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comparison. Sections [S9 and present details of the numerical implementation

and application, respectively.

S1 Discussion on asymptotic normality of the proposed es-

timator

First, we explain why, in case (a) of Z = 1, v/N-consistency and asymptotic nor-
mality can be achieved using a linear OR working model, provided that either the
OR model or the PS model is correctly specified. In the general case of Z € R™,

under certain regularity conditions, we have the following expansion
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To obtain v/ N-consistency, we need the population estimating equation in (v, y):
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similarly as discussed in [Tan| (2020al), Section 3.2. From the system of equations
(SL.1)), there are a total of m x (p+ 1) +m x (¢ + 1) equations, but (p+1)+ (¢g+1)
unknown parameters, i.e., («,). Therefore, o and 7 cannot be identified from the
equations without additional conditions.

When Z =1 (i.e., case (a)) and the OR model is linear (i.e., ¥(t) = t is the

identity function), the system of equations (S1.1)) becomes

In this case, with G = F' as in Tan (2020al), the above system is just-identified, with
the same number of equations and number of parameters, and naturally serves as
population estimating equations for @ and 7. This is the core idea of [Tan| (2020al), ex-
plaining why a v/N-consistent and asymptotically normal estimator can be achieved
in the case where Z = 1, G = F', and a linear OR model is used, provided that
either the OR model or the PS model is correctly specified.

Second, we explain why, for a general choice of Z, the correct specification of the
propensity score model is assumed to obtain a v/N-consistent and asymptotically
normal estimator.

From the above discussion of , there are two key challenges for a general

choice of Z:
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e When Z is multi-dimensional, the number of equations and the number of

parameters in (S1.1)) do not match.

e When the OR model is nonlinear or F' # G, the two equations in (S1.1) are
coupled in terms of dependency on & and 7, so that a direct approach of defining

a and ¥ from the two equations would not work.

In our paper, we address the first challenge by carefully specifying the form of G as

follows

G=[F",{Z®F)""

Then we circumvent the second challenge by assuming that the PS model is cor-
rectly specified. Alternative strategies can be considered by extending the iterative
approach of (Ghosh and Tan| (2022)). Investigating these topics would be interesting
for future work.

Finally, it is worth pointing out that correct specification of the PS model is
automatically satisfied in the classic SSL and stratified sampling setup. In such

cases, the PS model is constant and known, as noted in Remark 1.

S2 Comparison with additional related papers

We provide a comparison of our paper with several related papers with regression

of Y on high-dimensional Z = X as mentioned in Section 2.1.
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First, we compare our paper with Chakrabortty et al.| (2019). |Chakrabortty
et al.| (2019) consider estimating a high-dimensional parameter 6*, which is defined

as the minimizer of

L(0) := E[L(Y, X, 0)],

where L(Y, X, 60) is a convex loss function. Under the setting of semi-supervised
learning with covariate shift (i.e., the conditional distributions of Y given X in the
labeled and unlabeled datasets are assumed to be the same, whereas the marginal
distributions of X are different), Chakrabortty et al. (2019)) identify L(¢) using the
doubly robust form (their equation (2.1)):

L(0) = B[¢(X,0)] + E %{L(Y,X,Q)—gb(X,@)} , (52.2)

where T' € {0,1} is the indicator of Y being observed, ¢(X,0) = E[L(Y, X, 0)|X]
and 7(X) = P(T = 1|X). Instead of dealing with the general loss function (52.2)),

they focus on a specific yet common case where L(Y, X, 0) satisfies (their equation

(2.3)):

VLY, X,0) = %L(Y, X,0) = h(X){Y — g(X,0)} (52.3)

for some functions A(X) with the same dimension as 6. In this case, %gb(X ,0) =
h(X){m(X) — g(X,0)}, where m(X) = E(Y|X). Note that (S2.3) can be moti-

vated from a conditional mean model m(X) = g(X, 6*), but such a model is allowed
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to be misspecified. The authors propose a debiased and doubly robust (DDR) esti-
mator §PPR for 6%, as a minimizer of the following objective function plus a LASSO
penalty on 6 (after ignoring cross-fitting):

. T .
L(0) =E |o(X,0) + W{L(Y’ X,0)—o(X,0)}|

where #(X) is an estimator of 7(X) through a PS model, and ¢(X,#) is an esti-
mator of ¢(X, ), satisfying %QAS(X, 0) = h(X){m(X)—g(X,0)}, and m(X) is an

estimator of m(X) through an OR model. By simple calculation, the gradient of

L(0) is
0 - ~ . T .
S5O =B [REOUX) - g(X.0} + = h (Y = (X0}
[ T T .
—B | hOOW = g0} + (1 =5 ) RO GX) = 9(X, 0]

This matches the AIPW estimating function (2.4) in our paper, by linking 7(X),
m(X), g(X,0), and h(X) above with 7(X), m(X), ¥(5"Z), and Z in our paper.
Hence, |Chakrabortty et al| (2019) and our paper intersects in the idea of using
ATPW estimating functions.

