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S1. Proof of Proposition

Since {(Y;,x;),7 = 1,...,4} is a collection of independent and identically

distributed random vectors, we obtain

El{] ¥r(err) = ¥r(esy) [P+ [ ¥r(ear) — ¥rleas) P
— [ ¥r(ers) = Urleas) P = | r(ear) = ¥r(ess) [P} [ €ir] = 0,(S1.1)
and  E[{||Gi(x1) — Ga(x3)|| + [|Gs(x2) — Ga(x4)]|
—[1Gx(x1) = Ge(xy)l| = [|Gx(x2) — Ga(xa)[I} [ x] =0, (S1.2)

for i+ = 1,...,4. The null of conditional quantile independence between

Q,(Y | x) and x implies that ¢, (e,) is independent of G4 (x). It follows



from the relations in (S1.1))-(S1.2) and the definition of h that

E(h[{y-(e1,-), Ge(x)}, {¥r(e2,0), Ga(x2) }, {tr(e3,7), G (x3) },
{¢r(ear), Ge(xa)}] [ €5, i) = 0, (SL.3)

E(h[{tr(e1r), Ge(x)}, {vr(e3,), Ge(x3)} {¥or(2,7), G2 (x2) },
{¢r(e47), Ge(xa)}] | €3, %) = 0, and (S1.4)

E(h[{r(e1r), Ge(x)}, {tr(ear), Ge(xa) } {¥r(22,), G (x2) },

{¥r(e3+), G(x3)}] | €0y xi) = 0, (S1.5)

for : = 1,...,4. Due to the i.i.d.’ness of samples, it is not hard to see that

E[{] ¢r(e1r) = ¥rless) [P+ [ dr(ear) = r(ear) [P = [ ¥rlers) — ¢rlens) |
— [ ¥r(e2r) = ¥r(ess) P} | €17y 604 = 0, (51.6)
El{] ¢r(e1r) = Wrlear) P+ | ¢rlear) = ¥rleas) P = | rlers) — ¥r(easr) [
— [ Yr(e2s) = ¥r(ear) P} | e1mrE8s] = =20 (61 )¥r(ear),  (SLT)
Ef{l|GL(x1) = Ge(xs)[| + [|G(x2) — Ga(x4)[| — [[G(x1) — G (x4
—[1GL(x2) = G(x3)[|} | x1,%2] =0, and (51.8)
Ef{[|GL(x1) = Ge(xs)[| + [|G(x2) = Ga(xa)[| = [G(x1) — G (x4

—1G=(x2) = Ge(xa) I} [ x1,%5] = D{G(x1), G(x3)}, (S1.9)

where the second assertion also applies the fact that E{¢;(e2,)} = E{¢r(e4+)}

= 0. By using the relations in (S1.6)), (S1.7)), (S1.8) and (S1.9)), the condi-




tional quantile independence yields

E(h[{y-(e1,7): Ga(x1)} {¥r (e2,7), G (x2) }, {¥r (€3), G (x3) ),
{tr(ear); G(xa)}] | €1,7, X1, 82,7, %2) = 0, (S1.10)
E(h[{¥-(e17): Ge(x1)} {0+ (e3,7), G (x3) }, {tr (€2), G (x2) },
{¢r(ear), Ge(xa)} | €1, X1, 62,7, X2)
= =47 (e1,0)0r (€2,) D{G (x1), G (x2) }, and (S1.11)
E(h[{¢-(e17): Ge(x1)} {¥r (e4,7), G (x0) }, {tr (€2), G (x2) },
{vr(e3.), G (x3)}] | €1, %1, €27, %2)

N (1)) DG (x1), G (x2)). (51.12)

Moreover, by the law of iterated expectations, the conditional variables e,
and x can be replaced by the transformed variables v¢.(e,) and Gi(x).
Recall the definition of the symmetric kernel E[{lﬁr(&',f), Gi(x;)},]. By

invoking 1' 1} and 1) we are able to conclude that %1{1&7 (e1.r)s

Gi(x1)} =371(0+0+40) =0. A direct application of (S1.10)), (S1.11)) and

(S1.12)) yields that

hal{- (8 ), Gt (i) Yooy
= 370 =47 =4 Y (e1)hr (e2,7) D{GL(x1), G (x2)}

= _6717”7'(51,7)¢T(€2,7)D{Gi(xl>7 Gi<x2)}' (8113)



As G4(x) is not a constant, it is immediate that
var(h[{4r (i), G (x:) Yu]) = 3677 (1 — 7)*var[D{G« (x1), G(x2)}] > 0.

It follows (Serfling 1980, Problem 5.P.3(i)) by independence of Q. (Y | x)

and x that

Var(’EQ[{¢T(Ei,T)7 G (x)}])

IN

var(hg[{vr (e1r), G (x0) Yu]) < var(hl{er (ei), G (i) o))

IA

3718 var[{| ¥ (e1,,) — Urlesys) P + | ¥r(ear) — Urleas) |

= ¥r(ers) = Wrleas) [ = [¥r(ear) — ¥r(ess) P}

x var[{[|GL(x1) — Gi(x3)[| + [[Gx(x2) — G(x4)]|

—[1G£(x1) = Gi(xa) || = [|G(x2) — Gus(x3)][]]

= 3741 - 1)’ E{[|GL(x1) — Ga(x)|| + |G (x2) — G (x4

—[|GL(x1) = Gi(x4)[| — |G (x2) — G(x3)[[}]*.

Using the relations || G+ (x)[| = [|J{|F+(x) [ HF+(x)/[[F£ () [ H ([F+(x)]| #
O =l J{IFLG)} | IUFLG) 7 0), [ 1GL001) = Ge(x3)l| = [[Gx(x2) —
G (x3)[[ |< [|GL(x) | + G (x2)]| and | |G (x2) = G (x4) || =[G (x1) =

i (x4)|| |< [1Gx (1) | +]| G (3¢2) [ we hawe var(he[{ (1,7), G () Fiy ) € =



2,3,4 are bounded by
3712721 = 7)’[E | J{IF<(x0) |1} > +E | J{[F(x2)|I} 7]

1
= 37421 - 7)2E | J(|wi,l) *= 371471 - 7')2/ J*(z)dr < 0.
0

The first identity follows from the fact that Fi(x;) and Fi(x3) have the
same distribution that of w,. The second identity holds trivially because
the spherical uniform measure W, is the product of the uniform measures
on [0,1) and on S,_1, which leads to ||wy || ~ uniform(0, 1). The third
identity follows by invoking the assumption that fol J?(x)dz < oo.

