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Supplementary Material

This documents contains additional technical details and numerical results that were omitted

from the main text of the manuscript.

S1 Auxiliary results.

In the exposition below, we will often refer to the lemmas stated in section
3.1 of the main document.
1.3 Existence of solutions.

In this section, we discuss simple sufficient conditions for existence of the

estimator énk defined in display (1.5) of the main document.

Proposition 1. Assume that © < R? is compact and that £(0,z) is con-
tinuous with respect to the first variable for P-almost all x. Moreover, let p

be a convez function such that p"(x) > 0 for all x € R. Then gnk exists.

Proof. 1t suffices to show that 2(6, ') is continuous. The existence claim
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then easily follows as L(6, #') must be uniformly continuous on © x © due
to compactness, which in turn implies, via a standard argument, continuity
of the function 0 — maxyceo 2(0, 0'), hence the existence of é\n,k’a again in
view of compactness. To establish the continuity of # — maxgco 2\}(0, ')
when E(@,Q’ ) is uniformly continuous, note that for any § € © and any
e >0, L0.0) —e < L(6,0) < L(6,0) + ¢ for all @ € O as long as
|6—6] < 5(c). Tt easily implies that maxgee L(0,0)—¢ < maxgeo L(6,0') <
maxgeo E(@, 0') + ¢, and the conclusion follows.

All that remains is to establish the continuity of L(6,6'). To this end, fix

e > 0 and let

1< L Li(0) -z
R(z0,0) EZ< Ai() )
Since R/(z;0,0") is strictly increasing in z, there exist z;(¢) and z_(e)
such that R'(z.();0,0') = ¢ and R'(z_(€);0,0') = —e. In particular,
i(@,@’) € (z_(g),24(g)). As R'(L L(6, 0');0,0') > 0 in view of the assump-
tion p” > 0, |z4(e) — 2_(e)] — 0 as ¢ — 0. Since L;(0) — L;(#) is
continuous in 6,6 by assumption, R is continuous in #,60" as well, hence

R(24():0,0') — R(z+(): 0,8

< cand )R £);0,8") — R(z_(¢);0,8)| <

e whenever ||(,60") — (6,0)| < d(¢) for some §(¢) small enough. In this
case, we see that the inequalities R(z;(¢);0,0") > 0 and R(z_(£);6,0') <0

hold, hence L(0,0') € (+_(¢), 24 (c)), implying that )E(é, g — 10,0
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|z, (e) — 2_(e)] — 0 as € — 0, yielding the desired conclusion. O

We remark that elsewhere in this work, we choose p with the second
derivative vanishing outside of a neighborhood of 0. However, R” (Z(@, 0);6,0") >
0 holds with high probability uniformly over 8,60’ € © when © is compact
and the class {£(6,-), 0 € O} satisfies the assumptions made. We sketch
the steps needed to show this fact; all the required tools have already been
established in the paper. First, note that in view of Lemma A.1 and the
triangle inequality, supgg.ce L(6,0) — L(0,6")| = Op(n~Y2) as n,k — o

with high probability, hence

inf R"(L(6.6'):6.6) > inf  R"(L(6.6") + 6.6
nf (L(6,6);0,0) por il (L(6,6') + 2;0,0)

for a large constant D, again with high probability. Next, the relation

1
=  sup |R"(L(0,0) + 2;0,0") —ER"(L(6,0') + 2;0,0")| = op(1)
79,0 |21<D/v/n

as n, k — oo follows from an argument identical to the one used to prove

Lemma A.2 and Lemma 2. Finally,

By (\/H L,(0) - zngn— L(6.6') - z> gy <Z(9, egn— z\/ﬁ) + o)

in view of Lemma 1, where Z(0,6’) is a centered and normally distributed

random variable with variance 02(6,0'). As p"(x) = I{|x] < 1}, we see that

infg g1 |21<pyym Ep” (W) > 0, yielding the result.
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S2 Proof of Theorem 1 (main text).

2.4 Preliminaries.

Let us recall some basic facts and existing results required in the proof.
Given a metric space (T, p), the covering number N (T, p,¢) is defined as
the smallest N € N such that there exists a subset F' < T of cardinality
N with the property that for all z € T, p(z, F') < e. Let {Y(t), t € T} be
a stochastic process indexed by T. We will say that it has sub-Gaussian

increments with respect to some metric p if for all ¢1,t, € T and s € R,

s2p2(t1,t0)
EesYu—Ye) < ¢ 2

Theorem (Dudley’s entropy bound). Let {Y(t), t € T} be a centered
stochastic process with sub-Gaussian increments. Then the following in-

equality holds:

D(T)
Esup|V(£) — Y (t5)] < 12 f Vlog N(T, p, 2)ds,

teT
0

where D(T) is the diameter of the space T" with respect to p.