Our paper, however, differs from (Chakrabortty et al. (2019) in two important
technical aspects. (i) Chakrabortty et al.| (2019)) allow 6 to be a high-dimensional
parameter and study the L; and Ly convergence rates for the DDR estimator éDDR,

which are slower than N~1/2. (ii) Chakrabortty et al.| (2019) then propose a despar-
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sified DDR estimator §°-PPR and prove that each scalar element of 6P-PPR is /N-
consistent and asymptotically normal (called entry-wise asymptotic normality) if
both OR and PS models are correct such that 7(-) and 7(-) converge to the true
values, m(+) and m(-), at fast enough rates (specifically, the product of the estimation
errors is smaller than N~'/2). In contrast, our setting corresponds to a regression
model of Y on a low-dimensional sub-vector Z of X with coefficient vector 6*, but
our proposed estimator is shown to be v/N-consistent and asymptotically normal
for 6* (not just entry-wise), even when 7 (-) is inconsistent for the true value and
7(-) converges to the true value at a rate slower than N~/2 (but faster than N~1/4),
with misspecified OR model and correctly specified PS model. Hence the aforemen-
tioned product of estimation errors may be greater than N~/2. Note that m(-) is
consistent for the target value, different from the true value, and may also converge
slower than N~/2 (but faster than N~1/4), with misspecified OR model; see Section
3.2 of our paper. This is the main advantage of regularized calibrated estimation
in our method. Therefore, our paper is not a special case of |Chakrabortty et al.
(2019).

Second, we compare our work with Deng et al| (2023)), Zhang et al.| (2023)), and
Chen and Zhang| (2023). The settings of these works also differ from ours. We

summarize the differences below, which demonstrate our unique contributions.
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e Deng et al.| (2023)) consider estimating 6* defined by
0* = argmin, E(Y —6§"X)?,

where X is a high-dimensional covariate vector and Y is the response. Under
the classical semi-supervised setup without covariate shift (i.e., (X,Y’) have
the same joint distributions in the labeled and unlabeled datasets), the authors
propose several Lasso/Dantzig selector-based estimators for 6, denoted as é,
and then derive the convergence rates of 6 to the target value 6* in terms of
the L,-norm, ||§ — *||,, for ¢ = 1,2. In particular, the semi-supervised Lasso
estimator in Deng et al.| (2023) (equation 3.6 in their paper), after ignoring the

Lasso penalty on #, can be shown to be a solution to the following equation

1 N

SV XX (X — 07 XX =0,

where m(X) is an estimator of m(X) as in the earlier discussion. This matches
the AIPW estimating equation (5.1) in the classical semi-supervised setting in
our paper, by linking m(X;) and 0" X, with ¥(&"G;) and ¥(5"Z;) in our
paper.

There are several differences between Deng et al.| (2023)) and our paper. First,

Deng et al.| (2023)) focus on the classical semi-supervised setup without covari-

ate shift, whereas we focus on a setup that incorporates covariate shift. Second,
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Deng et al.| (2023)) consider a linear model 6*" X directly with high-dimensional
X, whereas we consider a generalized linear model ¢ (8*" Z) with possibly non-
linear ¢ (-) and low-dimensional Z as a subvector of X. Both these models are
used as approximations and allowed to be misspecified. Finally, |Deng et al.
(2023) concentrate on analyzing || — 6*||,, which is slower than N~V/2, with-
out dealing with inference such as confidence intervals, whereas our theoretical
analysis provides v/ N-consistency and asymptotic normality for the proposed
estimator of 8*, thereby enabling valid confidence intervals under suitable spar-

sity conditions.

Zhang et al. (2023)) consider a high-dimensional linear regression model:

Y =0"X +e,

where 0* is an unknown coefficient, E(¢|X) = 0, and E(e?|X) = ¢2. Under
the setting of semi-supervised learning with covariate shift, their goal is to
estimate the linear regression function, m(z) = 0*7z, for a given query vector
x. The authors propose a debiased-Lasso type estimator for m(z), depending
on an estimator #(X) with a correctly specified PS model, and show its v/N-

consistency and asymptotic normality under suitable sparsity conditions.

