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S1 Further Details on Optimization Algorithm Imple-

mentation

The complete algorithm solving the convex optimization problem (3.7) in the
main context is summarized in Algorithm

A reasonable stopping criteria suggested by |Boyd et al. [2010] is

|20+ — @D < i and [p(@D —eW)||p < eduwal (S1.1)

*These authors contributed equally to this work
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Algorithm 1 Alternating direction method of multipliers for solving (3.7) in the paper
Require: 4, \, p(@, B, 20 0 A and=0.

1: Repeat
2 SO e L (B4 pe — AW ),
5 0 8, (2<l+1> n Tng))

4 AU+D) A +p(l) (Z(lJrl) _ @(l+1))
5: Update p'*+1) based on equation (3.13) in [Boyd et al.| [2010]

6: Until convergence

dual

where €P™ and e are positive feasibility tolerances for the primal and dual

feasibility conditions, which are controlled by an absolute criterion €*** and a

relative criterion €

= pe®™ 4 & max{|| S| g, |0V £},
edual = peabs o erel AL (51.2)
where € > 0 and € > 0. In the numerical studies, we choose € = ¢ =

1078, Choice of p can greatly impact the practical convergence of the alternating
direction method procedure. And to improve the convergence, we adopt an
adaptive strategy described in Boyd et al|[2010] for varying penalty parameter
p. In practice, we use the soft-thresholding estimators based on the sample
estimates as the initial (X, ©©)  And the initial input for A is a zero
matrix. The initial penalty parameter p is 0.1. Without the positive semi-

definite constraints of 3. and ¥, in (3.7) in the main context, the unconstrained
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solutions will be 8y(3.) and S\(3) with B = 3. and B = 5, respectively.
For efficient computation, we always first check the positive semi-definiteness of
S,\(ig) and S)\(ib). If S,\(ﬁg) and S,\(ﬁb) are positive semi-definite, they are the
final solutions to (3.7) in the main context, respectively. Otherwise, we will use

Algorithm [1f to solve (3.7) in the main context.

S2 Tuning Parameters Selection using Cross-validation

The main optimization problem (3.7) in the main context defines various es-
timators that we study in this paper, where A is the tuning parameter that
controls the level of regularization of the sample estimates. We present in this
section a cross-validation procedure for selecting the tuning parameter [Bickel
and Levinal 2008, Rothman et al., |2009} |Cai and Liu, 2011] specifically in the
presence of repeated measurements.

For each (of the K) split in a K-fold cross-validation procedure, we randomly
partition the m groups into a set of m; groups of training set, ie., 7, = {Y}; :
i € A} with |A] = m; and a set of m — my groups of validation set, i.e.,
T. ={Y;; : i € A°} with |A°] = m —my.

Let St{\, S(T)} denote a generic estimator, which is defined as a solution
to the optimization problem (3.7) in the main text with the tuning parameter

value A and input sample matrix S (T) evaluated using a dataset 7. Specifically,
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the estimator ST{\, S(T)} could refer to i;’, ST >F, and . And S(T) refers
to the unbiased estimator ib, ig, ib, and the biased estimator ©.. The cross-
validation procedure is presented in the following Algorithm [2| to choose the

tuning parameter from a path of candidate tuning parameter values {\; > Ay >

Algorithm 2 a K-fold Cross-Validation Procedure
Require: {Y;; :1<i<m,1<j<mn;}and {\ >X>...> A}

1: for{=1,...,L do

2: forv=1,...,K do

3: Divide {Y;; : 1 <i <m,1 < j <n;} into training set %) and validation set Te(”);
4: Compute the sample covariance matrix S (7.6(1/)) on the validation set 'Te(”);

5: Compute the estimator ST{\,, S(T;:")} on the training set 7,

6: end for

7: Compute CV estimate of error Fy = 25:1 15+ { e, §(77.(V))} - 3\(7'6(1}))”%/](.
8: end for

9: Let { = argming_;  j Fy, and return the selected tuning parameter A;.

S3 Lemmas and Proofs of the Main Theorems

S3.1 Lemmas for the Exponential-tail Condition

We observe Y;; € RP, which is the j-th repeated measurement of the i-th subject

forj=1,...,n;and ¢t = 1,...,m, following the model (2.1) in the paper, where
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g;; and b; are p-dimensional sub-Gaussian random vectors with the true within-
subject and between-subject covariance, i.e., cov(e;;) = X2 and cov(b;) = 39,
respectively, and b; and €;; are mutually independent. Let N = >"" n; be the

total number of observations. We begin with several lemmas, which are essential

for the proofs of the main results.

Lemma 1. Consider the true within-subject covariance X2 with max(X2)yx <

M,. Let \. = C1{Nlogp}'/?/(N —m) for a sufficiently large constant C,. If

logp < N, then the unbiased within-subject sample estimate ia satisfies

pT{maX ’(is — Eg)k,z’ > Ae} < d4p~©,

i

where Cy > 0 only depends on Cy and M..

Proof. We first rewrite f]e as follows,

5o o= 2 ) (Y Y)Y - Y)T
i=1 j=1
1 m  n; m
- ¥ (ZZ&USZTJ anez €Z>
i=1 j=1 i=1
Then,
(is)k,l = N i m (; ; €ijkEijl ; NiEi.kEq l>
= N i m Z 21 EijkEijl N ! m M€kl

(93.3)

1 I (1
= v Z Z {eimein — (B)na} — N Z {n—iSz‘.kSi.l - (Zg)k,l} + (2914,

i=1 j=1 i=1
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where S, = Z;“:l Eijk-

By (S3.3)),

0 0
T ‘(EE a Ef)k’l‘ = BN —m Zl 21 {eineij — (Z)wt}
=1 j=
+N—nfﬂxz;&;%ﬁﬂ_@ﬁw}. (53.4)

Now, we assume that €;;, € Sg(aik), i.e., €;j; is sub-Gaussian with a vari-
ance factor aik for1<i<m,1<j5<n;,1<k<p. Itiseasytocheck that
n;?Sin € SG(02,).