Proof. See the book by Talagrand (2005). O]

The following bound allows one to control the error E(Q, 0o) — L(0,60)

uniformly over compact subsets ©" < ©. Recall the adversarial contamina-
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tion framework introduced in section 1, and define

A := max (An,sup 0(9,90)> .
0c©’

Lemma A.1. Let £ = {{(0,-), 6 € ©} be a class of functions mapping S
to R, and assume that supy.e B [€(6, X) — £(8y, X) — L(6,60)]*"" < oo for
some 7 € [0, 1]. Then there exist absolute constants ¢, C' > 0 and a function

o(l), 7=0,
such that for all s > 0, n

o), >0

T—0

g-(x,0) satisfying g, (z,6)
and k satisfying

S B 1
VEA, 965 VN

i (6(97)(]) - €<607X]') - L(eu 90))

E|0(0,X) — (6, X) — L(6,6) """

A%"r‘l‘nT/Q

+9<c
E o7

+ sup [gT(n, 0)
9o’

the following inequality holds with probability at least 1 — %:

sup
0o’

2(97 90) - L(ea 90)‘

A
- —IE sup
Apn geer

+A (LQ + =S sup [%(n, H)E 1406, %) = 100, X) = L{0, QO)IZHD ]

<C

% i (z(e, X;) — (60, X;) — L0, 90))

\/ﬁ k \/ﬁ 0O’ A%+Tn7/2
We will only use the bound of the lemma with 7 = 0. The proof of this
bound is similar to the argument behind Theorem 3.1 in (Minsker, 2019b);

for the readers’ convenience, we present the details in section 2.4 below.
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For the illustration purposes, assume that O = 0, whence the result above

implies that as long as

N

1
E sup — Z 100, X)) — £(6o, X;) — L(6,6,)| = O(1)
966’

and 0(©) < A, = 0(1),

sup
0’

3(9, 0o) — L(0, 90)‘ =0, (Nfl/Z + n—(1+7)/2A;(2+r)) .

Moreover, if O = kN and A,, = O(1), then, setting k = Nm%f, we see that

L(9,00) - L(Qﬁo)‘ =0 <N_1/2 + f@éi{) .

sup
00’

Lemma A.2. Assume that Xi,..., X, are i.i.d. Let 6 € ©, and set ¢y :=

r(0), where r(0) is defined in Assumption 3. Then for all 0 < ¢ < o,
1k
P (50

By (X—ﬁ (L1(6',60) — L(e’,eo») '

sup
He' 0] <5

(0,60) — (9’,9@))

TL

8
< sup
An\f 6] <5

AS a consequence,
1 k
EZ ( (0, 60) — L(@’,@O))>

By (X_ﬁ (La(0'.60) - L(e',eo))) '

% S (e (6, X;) — L(8,00))

7j=1

sup
o —6]}<5

sup

8s 1
< R N, X;) — 6, L0, 0
An\/E Hg/_g”s(; /72 0 ) ( 0))
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with probability at least 1 — %, where C' > 0 is an absolute constant. More-

over, the bound still holds if p” is replaced by p”, up to the change in

constants.
The proof is given in section 2.4.

Lemma A.3. Let {A,(0), 0 € ©},{B,(0), § € © = R} be sequences of
stochastic processes such that for every 6 € O, the sequences of random
variables {A,(0)},>1 and {B,(0)},>1 are stochastically bounded, and for

any € > 0,

limsup]P’( sup |A,(0) — A, (6p)] = 8) —0asd — 0,

n—ow 10—6o <o

1imsupIP’< sup |Bn(0) — B,(6p)| = 5) — 0 as d — 0.
|

> 10—0o]| <o

Then

lim sup]P’( sup |A,(0)B,(0) — A, (00)Bn(00)| = 6) —0asd — 0.

n—o0 10—60] <6

Moreover, if there exists ¢ > 0 such that

liminf P(|B,(6y)| = ¢) = 1,

n—0o0

then the following also holds:

limsup P ( sup

n—o 10—60 <o

- >c| ->0asd— 0.
Bn(e) Bn(QO) )
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Proof. The result follows in a straightforward manner from the triangle

inequality hence the details are omitted. O]

Let us commence the proof of the theorem. To simplify and clarify the
notation, we will omit subscript 7 in most cases and simply write “k,n”
instead of “kj,n;” to denote the increasing sequences of the number of

subgroups and their cardinalities. For every ¢’ € O, define

0(0') := argmax L(¢, ) = argmin L (0, ¢)
0O 0O

Above, we assumed that the maximum is attained so that 5(9’ ) is well

~

defined; however, the argument also holds with 6(6’) replaced by a near-
maximizer. We will set 57(11,)6 = é\n,k and 57(1211 = 5(57(11,1) Observe that