There are also notable differences between Zhang et al. (2023) and our paper.

First, Zhang et al| (2023) consider a linear model 6**X directly with high-
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dimensional X, whereas we consider a generalized linear model 1 (5*"Z) with
possibly nonlinear ¢(:) and low-dimensional Z as a subvector of X. This
is similar to the second difference between Deng et al. (2023) and our paper
discussed earlier, but the linear regression model in [Zhang et al.| (2023) is
assumed to be correctly specified along with homoscedastic noises. Second,
while the goal of |Zhang et al. (2023)) is inference about the linear regression
function m(x) = 6*"z at a given point x, our goal is inference about the entire
vector of regression coefficients S*. In fact, because * is low-dimensional in
our theory, the asymptotic normality of our proposed estimator B directly gives
asymptotic normality of the estimator BTZ and hence enables valid confidence

intervals for 5*"z and ¢ (/5*"2) at a given point z.

e Chen and Zhang| (2023) consider the following regression models

Y; ZQ*TXZ +¢€ = ¢*‘/1 + Oé*TWi —+ €, (824)

where X; = (V;, W )", with V; being a particular covariate, and 0* = (¢*, o*")".

Model ([S2.4) is allowed to be misspecified, with 6* defined as

0* = argmin,E(Y — 0" X)%

Model (S2.5) is assumed to be correctly specified with E(6;|W ;) = 0 for all 4,
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which is automatically satisfied in the Gaussian design (i.e., X; = (V;, W)"
is jointly Gaussian). (Chen and Zhang] (2023)) consider semi-supervised learning
with covariate shift satisfying R; 1L V;|W;, where R; = 1 or 0 for ¢ from the
labeled or unlabeled dataset. The authors propose various estimators for ¢*
and show /N-consistency and asymptotic normality under suitable sparsity
conditions. In contrast with Chen and Zhang| (2023), our paper considers semi-
supervised learning with covariate shift satisfying R; 1L Y;|X; (Assumption 1),
and studies inference for a generalized linear model 1 (5*" Z) for Y with possibly
nonlinear ¢(-) and low-dimensional Z as a subvector of X. Therefore, |Chen
and Zhang| (2023) and our paper deal with different semi-supervised settings

and objectives of estimation.

S3 Regularity assumptions

In this section, we introduce some regularity conditions for the analysis of asymptotic
properties of the proposed estimators.
The following Assumption is taken from [Tan/ (2020a)), which are plausible as

discussed there.

Assumption 1 (Regularity conditions for ). Suppose that the following conditions

are satisfied:

(1) max;—o. ,|f;(X)| < Cy as. for a constant Cp > 1;
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(ii) 4" F > By a.s. for a constant By € R, that is, 7(X;7¥) is bounded from below

by {1 + exp(—By)}1;

(iii) the compatibility condition holds for X5 with the subset S; = {0} U {j :
v # 0,5 = 1,...,p} and some constants vy > 0 and & > 1, where X5 =

E{Rw(X;¥)FF"} is the Hessian of E{{car(7)} at v = 7;

(iv) |S5|A0 < (o for a sufficiently small constant (, > 0, depending only on (Ay, Co,

€0, 1), where A\g = ¢,\/In{(1 + p)/e}/N, ¢, is a constant only depending on

(Bo, Cp) and Ag > (& +1)/(& — 1) is a constant ]
For studying the properties of &, we make the following Assumption

Assumption 2 (Regularity conditions for &). Let 11 (u) denote the derivative of
¥ (u). Suppose that the following conditions are satisfied:

(i) C1 < ¢¥1(a"G) < Cy a.s. for positive constants (Ch, Cy);

(i) 1 (u) < Yy (u') exp(Cs|lu — u'|) for any (u,u’) and certain constant C3 > 0;
(ili) max;—o, . 4]9;(X)| < Cy a.s. for a constant Cy > 1;

.....

