
r´is
is qξiku|

“ |Ertppξis ´ ξisq ´ ppξ
r´is
is ´ ξisqξikus|

“ a|k1´α{2n´1{2 ´ k1´α{2pn´ 1q´1{2|

“ Opk1´α{2n´3{2q,

where the second equality holds because pξ
r´is
is and ξik are uncorrelated, and a is a positive

constant. This leads to

E

ˆ

npn´ 1q

n
Uns

˙

“
1

n

ÿ

i‰j

EpTisqEpTjsq

“
1

n
npn´ 1qOpk2´αn´3q

“ Opk2´αn´2q.
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Further, using Lemma 5.2.1A in Serfling (1980) and some calculations, we obtain

varpUnsq “
2

npn´ 1q
r2pn´ 2qpETisq

2varpTisq ` tvarpTisqu
2
` 2pETisq

2varpT 2
isqs

“ O

ˆ

r4n
n

˙

,

and

var

ˆ

npn´ 1q

n
Uns

˙

“ Opnr4nq.

Hence, by (S.79), we have

˜

1
?
n

n
ÿ

i“1

Tis

¸2

“ Oppr
2
nq `Opk

2´αn´2q `Oppn
1{2r2nq “ Oppk

2´αn´1{2q,

from which we have

$

&

%

K
ÿ

s“1

˜

1
?
n

n
ÿ

i“1

Tis

¸2
,

.

-

1{2

“ Op

ˆ

K3{2´α{2

n1{4

˙

.

For part (ii) in (b), it follows that

›

›

›

pAproj
k ´ Aproj

k

›

›

›

“

›

›

›

pQ0
pAk ´Q0Ak

›

›

›

ď

›

›

›

pAk ´ Ak

›

›

›
`

›

›

›

pA0ppA
T
0
pA0q

´1
pAT

0Ak ´A0pA
T
0 A0q

´1AT
0Ak

›

›

›
. (S.80)

By Lemma S2.4(c), we have }pAk´Ak} “ Oppk
1´α{2q “ Opp1q. We next show that the second
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term of (S.80) is bounded in probability. Note that

›

›

›

pA0ppA
T
0
pA0q

´1
pAT

0Ak ´A0pA
T
0 A0q

´1AT
0Ak

›

›

›

ď

›

›

›

´

pA0 ´A0

¯

ppAT
0
pA0q

´1
pAT

0Ak

›

›

›

`

›

›

›
A0

”

ppAT
0
pA0q

´1
´ pAT

0 A0q
´1
ı

pAT
0Ak

›

›

›

`

›

›

›
A0pA

T
0 A0q

´1
´

pA0 ´A0

¯

Ak

›

›

›

“ (I)+(II)+(III). (S.81)

We now analyze each term of (S.81). We first consider the second term (II). For arbitrary

matrix M, let }M}F be its Frobenius norm. Note that for any conformable matrices matrices

A,B,C, the inequality }AB}F ď }A}}B}F and }ABC}F ď }A}}B}F}C} hold. Then, by

combining Condition (C8), Lemma S2.4(c), Lemma S2.5 and part (a), we obtain that

›

›

›

›

´

pAT
0
pA0{n

¯´1

´
`

AT
0 A0{n

˘´1

›

›

›

›

F

“

›

›

›

›

´
`

AT
0 A0{n

˘´1
„

1
?
n

´

pA0 ´A0

¯T
ˆ

1
?
n

A0

˙

`

ˆ

1
?
n

AT
0

˙

1
?
n

´

pA0 ´A0

¯

`
1
?
n

´

pA0 ´A0

¯T 1
?
n

´

pA0 ´A0

¯



´

pAT
0
pA0{n

¯´1
›

›

›

›

F

ď 2
›

›

›

`

AT
0 A0{n

˘´1
›

›

›

›

›

›

›

1
?
n

´

pA0 ´A0

¯T
ˆ

1
?
n

A0

˙
›

›

›

›

F

›

›

›

›

´

pAT
0
pA0{n

¯´1
›

›

›

›

`

›

›

›

`

AT
0 A0{n

˘´1
›

›

›

›

›

›

›

1
?
n

´

pA0 ´A0

¯T 1
?
n

´

pA0 ´A0

¯

›

›

›

›

F

›

›

›

›

´

pAT
0
pA0{n

¯´1
›

›

›

›

ď 2λ´1min

`

AT
0 A0{n

˘

›

›

›

›

1
?
n

´

pAT
0 ´A0

¯T
›

›

›

›

F

λ1{2max

`

A0A
T
0 {n

˘

λ´1min

´

pAT
0
pA0{n

¯

`λ´1min

`

AT
0 A0{n

˘

›

›

›

›

1
?
n

´

pAT
0 ´A0

¯T
›

›

›

›

F

λ1{2max

"