L <é\7(11])€’§£2])€> <L (00,5((90)>, hence whenever Hggi — 0| <R, j=1,2,
L) = LO) = L0 = L) £ L0060

<L (90, 5(90)> + sup )2(91, 02) — L(61, 92)‘

[6;—60]|<R,j=1,2

< L(6y) — L(@(Qo)) + 2 sup ‘2(91, 02) — L(1, 92)‘

16;—60|<R,j=1,2

<2 sup ‘2(91, 6y) — L(64, 92)‘ )

10;—00l|<R.j=1,2

A~

where we used the fact that L(6y) — L(6(6p)) < 0 in the last step. On the

other hand, for any € > 0,

inf  sup (L(6y) — L(0)) > L(6y) + 0 — L(6p) =6

[61—00]=¢ o,
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where 0 := d(¢) > 0 exists in view of Assumption 2. Therefore,

(Hé(” — G| = e) < IP’( sup ‘E(el, 6,) — L(6, eg‘ > 5/2)

16;—b0[|<R,j=1,2

+ P(Ha?;{; _ 90H > Ror H@(f; _ QOH > R).
It follows from Lemma A.1 that

sup ‘E(el, 6,) — L(61, 92)’ —» 0 in probability
16, ~60] <R.j=1,2

O(k,n)

as long as limsupy, ,, o, =%

< c as n,k — . Indeed, to verify this, it

suffices to show that

limsup E sup
N—ao  [6;—bo|<R,j=1,2

\/LZ (€001, X;) — £(62, X;) — L(61,6))| < 0

which follows from the triangle inequality and the relation

limsupE  sup
N—o ”01 790H<R

i 061, X;) — (00, X;) — L(61,00))| < 0. (2.1)

To establish the latter, we use a well-known argument based on symmetriza-
tion inequality and Dudley’s entropy integral bound (see section 2.4). Let
€1,...,6n be i.i.d. random signs, independent of the data Xi,..., Xx.
Then symmetrization inequality (van der Vaart and Wellner, 1996) yields

that

E sup

sy <R\/LN Z (£(6, X;) — €(60, X;) — L(6,6p))
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< 2E

1
sup €j 0o, .
0c6:0—00|<rR VIV Z ’ ( ° ))

Conditionally on X7, ..., Xy, the process

|
00,-) = —= ) & (L0, X;) — £(6o, X;))
7N &
has sub-Gaussian increments with respect to the semi-metric d% (61, 6s) :=
v ZJ L (061, X;5) — £(0s, Xj))z. It follows from compactness of the set B(6y, R) =
{0 : |0 — 0y < R} and Assumption 3 that there exist 6, ..., 0y ) such

that UMY B(6;,7(0;)) 2 B(6, R) and
00, z) = £(0", )] < V(a;r(60;)) 0" — 6"

for all #',60" € B(0;,7(0;)). To cover B(6y, R) by the balls of dy-radius 7,
it suffices to cover each of the N(R) balls B(6;,7(6;)). It is easy to see
d

balls of radius 7.

that the latter requires at most <6T(ej)HV( 5 ))”LQ(PN)>

Therefore,
N(R) d
6r(0;)|V(;7(0;
log"? N(B(6y, R), dy, 7) < log"/? (Z [( OVt J))’L“PN’) v 1])
T
=1
Note that for any @1, ..., 2, > 1, 37 x5 < m[[}_, x;, or log (ZJ 1xj> <

logm + 377 logx;, so that

N(R) _ d
log!”? (Z [(m@-)v<-,:<ej>>||L2<pN>> y 1])
0

N(R)
, (0
<log"? N(B)+ 3 Vilog!? (67"( LG '“(P“) ,
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where log, (z) := max(logx,0). Moreover, the diameter Dy of the set

B(by, R) is at most 22‘;\;({%)7’(0‘7‘)“])(‘; (0;))|| La(Py)- Therefore,

Dy

J log'? N(B(bo, R),dn, T)dT

0
N(R)

<C (DN log"? N(R) + vd Z 0,)|V (-7 (0 '))|L2(PN)L logl/Q(l/T)dT>

and

E sup
0€O:|6—6o| <R

e
Qﬁ)

00, X;) —5(907Xj))|

N(R)
< Clog"*(N(R)) D r(0)V(57(0)) |y < 0.
j=1
It remains to establish that IP’( - QOH > R or @(12,1 — HOH > R) — 0. To

this end, notice that by the definition of t9n .