(iv) Y= (a" Q) is uniformly sub-Gaussian given X: D3E(exp[{Y —v(a"G)}?/D3]—

1|X) < D? for some positive constants (Dy, D1 );

(v) the compatibility condition holds for %5 with the subset S; = {0} U {j :

a; # 0,7 = 0,...,¢} and some constant v; > 0 and & > 1, where 35 =

¢y is defined in Section
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E[Rw(X;7)h(a"G)GG];

(vi) (1 + 51)21/1_2\S&|)\1 < (4 for a sufficiently small constant (; > 0, where \; =

max[Ag, co/In{(1 + ¢)/€}/N], ¢ is a constant depending on (By, Ca, Cy, Dy, Dl)ﬂ

(vii) let Ay > (& +1)/(&1 — 1) be a constant. There exist 0 < 75,73 < 1, such that

Ca|SalA < mp and ¢,|S5| Ao < n3, where &, and ¢, are both Constantsﬂ

Assumptions [2{i)—(ii) are mild conditions on the smoothness of the inverse link
function ¥. Commonly used functions like the identity and logit functions satisfy
these requirements. Assumptions [2[iii)—(vii) are similar to those used in related
analysis by Tan| (2020a). A subtle difference is that the compatibility condition
in (Tan| (2020a)) [Assumption 2(ii)] is assumed for 35 with F' = G, whereas our
compatibility condition is assumed for ¥5. In our setting, G has a higher dimension

than F' (except in the case where Z = 1).
Assumption 3. Suppose that the following conditions are satisfied:

(i) Z ={%,,...,Zn-1} € R™, and max,—g__m-1|Z;| < Cs almost surely for a

constant Cs > 1, where m is fixed as N increases;
(11) ﬁ S @5 C Rm’ and for Ve > O, infﬁ€@3:||ﬂ—ﬁ*||126 ]E{HT(0707767:Y>H1} > 0,
(iil) E{supseo, [I7(O0,a, 8,71} < oo;

(iv) 1 (B*"Z) < Cg a.e., for some constant Cg > 0;

cq 1s defined in Section |S6.2
¢a and &y depend on (Ao, A1, Co, Cs, Ca, Mo, v1,£1,€0,¢1) and (Ao, A1, Co, C1,Cs, Cy, Do, D1, Mo, €1, o), re-
spectively. They are defined in Section
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(v) 1S51v/In(1 + p)In(1 + q) = o(N/?) and |Ss|In(1 + ¢) = o( N*/2).

Assumptions [3(ii)(iii) are standard conditions in the asymptotic theory of esti-
mating equations. Assumption (iv) is a mild condition on the smoothness of the
inverse link function at the value of 3**Z. Assumption [3(v) is comparable to the

sparsity requirement in Tan| (2020al).

S4 Technical tools

We state the following concentration inequalities, to facilitate proofs of lemmas in
Section[SH| which can be obtained from Bithlmann and Van De Geer| (2011, Lemmas

14.11, 14.16 & 14.9.

Lemma 1. Let (Y1,...,Yx) be independent variables such that E(Y;) = 0 for ¢ =

n |Yi| < ¢o for some constant ¢y. Then for any t > 0,

t2
]P’( >t> < 2exp (—%)
Co

Lemma 2. Let (Y,...,Yx) be independent variables such that E(Y;) = 0 for i =

1,...,n and max;—;

.....

1 N
vV

i=1

1,...,nand (Yy,...,Yy) are uniformly sub-gaussian: max;—; _, ciE{exp(Y;?/c?) —

-----

1} < c3. Then for any t > 0,

|

N
d v
=1

>t] <2e p{ nt }
X — 55 .
N 8(ct +c3)
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Lemma 3. Let (Y3,...,Yy) be independent variables such that E(Y;) = 0 for ¢ =

1,...,n and,

1 & !
NZ (1Y;]*) §c4, k=23,...,

for some constants (c3, ¢4). Then for any ¢ > 0,

(v

Lemma 4. Suppose that |X| < ¢5, ¢5 is some constant, and Y is sub-gaussian:

> cat + 04\/_> < 2exp (—nt).

AE{exp (X?/c?) — 1} < ¢ for some constants (c1,cz). Then Z = XY? satisfies
E{|Z - E(Z)|*} < —c’g 22 k=2,3,...,

for cg = 2¢5¢2 and ¢; = 2c5c10s.

Lemma 5. Suppose that Y is sub-gaussian: c?E{exp (Y?/c}) — 1} < 3 for some

constants (cy,cg). Then

k
E(|Y]F) < F(5 + ) (E+ A2 kE=2,3....
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S5 Technical lemmas

S5.1 Lemmas for the parameter in the PS model

The following Lemmas will be used in proofs of Proposition 1 and Theorem 1.

Lemma [0 would be used in proofs of lemmas in Section and Theorem 1.