1

n

´

pA0 ´A0

¯T ´

pA0 ´A0

¯

*

λ´1min

´

pAT
0
pA0{n

¯

“ 2λ´1min

`

AT
0 A0{n

˘

›

›

›

›

1
?
n

´

pAT
0 ´A0

¯T
›

›

›

›

F

λ1{2max

`

A0A
T
0 {n

˘

λ´1min

`

AT
0 A0{n

˘

t1` opp1qu
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`λ´1min

`

AT
0 A0{n

˘

›

›

›

›

1
?
n

´

pAT
0 ´A0

¯T
›

›

›

›

F

λ1{2max

"

1

n

´

pA0 ´A0

¯T ´

pA0 ´A0

¯

*

ˆλ´1min

`

AT
0 A0{n

˘

t1` opp1qu

“ λ´2min

`

AT
0 A0{n

˘

#

1

n

n
ÿ

i“1

K
ÿ

s“1

ppξis ´ ξisq
2

+1{2
“

2λ1{2max

`

A0A
T
0 {n

˘

`λ1{2max

"

1

n

´

pA0 ´A0

¯T ´

pA0 ´A0

¯

*

t1` opp1qu

“ Op

`

n´1{2K3{2´α{2
˘

` op
`

n´1{2K3{2´α{2
˘

“ Op

`

n´1{2K3{2´α{2
˘

, (S.82)

and by Central Limit Theorem, we have

›

›

›

›

1
?
n

AT
0Ak

›

›

›

›

“

$

&

%

K
ÿ

s“1

˜

1
?
n

n
ÿ

i“1

ξisξik

¸2
,

.

-

1{2

“ OppK
1{2
q. (S.83)

Consequently, by part (i) in (b), (S.82) and (S.83), we have

(II)

“

›

›

›
A0

”

ppAT
0
pA0q

´1
´ pAT

0 A0q
´1
ı

pAT
0Ak

›

›

›

ď

›

›

›

›

1
?
n

A0

›

›

›

›

›

›

›
ppAT

0
pA0{nq

´1
´ pAT

0 A0{nq
´1
›

›

›

F

ˇ

ˇ

ˇ

ˇ

1
?
n
pAT

0Ak

›

›

›

›

ď λ1{2max

`

A0A
T
0 {n

˘

›

›

›
ppAT

0
pA0{nq

´1
´ pAT

0 A0{nq
´1
›

›

›

F

ˆ
›

›

›

›

1
?
n

´

pAT
0 ´AT

0

¯

Ak

›

›

›

›

`

›

›

›

›

1
?
n

AT
0Ak

›

›

›

›

˙

“ Op

`

n´1{2K3{2´α{2
˘  

Oppn
´1{4K3{2´α{2

q `OppK
1{2
q
(

“ Oppn
´3{4K3´α

q `Oppn
´1{2K2´α{2

q

“ Oppn
´1{2K2´α{2

q

“ opp1q,

where the last equality follows from Condition (C5). Under the same condition, for the third
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term (III) of (S.81), we have

(III) “

›

›

›
A0pA

T
0 A0q

´1
´

pA0 ´A0

¯

Ak

›

›

›

“

›

›

›

›

1
?
n

A0

`

AT
0 A0{n

˘´1 1
?
n

´

pA0 ´A0

¯

Ak

›

›

›

›

ď

›

›

›

›

1
?
n

A0

›

›

›

›

›

›

›

`

AT
0 A0{n

˘´1
›

›

›

F

›

›

›

›

1
?
n

´

pA0 ´A0

¯

Ak

›

›

›

›

“ λ´1min

`

AT
0 A0{n

˘

#

n
ÿ

i“1

K
ÿ

s“1

ˆ

1
?
n
ξis

˙2
+1{2

Oppn
´1{4K3{2´α{2

q

“ Opp1qOppK
1{2
qOppn

´1{4K3{2´α{2
q

“ Oppn
´1{4K2´α{2

q

“ opp1q.