< L(6) - L (é(eo)) + sup ‘2(90, 8) — L(6o, )

- L 0=bo<R

on the event {H§(90) — G| < R}. It has already been established that

sup
10— <R

L(66,0) — L(60, 9)’ 0 in probability.
To show that IP’(H@(@O) — ol > R) — 0 for R large enough and as n, k — o0,

recall that

[6—60|=R 1 “
j=1

B(n,R,t):IP’< inf lie(e,xj)<L(90)+t>
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and that limg_, limsup,,_,., B(n, R,t) = 0 for some ¢t > 0 in view of As-
sumption 4. As moreover %22;1 0(6y, X;) — L(6p) in probability, one can

choose Ry and ng such that

- 1 &
B(n,R,t) = (9 lg;ﬁ>Rn2”X ZZ:: (60, X <t/2>

for all n = ng(y) and R = Ry(y) for any v > 0. As

L(6,6y) = argmlnz <\f (L;(6) — L;(6) — z)) ,

R i)

it solves the equation Z] P (*f(f/ (0) — L;(6o) — E(G,Qo))> = 0. As-
sumption 1 implies that p/(x) = ||p/[|s for x = 2. Therefore, 2(0,90) <t/4
only if L;(0) — L;(6y) < t/4+2§—% for j € J such that |J| = k/2. To see this,
suppose that there exists a subset J' < {1,...,k} of cardinality |J'| > k/2

such that L;(6) — L;(6y) = t/4 + 222 for j € J' while L(6,6,) < t/4. In

I
turn, it implies that L;(0) — L;(6) > 27, j e J', whence
k — ~
27 ( ~ L;(00) - L@, eo»)
> Slole+ 30 (X200 - Lo - 20.00)) > 0.
J¢J’

leading to a contradiction. Therefore,

[6—60|=R

IP’( inf E(9,90)<t/4)
<P(3Jc{1,... .k}, |[J|=k/2: inf E-(e)—i<(90)<t/4+2ﬁ jeld).
’ lo—0o=R " ’ NG
(2.2)
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Let &€ be the event

. _ A,
= {ajg (Lo k112 h/20 inf L500) = Li6) < t/4+2 2, jeJ}.

Since at most O out of k blocks of data may contain outliers, for £ to hold
there must be a set of indices J' among the contamination-free blocks of
data such that the cardinality of J’ satisfies |J'| = k/2 — O and such that

for all j € J',

I 7 A
inf  L;(0) — L;(6 t/4 4 920
0—b0]> R i(0) — L;j(6o) < t/4+ NG

Probability of the latter is bounded by, in view of the union bound, by

([kl;if)@) <B’(n, R, t))lk/zj—o < (lk21-0 (B(n, R t>>[k/21_@

whenever 23—% < t/2 and where we used the inequality (') < (M e/l)!
together with the fact that % < ¢ for a sufficiently small absolute con-

stant ¢ > 0 and n, k large enough. Here, C' > [(:/;J(z)é is another absolute

constant whose value depends on c¢. Moreover, if n > n(0.25/C) and
R > Ry(0.25/C), we deduce that P(£) < 0.25¥1/2=)=1 _ () as k — oo since
c is chosen to be small.
As 2(90, 0p) = 0 a.s., preceding discussion implies that IP’(H@(@O) — 6| < R) —

1 as n, k, R — c0. We have thus shown that

LAY 8®)) = 0 in probability. (2.3)

n,k’ V' n,k
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On the other hand, by the definition of ) it holds that E(éfj,l, @(12,1) >

n,k’

L(B).60). Now, assume that [0\) — 6y| > R while (8.}, 6) < L(6p) +
t/2—L(0y) = t/2. Arguing as before, we see that there exists J' < {1,...,k}
such that [J'| > k/2 and L;(0\)) — L;(6) < L(0o) + t/2 — L(6o) + 252 for

j € J', which implies the inequalities

, - A R
HGJHI}]ﬁ;R LJ(Q) < L(@Q) + t/2 + 2\/_ﬁ + (LJ(G()) — L(e())) , ] € J.

Clearly, P(|(L;(60) — L(6p))| = t/4) < 5 Var (€(6, X)), therefore, for n

and R large enough,

. A,
P(9_1£f>RLj(e) <L) +1/2+2 2+ (L;(60) — L(@o))) <0.01

for any j. Reasoning as in (2.2), we see that

T 1
P(L(@L).

6) < t/2 and [6) — 6| > R) S 0as k,n — 0.
We deduce that on the one hand,

P(L@),00) = t/2( V18 — 6ol > R) — P81, — 6ol > R).