Lemma 6. Under Assumptions [1fi) and [Ifii), the following statements hold:

(i) Denoted by g the event that

E [{~Ru(X;7) + (1 - B)} (X)) < Ao

If Ao > v2{1 + exp(—By)}Cor/In{(1 + p)/e}/N, then P(Qg) > 1 — 2e.

(ii) Denote by Qg; the event that

(2)5k — (24)5| < Ao, (S5.6)

where X, is the empirical version of .. If Ay > 4 exp(—By)C2+/In{(1 + p)/e} /N,

then ]P)(Q(n) > 1-— 262.

The result of Lemma [6(ii) is taken from [Tan| (2020b), Lemma 1(ii), the resuls
of Lemma [6{i) can be shown similarly using Lemma [I] in Section [S4] and the union
bound.

Let ¥,,1 = E{Rw(X;7)|Y — ¢(a"G)|FF"}, and X,,1 be the sample version of

IS
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Lemma 7. Let 5 denote the event that

sup (Bt )k — (Zomt) k] < v/ D3+ D2, (S5.7)
j,k=0

then ]P)(Qog) 2 1-— 262.

Proof. Since |Rw(X;7)f;(X)fx(X)| < exp(—By)C§ for j,k = 0,...,p by As-
sumptions [Ifi), and [Ifii), and |Y — ¢(a"G)| is uniformly sub-gaussian by As-
sumption [(iv), Rw(X;7)|Y — ¢ (a"G)| f;(X) fr(X) is uniformly sub-gaussian. By
Lemma [2, we have

. 2¢2
P = St > 1) <

for j,k = 0,...,p, where t = exp(—By)CZ+\/8(D32 + D?)\/In{(1 + p)?/e2}/N. By

union bounds, (S5.7)) holds. O

Let 3,2 = E[Rw(X;7){Y — ¢(a"G)}2FF7), the sample version of 3,2, X,,2 =

E[Rw(X;7){Y — ¢(a*G)}*FF"].
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Lemma 8. Denote by {293 the event that
sup [(Z2) ik — (Z2) k] < (D§ + DoDi)o, (S5.8)

Under Assumptions [1f(i), [I[(ii) and 2(iv), if

(Dj + DoD1)Ao > 4exp(—Bo)C3[D3 In{(1 +p)/e} /N + DoD1+/In{(1 + p)/e} /N],

then, P(Q3) > 1 — 2¢2. Furthermore, if we assume that In{(1 + p)/e}/N < 1, the

above condition reduces to A\g > 4 exp(—By)CZ+/In{(1 + p)/e}/N.

Proof. For j,k=0,...,p, the variable Rw(X; y){Y —¢(a"G)}* f;(X) fr.(X) is the
product of Rw(X; %) f;(X) fe(X) and {Y —¢(a"G)}?, where | Rw(X ;) f;(X) fu(X)| <
exp(—B,)C? by Assumptions [1fi) and [Ifii); and {Y — ¢(a"G)} is sub-gaussian by

Assumption [2{iv). By Lemmas [3| and [ in Section [S4] we have

P {|(2m2)j,k — Bn2) | > 2ePICE Dt + 26(_B°)C§D0D1\/2_t} < o
p

for 5,k =0,...,p, where t = In{(1 + p)?/€*}/N. The result then follows from the

union bound. O

Lemma 9. Under the conditions of Proposition 1, in the event 9 N g1, we have

E [Ru(X:9){(3 — 7)"FY?] < exp(nn) Mo|S;| 33, (35.9)
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where 791 = (Ao — 1) MoCylo.
Proof. By Lemma [f] and Proposition 1, in the event Qg N Qo1, (4.1) holds, we

obtain

5= 7l < (Ao = 1)7 Mol S5120 < (4o — 1) Moo, (85.10)

the second inequality holds due to Assumption (iV). By the definition of Dg ALl ),

we obtain

Diar (7" F,7"F) = — E[R{exp(—7"F) — exp(—7"F)H{(§ = 7)" F}]
=E(Rw(X;7) exp[—u{(§ = 3)"FY{(7 = 7)"F}?)
> exp(—Colly — FIE[Rw(X:;7){(3 —7)"F}’]

> exp(—no)) E[Rw(X;9){(§ — 9)"F}?].

The second equality holds by the mean value theorem and w is some scalar in (0, 1).

Combining the inequality with (4.1), we obtain

E [Ru(X;7){(5 =) F}*] < exp(no)) Diar (V7 F, 77 F) < exp(nor) Mol S| A7

S5.2 Lemmas for the parameter in the OR model

The following Lemmas will be used in the proofs of Proposition 2 and Theorem

1.