Let ¢ : Ry — Ry be a convex function with ¢(0) = 0, especially, ¥,(v) =
exp(|v|?) — 1, for ¢ € [1,2]. Then for an R-valued random variable X, the
Orlicz norm of X is || X|, = inf{t € Ry : E{¢(|X]|/t)} < 1}. And by the

properties of Orlicz norms, for any random variable X and any increasing convex

Ry — Ry with ¢(0) = 0, we have
X = EX)ly < 21 X]fy- (S3.5)
Moreover, if X € §G(c?), then
[ X[l < coo, (S3.6)

for some ¢y < (8/3)'/2.
Since e, € SG(02;) and n; S € SG(02,), by Lemma 2.7.7 in Ver-

shyin| [2018], €,k and n; 1S; xS;. are sub-Exponential random variables. Let
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maxy, 02, = M.. Combining (S3.5)) and (S3.6), Lemma 2.7.7 in |Vershyin| [2018]

implies that
lesnein — EDnall,, < 2 leimeinlly, < 2leinlly, leally, < ad,
and

[ SesSit = (Sl < 2| "S5 §2‘n;1/25i.k n7 28,

S ClMaa

2

lepl ‘wz‘

where ¢; = 2¢.
Hence, for the first term in (S3.4}), by the union sum inequality and Bern-

stein’s inequality (Theorem 2.8.2 in [Vershyin| [2018]), we can get

1 m  n;
pr ln}ﬁx N —m ; j;{&jk&jz — (ED)ka}| > t]
. [t3*(N—=m)® t(N —m
< 2pPexp [—CQmm{ <NK12 ) : ( X, )}}, (S3.7)

where ¢o > 0, K1 = max; i ||€ij€iji — (S kally, < a1 M.

Similarly,

(1
> {_Sz‘-ksi-l - (Eg)k,z}
— |\ n

7
1=

N —m kl

g

t2<]7\; ;_(gm)Q’ ﬁ(NK—2 m) H 7 (3.8)

[ 1
pr max

< 2p%exp {—63 min {

where ¢3 > 0, Ky = max; ||n;15i.k5i.l — (EYkilly, < M.

By (S3.7) and (S3.8), take t = C;(N logp)*/2/{2(N —m)} for a sufficiently
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large constant Cy; > 0, with N > log p, we will have

pr [rnax Z Z{gl]kgljl )k,l} Z t]
=1 j=1
CQNCQ C
< 2exp [max{(Q A K2) log p, oK, (Nl gp)l/Q}}
CQC 6201
< 2exp {max (2 — 46%]\41[52 ,2 — > logp} (S3.9)
and
7/ SZ Z t
Pr[ ——m z;{ o JiwSin = (2 )k,z}
CgN C 1
< 2 ] N1 /2
< exp[ {( i K2> ogp, 2K( ogp) H
CgC 0301
< 2exp {max (2 m” 2M2’2 — 201M5> logp} : (S3.10)

Combining (S3.9) and (S3.10)), with A, = C;(N logp)'/?/(N — m), we have

1 Ci(Nlogp)'/?
—S; 1 Si — (X° > v ol
;{ms”“sl ( 5)’”}|— 2(N —m)

oo p)1/2

63012 CgCl
< 2exp {max (2 — SV 2 — e log p

02012 0201
+2exp {max <2 — PESVER 2 — e log p

< dp @,

where Cy = min{c3Cy(2c; M), 3,201 (2 ML) ™Y, co }(2e1 ML) 1Cy — 2. O
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Lemma 2. Consider the true within-subject covariance 22 with maxk(Zg)k,k <

M. and the true between-subject covariance Eg with maxk(Zg)hk < M. Let

logp\ "/ Nlogp)'? M, M.
/\bzcl(ogp) 1oy Wloen) = i
m (N —m)n m  mn

for sufficiently large Cy,Cy > 0, where n* = m/> 1" n;". Iflogp < m, then

the unbiased between-subject sample estimate ib satisfies
pr{nﬁ ‘@b — Eg)k,l‘ > 2)\b} < 8p~ %,
where C3 > 0 only depends on Cy, Cy and max(M., M,).

Proof. Let Yip = by, +n; " Z;L:l €ijk = b, +n; ' Sip = Wig, then by decomposi-

tion,

=k = {Z— )18 - S0y

= {2+ @)Y — () THEL — 24y

— ; {I/Vikwil - (Zg + n;lzg)k,z}

m— 14
=1

m 1 & 1

T —E W; —§ W;

m—1 (m — k) (m — l)
(Z)k (XD, (Ze — 20

. XA — SEALLL S3.11

+m—1+(m—1)n* n* ( )
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Then, with ‘(Eg)kﬂ S M(, and |(Eg)k,l’ S ME, we have

1 «— 1 —
+2 HIICB%X (E ;Wzk> <—;VV11>
+ max(n) " |(S. - 22
oM,  2M.
— - (S3.12)
m mmn

Assume that b;, € SQ(Oak), i.e., b, is sub-Gaussian with a variance factor
o) for 1 <i<m,1 <k <p. Then Wy, € SG(0, +n;'02,). Let max, o7, =

M,. Then, by Lemma 2.7.7 in |Vershyin| [2018], we obtain

IN

|t = (40720, | < 2IWaly, IWall,

P1

IN

e (B +n;'ED),

IN

cr (L+n") M,

IN

QCIM*7

where n; = min n; and M, = max(M,, M,). And with the Bernstein’s inequality,

we have

1 >4l <9 ) mt? mt
r|— ex —CcsIMIN \ —, —
p m - = p 4 K32 ) K3 ’

where ¢4 > 0, K3 = max; k. ||VVszzl — (Eg + n;lzg)k7l||¢1 < 2c1 M,.