n,

In view of (2.3), we see that on the other hand,
P(L@). 00) = t/2( V184 — 00l > R) < (L)), 00) = 1/2) =0,

implying that IP’(H@S,)C — 0o > R) — 0 for R large enough as n, k — .
Finally, assume that H@fi — 6|l > R and that E(éﬁ}}c, é\ff,)ﬂ) > L(g(l,)c) -

n,

L(6y) — t/2. Repeating the reasoning behind (2.2), we see that the latter
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implies that there exists J' < {1,..., k} such that |J'| > k/2 and E](é:(j,)g) -
Ej(gf,)f) > L(@SI)‘:) - (L(@o) +t/2 + 23—%) for j € J', yielding that on the

event {H@S,)ﬁ — 6] < R},

. - A, = 1) ~1)
oint Ls(0) < L(00) + /2 + 222 ¢ (Lj(e )y L(ank)>

A _
< LO) +t/2+2== + su L0 — L6
B0 + /24272 5w |L(#) ~ L)

for j € J'. We have shown before that ]P’(Hg(nl,)C — 0| > R) — 0 for R large
enough as n,k — 0. As Esupjy_g,<r |L;j(0') — L(¢")| — 0 for any R > 0
as n — oo (indeed, this follows from (2.1) and the triangle inequality), for

n and R large enough, the argument similar to (2.2) implies that

P( sup L(8).0) > L(0.)) — L(6p) —t/2 | — 0 as k — oo,
0—6oll>R m

therefore P(Hg( — 6 > RN L( o @?D < L6 (L(6y) + t/2)> —

TL

P(H@ﬁ — 0| > R). On the other hand,

P(L(00).0%) < L@ - (L) + 1/2))

<P(L (0. 00) < L) — (L(06) +1/2)) < P(J6) — 6ol > )

+P (L(é“{) — L(6y) — sup

n,
[6—60|<R

=P| sup
[0—60| <R

for R large enough as n, k — oo, therefore completing the proof of consis-

£(6,00) — (L(8) — L(06))| < L)) — (L(06) + t/2>>

L(6,60) — (L(9) — L(80))| = t/2> B (A1) — 0ol > R) =0

tency.
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S3 Proof of Lemma 1 (main text).

We will apply the standard Lindeberg’s replacement method (see for ex-

ample O’Donnell, 2014, chapter 11). For 1 < j < n + 1, define Tj :=

F( I Y Zj>. Then

EF (2 §j> ~EF (Z Zj>‘ =[BTt — ETi| < )[BTy, — BT}
j=1 j=1

j=1

Moreover, Taylor’s expansion formula gives that there exists (random) u €

[0, 1] such that

Ty = (Za > 7 )+F'(Z& > 7 )fj

i=j+1 i=7+1
52
F// ;
(e 52)%
j—1 2
+ (F (Z&—F Z Zj+ugj> ad (Zgz Z )) 57
=1 1=j+1 1=7+1
Similarly,
(2@ 3 7 )w (zgz 3 7 ) :
i=j+1 i=75+1
72
F” <Z gz Z ) 7j
i=7+1
Jj—1 Z2
+ (F (Zgﬁ Z Zj+,/zj> F" (Zg, Z J>) 7ﬂ
i=1 i=j+1 i=j+1

Lipschitz continuity and boundedness of F” imply that

[F"(z) = F"(y)| < C(F) min(1, |z — y])
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with C'(F') = max (2||F||s, L(F")). Therefore,

[ET; 11 — ET;]

j—1 n 7j—1 n 2
< |E Jad ; ) B R n ; ) S5
( (Zé + D Zﬁu@) F ( G+ ZJ>> 5

=1 1=j+1 =1 1=j+1
j—1 n 7—1 n Z2
" ) ) 7 . ) ) _J
+E<F <Z£Z+.Z ZJ+MZ]> F ( §,+'Z ZJ>> 5

=1 i=j+1 =1 i=j+1

and the first claim follows. To establish the second inequality, it suffices to
observe that for all 7, E [5]2 min(|¢;], 1)] = E|&PI{|&] < 1} + EI&1PI{¢] >
1}. Clearly, [&]* < [&]*'™ on the event {|§;| < 1}, whereas |§;]* < |§[*T7

on the event {|§;| > 1}.

S4 Proof of Lemma 2 (main text).

Symmetrization inequality yields that

| P
Eefe&?@' (\/_ﬁ ]Zl (f¢91(Xj) - f92<Xj> - P(f91 - f%))‘)
< C(p)E efgigel (\/Lﬁ JZZ;EJ' (fo, (X5) — fo, (X))

= C(p)ExE. sup (\/Lﬁ

Z €j <f91<Xj> - f@z(X]))‘> .

91,926@’

As the process f — \/%72?:1 € (fo,(X;) — fo,(X;)) is sub-Gaussian con-

ditionally on Xj,...,X,, its (conditional) L,-norms are equivalent to L;
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norm. Hence, Dudley’s entropy bound (see Theorem 2.2.4 in van der Vaart

)p

f91 f92( ))

and Wellner (1996)) implies that

Z (fo. (X5) = fo.(X;))

E. sup | —
01,020’ (\f

o (e

91 926@

>p
Dn(@)/) p
< C(p) J log"? N(2, T, dy)dz | |

0

where

d;(for fo,) = %Z (for (X5) = fan(X;))?,

= {(fo(X1), ..., fo(Xn)), 0 O} = R"

and D, (©') is the diameter of © with respect to the distance d,(-,-). As
fo(-) is Lipschitz in 6, we have that d7(fo,, fo,) < 5 25—y M*(X;)[61 — 62,

implying that D, (0") < | M|, diam(©’, || - ||) and

diam(©, | - |) [ M d
10gN<z,den><1ogN<z/|ML2<nn>,@',')<1og(o tam(6',| Z”> ‘Lg(ﬂw).