Similarly, for the first term (I) in (S.81), we have

(I) “

›

›

›

›

1
?
n

´

pA0 ´A0

¯

ppAT
0
pA0{nq

´1 1
?
n
pAT

0Ak

›

›

›

›

ď

›

›

›

›

1
?
n
ppA0 ´A0q

›

›

›

›

F

›

›

›
ppAT

0
pA0{nq

´1
›

›

›

›

›

›

›

1
?
n
pAT

0Ak

›

›

›

›

ď
1
?
n

«

n
ÿ

i“1

K
ÿ

s“1

ppξis ´ ξisq
2

ff1{2

λ´1min

`

AT
0 A0{n

˘

ˆ
›

›

›

›

1
?
n

´

pAT
0 ´AT

0

¯

Ak

›

›

›

›

`

›

›

›

›

1
?
n

AT
0Ak

›

›

›

›

˙

“ Oppn
´1{2K3{2´α{2

qOpp1q
 

Oppn
´1{4K3{2´α{2

q `OppK
1{2
q
(

“ Oppn
´1{2K2´α{2

q

“ opp1q,

where the third last equality follows from Lemma S2.4(c), Condition (C8), part (i) of (b)

and (S.83). Therefore, based on the above results, along with (S.80) and (S.81), we conclude

the proof of part (b), which completes the proof of Lemma S2.10.
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S3.15 Proof of Theorem 3

With a slight abuse of notation, we denote the true regression coefficient under the full model

by b0 “ pb01, . . . , b
0
Kq

T and let rb denote its estimator. From (S.33), we have }rb ´ b0}2 “

OppK
2α`3n´1q. Next, for any arbitrary candidate model, define

pbK˚ “ argmintbPRK :bk“0,@kąK˚u
}pSY ´ pApb}2.

We then have

min
K˚ăK0

}pbK˚ ´ rb}2 ě min
K˚ăK0

t}pbK˚ ´ b0
}
2
u ´ }rb´ b0

}
2

ě min
1ďkďK0

pb0k
2
q ´OppK

2α`3n´1q. (S.84)

By Condition (C10), we know that the right-hand side of the above inequality is guaranteed

to be positive with probability tending to 1. Next, we consider

min
K˚ăK0

pBICK˚ ´ BICKq

“ min
K˚ăK0

"

log

ˆ

pσ2
K˚

pσ2
K

˙

` pK˚
´Kq

logpnq

n
C˚n

*

ě min
K˚ăK0

"

log

ˆ

pσ2
K˚

pσ2
K

˙*

´
Klogpnq

n
C˚n .

Note that logp1 ` xq ě mintx{2, logp2qu for any x ą 0. Recalling that n´1 pAT
K˚

pAK˚ “ pΛ

and n´1AT
K˚AK˚ “ Λ, and following Wang et al. (2009), the right-hand side of the above

equation can be written as

min
K˚ăK0

«

log

#

1`
ppbK˚ ´ rbqTpΛppbK˚ ´ rbq

pσ2
K

+ff

´
Klogpnq

n
C˚n

ě min
K˚ăK0

#

log

˜

1`
pλmin}

pbK˚ ´ rb}2

pσ2
K

¸+

´
Klogpnq

n
C˚n
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ě min
K˚ăK0

min

#

logp2q,
pλmin}

pbK˚ ´ rb}2

2pσ2
K

+

´
Klogpnq

n
C˚n , (S.85)

where pλmin ” λminppΛq. Because Klogpnq{nÑ 0 under Condition (C10), thus with probabil-

ity tending to 1 we must have logp2q ´ C˚nK
2α`3logpnq{n ą 0. Consequently, as long as we

can show that, with probability tending to 1,

min
K˚ăK0

#

pλmin}
pbK˚ ´ rb}2

2pσ2
K

+

´
Klogpnq

n
C˚n (S.86)

is positive, we know that the right-hand side of expression (S.85) is positive asymptotically.