20 Ye Tian, Peng Wu and Zhiqiang Tan

Lemma 10. Let €y denote the event that

E [Ru(X; )Y — ¢(a"G)}g; (X)]| < Ar. (S5.11)

Under Assumptions [1] Pf(iii) and fiv), if

A1 > exp(—By)Cy\/8(D2 + D?)y/In{(1 + ¢)/¢} /N,

then P(Qlo) > 1— 2e.

Proof. Let S; = Rw(X;y){Y —¢(a"G)}g;(X) for j =0,...,q. Then, E(S;) =0
by the definition of &. Under Assumptions [1] and [2{iii), |5;| < exp(—Bo)Cy|R{Y —
Y(a"G)}|. By Assumption (iv), the variables (Sy,...,95,) are uniformly sub-

.....

D3 = e=%)CyD,. Therefore, by Lemma 2| in Section and the union bound,

P(Q10) > 1 — 2¢, if Ay > exp(—Bo)Cy\/8(D2 + D?)\/In{(1 + q)/¢}/N. O

Lemma 11. Denote by €2;; the event that
Csup |(Za)jk — (Ba)il < A, (S5.12)

where X5 is the empirical version of 5. Under Assumptions (ii), (1) and (iii),

if \; > 4dexp(—By)C2C3/In{(1+ q)/e}/N, then P(Qy1) > 1 — 2¢2.

Proof. Notice that |Rw(X ;7)1 (a*G)g;j(X)ge(X)| < e7BIC,C2 for j, k = 0,1,... ¢,
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by Assumptions [Ifii), i), and [2{iii). Thus,

|Rw(X ;7)1 (a7 G)gi(X)gi(X) — E{Rw(X;7)¢1(0" G)g;(X)ge(X)} < 2exp(—Bo)C2CF.

By union bounds and applying Lemma |1 yields ((S5.12)). 0J

Lemma 12. For any a € R, we have

Dy (67G,a"G:A) + Aalldrglh < (& — a)E[Rw(X; )Y — ¢ (a"G)}G] + Aallang1.

(S5.13)

Proof. For any u € (0, 1], by definition of &, we have

bwi (6, ) + Aallarglli < bwi{(1 — u)d 4+ ua; 4} + Ao ||(1 — w)dng + uanlls,

which implies

b (6, ) — bwr{ (1 — w)b& 4+ uos A} + Aqul|énglli < Aaullag|,

by the convexity of Li;-norm. Dividing both sides of the preceding inequality by u

and letting u — 0, leads to

—E[Rw(X;9){Y —4(@"G)H(d — a)" G} + Aalldryglls < Aallang]ls,

which yields (S5.13)) after rearranging using (4.3). OJ
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Lemma 13. For any function h(X), under the conditions of Proposition 1, in the

event QOO N Q()l,

Diyy {6 G h(X):4} = exp(—nor) Dy, {67 G, h(X); 7}. (85.14)

Proof. By the definition of DINL(-, SR

=E (Rw(X;9)[¥(6"G) — {h(X)}{a" G — h(X)})
=E (Rw(X;7) exp{—(§ — 7)"F}[¢(&" G) — ¢{h(X)}{a"G — h(X)})

> (Ruw(X;75) exp(=n0) [ (0" G) = p{h(X)}{a"G — h(X)})

= exp(—no) E(Rw(X;7)[$(0" G) — p{h(X)}{a"G — h(X)})

= exp(—no1) Dy {6 G, h(X); 7}.

The inequality holds since in the event Qg9 N oy, (4.1) holds. O

For functions h(X) and h/(X), let Qwr{h(X), (X); -} = E[Rw(X; ){h(X) —

(X))

Lemma 14. Suppose Assumption (iv) holds, in the event g9 M Qo1 N o3, (S5.13)

implies
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exp(—101) Dl (A"G, @ G5 7) + Ao |dngln
<(& - a)"E[Rw(X;7){Y — ¢(a"G)}G]

+Aall@rgll + exp(nor)y/ Mi| S5 N {QwL(6" G, a" G; 7)}/?,

where My = | (2D} + D} + Do D) {(MO% } + (D + DY) exp(nm)Mo]

Proof. Consider the following decomposition,
(@ — @)"E[Ru(X;4){Y — ¢(a"G)}G]
=(& — @) "E[Rw(X;7){Y — ¢(a"G)}G] (55.15)

+E[R{w(X;4) —w(X;)}HY - ¢(@ G H(@a - a)'G},
denoted as AJ + A?. By the mean value theorem and Cauchy-Schwartz inequality,

A < exp(CollF = FIh)EY* [Ruw(X;7){(@ — a)"GY’]

x EV2[Ru(X;9){Y — ¢(a"G) {4 — 7)"F}?
(85.16)
<exp(no){Qwr(a"G,a"G;7)}/?

x V2 [Ru(X;){Y — 0@ G)Y*{(5 —9)"F}).