Therefore,

Dn(@/) p
( J log'? N(z,T,,, dn)dz> < CdP? (diam (O, | - [) - |M | o))"
0

and

ExE. sup
91,926@'

Z% (for (X) = fo (X ))D < Cd"Pdiam® (&, |- NE[ M, i, -
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Proof of the second bound follows from the triangle inequality

) <ol

+ Esup <‘\% Zn: (fo(X5) — fo,(X;) — P(fo — feo))|> )7

p

i —= (fo(X;) — Pfo,) i (fo,(X;) = Pfa,)

0o’

and Rosenthal’s inequality (Ibragimov and Sharakhmetov, 2001) applied to

the term B |4 37 (o, (X;) - Pl

S5 Proof of Lemma 3 (main text).

First, observe that in view of Assumption 3,

o?(8) < sup E(6,X) — L6y, X)|> <EVXX;r(6y)) 6>
1060 ]<

Next, define

3

Ci(2:0) — % W <£ (L,(0,00) — L(6,60) - z))

3

so that Gi(L(6,00) — L(0, 6,): 6) = 0, and let
Gi(z;0) :=Ep’ (\/—ﬁ (L1(6,60) — L(6, 6p) — z))

In the definition of G (z;0), we also assumed that L (6, 6y) is based on the

contamination-free sample. Next, consider the stochastic process

Ri(6) = Gi(0;6) + 0.Gr(20)|_, (i(@, 0y) — L (6, 90)) .
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We claim that for any 6 € ©,

R (6" 5
m&sz(z;H')pzo (\f +Vkd +W) (2.4)

uniformly over ¢ in the neighborhood of 8,. Taking this claim for granted

for now, we see that

. G (0:6) Fi(0)
VIV (L(6.00) = L(6.60)) = ~VN 5+ VN

and in particular it follows from the claim above that the weak limits of
VIN(L(9,6,) — L(0,6,)) and

Gu0:0) A, i s (X (Li(6.60) — L(6,6)))

_JN -
0G5 0m0 VR By (42 (Lu(6.00) — L(0,60) )

coincide whenever ¢ is sufficiently small (note that we can change the order
of differentiation and expectation in the denominator as p” is bounded). It
remains to establish the relation (2.4) that implies the bound for supjy_g,<s |Rn.x(0)]

in the statement of the lemma. To this end, define
en(0) := L(6. 60) — L(6.6))
so that Gj(ex(0):0) = 0. Recall the definition of Ry(#) and observe that

the following identity is immediate via Taylor’s expansion:

Ri(6) = Gi (B(6):0) +0.Gi(=:0)|_,2w(8) — (G (x(6);0) — Gal0:6))
=0

For any # € © and j = 1,..., k, there exists 7; = 7;() € [0, 1] such that



o (X—ﬁ (L;(6.80) — L(8,60) — av(e))) =/ (X—ﬁ (L;(6,00) — L6, 90>))
- \A/_fp” <X_f (I’J (0,00) — L(0, 90))) -en(9)
+ %p”' (X—f (L;(0,600) — L(6,60) — Tj@N(Q))) - (en(0))”.

Therefore,

k
G @x(0):6)-Gul0:0) = 5 D2 (X (Lo(0,to) = L(0.00) ) 20

L <X_ﬁ (L,(60,00) — L(e,eo>)) ) - (@n(0))?
and
w0 - 30331 (o (3 (0.0 o)

(2.5)
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It follows from Lemma A.1 (with O = 0) and Lemma 2 (see the main paper)

that

R ) 52 (@) )
sup len(0)|<C(d,0y) | =5+ —+—=
H@—%ﬁ@' w()] < Old. f) (vN vn o kyn

with probability at least 1 —s~! whenever s < VEk A v/n. Moreover, Lemma

A.2 combined with Lemma 2 yields that

sup
ENE

%Z ( (X7 (.00 - 26.00))
_Ey (X_ﬁ (L;(6.0) — L(0, Ho>)) ) < Cld o) (%5 ! %>

with probability at least 1 — s~! (here, we also used the fact that at most

O out of k blocks may contain outliers). Therefore, the first term R'(f) in

(2.5) satisfies

52 53 O O
sup |R'(0)] < C(d,b) | —s +—3+62—+—>
H9—9oﬁ<6| )l (d,6) (k Vk E k2

on event £ of probability at least 1 — % Observe that

sup
l6—60||<6

%i( ( (L,(0,00) — L(e,eo))>

_Ep" (\A/_f (L;(0,60) — L(Q,Qo))) )