Note that pσ2
K

P
Ñ σ2

K derived from the normality assumption (Wang et al., 2009), where
P
Ñ

denotes the convergence in probability. Furthermore, by Lemma S2.10(a), we have |λminppΛq´

λminpΛq| “ opp1q, from which we know that pλmin
P
Ñ λmin “ λminpΛq. Applying inequality

(S.84) to expression (S.86), we find that (S.86) can be further bounded by

ě
λmin

2σ2
K

"

min
1ďkďK0

pb0k
2
q ´OppK

2α`3n´1q

*

t1` opp1qu ´
Klogpnq

n
C˚n

“
C˚nK

2α`3logpnq

n

λmin

2σ2
K

"

n

C˚nK
2α`3logpnq

min
1ďkďK0

pb0k
2
q

*

t1` opp1qu ´
Klogpnq

n
C˚n `OppK

2α`3n´1q,

which is guaranteed to be positive asymptotically under Condition (C10). This proves that,

with probability tending to 1, the right hand side of (S.85) must be positive. This completes

the proof.
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S3.16 Proof of Theorem 4

Consider an arbitrary overfitted model, i.e., K˚ ą K0. Note that the residual sum of squares

in the overfitted case can be written as

SSEK˚ “ inf
bK˚
p}pSY ´ pAK˚bK˚}

2
q

“ inf
bK0

,bKc0

p}pSY ´ pA0bK0 ´
pAc

0bKc
0
}
2
q,

where bKc
0
“ pbK0`1, . . . , bK˚q

T. It is easy to see that

SSEK0 “ }pSY ´ pA0
pbK0}

2

“ }pSY ´ pA0ppA
T
0
pA0q

´1
pAT

0
pSY}2

“ }pI´ pA0ppA
T
0
pA0q

´1
pAT

0 q
pSY}2

“ }pQ0
pSY}2,

where pQ0 is defined below equation (3.20). For an arbitrary matrix M, we use spanpMq to

denote the linear subspace that is spanned by the column vector of M. According to the

results in Wang et al. (2009), we have spanppA0, pA
c
0q “ spanppA0, pA

proj
0c q, where pAproj

0c “ pQ0
pAc

0

denotes the projection of pAc
0 onto the orthogonal complement of spanppA0q. Wang et al.

(2009) proves that

SSEK˚ “ inf
bK0

,bKc0

p}pSY ´ pA0bK0 ´
pAproj

0c bKc
0
}
2
q.

Further, the minimizer of the above optimization problem is given by pbK0 “ p
pAT

0
pA0q

´1
pAT

0
pSY

and pbKc
0
“ ppAprojT

0c
pAproj

0c q
´1

pAprojT
0c pε, where pε “ pSY ´ pA0

pbK0 “
pQ0

pSY is an estimator of

ε “ pε1, . . . , εnq
T P Rn. Recall that pAk denotes the kth column of the score matrix pAK˚ for
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k “ K0 ` 1, . . . , K˚. Then, we obtain

SSEK0 ´ SSEK˚

“ }pQ0
pSY}2 ´ }pQ0

pSY ´ pAproj
0c bKc

0
}
2

“ YT
pST

pQT
0
pAproj

0c p
pAprojT

0c
pAproj

0c q
´1

pAprojT
0c pε` pεT pAproj

0c p
pAprojT

0c
pAproj

0c q
´1

pAprojT
0c

pQ0
pSY

´pεT pAproj
0c p

pAprojT
0c

pAproj
0c q

´1
pAprojT

0c pε

“ pn´1{2pεT pAproj
0c qpn

´1
pAprojT

0c
pAproj

0c q
´1
pn´1{2 pAproj

0c pεq

ď τ 0
c

max}n
´1{2

pεT pAproj
0c }

2

“ τ 0
c

max

K˚
ÿ

k“K0`1

pn´1{2pεTpAproj
k q

2

ď τ 0
c

max max
K0`1ďkďK˚

pn´1{2pεTpAproj
k q

2
pK˚

´K0q

ď τ 0
c

max max
K0`1ďkďK

pn´1{2pεTpAproj
k q

2
pK˚

´K0q,

where τ 0
c

max “ λ´1minpn
´1

pAprojT
0c

pAproj
0c q and the last inequality is because K˚ ď K. Also, we

have λminpn
´1

pAprojT
0c

pAproj
0c q ě λminpn

´1
pAprojT

0c,K
pAproj

0c,Kq ” pτ
0cK
maxq

´1, where pAproj
0c,K is the same as

pAproj
0c defined in earlier, except that pAc

0 is replaced by pAcK
0 . Based on the above results, we

have

max
K0`1ďkďK˚

ˆ

SSEK0 ´ SSEK˚

K˚ ´K0

˙

ď τ 0
cK

max max
K0`1ďkďK

!

pn´1{2pεTpAproj
k q

2
)

.