An argument parallel to that of Shi et al.| (2022, Proposition 3.1) shows

that ﬁﬁ and ‘A/T” equal to

U' = 24{n(n—-1)(n—-2)(n—3)}" Z Rl{Yr(ei,r)s Ga (i)},

1<11<12<13<14<n

{¢T (gizﬁ)v G:l: (Xiz)}’ {’17/)7 (51'3,7')7 G:t(xig)}v {1/)7(51‘4,7)7 G:‘:<Xi4)}]’ and
v-ru = n Z Z Z ZE[{Q/}T(&M')? G:E(Xil)}7 {w7(5i277)7 G:E(Xiz)}v

i1=113=143=114=1
{¥r(€is,r), G (x4) } {007 (1.7), Gt (i) 3],

respectively. Having verified that var[h,{¢-(e1,),Gx(x1)}] = 0 and 0 <
var(he[{tr (£:.r), Go(x:)}e_,]) < 00, ¢ = 2,3, 4 previously, an application of
Héjek’s projection method (van der Vaart, 1998, Chapter 11), with Lemma

5.7.3 of Serfling| (1980)), yields

n(U; = U5,) = Op(n '), and n(V} = Vi) = Op(n~'/?),  (SL.14)



where 1757 =12{n(n-1)}t E2[{¢r(5i1,r), G (xiy) b {thr(8inr), G(

1<i1<ia<n
Xiz)}] and ‘/}QH,T = 6n_2 ‘él 'il ’FLQ[{wT(Eh,T)? G:E<Xi1)}> {@07(52'2,7), G:I:(Xiz)}]'

By definition, the function —D{G4(x;), GL(x2)} is symmetric, continuous,
non-negative definite (Lyons| 2013, page 3291) and satisfies E[—D{G4(x1),
Gi(x2)} | xi] = 0,7 = 1,2 and var[D{G+(x1),G4(x2)}] < co. Using the
Hilbert-Schmidt theorem (Simon, 2015a, Theorem 3.2.1, Example 3.1.15),

D{Gi(x1),G+(x2)} admits the following eigenfunction expansion

D{G1(x1),G:(3)} = = > Mdi{Gu(x1)}or{Gr(x2)}.  (S1.15)

k=1
The sequence of numbers Ay > 0,k > 1 is the non-zero eigenvalues of the

integral equation
E[D{Gx(x1), G1(x2)}or{ G (x1)} | x2] = =Mrdr{Gs(x2)},
and orthonormal eigenfunctions ¢x{Gy(x)}, k > 1 are such that
Elor {G1(x)} 0o A G (x)}] = I (k1 = ks). (51.16)

Putting the two pieces ((S1.13)) and (S1.14)) together and by Theorem 4.11.8



in |Simon (2015b), we may write

(7’L - 1)&577 = 6 Z n_l Z Ak,7¢k,7{¢7(5i1,7)7 G:I:(Xi1>}
k=1 1<i1#ia<n
¢k,T{¢T(8iQ,T>7 G:I: (Xi2>}7
nVi, = 63 07303 Nerbu {0 (e ), G (xi,)}
k=1

i1=114=1

¢k,7{¢r (5i277)’ G:I: (Xi2 )}7

where A\, = 617(1—7) )\ and ¢y {1, (g,), GL(x)} = {7(1—7)} Y24, (e,)

o1{G+(x)} satisfying

B[, AV (er), GL(X) }Ory 7 {00r (67), GL(X) }]
= {7(1 = 7)} " var{v-(e7) } E[or, {G (%)} or, { G (%) }]

= I(k = k). (S1.17)

The last line follows from the independence of Q. (Y | x) and x, and the
relation in (S1.16)).
For each integer K, we define the truncated versions of (757 and \A/QhT

K
(n — 1)[7[?277_ = 6 Z n_l Z >\k7‘r¢kz,‘r{w7 (51'1,7')7 Gi (Xh)}

k=1 1<i1£ia<n

k{0 (€i5,r), Ga(x:,)}, and

K n n
n‘/}lu(,Q,T = 6 Z nil Z Z Ak,T(bk,T{z/)T(gil,T); G:I: (le>}
k=1

i1=1149=1

¢k,‘r{w7 (51'2,7')? Gi (Xiz )}



Let 2 = (—1)'/2 be the imaginary unit. For any # € R and any 6 > 0, choose
and fix K large enough that | z | {27%(1 — 7)2 Y37 o A2}Y/2 < 6/3. Using
similar arguments to those in the derivation of Serfling (1980, Theorem

5.5.2), we have

| Elexp{ea(n — 1)T3,.}] = Elexp{uz(n — 1)U} |

< |z|{2r*(1—7) Z A2312 < 5/3,and (S1.18)
k=K+1
[e's) K
| Elexp{iw6 Y e (NF — 1)}] — Elexp{z6 Y Ap(N; = 1)}] |
k=1 k=1
< |z | {2701 Z A2V/2 < 53, (S1.19)
k=K+1

for all n > 2. By multivariate central limit theorem, for any fixed K and

any 0 > 0,

| Elexp{ia(n — 1)U, }] — Elexp{a6 > A (N2 — 1)}] |< 6/3,(S1.20)

k=1

for all n sufficiently large. Combining (S1.18)), (S1.19)) and (S1.20)), we have,

for any z and any 0 > 0, and for all n sufficiently large,

| Elexp{ux(n — 1)(757}] — Elexp{uz6 i Mer(NE =1} [< 6. (S1.21)

Apply Slutsky’s theorem, (S1.14) and (S1.21)) to yield the weak convergence

of n(A]E



In addition, we observe that

nVi, = (n=1)05,+6> n 'Y Nerd} {vr(eir), Ga(xi)}, and

k=1 =1
R N K n
nVIH(,Z,T = (TL - 1)Ulh(,2,7 +6 Z n_l Z )\k’77¢i,7'{w7'<8i77'>7 Gi (Xl)}
k=1 =1

Since ¢y {¥;(e;), GL(x)} = {7(1 — 7)} V% (e;)pp{G1(x)}, a straight-

forward application of (S1.16|) and (S1.17)) yields

E(”‘/}QH,T - n‘/}lli',2,7—)2

< ZE{(TL - 1)[75,7' - (TL o 1)17?(,2,7'}2
278 (1 =7E[ Y 07t Y Mt A (eir), G ()}
k=K+1 =1
= 4(n—1n 721 - Z A2 4 9(n—1)n 721 —7) Z )2

k=K+1 k=K+1

2 ST ST M ARB{UH LG (G (016 (G (0},

k1=K+1 ko=K+1

(S1.22)