Z {WikVVz'l — (=) + n;lES)k,z}
i1

By the union sum inequality and taking ¢t = 27*C} (log p/m)'/? for a suffi-



ciently large constant C7 > 0, if m > log p, we have

Z {Wzkml 20 + n;lﬁg)k,z}

S3. LEMMAS AND PROOFS OF THE MAIN THEOREMS
[max —
kKl m
C?logp Ci(mlogp)'/? H

> t]
2 .
< 2p°exp [—04 mln{ IK2 Ve

. 04012 caCh
< 2 2 — 1 . 1
< 2exp H min <160%M*2’ T ogp (83.13)

We use a union bound with the general Hoeffding’s inequality (Theorem

2.6.2 by |Vershyin [2018]) to bound the second term in (S3.12)). Specifically, with

> mtl/Q)

Doexs (_C—mt>
> i IWirllZ,
csmt
( 1M)

5C1 1/2
1
2e 0z, 108 P) }

0501
2exp { (1 — 261M*) logp} , (S3.14)

172 we have

Z Wzk

=1

m > log p and taking t = 2*101(10gp/m)

ZVVzk

max

>t = pr (max

IN

IN
DN

=
@
b

o

IN

where ¢5 > 0.
For the third term in (S3.12)), by Lemma , for a sufficiently large constant

Cy > 0, we have

‘(ie — Zg)k,l‘ 1/2

- < 4p~ S$3.15
Kl n* =T ((N—mnr [ P ( )

where C > 0 only depends on Cy and M.
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Collecting ((S3.13)-(S3.15)), with

] 1/2 Nlogp)/2 M, M.
Abzcl(ogp) L o, Wlogp)'® My

(N —m)n. m + mny’

we have
pr {H}CE}X )(ib — Eg)k,l‘ 2 2)\(7}
3 lo
< [Hzlﬁxﬁ Z{kaz (Zp + 1y Sk} 201 gp ]
1 & 1 & logp\ "/
+P1“{2III£%X (EZIWM> (EZIVVZ1> > (4 ( > }
SR
. ‘(Za Za)kl‘ Q(Nlogp)l/Q
k,l n* - (N —m)n*

< dpm o dpTa
< g
where C% = min{c,C?(16¢3M?) ™", ¢,C1(4cy M), e5C1 (261 M)~ + 1} — 2 and

C5 = min(C}, CY). O

Lemma 3. Consider the true within-subject covariance X2 with maxy(X2)yx <

M. and the true between-subject covariance 39 with maxy (X)), < M. Let

] V2 ou, o M.
Ao = O} ( ng) b
m

m
for sufficiently large Cy > 0, where n* = m/> " n;'. Iflogp < m, then the

naive between-subject sample estimate . satisfies

pr{nﬁx (5 = S| > 2/\1,} <8 ©
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where Cy > 0 only depends on Cy and max(M., M,).

Proof. Now, we will consider the convergence rate of maxy, |(X — X9)x;|. By

(S3.11)), we have

E - = S {Watwa - (53 +0759), )

7 S3.16
+m—1+(m—1)n* ( )
Then, with [(X9)x;] < M, and |(29)x,] < M., we have
1 m
0 0, ,—150
max ‘(E — Eb)kl| < 2n}gx p— Zl {WikI/Vil — (3 +m; ZE)M}‘
roma| (LS "wa) (L3ow
Hi%x m — ik m - il
2M,  2M.
e (S3.17)
m n

Following the steps in Lemma [2], with

] V2 a M
)\0201(in) + =24

m n*

for a sufficiently large constant C; > 0, we have
pr {Hﬂx (2 = S| > 2>\0} < dp~,

where Cy > 0 only depends on C; and max(M., M,). O
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Lemma 4. Consider the true within-subject covariance X2 with maxy(X2)yx <

M. and the true between-subject covariance Eg with maxk(Zg)hk < M. Let

Xy = Oy

max; n; (logp)l/2 o (Nlogp)l/2 (2N — ngm)M, N M.
2
m

ng no(N —m) 2nom nom

for sufficiently large Cy,Cy > 0. Iflogp < m, then ol satisfies

pr {niax ‘(Eb - Zg)k,l‘ > 2N, | < 8%,

)

where C3 > 0 only depends on Cy, Cy and max(M., M,).

Proof. Consider

E-no2)-30ks  (Ec=Sky
no no

= Inax ‘

(=2
k,l

)

max |(3 — Sp)ka| = maxyy
(E—n0Z) -2k,
no

(ie_z}g)k,l
| ’n—o (93.18)

< maxy ‘

With Y., = Wi, we have

Y = %Z Wik,
Okt = Z n; < ik = 7 Z n; zk) <Wil - %; nz‘Wiz)
= m—_ an Wy Wi — (Z n; 1k> (Z:; nsz) .
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Thus, we obtain

(i — noEg — Eg)k,l

no
1 m
= —F— WieWy — (n; 20 4+ X2
”O(m_l)izl{n sWi = (X + 30k}

1 m m
—m (; nzVVzk> (; nzVVzl>

n #_1 (zg>k,,+;_(22)k,z-
no(m — 1) ng(m —1)

Then, for the first term in (S3.18)), with [(X))x,] < M, and |(39)] < M., we

have
o (X —noZy — S0,
kil no
< max noim Zf;{nzVVszzz — (N + Sk}
+mgxn0;N gnlmk 2+{Ti]_]7\7[1_1}]\/[b+%im]\/[€. (S3.19)

Recall that by assumptions b;, € Sg(aak), i.e., by, is sub-Gaussian with a
variance factor aik for 1 <i<m,1 <k <p. Then we have Wy, € SG(Ug’k +
n;'o?,). Let maxj 0?2, = M, and maxy o}, = M,. Together with and
(S3.6), we get ||n;Wi Wi — (n: 390 + X051l < c1(niMy+M.). Then, n, Wy Wy —

(39 + 39); is sub-Exponential. With Bernstein’s inequality, for any k,[, we

have

|

1 m
o ; {nszszl — (3 + Eg)k,l}

>+ <9 . [ t*nim tngm
exp { —Ce Min
= = P 6 KZ ) K4 )
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where cg > 0, Ky = max; g [[nsWuWy — (030 + X kally, < 2c1n,M,, n, =
max; n;, M, = max(M, M,).