By Cauchy-Schwarz inequality, we know that

´

n´1{2pεTpAproj
k

¯2

ď 2
´

n´1{2pεTAproj
k

¯2

` 2
´

n´1{2pεTpAproj
k ´ n´1{2pεTAproj

k

¯2

ď 2
´

n´1{2pεTAproj
k

¯2

` 2}n´1{2pεT}2}pAproj
k ´ Aproj

k }
2

121



Xingyu Yan and Yanyuan Ma

“ 2
´

n´1{2pεTAproj
k

¯2

`Opp1q,

where the last equality is because }n´1{2pεT}2 “ Opp1q following Wang et al. (2009) and

}pAproj
k ´ Aproj

k }2 “ Opp1q established in Lemma S2.10(b). Under the normality assumption

and following the proof by Wang et al. (2009), we have

max
K0`1ďkďK˚

ˆ

SSEK0 ´ SSEK˚

K˚ ´K0

˙

ď 2p1` ϕqσ2
K0
κ´1logpKq `Opp1q, (S.87)

where ϕ is an arbitrary positive but fixed constant, and κ is a constant. By Condition (C5),

we know that the number of principal components also satisfies that

lim sup
nÑ8

pK{nκ
˚

q ă 1 for some κ˚ ă 1. (S.88)

By (S.87), (S.88) and the fact that K˚ ď K, we obtain maxK0`1ďkďK˚ pSSEK0 ´ SSEK˚q “

OppKlogKq “ oppnq. Thus, the Taylor series expansion leads to

n pBICK˚ ´ BICK0q

“ n

"

log

ˆ

pσ2
K˚

pσ2
K0

˙

` pK˚
´K0q

logpnq

n
C˚n

*

“ n

"

log

ˆ

SSEK0 ` SSEK˚ ´ SSEK0

SSEK0

˙

` pK˚
´K0q

logpnq

n
C˚n

*

“ nlog

"

1`
n´1 pSSEK˚ ´ SSEK0q

pσ2
K0

*

` pK˚
´K0qlogpnqC˚n

“
1

pσ2
K0

pSSEK˚ ´ SSEK0q ` pK
˚
´K0qlogpnqC˚n `OptpKlogKq2n´1u

“
1

σ2
K0

pSSEK˚ ´ SSEK0q t1` opp1qu ` pK
˚
´K0qlogpnqC˚n ` opp1q

ě pK˚
´K0q

“ 

´2p1` ϕqκ´1logpKq `Opp1q
(

t1` opp1qu ` logpnqC˚n
‰

` opp1q,
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where the last inequality is due to (S.87). Consequently, by (S.88), we know that

max
K0`1ďkďK˚

"

n pBICK˚ ´ BICK0q

K˚ ´K0

*

ě C˚n logpnq ` t´2p1` ϕqκ´1logpKq `Opp1qu t1` opp1qu

ě logpnq
 

C˚n ´ 2p1` ϕqκ´1κ˚ `Opp1q
(

t1` opp1qu

with probability tending to 1. By Condition (C10), we know that C˚n Ñ 8. This implies

that, with probability tending to 1, maxK0`1ďkďK˚ pBICK˚ ´ BICK0q must be positive. This

completes the proof.

S4 Additional simulation results

To examine the effect of the network autoregression coefficient on our proposed method,

we also conduct the simulation studies when ρ “ 0.3 for a more comprehensive comparison.

The simulation results are summarized in Tables S.1-S.4 and Figures S.1, respectively. These

results are similar to those obtained when ρ “ 0.1.