By the definition of 1,, we have F{¢X(¢,)} = 7(1 —7){r*+ (1 — 7)3}. The
boundedness of D{G4(-),G+(-)} and its orthogonal expansion in (S1.15))

together imply that
Z)\Q = E[D*{G4(x1),G4(x2)}] < 0 Z)\k E[D{G+(x), GL(x)}] < o0,

Z Z M M, B[0F, {G +(x)} 07, { G+ (x)}] = E[D*{G(x), G+(x)}] < 0.

k1=1ko=1



Moreover, for all n > 2 and K > 1, we have (n — 1)n"! <1, n~! <1 and

6 i M N2? = 721 —1)? Z k) +2 Z M}

k=K+1 k=K+1 k=K+1
< 37%(1—1)? Z ). (S1.23)
k=K+1

For any x € R and any 6 > 0, choose and fix K large enough that

|z | {37%(1 — 71)? Z )22 < 6/3. (S1.24)

k=K+1

By the inequality | exp(zz) — 1 |<| z | and using the foregoing consid-

erations of (S1.22), (S1.23) and (S1.24), we have | E{exp(zxn‘//;uﬁ)} -

Efexp(nTyy,)} <) o | BT, — 0¥y ) < 0/3, | Efexp(ut 3
MNP} — E{exp(126 i M N2 L] 2 | EV2(6 i MNer NP2 < 6/3,
k=1 k=K+1
for all n > 2. By the continuous mapping theorem and the central limit
theorem, the distribution of nr/}uﬂﬁ, which is fixed at K, converges to the
distribution of 6 k§1 M- INZ. This observation, combined with Lévy’s theo-
rem (van der Vaa;t, 1998, Theorem 2.13), yields that for any fixed K and
any 0 > 0, | E{exp(zxnr/ﬁ{’%)} - E{exp(zx6l§)\kﬁ]\f£)} |< 6/3, for all n
sufficiently large. Thus, by the triangle inequal_ity, we obtain for any x and
any 0 > 0, | E{exp(zxn%uﬁ)} — E{exp(zx6li)\kﬁ]\7,f)} |< §, as n — oo.
The relation , together with Slutsky’sjcheorem, gives that n\Z” con-

verges in distribution to 7(1 — 7) > AN
k=1



S2. Proof of Theorem [

We begin by proving that (77 and ‘//\; are asymptotically equivalent to their
oracle versions, that is, nU, — nU! = 0p(1) and nV, — nVi = op(1).
Write Uf = UHQ-(Y)} and VI = VHQ.(Y)}. According to the con-
vention of Sherman| (1994), we then say that (77”_ and IA/T” are respectively
the MDD-based processes of the 4th-order U-type and V-type, indexed
by 6 = Q,(Y). Moreover, the kernel associated with the two processes is

~[{¢T(Y 9), G4 (x;)}i_;]. By the boundness of the function t,(.), we have

sup | hl{e (Vi = 0), G (xi) ] |

< GLGa)] + [Ge(x)|| + [[Ge(xs) || + [[Gx(x4)]-

4
Therefore, h[{1h,(Y; — 6), G+ (x;)},] has an envelope S |G+ (x;)|. Since

i=1
the score function J satisfies fo J?(x)dzx < oo, it follows from the definition

4
of G (x) that B(Y |G+ (x,)[)? < 16E(|G+(x)[?) = 16 [ J2(z)dz < .
=1

For ¢y > 0 sufficiently small, it is straightforward to show that

sup E | h[{t-(Y; = 61), G(x:) }iy]
01,02€[Q+(Y)—360,Q+(Y)+0]

—"’[{w —02), G (x) Y 1] |

< (1+1)E {2192<Y<91 +2191<Y<92 ZHGﬁ: (x:)[])]
< 21+ 1)} / Plo)d} 2 sup foly)} = O(60).
0 ye[QT(Y)f‘SOvQT(Y)‘F&O}



where fy is the density function of Y. The first and the second inequalities
follow due to that in a small neighborhood of @, = @.(Y), the cumulative
distribution function of Y is continuously differentiable, and (Y < Q,) is
independent of x under the conditional quantile independence. The main

corollary 8 of [Sherman| (1994)) indicates that
UHQ-(Y)} — UHQ-(Y)} = 0,(n7Y), (S2.25)

when A[{v-(Y; — ), Gy(x;)}2,] with 6 = Q.(Y) is degenerate under the
conditional quantile independence.
According to Section 5.7.3 of Serfling (1980), VH{Q.(Y)} can be de-

composed as

VAQ-()} = (1-n"h)(1—2n)(1 =30 ) THQ(Y)}

+n71(6 — 11n~" + 6n"2)RL{Q.(Y)}, (S2.26)

where R:{Q,(Y)} is the average of all terms h[{)-(Y;, —6), G (x;, )}, {tbr (Vi,—
0)? Gi(xi2)}v {?/JT(st _9)7 G:E<Xi3)}> {wT(}/M _‘9>7 G:E(Xi4>}] with 6 = QT(Y>
and at least one equality i, = 5, @ # b. Apply the main corollary of|[Sherman

(1994) with d = 1 and Jensen’s inequality to obtain that for any 0 < w < 1,

E sup | U2(0) — UHQ-(Y)} ]
0€[Q+(Y)—00,Q+(Y)+d0]

= O{n~t(nY? +5))"/%}. (S2.27)



By a similar device, we have

E| sup | R4(0) — RQ.(V)} ]
0€[Q-(Y)—60,Q+(Y)+d0]
= O{n Y2(n~V2% 4 5)"/?}, (S2.28)

because RL{Q.(Y)} can be written as a nondegenerate U-process plus neg-
ligible terms. It is noted that (1—n"')(1—2n"')(1-3n"') =1+ 0(n1)

and n71(6 — 11n"! + 6n72) = 6n~! + O(n™2). A further application of

(S2.26)), (S2.27)) and (S2.28)), with Markov’s inequality, yields

VHQ-(Y)} — VHQ.(Y)}
= Op{n ' (72 4 50)/?} + Op{n ™2 (V% + 69)7/2}

= o,(n7"). (S2.29)