Take t = Cyny(2n0) *(logp/m)'/? for a sufficiently large constant C; > 0.

Zt]
2

. 0601 csC1 1/2
= 2exp [2 log p — min { 62012 log p, T 0L (mlogp)

. 66012 c6Ch
2 2 log p| . $3.20
P H o (16C§M3’ 4o M, ) [ 08P (53.20)

Then we will bound the second term in (S3.19)). By the property of sub-

With m > logp and the union sum inequality, we obtain

m

LS W — (150 + 5010}

nom
01" =1

< 9y , 2nim  tngm
exp § —Cg min
= PP 0 4ein2 M2’ 2¢1n, M,

k.l

pr [max

IN

Gaussian assumption, n; Wi, = nbi, + Y72, €ijr, € SG(nZMy+n;M.). Then, ac-

cording to the general Hoeffding’s inequality (Theorem 2.6.2 by Vershyin| [2018§]),

we have
1 |& 2 m
Us T 1/2
pr omN izlnszk >t < pr{ izlnzwzk > (tngmN) }
crtngmN
< 2 _
- { > ey cg(n My + niMe) }
crtngmN
< 2 _
B =P { 221 C%(ninuMb + nl]\/[s) }
t

< 2exp (_Cc:nn?\?> ,

where ¢; > 0.

Then, take t = C1n,(2no) "' (log p/m)/2, with m > logp, by the union sum
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inequality, we have

1 = crtngm
r | max nWil >t < 2pexp | —
P ko ngm ; g b p( clnuM*)
crCy 1/2
< 2pexp < — mlo /
P p{ . M*( gp) }
c

for a sufficiently large constant C; > 0.
To bound the second term in ((S3.18]), by Lemma , for a sufficiently large

constant Cy > 0, we have

r < max
P { k.l

where C% > 0 only depends on Cy and M..

(ia — X0k

o

(N log p)'/? o
P A— < 3 .
> 20, =i ) 4p~=“s, (S3.22)

Then, with

Xy = Oy

maxn; (logp)l/2 e (Nlogp)'/? (2N — ngm)M, N M.
2

i m no(N —m) 2nom nem
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for sufficiently large C4, Cy > 0, combining (S3.18])-(S3.22)), we obtain

pr {max ‘(ib — 22),@,[‘ > 2Xb}

k.l

< I |max
<l

2 m
no_m ZZ1 {nszszl - (mES + Zg)k,z}

max; n; [ logp 1/2
Z Cl - < )
Un m

max; n; ( logp 12
> C — ( >
Un m

(N logp)*/?
90, MY 958)
> 20, no(N —m)

2

—+pr { max
P k. ngmN

zm: 1 Wik

=1

(Z. — 2%
no

k.l

+pr {max

< ApCE 4 4pGs

< 8pfc3

’

where C§ = min{csC?(16c¢2M?)7!, c6Cy(4ey M), czCy (2, M) ™1 + 1} — 2 and

C3 = min{C}, C¥}. O

Lemma 5. Consider the true within-subject covariance 3° with maxk(Eg)k7k <

M, and the true between-subject covariance 3 with maxy (X)), x < My. Let

lo 1/2 2—n*)M,
>\1=C'1( gp) +Mb+¥
m 2n*

for sufficiently large Cy > 0, where n* = m/> " n;'. Iflogp < m, then &

satisfies

pr{n}gx (2 = 2)ka| > 2A1} <4p @

where Cy > 0 only depends on Cy and max(M., M,).
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Proof. Now, we will consider the convergence rate of max; |(X — X2),|. Note

that (E_Zg)k,l = (E—Eg)k,l—i—(zg)k,l—(Eg)k,l Then, by 8316 ,Wlth ‘(Eg)kﬂ S

M, and [(X2)g,] < M., we have

0
— <
H’lﬁx ‘(E Za)k7l| QIrllﬁx

1 & _
ooy Z {Wikvvil - (22 +n; lxg)k,l}‘

=1

(S3.23)

Following the steps in Lemma [2] with

logp\ '/ 2 — n*) M.
)\lzCl(oqip) +Mb+¢

2n*

for a sufficiently large constant C; > 0, we have
pr {H}j}x (5 = S)ky| > 2/\1} <4p~©,

where Cy > 0 only depends on C; and max(M., M,). O

S3.2 Lemmas for the Polynomial-tail Condition

We observe Y;; € RP, which is the j-th repeated measurement of the i-th subject
forj=1,...,n;,and i = 1,...,m, following the model (2.1) in the paper, where
g;; and b; are p-dimensional random vectors with the true within-subject and

between-subject covariance, i.e., cov(e;;) = XY and cov(b;) = 3f, respectively,
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and b; and g;; are mutually independent. Let NV = Z;’ll n; be the total number
of observations.
A generic random variable Z with mean 0 satisfies the polynomial-tail con-

dition with constant K, if for all v > 0 and ¢ > 0, the following holds
E[|Z]*0)] < K, (S3.24)

for some K, > 0. We assume, fori =1,...,mand k =1,...,p, that b;;, follows
(53.24) with a constant K3, and for j = 1,...,n,, that ;;;, follows (53.24) with

a constant K..