1

< C(d, 0,) (%s + %)

with probability at least 1 — s™", again by Lemma A.2, and

< C§?

e (2 (L6000~ L0.00) )
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by Lemma 1. Therefore, the term R”(#) admits an upper bound

03
sup |R"(9)] < C(d,b) ((53 + —)

10—60]<6 k3
which holds with probability at least 1 — s~! (here, we again used the
inequality s < v/k) to simplify the expression). Finally, as p” is Lipschitz

continuous by assumption, the third term R”(f) can be estimated via

u R/// n . 3 C(d, 90) ( 3 03)
Su o) <C d,é’ — len(0 < —" |5
|\0490H<5| ( )| ( 0) A% | N( )| \/ﬁ + _k,g

on event £ (note that this upper bound is smaller than the upper bound
for supjg_g,<s ["(0)| by the multiplicative factor of y/n). Combining the
estimates above and excluding all the higher order terms, it is easy to
conclude that

Ry (0)

\/N su -_—
P 510G (2:0)].—0

|6—00||<o

52 0?
< C(d, 90) (52\/_E + \/%53 + W)

with probability at least 1 — %

S6 Proof of Lemma A.1.

Define

e = L 3 (va OB 00 )

and recall that the contaminated sample X,..., Xy contains O outliers;

let I < {1,...,N} denote the index set of the outliers. Moreover, let
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X1,..., Xy be an i.i.d. sample from P such that )~(j = X, for j ¢ I, and
let G(2;6) be a version of @k(z, 6) based on the uncontaminated sample.
Clearly, |Gy (z;0) — G(z;0)| < 2||pHOO% almost surely, for all z € R.
Suppose that z1, zo € R are such that on an event of probability close to
1, @k(zl; 0) > 0 and ék(ZQ; 0) < 0 for all § € © simultaneously. Since G, is
non-increasing in z, it is easy to see that on this event, L(6, 6y) — L(6, 6,) €

(21, 29) for all 0 € ©, implying that

~

Sué) L(0,6y) — L(0,00)| < max(|z1], |22]). (2.6)
e /

Our goal is to find 21, 22 satisfying conditions above and such that |z|, |22]
are as small as possible. Let W (#) stand for a centered normally distributed

random variable with variance o2(f, 6y), and observe that

~

Gk(zﬁ) = A() + A1 + AQ + Ag,
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With some abuse of notation, we assume that A;(0) and Ay () are evaluated
based on the contamination-free sample X7, ..., Xy. Next, suppose that

€0, €1, €2 are positive and such that

Qlen(g’ AO(Q) > —£&p, elég/ Al(g) > —€&

with high probability and infseer A2(0) > —e9. Then z; satisfying

nf Ep/ (W(@) — \/ﬁzl> S Egtert+ e

0e®’ An \/E

will conform to our requirements. Since

£, (M) ey (W(9>) gy (W(e)) Az

A, A, A, JAVS
-0
for small z;, a natural choice is z; ~ An foteites  This argument
1 1 infycgr Ep”(—vz(ne) ) Vnk g

is made precise in (Minsker, 2019b, Lemma 4.3) which shows that the choice

~

gg+er+e0 A

0.09 vnk

21 =

is sufficient whenever €;, j = 0,1,2 are not too large (specifically, when
% < 0.045 - this is precisely the main condition needed for the bound
of lemma to hold). It remains to provide the values for ¢;, j = 0,1,2. We
have already shown above that ey can be chosen as ¢y = 2| pHoo%. To find

a feasible value of 1, we will apply Markov’s inequality stating that with

probability at least 1 — 1/s,
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1 Z 0 <\A/—f (L;(0) — L;(6o) — L(0, 6) — Z))

i weor | VE =
Ry (X_ﬁ (L1(6) — Lu(6) — L(6,60) — z)) ' |

The expected supremum can be estimated in a standard way using the
symmetrization, contraction and desymmetrization inequalities (e.g. see

the proof of Lemma A.2), yielding that

Ly <Vi (L;(0) — L;(0) — L(0,05) — z))

—E/ (A_ (L1(0) — Ly (6o) — L(6, 6p) — z)) ‘

8L(p') 1|
u

(€<Q7 X]) - £<907 XJ) - L(ev 90))

j=1
It remains to obtain an appropriate value for €5. Note that for any bounded
non-negative function g : R — R, and any signed measure @,

1£lloo
Q(x: g(x)=t)dt

| g(x)d@‘ -

< : = .
) 9lle0 max|Q (2 - g(w) = 1)