By combining the equations in (52.25) and (52.29)) with Slutsky’s theo-

rem, it thus suffices to show that nU, — nﬁf_{@T(Y)} = 0,(1) and nV, —
VALY = 0,(1).
We first deal with nU, — nU{Q,(Y)}. Let C(n,d) denote the number

of all combinations of d distinct elements from {1,...,n}. For an arbitrary



event A, we define

Ur(A) =Y Heo(A)
c=1
4
= > C,0CMme™ >
c=1 1<i1 << <n

R 0rEinr), G (i) b {0 i), Gt (3 3, AL

4
and  UHQ.(Y), A} =Y HE(A)
c=1

4

20(4, c)C(n,c)™! Z

c=1 1<i1 < <ie<n

Ez[{¢7<a177>’ Gi(xil)}7 SRR {wT(acJ)’ G:E(Xic)}’ ‘A]

(<%
2

The notations H,, and H?_ are denoted in an obvious way. Moreover, we

write

R (Eir), G (x:)3e 1, Al = ho[{0,(Eir), G (x:) 361, A]

Y Y G Galxa)}e o (B ), G ()} Al

Jj=1 1< <<5<c

R (Eir), G (xi) ey Al = he[{07(Eirr), G (x:) ey, A]

_z_: Z %;[{¢T(a17T)7Gi(Xi1)}v--‘7{@&7(@1,7—);(;1()(1‘]-)},./4],

hel{e- (i), Ge(x) Yo, Al = E[LA{Y-Er), Ga(xi) o] | {9-(Er), G
xi)}ooy] and e[ {05+ (Ei-), G (x:) Yoy, Al = BII(AR[{0-(Eir), G (x:) Y] |
{¥-(Eir), ai(xi)}le], for c =1,...,4. When A is a certain event, U,(A)

and UH{Q.(Y), A} reduce to U, and UH{Q,(Y)}.



The following proof is divided into three steps. The first step shows that
nﬁlﬁ = 0,(1) and anIET = 0,(1), the second step that nﬁgﬁ — nﬁgT =
0p(1). The third step verifies that nH,, and nFAIE,T,c = 3,4 all are o,(1)
terms.

Step I Let A5 = {Q,(Y) — Q-(Y) > 6} U{Q.(Y) — Q-(Y) < —d}.
For any 1 > 0, choose 0 < § < dy such that pr(As) < n/2 for large enough

n. As claimed in (32) of [Yao et al.| (2018, Appendix),

E[I{Y;, <Cy,....Y;, <Cj, =8 < Q(Y) = Q.(Y) <6} | x1,...,%,]

= E[I{}/n S Cla s ’}/ij S Cj> -0 < Q\T(Y) - QT(Y) S 6}]a (8230)

for small enough 4, C1,...,Cy = @T(Y) orQ,(Y),and j =1,...,4. Clearly,
{Y-(E1), ai(xl)}, ooy {0 (Eur), éi(x4)} are dependent but identically

distributed random vectors. By symmetry, we obtain

E[{| ¢r(E1r) = ¥r (@) P+ |90 (Eor) = 9r(Ear) I
— | ¥rErr) = ¥rEar) P = | r(E2r) — ¥r(E55) [P}
{=6 < Q-(Y) = Q-(Y) <8} | ¢-(Ei)] = 0, and (52.31)
E[{|G=(x1) = G (x3)]| + |Gx(x2) — Ge(xa)]| = [|Ge(x1) — Ga(xa)]|

~[|G(x2) — Gi(x3)l[} | G(x)] = 0, (92.32)

for any 6 > 0 and ¢ = 1,...,4. It follows from the relations in ((52.30)),



(S2.31)) and (S2.32)) and the law of iterated expectations that

E{h[{v(815), G (x1)}, {01 (E5,0), G (x2) },

{v7(83.-), G (x3)}, {00r (B, G () }]

[{=6 < Q-(Y) = Q-(Y) <0} | ¢-(Eir), G (x:)} =0, (S2.33)
E{h{v(817), G (x1)}, {001 (8,0 ), G (5) },

{V7(Bar), G (x2) }, {007 (B2, G () }]

[{=6 < Q-(Y) = Q-(Y) < 8} | ¢-(Eir), G (x:)} = 0, and(S2.34)
E{h{v(815), G (x1)}, {thr (B1r), G ()},

{07(Bar), G (x2) }, {01 (85, G (3) }]

{0 < Q.(Y) = Q.(Y) <6} | ¥, (Bir), Ge(x)} =0,  (S2.35)

for small enough 0 and ¢ = 1,...,4. In view of the definition of ﬁ, the

relations in (52.30)), (S2.31) and (S2.32) confirm that for any n > 0,

pr(| nHy, |>n) < pr(| nHy, |> 0, As) + pr(As)
< pr{| nH i (As) |> 0} +n/2

— n/2, (S2.36)

for small enough ¢ and as n — oco. The last line follows since conditional on

{-d< @T(Y) —Q,(Y) <4}, fAILT(Ig) = 0 for small enough ¢. Combining

(S1.2), (S2.30) and (S2.31)), we have that (52.30)), (S2.31)) and (S2.32)) hold




similarly with {¢,(&; ), G.(x;)}s replaced by {:(8i7), Ge(x:)}'s. As a

result, it is immediately clear that for any n > 0,

pr(| nH{, |>n) < pr{| nH (45)|>n} +n/2

— /2, (52.37)

for small enough 0 and as n — oco. Therefore, the asserted claims in Step I

follow from ([S2.36)) and ([S2.37)).

Step II. By symmetry, (S2.30) and |Zhang et al.| (2018, Appendix 1.2),
it is straightforward to verify that given the event {—8 < Q,(Y)—Q,(Y) <

d} with ¢ small enough,

h3[{0r (Eir), G (i) Yoy, )

= —67"(BL )Y (Bor) D{G(x1), Gt (x2) } (A5)
+o,(nY), (52.38)
h3[{0hr(Eir), G (i) Yoy, A

= 670 (E10)r (B ) D{GL(x1), Gt (%2) I (As)

+op(n1), (S2.39)

where o, is uniform in ¢ and D{ai(xl), éi(Xg)} = Hai(xl) - ai(xg)H —
E{||G+(x1) = Ge()l| | Gelx1)} = B{[|G(x1) = G(xo)]| | Galoxe)} +

E{||G+(x1) — Gi(x2)||}. An application of the triangle inequality and



Markov’s inequality implies

pr(| nHy, —nHS, |>n) < pr(|nHy, —nHj. |> 0, As) + pr(As)
< pr{| nHs,(A5) — nH (A5) |> n} +n/2

< 0B | i, (A5) — nH; () | +n/2.