Lemma 6. Suppose Z; with mean 0 are independent across i = 1,...,n and

satisfy the polynomial-tail condition with constant K,. Thenn™Y23""_ Zy also

satisfies the polynomial-tail condition (S3.24)).

Proof. Note that

>z
i=1

E

4(144+9) n 2(14+y+96)
< By sk (Z |Zi|2>

=1

n

1 2(14~+96)
4
= B, n*T IR (5 > |Zz-!2>

i=1

1 n
2(14y+6 4(14~+6
< Byt TS B (|2

=1

< B'y 6n2(1+’7+5)KZ7

where the first inequality is the Marcinkiewicz—Zygmund inequality, the second
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inequality above is the Jensen’s inequality, and the last inequality holds from

the definition in (53.24)). Therefore,
4(1++y+9)

E < B, sK..

1 n
Ly
Vi
As aresult, n /23" Z; also satisfies the polynomial-tail condition with con-

stant B, K. O

Lemma 7. Suppose Z;. with mean 0 are independent across i = 1,...,n and
satisfy the polynomial-tail condition with constant K, for k=1,...,p. For any

M >0, let

logp)l/2

628(Kz+1)(M—|—1)( .

if p < cn? for some c, then the following concentration inequality hold:

> Za

i=1

Proof. This result is proved in the proof of Theorem 2 in [Xue et al,| [2012]. O

pr |max >ne| < O(p~M7Y) 4+ K. p(logn)?d7+9, -0+ (33.25)

Lemma 8. Suppose Z;. with mean 0 are independent across i = 1,...,n and
satisfy the polynomial-tail condition with constant K, for k =1,...,p. For any

M >0, let

n

e =8(K, + 1)(M +2) <1°gp>1/2,

if p < cen? for some c, then the following concentration inequality hold:

n

Z (Zz'ka - E[ZikZié’])

i=1

>ne| < O(p™) + K, p(logn)21H7+0),~(+9),

r |max
p [k,e
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Proof. This result is proved in the proof of Theorem 2 in Xue et al|[2012]. [

Lemma 9. Suppose the random errors €;;’s are i.i.d. across i and j, and has
zero-mean entries ;5 that satisfies the polynomial-tail condition with
constant K., and consider the true within-subject covariance 3X°. For any M > 0,
let \e = 16(K. + 1)(M + 2)~—2E— (Nlogp . If p < cN7 for some c, then the unbiased

within-subject sample estimate f]e satisfies

pr{rrllﬁx ‘(is — zg),@,‘ > )\5}

< O(p~™) + K.p(log N2+ N=0+0) 1 K p(log m) 27+ ~0+0) - (53.26)

Proof. As in the proof of Lemma , we first rewrite 3. as follows:

which implies that

(is)k,l = (Z Z €ijk€ijl — Z N;E€;.kEj- l>

zljl

N m § ngzkgzl

11]1

1 1
(ZD)ki} — N_m Z {;Sznksznl - (Zg)k,l} + (E)ky,
i=1 !

i=1 j=1
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where S, = Z;“:l gijk- Then we have

m

HIEE%X ’(ia — Eg) < max —m {&jksml g)kz,l}
’ =1 j5=1
+ 1t ij LG, 0S — () (83.27)
N _ mnllcz,lix - n; -kl ek, . .
Hence, for the first term in (S3.27]), with
N logp 1/2
=8(K.+1)(M+2 , 2
€1 = 8(K. + 1)( +)N_m<N> (S3.28)
Lemma [§] leads to
!
pr N—m H]i% - Zl{gzjkgzjf )k,ﬁ} > €1
L i=1 j
[ log p 1/2
=pr —maX Z{gwkslﬂ )kjg} > 8(KE + 1)(M + 2) ( N )
L =1 j5=1
<O(p™) + K.p(log N )21+ N=(r+0), (S3.29)

Similarly, by Lemma |§|, n; Y %S, 1, satisfies polynomial-tail conditions, with

1/2
€ = 8(K. + 1)(M + 2)Nm (logp> : (93.30)

—m m

Lemma [§ implies that

1 "]
pr N I%%X ZZ:; {n_isi-ksi-é — (Eg)k,e} > €
! Xm: LGSy — (30 Y| > s(k. + 1)(M 4+ 2) (1082 v
=pr | — max —SikSiv — > .
p m Ok 2\, k-0 ekl m

<O(p™) + K_p(log m)?1H+7 ), ~(+9)



FIRSTNAME1 LASTNAME1 AND FIRSTNAME2 LASTNAME2

Putting everything together, let

(N log p)!/2

Ae = 16(. +1)(M +2)2 =" —,

and observe that €; > €5, we have

pr {nﬁx ‘(fa — ES)M‘ > )\g}

(1
E {—Szrksz’.z — (ES)M}
n;

=1

> 61]

1
<
=Pt [N —-m H}gx

1 m Ny
+ pr max 21: Z;{gijkgijl — (Zka}| 2 61]
i=1 j=
< ! i LGSt — (39 b >
r max — 05 k05 — (2 Z¢
=p N _—m Q < ; kil k,l 2
1 m Ny
+ pr max 2 Zl{&'jkﬁijl — (e} > 51]
=1 j=

($3.31)

<O(p™) + K.p(log N7+ N=0+9) 1 K_p(log m) 2750, =(+0),

Lemma 10. Suppose the random errors €;;’s are i.i.d. across ¢ and j, and

has zero-mean entries €;;, that satisfies the polynomial-tail condition ([S3.24)

with constant K., and consider the true within-subject covariance ¥.2. Similarly,

suppose the random effects b;’s are i.1.d acrossi =1,...,m, and have zero-mean

entries by, that satisfy the polynomaial-tail condition (S3.24) with constant K,
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and consider the true within-subject covariance ¥). For any M > 0, let

(Nlogp)/2| My = M.
(N —m)n* m  mn,’

(K +1) (1ng)1/2+ (K. + 1)