In addition, as suggested by an anonymous reviewer, (1) we further assess the estimation

performance under a near-boundary setting (i.e., ρ “ 0.8), with the corresponding simulation

results reported in Tables S.5-S.6 and Figure S.2, respectively; and (2) we evaluate the

empirical standard deviation and the asymptotic standard error of the network autoregression

coefficient. Moreover, we consider not only the boundary case ρ “ 0.8 but also the moderate

dependence case ρ “ 0.5. Specifically, the asymptotic standard error is denoted by xSE
pmq

asy ,

defined as the square root of the estimated Σ in Theorem 2 for the mth simulation replication.

The overall average asymptotic standard error is then computed as xSEasy “M´1
řM
m“1

xSE
pmq

asy ,

where M denotes the number of simulation replications. Meanwhile, the empirical standard

deviation is estimated by xSEemp “ tM´1
řM
m“1ppρ

pmq ´ ρq2u1{2, where ρ “ M´1
řM
m“1 pρ

pmq.
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The simulation setup follows that described in the simulation section, with the true network

autoregression coefficient set to ρ “ 0.5 and 0.8, respectively. The simulation results are

presented in Table S.7. As expected, the ratios of xSEemp to xSEasy generally fluctuate around

one across different network sizes and sparsity levels. This, to some extent, demonstrates

the accuracy of our theoretical results.

Table S.1: Simulation results for n “ 200, 500 with 100 replicates of the dyad independence model, stochastic
block model and power-law distribution model respectively. The results are displayed when the error follows
normal distribution and t-distribution in each scenario. The IMSE and SUP are both reported. The true
number of principal components (# PC) ranges from 2 to 50, with ρ “ 0.3.

# PC: 2 # PC: 10 # PC: 50
Scenario n IMSE SUP IMSE SUP IMSE SUP

Case 1: Normal distribution

I
200 5.85ˆ 10´6 1.59ˆ 10´5 6.82ˆ 10´4 3.11ˆ 10´3 1.03ˆ 10´2 7.33ˆ 10´2

500 1.25ˆ 10´6 3.89ˆ 10´6 2.64ˆ 10´4 1.07ˆ 10´3 1.99ˆ 10´3 1.34ˆ 10´2

II
200 4.61ˆ 10´6 1.32ˆ 10´5 6.90ˆ 10´4 2.96ˆ 10´4 9.93ˆ 10´3 6.75ˆ 10´2

500 1.53ˆ 10´6 4.68ˆ 10´6 2.29ˆ 10´4 9.43ˆ 10´4 1.88ˆ 10´3 1.25ˆ 10´2

III
200 4.75ˆ 10´6 1.36ˆ 10´5 7.63ˆ 10´4 3.37ˆ 10´3 2.32ˆ 10´3 8.38ˆ 10´2

500 7.95ˆ 10´7 2.85ˆ 10´6 2.38ˆ 10´4 9.28ˆ 10´4 1.92ˆ 10´3 1.38ˆ 10´2

Case 2: t-distribution

I
200 2.77ˆ 10´4 5.77ˆ 10´4 1.49ˆ 10´2 6.93ˆ 10´2 0.35 2.41
500 9.87ˆ 10´5 2.06ˆ 10´4 5.78ˆ 10´3 2.60ˆ 10´2 0.15 0.99

II
200 2.29ˆ 10´4 4.81ˆ 10´4 1.67ˆ 10´2 7.82ˆ 10´2 0.35 2.33
500 1.18ˆ 10´4 2.45ˆ 10´4 6.46ˆ 10´3 2.89ˆ 10´2 0.14 0.95

III
200 3.17ˆ 10´4 6.58ˆ 10´4 1.59ˆ 10´2 7.33ˆ 10´2 0.35 2.50
500 1.00ˆ 10´4 2.10ˆ 10´4 6.24ˆ 10´3 2.86ˆ 10´2 0.15 1.07

Table S.2: Simulation results for n “ 200, 500 with 100 replicates of the dyad independence model, stochastic
block model and power-law distribution model respectively. The results are displayed when the error follows
normal distribution and t-distribution in each scenario. The Bias and SD are both reported. The true
number of principal components (# PC) ranges from 2 to 50, with ρ “ 0.3.