To prove that nﬁQ,T — nfng = 0,(1), by Slutsky’s theorem, it suffices to

show that

El(n—1)7" Y e (8 )tbr (Bio ) T(A5) D{Ga(xi,), G (i)}

11712
—(n=1)"" > (G e (Ei ) I(A5) D{G L (xi), G (xs,) 1
i1 0o
— o(1). (52.40)

Similar as in (A.7) of [Shi et al.| (2022), the left-hand side of ((52.40)) is equal
to
2n(n —1)PAB™ + dn(n - 2)(n — 1)1 AT BYY

+n(n—2)(n —3)(n —1)"LAY By, (S2.41)



where we write

AP = B{(E10)0r (o) T (A5) Y
A = B{u2E0 ) (Bor) e (Bar)I(A5)},
A = B{gr i) B )r (Bor Ur (Bar) T(A5),
Bi" = E[D{Gi(x1),Gs(x:)} — D{G(x1), Gu(x2)}]’,
By" = E[D{Gi(x1),Gs(x)} = D{G(x1), G (x2)}]
[D{G+(x1), G (x3)} = D{Gs(x1), Gu (x3)}],
and B{" = E[D{G.(x1),Gx(x2)} — D{G(x1), G (x2)}]

[D{Gu(x3), G (x4)} — D{Gis(x3), Ga(xa)}].

The assertion that &, — &, and I(A;) — 1 almost surely follows from
an application of Serfling (1980, Theorem 2.3.2). Since v.(-) and I(-) are

bounded, the dominated convergence theorem implies that

A S B (e )t = (=72, (S242)

AS) = B2 (e (2, ) (€3.,)] = 0, (92.43)

and nASY = —3E{Y(e1)0r(ea, ) (e5,)} = 0. (S2.44)

Under the assumption that the score .J is square-integrable, we have, since



E{Gi<X)} = 0, that

E[D*{G4(x1),G4(x2)}]
= E|GL(x1) — GL(x2)[I” + E?[|G1(x1) — G (x|

—2E[|G1(x1) — Gi(x2)[|[|Gx(x1) — G (x3)]|

IN

2B]|G(x1) — G ()|
1
= 4/ J*(x)dz < . (S2.45)
0
By Hallin et al,| (2021, Proposition 2.3), it follows that G (x;) — G (x;)
almost surely. Using (S2.45)) and Vitali’s theorem (Shorackl, 2017, Chapter
3, Theorem 5.5) yields the Ly-convergence relation E[D{G (x1), G (x2)} —

D{G4(x1),Gx(x2)}* — 0. This, together with (S2.42) and the fact that

n(n —1)7' =1+ o(1), entails immediately that
n(n —1)TABM = {1+ 0(1)}72(1 — 7)B"Y — 0. (S2.46)

Using similar arguments to those for dealing with (A.10)-(A.12) in|Shi et al.

(2022), we get

By = E[D{Gi(x1),Gs(x2)}D{G(x1), G (x3)}]
—2B[D{G+(x1), G4 (%) } D{G(x1), G (x3)}]
= —(n—2)""B[D{G.(x1), G (x1)}D{G (x1), G (32)}]

+2(n — 2) ' E[D{Gx(x1), Gu(x1)} D{ G (x1), G (x2)}]



+2(n — 2) 'E[D{G1(x1), G4 (x2) } D{G 4 (x1), G (x2) }{S2.47)
—(n—2)'E[D*{Gy(x1), G (x2)}]

= n H1+o(1)}E[D*{GL(x1),Gx(x2)}]. (S2.48)
Applying Vitali’'s theorem together with (S2.45)) proves that

B{" = B[D{G.(x1), G (x:)} D{Gu(xs), G (x1)}]
—2B[D{G+(x1), G(x2) } D{ Gt (x3), Gt (x4) }]
= —(n—=3)"'E[D{G4(x1), Gu(x1)} D{Gs (x5), G (x4)}]
+2(n = 3) ' E[D{G(x1), G (x3)} D{ G (x3), G (x4)}]
—(n = 3) " E[D{G(x1), G+ (x1)} D{Gx(x3), G(x4)}]
+2(n — 3) ' E[D{G (x1), Gt (x5)} D{Gs(x5), G (x4)}]
= =20 {1+ o()}E[D{Gx(x1), G (x1)} D{Gx(x3), G (x4)}]
+4n"{1 + o(1)} E[D{G+(x1), G (x3) } D{G+(x3), G+ (x4)}]
= o(n7h). (S2.49)
In the last step we employ the useful property of the double centred distance,
that is, E[D{G+(x1),G+(x2)} | x1] = E[D{Gx(x1), Gx(x2)} | x2] = 0.
The use of and immediately yields
n(n —2)(n —1)"1A% B

= E[7(e10)¥r(e2,0) (23| EID*{ G (x1), Gt (32)}] = 0(S2.50)



It follows from ([S2.44]) and (S2.49) that
n(n —2)(n —3)(n —1)"1A{") B{"

= —3{1+ o)} E{v2(e1.0)¥r (e2,)0r (€3,) }nBY” = o(1). (S2.51)

The proof of (52.40)) is completed by plugging (52.46)), (S2.50) and (S2.51))

into ((S2.41]).

Step III. Write

B [{tr (Bir), Gt (x0) Yoy, Aj)

= 247" > (G, 0B ) (A5)[2D{Gs(x1,), G (xs,) }

(71,i2,13)

~D{Gs(xi,), G (x1,)} — D{G(x1,), G (x3,)}]

3
437 (B, U (B ) I (A5) D{G(xi,), G (x3,) } and

(41,32)

Wil{r(Eir), Gaa) Yy A

4

= —247" " (G ) (Bl I(A5)2D{ G (x;,), Gt (x,) }

(71,02,13,14)

+2D{C(x;,), G (i)} = D{G (i), G (xs)} — D{G‘ri(xil) Gui(xi,)}

_D{Gﬂ:(xw> Gﬁ:(xza)} D{Gﬁ:(xzz) Gi (xi,) } Z h {- (&),

(41,92,13)

G(xi,)} {r Binr), Gt (x3,)}, {001 By 1), G4}, Al
+370 ) (B U (Bl ) I (A5) D{G s (x4,), Gis (x3,)},

(41,32)

where we denote summation over mutually different subscripts shown. Us-

ing similar arguments to those in the derivation of (S2.38|) and ([S2.39)),



we obtain 23[{¢,(Eir), Go (x,)}iy, A = Iy [{vr(Eir), G (xi) Yy, As] +
0p(n™) and B5[{t (Eir), G (%) Yoy, As] = B3 [{0r(Bi), G () Yy, As] +

o,(n71). Along the same steps as the proofs of Step II and |Shi et al.
p

(2022, Theorem 4.2), we deduce that {(n —1)---(n —c+1)}7* | Sy

(i1, y0c)
{1/}7'(@'1,7')7 éﬂ:(Xh)}v ce {¢7—(é\icﬂ')7 Gi(xic)}7I5] and {(n - 1) e (n —c+

n

D} Y Rl {erEun) Ge(xi)}e - {r(Eir), G, )} As] ¢ = 3,4

(315 y0c)

all are o,(1) terms. Step III is completed.