Moreover, if g is monotone, the sets {z : g(x) >t} and {x : g(z) < t} are
half-intervals. Note that p’ = max(p/,0) —max(—p’,0) is a difference of two

non-negative monotone functions. Therefore,

Jor (s oo

<l (maxl@ (o (o) > 0]+ maxQ e o) <))
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Take Q to be the difference of the distributions of v/n (L1(8) — L1 (6p) — L(6, 6p))

and T (0), denoted @é"’k) and ®, respectively, so that

e )

< 2Vl sup 2" (1) — @o(1).
te

A well-known result by Feller (1968) states that sup,.g

(1) = @o(1)] <

6ge(n), where

LU0, X) = 060, X) = L(6,60)\
go(n) := \/HE[( (0. 00) )
i 00, X) —£(00, X) — L(0,60,)
e O] |

It is easy to see that gg(n) — 0 as n — oo if Var(4(0, X)) < oo, and distribu-

T

U0 X) (60, X)~L(6:00) |, —7/2

o (6,60)

tions with finite variance, and moreover gg(n) < CE ‘

241

if | | 4820000 X)L (0,60 < oo for some 7 € (0, 1]. Therefore, the function

0(6,00)

g-(n,0) in the statement of the lemma can be chosen as g.(n,0) = gg(n)
when 7 = 0 and g¢.(n,0) = C when 7 > 0. We conclude that the choice
g9 = 12Vk| 0|0 SUPpeer go(n) satisfies the desired requirements.

It remains to recall the bound (2.6) and that 2y = —=teite The

A
0.09  Vuk'

matching bound for z, is obtained in an identical fashion.

Remark 2. The bound for £ that we established above is slightly weaker

than the one used in the statement of the lemma; an improved version can
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be obtained using the non-uniform version of the Berry-Esseen bound with
additional effort, and we refer the reader to (Minsker, 2019b, Lemma 4.2)

for the technical details.

S7 Proof of Lemma A.2.

Let €q,...,e; beii.d. Rademacher random variables independent of X7, ..., Xy,
and note that by symmetrization and contraction inequalities for the Rademacher

sums (Ledoux and Talagrand, 1991),

1 é " \/ﬁ T / /
Euofs_%ﬁq E;p <An (067, 60) = L@ ’00))>
_Ey (A£ (Li(6, 60) - wao») '
1 - 1 \/ﬁ T (p / /!
< QEHO/S%IH)QE Zlaj (p (A_n (Lj(9 ,00) — L(0 790))> - P (0))'
AL(p") PRV PR
< Ak Euefs_%ﬁ@ ;%\/E (L8, 60) = L(F', 0)

where we used the fact that ¢(z) := p” (X—f:ﬁ) — p”(0) is Lipschitz contin-
uous (in fact, Assumption 1 implies that the Lipschitz constant is equal to
1) and satisfies ¢(0) = 0. Now, desymmetrization inequality (Lemma 2.3.6

in van der Vaart and Wellner, 1996) implies that

sup Za‘] (L;(6',60) — L(¢',60))

H9 —0]<6 |;
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N
sup 00, X 000, X;) — L(0',60))| .
\ﬁ lor—6] <6 ;

J

hence the claim follows.

"

The fact that p” can be replaced by p” follows along the same lines as

" H

p" is Lipschitz continuous and |p” |, < o by Assumption 1.

S8 Numerical experiment: logistic regression.

As a simple proof of concept, we implemented the gradient descent-ascent
algorithm mentioned in section 2.1 for the problem of logistic regression;
for a detailed discussion of closely related methods, we refer the reader
o (Lecué and Lerasle, 2020; Mathieu and Minsker, 2021). In the present
setup, the dataset consists of pairs (Z;,Y;) € R? x {£1}, where the marginal
distribution of the labels is uniform on {£1}, while the conditional distri-
butions of Z;’s are normal, that is, Law (Z; | Y1 = 1) = N ((—1, -1)7,41,),
Law (Z|Y = —1) ~ N ((1,1),4L;), and P(Y =1) = P(Y = —-1) = 1/2;
here, I stands for the 2 x 2 identity matrix. The loss function is defined
as 0(0,2,Y) = log (1+eY®®) 6§ c R® The dataset includes 40 out-
liers for which ¥; = 1 and Z ~ N ((25,10),0.255). The sample of 500

“informative” observations was generated, along with 40 outliers, and we

compared the performance of robust method proposed in this paper with
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the standard logistic regression, as implemented in the Scikit-learn package
(Pedregosa et al., 2011), that is known to be sensitive to outliers. Results
of the experiment are presented in figure 1 and illustrate the robustness of

proposed approach.

Standard Logistic Regression Robust Logistic Regression

10.0 10.0

7.5
5.0
25
0.0
—2.5

-5.0

Figure 1: Scatter plot of N = 540 samples from the training dataset (500 informative
observations and 40 outliers). The color of the points correspond to their labels and the
background color — to the predicted labels (gray region corresponds to yellow labels and

green — to purple labels).
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