# PC: 2 # PC: 10 # PC: 50
Scenario n Bias SD Bias SD Bias SD

Case 1: Normal distribution

I
200 -0.0708 0.0662 -0.0791 0.0695 -0.0698 0.0668
500 -0.0398 0.0421 -0.0434 0.0409 -0.0450 0.0432

II
200 -0.0092 0.0127 -0.0059 0.0099 -0.0079 0.0105
500 -0.0028 0.0055 -0.0026 0.0044 -0.0031 0.0057

III
200 -0.0130 0.0224 -0.0078 0.0192 -0.0070 0.0242
500 -0.0041 0.0092 -0.0043 0.0108 -0.0042 0.0117

Case 2: t-distribution

I
200 -0.0553 0.1595 -0.0425 0.1505 -0.0486 0.1253
500 -0.0303 0.1023 -0.0144 0.0914 -0.0381 0.0824

II
200 -0.0049 0.0388 -0.0096 0.0351 -0.0061 0.0331
500 0.0015 0.0228 0.0014 0.0220 -0.0048 0.0242

III
200 -0.0117 0.0514 -0.0129 0.0522 -0.0034 0.0534
500 -0.0084 0.0320 -0.0078 0.0360 -0.0027 0.0323
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Table S.3: The results are displayed as the error follows normal distribution in three scenarios and the
sample size n is set as 200 and 500, respectively. Average numbers of K selected by four criteria as well as
the corresponding IMSE in case of ρ “ 0.3 are shown. We report the selected pK in the first line. We report
the corresponding IMSE values in the second line (The original IMSE values multiplied by 103).

n Scenario AIC BIC BIC˚ BIC˚˚

200

I
pK 8.48 6.96 8.73 8.94

IMSE 1.80 2.02 1.68 1.92

II
pK 5.79 4.85 6.17 5.89

IMSE 3.08 4.34 2.71 3.03

III
pK 5.88 4.72 6.32 6.02

IMSE 2.89 4.30 2.62 2.79

500

I
pK 10.28 8.34 10.08 9.29

IMSE 0.64 0.97 0.65 0.75

II
pK 6.73 5.57 6.91 6.10

IMSE 1.73 2.75 1.61 2.18

III
pK 7.09 5.89 7.21 6.51

IMSE 1.55 2.34 1.46 1.86

Table S.4: The results are displayed as the error follows t distribution in three scenarios and the sample
size n is set as 200 and 500, respectively. Average numbers of K selected by four criteria as well as the
corresponding IMSE in case of ρ “ 0.3 are shown. We report the selected pK in the first line. We report the
corresponding IMSE values in the second line (The original IMSE values multiplied by 103).

n Scenario AIC BIC BIC˚ BIC˚˚

200

I
pK 5.30 3.73 6.43 4.30

IMSE 2.01 1.01 1.93 0.96

II
pK 4.92 3.57 5.76 4.04

IMSE 2.31 1.12 1.92 0.95

III
pK 4.74 3.58 5.97 4.19

IMSE 1.16 1.05 1.55 1.07

500

I
pK 6.41 4.39 6.52 5.06

IMSE 1.12 0.59 0.88 0.52

II
pK 5.63 4.16 6.14 4.61

IMSE 0.69 0.68 0.66 0.57

III
pK 5.52 4.26 6.06 4.87

IMSE 0.68 0.64 0.66 0.63
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Figure S.1: The functional coefficients estimation pβptq under normal distribution and t distribution, respec-
tively, with sample size n “ 200 and ρ “ 0.3. The left panels contain the results under normal distribution,
while the right panels those under t distribution. In each panel, the solid grey line is the true value, the
dashed red line is the average estimated value, and the dashed blue lines are the pointwise 2.5% and 97.5%
percentiles of the estimators based on 100 replications.
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Table S.5: Simulation results for n “ 200, 500 with 100 replicates of the dyad independence model, stochastic
block model and power-law distribution model respectively. The results are displayed when the error follows
normal distribution and t-distribution in each scenario. The IMSE and SUP are both reported. The true
number of principal components (# PC) ranges from 2 to 50, with ρ “ 0.8.