By (52.26]), it is clear that

U, = VHQ.()} = (1—n)(1—207")(1 = 3071 [T — UHQ-(V))]

+n71(6 — 11n~" + 607 2)[R, — RE{Q.(Y)}].

Employing arguments similar to those for dealing with U, — U{Q.(Y)}, we
have R, — RA{Q.(Y)} = 0,(1). Notice that (1—n~2)(1—2n"1)(1—3n""1) =
1+O0(n™ ) and n71(6 — 11ln~' + 6n72) = 6n~' + O(n"?). By the Cramér-

Wold device and Slutsky’s theorem, the proof is thus complete.



S3. Proof of Theorem [2

We can decompose

n!2[U; = MDD{¢-(e;) | Ga(x)}] = n'[U = MDD{yr(c;) | G- (x)}]
+n'2(U, — ﬁﬁ), and

n!2[V. = MDD{¢r(e,) | Ge(x)}] = n!/2[VF = MDD{x(e;) | G(x)}]
+n!2(V, = VE).

Having established ER2[{v,(ei,.+), G(xi,) }s -+ {tr(€inr ), G (x41,) }] < O(1)

fol J?(x) dx < oo for all 1 <iy,..., iy < 4, we apply Serfling| (1980, Lemma

5.7.3) in the case r = 2 to yield nl/Q(ﬁE — W) = 0,(1), in which case

n'2[U% — MDD{¢- (¢,) | G (x)}] and n!/2[V; — MDD{,(c,) | G=(x)}]

have the same limit distribution. Invoking the Hoeffding decomposition in

technical appendix 1.2 of Zhang et al. (2018), we have

n'2[0% = MDD{Y (;) | G (x)}] = 42y I {ur(eir), G(i) } + 0,(1),

i=1
under the fixed alternative MDD{¢-(e,) | G (x)} > 0, where El{wT(ew),

Gi(x;)},i=1,...,n are independent and identically distributed and
hi{r(e14), G (x1)}

= —27'E(e1:)¢:(62,) D{GL(x1), G (x2) } | ¥r(1,7), Gt (x1)]

+27'MDD{¥, (g,) | G1(x)}.



By Slutsky’s theorem and central limit theorem, it is immediate that as n —
00, both n!/2[Vf — MDD{4,(£,) | G4 (x)}]/4 and n'/2[U% — MDD{¢, (e,) |
G (x)}]/4 converge in distribution to a normal distribution with mean zero

and variance var[hi{¢; (1), Gi(x1)}]. The same arguments employed in

dealing with (S2.25)) and (S2.29) immediately yield

DHQAY)} — THQY)} = Ofn™ 207 4 50)712) = o,(n™7),

VAV - THQ)) = Ofn 20772 4 60)7%) = oy (),

uniformly over | Q-(Y) = Q-(Y) |< dp and 0 < @ < 1, when MDD{¢, (&) |
G.(x)} # 0. Using Vitali’s theorem, the Hoeffding decomposition of U, —
ﬁE{Q\T(Y)} and the connection between U- and V-statistics, it holds that
W20, — i PUE(D,(Y)} = 0p(1) and n27; —nt2VHGL(V)} = o,(1). The

theorem follows by putting the above together.

S4. Proof of Theorem [3

Define
R, = > log{p.(Vixi | ™) /p (Vi x; | 0)}, and
i=1
j—:— = 90”71/22777(}/;7}(2' ’ O)

i=1



By |Lehmann and Romano| (2005, Example 12.3.7), we clarify that p.(Y;, x; |
Oon~'/?) is contiguous to p,(Y;,x; | 0) in order for Le Cam’s third lemma
van der Vaart| (1998, Theorem 6.6) to be applicable. We proceed in two
steps. First, we derive the joint limiting null distributions of (n(//\}, KT) and
(n‘A/T, KT) under the null hypothesis. Next, we employ Le Cam’s third lemma
to obtain their asymptotic distributions under contiguous alternatives.
Step I. In view of the proof of Theorem [I] and Proposition [T, we have
nU, = n@hﬁ (1 —17) Z Ak + 0,(1) and nV, = n@h,T + 0,(1), where ‘//\'ZHJ

is defined in ( . By (S1.15) m we write

‘/}Qh,r T(1—=7)n” Z Z k@, {t0r (€irr), G (Xi)) }Orr {0 (€12 0 ), G (xi2)

i1,i2=1 k=1
where ¢ {;(¢;),GL(x)} = {7(1 — T)}_l/sz(aT)gzﬁk{Gi(x)} satisfying
(S1.17). By an application of Slutsky’s theorem, it suffices to derive the
limiting null distribution of (MA/;’T, A;). Asinvan der Vaart| (1998, Theorem

7.2),
A =T, 4+ 27'62Z,(0) — 0, (S4.52)

in probability. In order to apply Le Cam’s third lemma, we therefore need
to study the limiting joint distribution of (n@hﬁ, T.).
For each positive integer K, consider the “truncated” V-statistic 1713 0r =

7—(1_7_)”72 i f MOk AV (i r)s G (Xiy ) O A7 (€inr ), G (Xiy) - AD-

i1,02=1 k=1



~ ~ o~ (&) n
parently, nVy . and ”Vfu(,z,T can be written as nV, . = 7(1—7) 3 A\ [n V22
k=1 i=1

~ K n

O (eir), Ge(x)? and nVi, = 7(1=7) 3 Mln ™2 3 der{tr (e,
k=1 i=1

G.(x;)}? To obtain the limiting null distribution of (n‘A/Zh’T, T.), first con-

sider the limiting null distribution, for fixed K, of (n‘/}%%,ji). Let Wlm

be a shorthand for n™/2 3" ¢, {1-(gi,), G+(x;)} and observe that
i=1

EW,..) = E(T,) = 0,var(W,,) = 1,
var(T,) = 02Z.(0), cov(Wi, s Wiy.r) = I(ky # ks),

and cov(Wyr, Ty) = 00 E[dr. {1+ (g,), Go(x) - (Y, x | 0)].