Ay = 16(M + 2) =

where n* =m/ > " n;!

and K 1is a constant that only depends on K, and K..
If p < em? for some c, then the unbiased between-subject sample estimate ib

satisfies

pr{ﬂ}gx ‘(ib — Eg)k,Z‘ > )‘b}
< O(p~™) + K.p(log N2+ N=0+0) 1 Op(log m) 21740 =0+9) . (S3.32)

Proof. Let Y, = by, + n;l Z;L:l Eijk = bk, + n[lSi.k = W, then by decomposi-

tion,

(ib SNk = {Z-— (n*)—1§£ — Sy}

= E- {30+ )75 - (07) 7 (Ee = 2
1 m
= — Z {I/VikWil — (Zg + ni’lES)k’l}

m — -
=1

(S3.33)

For each k, by assumptions b;, satisfies the sub-exponential tail condition
(S3.24]) with constant K, and is independent of n; *.S;.;, which itself satisfies the

sub-exponential tail condition with K,. By Lemma [6], we have that W;’s are
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zero-mean random variables that satisfy the polynomial-tail condition (S3.24))
with constant K, which only depends on K, and K.. Furthermore, we note

that E[W;.Wy] = (29 + n; '20),,. With Lemma |8 and

log p 1/2

we have

> €

Z {WszVzl (3 + nleS)k,z}

— Imax
m k)l

Furthermore, with Lemma, [7] and

log p 1/2
62:8<Kw+1)(M+1)< ) ,

m

we have

Z Wik,

< O(p~™M=1 4+ K, p(logn)?dH+0) =0+,

2
> 62 = pr | max
- 2 p P

For the last term in (S3.33)), by Lemma |§|, we have

1 QS 0 )\E
Pf{;f%‘)@ | > E}

SO(pr) + Ksp(log N)2(1+7+5)N7(7+6) + Ksp(log m)2(1+7+6)m7(’y+6).

Collecting the results and using a union bound, with

+——|——+
m mn,’

1 V2N M, M.
Ny = 16(K,, + 1) (M +2) ( ng) b

m

<O(p™) + Kyp(logm)* 7+ m -

(y+9)
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we have
pr {H]lﬁx ’(ib — Zg)kl‘ > )\b}
S [max — szzl EO + n;lzg)k,l} Z 61]
kl m
1 m
(£ ()
’(EE - Eg)k,l‘ )\5
+pr{ max ——— > —
k,l n* n*
< O(pr) + Ksp(log N)2(1+7+6)N7('y+6) + C’p(log m)2(1+7+5)m7(7+5).

S3.3 Proof of Theorem 1

Proof. Now, we will consider the convergence rate of maxy, |(X — X9)x,|. B

(S3.16)), we have

_ 1 &
- = — (W = (5 +n;52) ., }

m 1 1 —
(L we] (2w
(3D N m(X2)k, _

+m—1 (m — 1)n*
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By the triangle inequality,

m

o (Wi - (5 4+ ni'x2), )

=1

(55w

=1

m(Eks | (59)ka
(m—1n* m-—1

T _ y0
— >
max ‘(Z Zb)k,l’ 2 max

Following the steps in Lemma , i.e., using (S3.13)) and ((S3.14)), with

1 1/2
_q<%g
m

for a sufficiently large constant C; > 0, we have

m(E)es  (EDky

y—
00 = MEX (m—1n* m-—1

k.l

pr {H’lﬁx ’(i - Eg)k,zl > )\O,b} >1—4p~,

where Cy > 0 only depends on C; and max(M,, M,).

Similarly, we have

_ 1 < B m 1 — 1 &
(5 =20k =g Do AWala = (S04 00'80), = <E m) (a 2 Wﬂ)
=1 =1 =1
m S ong !t
20 . 1 — i=1"" 20 )
b - (1- 220 (s,

By the triangle inequality,

m mongt
— 1(22)k,l - (1 - Z1_4> (22

k,l El |m (m - 1)
2 - 0 —1y0
= e | 0 { Wt — (34 0 ED),
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Using the same probabilistic argument about the last two terms in the inequality

above, and with

L (5 (1 - M) (22) ks

m—1 (m—1)

we have, for the same C' and Cj, that

pr {Hllﬁx (5 = S)ia| > )\O,e} >1—4p~ .

S3.4 Proof of Theorem 2

Proof. Define A, = %, — X2 and FL(A.) = [|[Ac + 30 — S.)12/2 4+ A Ac + 291,

then the objective function (3.7) in the main context is equivalent to

min F.(A,).
Ac:Ae=AT A +350-51

Consider the set

(AL A= AT AL+ X0 = 61| ALl = 5X(ps2) /2. (S3.34)
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According to Xue et al|[2012], under the probability event {|(Z. — ¥0) ral <

Ae,V(i,7)}, we have

1/2
1 p
F.(A:) — F.(0) > §||A€||2F -2\ [Z H{(EDk #0}|  Ap
k=1
1
> §HA€H§W - 2)\5(1735)1/2”A5HF
= ;Q&
> 0.

Note that F.(A.) is a convex function and Fe(ﬁe) < F.(0) = 0. Then, the

minimizer ﬁg must be inside the sphere (S3.34)). Hence, we have

mﬂﬁi—g

< 5\ (ps. 1/2}
o S OA(pse)

v

1—pr {H}ﬁx ‘(is — Eg)k,l‘ > /\5}

> 1 —4p .