# PC: 2 # PC: 10 # PC: 50

Scenario n IMSE SUP IMSE SUP IMSE SUP

Case 1: Normal distribution

I
200 4.60ˆ 10´6 1.32ˆ 10´5 6.58ˆ 10´4 3.00ˆ 10´3 1.14ˆ 10´2 8.07ˆ 10´2

500 9.71ˆ 10´7 3.27ˆ 10´6 2.47ˆ 10´4 9.41ˆ 10´4 1.89ˆ 10´3 1.33ˆ 10´2

II
200 5.21ˆ 10´6 1.46ˆ 10´5 8.79ˆ 10´4 3.92ˆ 10´3 1.19ˆ 10´2 8.46ˆ 10´2

500 9.95ˆ 10´7 3.32ˆ 10´6 2.60ˆ 10´4 1.05ˆ 10´3 1.81ˆ 10´3 1.19ˆ 10´2

III
200 4.98ˆ 10´6 1.41ˆ 10´6 6.10ˆ 10´4 2.71ˆ 10´3 0.01 0.06

500 9.74ˆ 10´7 3.23ˆ 10´6 2.63ˆ 10´4 1.05ˆ 10´3 2.07ˆ 10´3 1.38ˆ 10´2

Case 2: t-distribution

I
200 2.49ˆ 10´4 5.20ˆ 10´4 1.68ˆ 10´2 8.07ˆ 10´2 0.37 2.5

500 1.07ˆ 10´4 2.23ˆ 10´4 5.34ˆ 10´3 2.52ˆ 10´2 0.15 1.04

II
200 3.02ˆ 10´4 6.24ˆ 10´4 1.92ˆ 10´2 8.66ˆ 10´2 0.35 2.44

500 1.07ˆ 10´4 2.25ˆ 10´4 6.54ˆ 10´3 3.10ˆ 10´2 0.15 0.99

III
200 2.43ˆ 10´4 5.09ˆ 10´4 1.60ˆ 10´2 7.05ˆ 10´2 0.38 2.72

500 9.73ˆ 10´5 2.02ˆ 10´4 6.17ˆ 10´3 2.73ˆ 10´2 0.16 1.02

Table S.6: Simulation results for n “ 200, 500 with 100 replicates of the dyad independence model, stochastic
block model and power-law distribution model respectively. The results are displayed when the error follows
normal distribution and t-distribution in each scenario. The Bias and SD are both reported. The true
number of principal components (# PC) ranges from 2 to 50, with ρ “ 0.8.

# PC: 2 # PC: 10 # PC: 50

Scenario n Bias SD Bias SD Bias SD

Case 1: Normal distribution

I
200 -0.0217 0.0310 0.0278 0.0301 0.0279 0.0292
500 -0.0131 0.0176 0.0129 0.0156 0.0131 0.0177

II
200 -0.0037 0.0084 -0.0039 0.0071 -0.0045 0.0081
500 -0.0013 0.0029 -0.0020 0.0036 -0.0017 0.0028

III
200 -0.0071 0.0204 -0.0103 0.0199 -0.0090 0.0170
500 -0.0036 0.0111 -0.0041 0.0093 -0.0039 0.0101

Case 2: t-distribution

I
200 -0.0372 0.1306 -0.0264 0.1354 -0.0279 0.1196
500 -0.0112 0.0917 -0.0197 0.0958 -0.0140 0.0749

II
200 -0.0041 0.0338 -0.0020 0.0288 -0.0029 0.0277
500 -0.0034 0.0197 -0.0016 0.0187 -0.0019 0.0187

III
200 -0.0053 0.0403 -0.0032 0.0471 -0.0041 0.0414
500 -0.0039 0.0304 -0.0012 0.0276 -0.0027 0.0297
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Figure S.2: The functional coefficients estimation pβptq under normal distribution and t distribution, respec-
tively, with sample size n “ 200 and ρ “ 0.8. The left panels contain the results under normal distribution,
while the right panels under t distribution. In each panel, the solid grey line is the true value, the dashed red
line is the average estimated value, and the dashed blue lines are the pointwise 2.5% and 97.5% percentiles
of the estimators based on 100 replications.
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Table S.7: The ratio of xSEemp to xSEasy for ρ “ 0.5 and 0.8 across different sample sizes.

ρ n “ 100 n “ 200 n “ 300 n “ 400 n “ 500

ratio
0.5 1.2063 1.8947 0.9197 1.4219 1.0810

0.8 1.1092 0.9133 1.0261 0.8674 1.0069

ratio

ρ n “ 600 n “ 700 n “ 800 n “ 900 n “ 1000

0.5 0.7842 1.2423 1.1216 0.8462 0.9221

0.8 0.9234 1.2329 0.8289 1.0455 1.3318
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