Since the score function 7, (Y,x | 0) is not additively separable, there exists
at least one k > 1 such that vy, = E[¢r {1¥-(c;), GL(x)}n-(Y,x | 0)] # 0.

Applying the multivariate central limit theorem, we deduce
(/Wl,ra v 7W\K,T7j:‘r>T — (Nb v 7NK7 TT)T7

o Ix  Oovi,,
in distribution, where (Ny, ..., Nk, T;)" ~ Ngi1 | Ox1,

OV, 03Z(0)

and vi = (v1,,...,0k,)". Then, by the continuous mapping theorem and
Slutsky’s theorem,

o~

K K
(nvlh(,z,fa )" — (r(1-1) Z )\sz3> to Z V7 Ng
k=1 k=1

K

+00(Z-(0) = Y i )N, (54.53)
k=1



in distribution, where N, is standard Gaussian, independent of Ny, ..., Ng.

For any =,y € R, we have

IN

IA

| E explur Z M INE + zy{z vk Nk + (Z,(0) — vi 7)1/2N N

MNEM8

k=1 k=1
—FE explix Z M INE + zy{z Uk NE 4+ (Z:(0) = > " vp )2 No |
k=1 k=1
|z | EY( Z MNP+ [y | BV Z Uk Ni
k=K +1 h=K+1

Z“m )2 No — ka"r )!/2No}?
|z | {2 Z A —( Z /\k)2}1/2+|y|[z Ve

k=K+1 k=K+1 k=K+1
o] K
H(ZA0) = Y o} )P = (Z(0) = Y )PP
k=1 k=1
[2 {2 ) N+ WPy 2 )] i)
k=K+1 k=K+1 k=K+1
0, (S4.54)

as K — oo. The last line follows from the fact that

00 K )
[(Z0) =D f ) = (Z(0) = D of )< () i)Y
k=1 k=1 k=K+1
0 1
Z/\Z < 4/ J*(z)dx < OO,Z)\k < 2{/ J(x)dz}? < oo,
k=1 0 k=1 0



A similar calculation shows that for any =,y € R,

| E exp(zxn\A/zh’T +uwT,)— E exp(mn\A/f( or T wT,) |

< || {4n—-1Dn 721 - Z A2 4 2(n—Dn"'72(1 Z A )2

k=K+1 k=K+1

Y Y ML BN E) B0 {GL (%)} 67, (G (x))]}

k1=K+1 ko=K+1
— 0, (S4.55)

as K — oo. Combining (S4.53)), (54.54) and (S4.55)), we deduce that

(Vi T — (r(1 —7) Z/\kaaHOZUkTNkJrHO )= S 02 )N,
k=1 k=1

in distribution. The relation (S4.52)) and Slutsky’s theorem together imply

that
(U, A)" = (r(1—7) Z A(NE = 1),60 > g N,
k=1
+00(Z,(0) = Y v )'/2No — 27'03Z,(0))", and

k=1
(n‘z, KT)T - (r(1—=71) Z MeINE 0 Z Vg, N,

)N — 27105, (0))",

vy,

Mg

+00<I’r(0)

T

i

1

in distribution.

Step II. By appealing to Le Cam’s third Lemma, under contiguous



alternatives,

pr(nU, <z) — E[{r(1-7) Z/\k(N,f —1) <z}
k=1

exp{0o > verNi + 60(Z-(0) = Y v} )V> Ny — 2763Z-(0)}),
k=1 k=1

déf F1,7'<x>7 and

pr(nVy <y) — E[{r(1—7)Y MN; <y}

k=1

exp{fo Z Vg + Nk + 00(Z,(0) —

k=1
d:ef F2,T<y)7

Vi) /2 No = 2703Z(0)}]

Mg

b
Il

1

for any x,y € R. Moreover, it is not hard to verify that 6 > A\g{(Nk +
k=1

Oo{T(1=7)} ' 2cov[¢r(er)r{ G (%)}, 0, (Y, x | 0)])°~1} and 6 37 Apr (Nt
k=1

0o{7T(1—7)} " 2cov[ip, (e:)or{Gx(x)}, n-(Y,x | 0)])? have probability mea-

sures Iy (x) and Fy - (z), respectively. This completes the proof of Theorem

Bl

S5. Proof of Theorem [4]



An application of the proof of Theorem [I] gives

n U’T‘l = 6Zn_1 Z Ak,ﬂ¢k‘,7’[{¢7’z(£i1,7‘z)7G:E<Xi1)}

1<ir#ia<n

Phr {0 (€02, ), G2 (%3,) } 4 0p(1)
= D> An(l—m)h 2 Z{Tz )} 2 (i )01 { Gt (i, ) 12

i1=1

—7(1—m7) Z/\k + 0,(1), and

n ‘771 = 62717122/\1”1%7[{% €i1m) Gi(Xi,)}

11=11i9=1

¢kﬂ'z{wﬂ (51'2,7'1)’ Gi<xi2)} + Op( )
= Y na(t =) Y {n(l =)} (i ) 6 G (xi,) P

i1=1

+0,(1),

fori =1,..., L, when the null hypothesis is true. Since Z A <4 fol J?(x)dx

o0

< oo and Z Ak < Q{f J?(z)dr}'? < oo, it follows that Y. A2 — 0
k=K+1
and > A, — 0 as K — oo. By the characteristic function approach
k=K+1

used in the proof of Proposition (1 it suffices to show that for every in-

K
teger K, the joint limiting distribution of the sequences of »_ Ap7(1 —

k=1
D 3 {n(1 = 1)} 20 (2 ) G s )F2, 1 = 1, L converge
11=1
K
in distribution to {7;(1 —7) > MeNZ}E,. The )\, are defined as in Propo-
k=1

sition |1} and (Ny;)E, (No)E . ..., (Ng)E | are mutually independent and

identically distributed, each with the multivariate normal distribution with



mean 0 € RY and covariance matrix
3 = [{7_117_12(1 - Tl1)<1 - le)}_1/2{min(7_l17 Tl2) - Tl17l2}]ﬁ,12:1 € RFE,

According to the multivariate central limit theorem, the random vector

[n1/2 Z_:l{n(l —7)} Y%, (54, ) {G 1 (xi,) HE, is asymptotically normal

N(0,3)-distributed. Therefore, by the continuous mapping theorem and

the Cramér-Wold device, we obtain the required limit.