We bound the third term in (S5.16)). By Assumption (iv) and Lemma , we have

E{Y —¢(a"G)}*|X] < Dj + Dy.
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Therefore,
E[Ruw(X; 7)Y — (@' G)P{(y —7)"F}*] < (D§ + DYE[Rw(X;7){(} - 7)"F}?].

Let (E—E)(U) denote E{U —E(U)} for U, which is a function of (X, R,Y"). Then

in the event (y1, by , we have
(B —E)[Rw(X;7){(7 =7 FF < Xolly —7lI%-
In the event (3, by , we have
(E — E)[Rw(X;7){Y — (@' G) {5 — 7)"F}*] < (D§ + DoDi)AollF — 717

Combining preceding inequalities, we obtain in 2oy N Qg1 N Qo3

E[Rw(X;9){Y — ¢(@"G)}*{(5 —7)"F}]

<(D + DoDi)ollg = 713 + (DF + D) {Noll§ = 713 + E[Rw(X; 9){(5 - 9)"F) |
My

} IS5IA2 + (D2 + D?) explnon) Mo S5 32

:M1|S’7|)‘(2)7
(S5.17)

where the last inequality holds due to (4.1) and (S5.9)). Combining (S5.15)—(S5.17)),

we obtain
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(& — a)"E [Rw(X;9){Y — ¢(a"G)}G]
<(& —a)"E [Rw(X;7){Y — ¢(a"G)}G] (S5.18)

+ eXP(UOl)(Ml|Sﬁ|)\(2))1/2{QWL(dTGa a'G; ’7)}1/2-

The desired result follows by combining (S5.13]), (S5.14)) and (S5.18)) in the event

Qoo N Qo1 N Qos. O

Lemma 15. Denote b = & — &. Suppose Assumption (iv) holds. In the event,

Q[)O N le N Qog N Qlo, we have

exp(—101) Diy (6T G, a™ G5 7) + (A — 1)\ ||b|y
(S5.19)
<2410 Y [bj] + exp(non)\/ M| S5 \{QwL(6" G, a"G; )}/

JESa
Proof. In the event ;7 , we have
B'E[Rw(X; 1){Y — ¢ (a"G)}G] < M|bl)s,

by which and Lemma we have in the event Qg0 N Qo1 N Qoz N Q10,

exp(—101) Dl (A"G, @7 G5 7) + A || g|s

<A [[blls + A |Gl + exp(nor) ) Mi| S5 A3 {QwL (67 G, a"G; 7) /2.
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Applying to the preceding inequality the identity &; = |&; — a;| for j ¢ S5 and the

triangle inequality
|| = |yl = |ay —ayl, j € 5a\ {0},
and rearranging the result gives

exp(—1o1) Dl (A"G, & G; %) + (A1 — D)1 [|baglls

<Ailbo| + 2410 Z ;1 + exp(no1)y/ Mi| S5 N{QwL(@" G, a"G; 9)}/?
j€Sa\{0}

S(Al + 1))\1|b0| +2A1)\1 Z |b]| —I—exp(nm) M1|S,7|)\%{QWL(C}TG,@TG;’7)}1/2.
Jj€Sa\{0}

By adding (A; — 1)A1]bg| on both sides of the previous inequality, the conclusion

follows. O
Lemma 16. Suppose Assumptions (ii) and (iii) hold. Then, for any o, & € R,

1 — exp(—Clol|0]|1)
Cuol|b]|1 ’

Dl (a"G,a"G:7) > {b" S ()b}

where b = o — &, Cyp = C5C4 and 2,(-) = E [Rw(X; 7)1 {(-)*"G}GG"]. Through-

out, set {1 —exp(—c)}/c =1, for ¢ = 0.