The proof of Theorem 3, 4, and 6 in the manuscript and Theorem [7] in this
document follow straightforwardly from Theorem 2, combined with Lemma [9

Lemma [2, Lemma [4, and Lemma [I0] respectively.
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S3.5 Upper Bounds on Estimation Error Rate for Regularized Ag-

gregated Estimator

Theorem 5. Consider the true between-subject covariance matriz 3 € U( My, sp)

and the true within-subject covariance matriz 3° € U(M.,s.). Let

lo 1/2 2—n*)M,
)\1201( gp) +Mb+%
m 2n

be the value of the tuning parameter X in (3.7) in the main context for sufficiently
large Cy > 0, and the same n* defined in Theorem 3. If logp < m, then the

. . =+ .
naive estimator ¥ satisfies

Hi* 5

< 10/\1(]936)1/2
F

—Cs

with probability at least 1 — 4p~“2, where Cy > 0 only depends on C; and

max (M., My).

Theorem 6. Assume that the true between-subject covariance matriz Y €

U(My, sp) and the true within-subject covariance matriz 3° € U(M., s.). Let

] V2o, M.
-a () 2

m n*

be the value of the tuning parameter X in (3.7) for sufficiently large Cy > 0, and
the same n* defined in Theorem 3. If logp < m, then the aggregated between-

subject estimator b satisfies

HEJF - 22HF < 10X (psy) />
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with probability at least 1 — 4p=2, where Cy > 0 only depends on C; and

max (M., My).

S3.6 Estimation Error for Correlation Matrices

In certain scenarios, estimating between-subject and within-subject correlation
matrices (rather than covariance matrices) is of interest. And the sparse and

positive-definite estimate of R., denoted as RF, and of Y, denoted as ﬁ;r are

defined as solution of (3.7) in the main context with B = R, = DZ V25 poi?
and B = R, = Db_1/2§]bDb_1/2, where D, = diag{(ﬁa)m, e (ia)p,p} and D, =
diag{(Zp)1,1, - - -+ (Zo)pp}-

Corollary 1. Under conditions of Theorem 1, if ming, (X9, is bounded from

below, then

H§+ _pl = OP{(pSENlogp)l/Q}
€ € F Y

N —m

uniformly on ¥° € U(M., s.), as N,m — oo.

Proof. By Lemma[I], we have

~ N1 1/2
pr{nﬁxkzs—Eﬁnﬂ‘>(1§7N$?%;—}::ou) (93.35)

By Lemma 2 in|Cui et al.|[2016], with (S3.35)) and the fact (Rg)k,l = (ia)kvl/{(ig)k,k(25)575}1/2,

for a sufficiently large constant C] > 0, we have

oo p)1/2
(Nlogp) }:Ou)

pr {Ir}ﬁx ‘(R8 — RS),CJ’ > (] N
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Following the steps in the proof of Theorem 1, it is easily shown that

{ (ps.N log p)'/? }
= Op .
F N —m

H§+—RO

]

Corollary 2. Under conditions of Theorem 2, if ming(X9)sx and ming(39)sx

are bounded from below, then

logp '/ (N logp)'/?
1/2 / /
) {C( )

uniformly on X2 € U(M., s.) and 39 € U(My, sp), for some large C},Cy > 0, as

| = ri] .= or

m,n — 0Q.

S3.7 Estimation Error for f];’ under the Polynomial-tail Condition

Theorem 7. In addition to the assumptions in Theorem 8 in the manuscript,
suppose that the random effects b; € RP are i.i.d. random wvectors (for i =
1,...,m) with mean zero and between-subject covariance matrix ¥, € U(M,y, sp),
and that the entries by, satisfy the polynomaial-tail condition (S3.24) with constant

Ky fork=1,...,p. For any constant M > 0, let

(Nlogp)'2 | M, M.
(N —m)n* mo omn,

Ay = 16(M + 2)

m

(K +1) <bﬂ) v + (K. +1)

1

where n* =m/ Y " n; " and K is a constant that only depends on K, and K..

If p < em? for some c, then the reqularized between-subject covariance estimate
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o
Y, satisfies

{55 2], < onip)

> 1-0@p M) = K.p(log N2+ N=0+) _ 4 [¢p(log m)21H7 ), =049,

S4 More Results from Numerical Studies

S4.1 Cross-validation Curve and ROC

In Fig. [1| we present the cross-validation curves and the receiver operating char-
acteristic (ROC) of the sparsity recovery of these estimators in Model 1 in the
manuscript with p = 100 and under three different levels of data imbalance. The

discussions of this plot is in the manuscript.

S4.2 Understanding the Effects of the Bias in Sample Estimates

As seen in Fig 1 in the manuscript, the estimator 5" based on the biased sample
estimate ¥ surprisingly has relatively acceptable numerical performance. This
subsection investigates this observation by comparing our proposed between-

subject estimator i: with 5. We consider two models as follows:

Model 1. For any given a > 0, we set (X9);, = (1 —|j — k|/10)4 and (29),x =

a1 — |j — k| /10)..
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Y¢: Cross—Validation Curves Y4 Cross—Validation Curves ROC Curves for Xy, and X¢
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Figure 1: Cross-validation curves and receiver operating characteristic (ROC) curves between-subject
and within-subject covariance sparsity recovery in Model 2 in the manuscript with p = 100 and
different values of max; n;/ng. The top, middle, and bottom rows correspond to different levels of
data imbalance (with a = 10, 7, and 4, respectively). For simplicity of presentation, we randomly
select 10 out of the 100 replicates. The left and middle panels exhibit 5-fold cross-validation curves of
ST (pink) for within-subject covariance, 5 (orange), & (violet), and 5 (green) for between-subject
covariance. Diamonds (i:), circles (ig‘), triangles (ig‘), and squares (iJr) in these two panels mark
the minimum points on these curves. The right panels present the ROC curves. The diamonds (flj),
circles (f];r), triangles (ij), and squares (f+) represent the true positive rate and false positive rate

with A values selected by the 5-fold cross-validation.
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Model 2. For any given a > 0, we set (X),x = (1 —[j — k[/10)4 and (X2);, =

a(=1)V=H(1 —]j — k|/10).