S6. Some Aspects of Limiting Distributions

Combined with Proposition [T Theorem [I] implies that when the null hy-
pothesis is true, as n — oo, {r(1 = 7)} 'n V, = 3 ANZ and {r(1 —
k=1
)} n U, — S° Ak(NZ — 1) in distribution. Moreover, the values of \;’s
k=1

are independent of the quantile level 7. We give a toy example to illustrate

this point. Consider the following mixture distribution:

Y=01+2)e—(1+X1+X5)(1—e),

where € is a Bernoulli random variable with success probability 0.75, (Z, X1, X5)

has three components independently generated from Gamma(2, 2), and € is
independent of (Z, X;, X5). It is not difficult to see that Y is conditionally

quantile independent of x = (X7, X3)" only when 7 > 0.25. As a graphical



illustration, we appreciate the limiting random variables of {7(1—7)}"'n ‘77
and {7(1 — 7)}~'n U, with van der Waerden score function by means of a
small simulation study for the sample size n = 100, and two different values
of 7 =0.5,0.75. As expected, it is shown from Figure|[l|that different quan-
tile levels do not alter the asymptotic null distributions of {r(1—7)}"'n V.

and {7(1 —7)}"'n U,.

(A) (B) (©)
Figure 1: (A) Density curves of 1000 realizations of van der Waer-
den score-based statistics {r(1 — 7)}"'n V,I(r = 0.5) (black solid line)
and {r(1 — 7)}"'n V,I(r = 0.75) (red dashed line). (B) Quantile-
quantile plots of 1000 realizations of {r(1 — 7)}‘n U,I(r = 0.5) versus
{r(1 = )}"'n V.I(r = 0.5). (C) Quantile-quantile plots of 1000 realiza-

tions of {7(1 — 7)}"'n U.I(r = 0.75) versus {r(1 — 7)}~'n V,I(r = 0.75).



S7. Comparison under Moderate Dimension

We next examine the empirical performance of our center-outward sign-

and rank-based tests under moderate dimension by employing
a heteroscedastic model : Y = x"3; + exp(x' 3, + ¢€). (S7.56)

In the heteroscedastic model , we set ¢ =7, 3, =(0,1/3,0,...,0)"
and B, = (0,0,1/3,...,1/3)". The covariates X, ..., X7 are distributed in-
dependently and identically according to the standard normal distribution.
Independently of the covariates, the error e follows the standard Cauchy
distribution. The error distribution is heavy-tailed in this example. We
consider two values of moderately large to small sample sizes n = 200, 100.
Tables and report the empirical sizes and powers of the tests con-
sidered in our study. The proposed center-outward score tests and the SZ,
ZYS tests are robust to the presence of heavy-tailed errors. It might not
be surprising to see that the aforementioned tests control the Type-I error
well around the nominal level. Since the ZYS test is designed for large
dimension, it has reasonably good powers at a particular quantile level
7 € {0.25,0.5}. Inspection of the two tables further reveals that when the
sample size is sufficiently large, our center-outward score tests across mul-

tiple quantiles deliver comparable power results to the competitors. The



displeasure exception occurs when the dimension is relatively large and the
sample size is small. Such phenomenon can be attributed to the slow conver-
gence rate of empirical center-outward ranks and signs when the dimension

gets large (Shi et al., [2025] page 5, lines 45-46).

Table S1:  The empirical sizes and powers of the proposed tests with
different score functions and the SZ, ZYS tests under different quantiles at
the nominal level 5% for Model (S7.56) when n = 200. (With a fixed seed,

7

the symbol “——" indicates that the value at this position is the same as

the previous line.)

score function V.25 Uo.25 SZp.25 ZYS0.25 Vo.s Uo.s SZo.5 ZYSo.5
Size
F(;12)1/2 (x) 0.056 0.060 0.058 0.062 0.055 0.057 0.051 0.054
q
x 0.061 0.054 —— —— 0.051 0.052 —— ——
1 0.054 0.055 - —— 0.055 0.057 - -
Power
(;,12)1/2 (z) 0.856 0.854 0.813 0.976 0.832 0.829 0.687 0.930
q
x 0.845 0.851 —— —— 0.815 0.814 —_— —_—
1 0.829 0.823 —— —— 0.803 0.801 —— ——
Vo.75 Uo.75 SZo.75 ZYSo.75 §1,T §2,‘I 1/\/?1,‘3 1\72,1
Size
F(;12)1/2 (z) 0.048 0.050 0.042 0.048 0.056 0.059 0.054 0.055
q
x 0.038 0.038 —— —— 0.050 0.052 0.053 0.059
1 0.036 0.039 —— —_— 0.039 0.037 0.043 0.044
Power
F(;12)1/2 (x) 0.390 0.380 0.234 0.516 0.901 0.897 0.861 0.880
q
x 0.361 0.355 —— —— 0.892 0.895 0.844 0.864

1 0.349 0.343 —— —— 0.885 0.884 0.838 0.849
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Table S2:

The empirical sizes and powers of the proposed tests with

different score functions and the SZ, ZYS tests under different quantiles at

the nominal level 5% for Model (S7.56)) when n = 100.

score function \70.25 60_25 SZg .25 ZYSo.25 \70_5 Ug.s SZo.5 ZYSo.5
Size
17(712)1/2 (z) 0.032 0.038 0.054 0.052 0.058 0.062 0.052 0.060
Xq
T 0.049 0.048 —— —— 0.059 0.061 —— ——
1 0.050 0.055 —_— —— 0.052 0.058 —— ——
Power
(_12)1/2 (x) 0.427 0.435 0.340 0.695 0.394 0.408 0.277 0.570
Xq
x 0.421 0.430 —— —— 0.380 0.406 —— ——
1 0.414 0.426 - - 0.377 0.385 - -
Vo.75 Uo.75 SZo.75 ZYSo.75 S1,x §2,5 My x My <
Size
1'7(712)1/2 (z) 0.034 0.036 0.060 0.054 0.052 0.052 0.057 0.061
Xg
x 0.048 0.046 —— —— 0.051 0.054 0.054 0.059
1 0.048 0.055 —— —— 0.056 0.060 0.055 0.062
Power
(712)1/2 (z) 0.172 0.175 0.114 0.232 0.462 0.470 0.432 0.467
Xg
x 0.161 0.170 —— —— 0.445 0.461 0.418 0.453
1 0.156 0.168 —— —_— 0.441 0.452 0.409 0.450
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