From (2.3) in the manuscript, the matrix of ¥. can be considered as the
additive noise for the task of estimating ¥,. We thus define the inverse signal-
to-noise ratio as |29, /|X0|w. By varying |29 /|X0 e = a € {1,2,...,10} in
Model [I] and Model |2 we construct settings where the relative signal strength
from Y. and %, is different. In comparison with Model [T, we alternate the
signs of sub-diagonal elements in ¥ in Model 2| In both models, we generate
balanced data with n; =5 for7=1,...,m = 100 and p = 50. Estimation errors
in Frobenius norm are summarized (over 100 replications) in Fig.

In general, our proposed between-subject sample estimate f]b significantly
outperforms ¥ in both examples. This demonstrates the effect of the bias correc-
tion as in (2.3) in the manuscript. Moreover, for both sample estimators, their
regularized versions (dashed lines) achieve lower estimation errors, indicating
the benefit of regularization.

Surprisingly, as |X0]./|20|« gets relatively small, " achieves an even
smaller estimation error than ilj This is an interesting cancellation of two
biases with opposite signs: the estimation bias in the sample estimate ¥ and
the shrinkage bias in the ¢;-penalty. Specifically, for any index pair (j, k),

(2.3) in the manuscript indicates that the bias of X, in estimating (X9); is
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Model 3

Model 4

75 1001.0 25 5.0 75 10.0
1=2_/IZ0

Figure 2: Estimation error (in Frobenius norm, averaged over 100 replicates) of the two between-

subject sample covariance (solid) estimators (X and ib) and their corresponding sparse and positive

definite (dash) covariance estimators (§+ and i;) The horizontal axis is the inverse signal-to-noise

ratio, i.e., |2|oe /|£9|oe. The estimation errors of & and £ are marked in green, and the estimation

errors of Y, and Zg’ are marked in orange.
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S (mng)THEY) k. In cases where (22);, and (X9);, have the same signs (as in
Model , this sample estimation bias has the opposite effect from the shrinkage
bias from the ¢; penalty. Consequently, these two biases could cancel each other
when they have similar magnitudes, which is achieved when (32); is on a sim-
ilar scale as A, and thus resulting in the surprisingly better performance of f)b
than . Notably, when the estimation bias (as characterized by |22|os/]20|o)
is too large to be canceled by the shrinkage bias, or when both biases have the

same signs (as in Model , the performance of f];r is dominating that of s

S4.3 Simulation Studies in Heavy-tailed Settings

This additional simulation study examines the numerical performance of the
proposed estimators when the Gaussian assumption is violated, e.g., in heavy-
tailed data. Specifically, we consider simulation settings where random effects
and random errors are both generated from a t5 distribution, and all other
specifications remain the same as in Model 1 with p = 100. The following
figure suggests that our proposed methods still perform favorably in heavy-tailed

settings.
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Figure 3: Estimation error (in Frobenius norm, medium over 100 replicates) for two between-subject
(solid) and one within-subject (dash) covariance matrix estimator when random effects and random
errors are generated from a t5 distribution: i;‘ (violet triangle), f);' (orange circle), and ij (pink
diamond). The estimation error of the aggregated estimator (§+, green square) is evaluated in
estimating the within-subject (dash) and the between-subject (solid) covariance matrices. The z-axis

is max; n; /no, which characterizes the imbalance of the data.

S4.4 Unconstrained Estimators Versus Constrained Estimators

We generate 100 independent data sets for both balanced Model 1 and Model 2
with n; = 2 and m = 100. We compare the performance of the unconstrained
estimators, S (3.) and Sk(flb), and the constrained estimators, ij and i;, in

terms of estimation errors and the percentage of positive definite estimators,
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where S)() is the soft-thresholding operator defined in Section 2 in the main
context. The simulation results are summarized in Table [l Generally, con-
strained estimators exhibit slightly better performance in terms of estimation
errors. In addition, we demonstrate that the positive definite constraint is cru-
cial by observing that in most of the cases, the unconstrained estimators are not
guaranteed to be positive definite, making them less qualified for interpretation

or downstream statistical tasks.
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Table 1: Comparison of the unconstrained and constrained estimators under the balanced

setting. Each metric is averaged over 100 replicates, with the standard error shown in the

parentheses. Comparisons are in terms of the estimation errors (F-error and Ls-error) and

the percentage of positive definite estimators.

Model 1 Model 2
P 100 200 100 200
Within-Subject

Sx(is) 7.1804 (0.0562)  11.4040 (0.0490) 5.3956 (0.0202)  8.3116 (0.0159)
F-error

o 7.0548 (0.0552)  11.1804 (0.0490) 5.3956 (0.0202) 8.3116 (0.0159)

S,\(flg) 3.6179 (0.0451)  4.2217 (0.0282)  2.7131 (0.0115)  2.1257 (0.0083)
Lo-error N

o 3.5553 (0.0438)  4.1564 (0.0286)  2.7131 (0.0115)  2.1257 (0.0083)

S\(E0) 18% 3% 100% 100%
PD%

X 100% 100% 100% 100%

Between-Subject

S,\(ib) 10.8195 (0.0611) 17.0538 (0.0416) 7.6064 (0.0212) 11.6116 (0.0187)
F-error

Iy 10.1304 (0.0635) 16.1446 (0.0436) 7.5382 (0.0222) 11.6005 (0.0139)

S,\(flb) 4.5419 (0.0447)  5.3739 (0.0258)  2.3508 (0.0104) 2.5681 (0.0051)
Ls-error N

Iy 4.2857 (0.0467)  5.0994 (0.0257)  2.3143 (0.0104)  2.5358 (0.0046)

S\ (Sp) 0% 0% 7% 12%
PD% R

v 100% 100% 100% 100%

Sa(X:) and XF: unconstrained and constrained estimators for within-subject covariance;

S, (3p) and Z;‘: unconstrained and constrained estimators for between-subject covariance;

PD%, percentage of positive definite estimators.
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