Proof. By the definition of D\TNL(-, SR

Dl (a"G,a"G;7)



S5. TECHNICAL LEMMAS27

=E[Ru(X:7){¢(a"G) = ¢(a"G)}a"G — &' Q)]

R (Rw(X; 7) [ /O GGG 4 (oG - dTG)}du} e dTG}?) |

.....

a1 < Cyljoe — @l|q, it follows that

l)&l(aT(;v&T(;;7>
>R {Rw(X;f_y) {/1 (&' Q) exp(—uCs|la"G — &TG\)du} ("G — &TG)21
0

SEB{Ru(X:7) i@ GG - a6 | [ exp(—uCinlla - alldu}.

which gives the desired result since fol exp(—cu)du = {1 —exp(—c)}/c for ¢ > 0. O

Lemma 17. Suppose that Assumption (V) holds. In the event {271, Assump-
tion (vi) implies a compatibility condition for 34: for any vector b = (by, . . ., b,)"
such that 3 g [bj] <& D s, [bjl, we have
2
(-0 (Z |bjr> < 154l (6"S20b). (55.20)
JjE€Sa

Proof. In the event €y, we have |b" (35 — X5)b| < A1||b]|?. Then Assumption (v)

implies that for any b = (bo, ..., bg)" satisfying > ..q [bj] <& ;e 165l

Vi l|bs, [T <[Sal(b"Eab) < |Sal (0" Sab + Aulb]?)

<[Sa|(5"ab) + |Sal A (1 + €)% [1bs, |17
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<[8al (5"3ab) + ¢ [1bs, |17

where [|bs,[l1 = > ;cs, [bj]; and the last inequality holds due to Assumption (vi),

(14 &1)%v72|S5| A\ < ¢1. Thus (S5.20) follows by rearrangement. O

S6 Proofs of Propositions 1 and 2

S6.1 Proof of Proposition 1

Proof. Let ¢, in Assupmtion (iv) = max[v/2{1 + exp(—By) }Co, 4 exp(—By) CZ].
This can be shown similarly to Tan (2020a)), Theorem 1 by Lemmas and Lemmas
similar to 17 The small difference in probability is due to extra constraints of

Ao on g2 and g3 from the sequential estimate, which is also demonstrated in [Tan

(2020a)), Theorem 5. O

S6.2 Proof of Proposition 2

Proof. To facilitate the proof, we first define some constants. Let vy = 14 (1— §1)1/2,

Co=1-2A;/{(&+1)(A -1}, & = (& +1)(A1 —1), ¢, in Assumption [2[(vi) equals
to max{Cy+/8(D2 + D3),4C,C?} exp(—By), &, and &, in Assumption (Vii) equal to
C3Cyexp(no1) (A1 — 1) €252 and C; 'C3Cy (A — 1)1, 2 exp(3mp1 ) My, respectively.

Denote b = & — &, D\TNL = DIIVL<OA‘TG7&TG;’7): Qwr = QwL(a"G,a"G; ) and

Dy, = exp(—njo1) Diyy, + (A1 = DAullo])1.
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In the event Qu0 N Q01 N3N 210N 211, (S5.19) in Lemma |15/ leads to two possible
cases: either

& D1, < exp(noy) (My]S5[A5QwL) '/, (S6.21)

or (1—&)Dyyy < 2410 Y e, sl e,

Dy < (& + 1) (A — 1)\ Z |bj] = &M Z 101 (S6.22)

jESa JE€Sa

By Lemma [16] we have

1 — exp(—Clyl|b]|1)

1 — exp(—Cuyl|b]|1)
Ciol[b]|1 '

S6.23
Cuoltlls (86.23)

Dy, = (b Sa(a)b) — (B"Sab)
If (S6.21)) holds, notice that DI,VL < exp(nm)DfNL and by Assumption (i), Qwr, <
CTL(b"2,4b), which together with (56.23) yields

Cuol|b][1

. S6.24
~exp(~Cao 1) (36.24)

Dy, < exp(3n01)€5 *Cy (M ]S5]A) 1
Since (A; — 1)\ [|b]y < DY, and Assumption (Vii) holds, (S6.24]) implies that
1 — exp(=Clollbll1) < (Ar = 1)  exp(3n01)&3 2Cr (M| S5|X0)Cag < 115 < 1.

As a result, Cy||bl]y < —1In (1 —n3), which leads to

1 — exp(—Cuol|b||1
Caol|b][1

1
) = / exp(—C’40Hb||1u)du Z exp(—C’40Hb||1) Z 1-— 73. <S625)
0
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Combining the inequality with (56.24]), we obtain

D\iNL < exp(3n01)& *{C1 (1 — m3)} (M1 ]S5|A5)

If (S6.22) holds, then ngzsa ;] < & ZjeSa |b;|, which, together with Assump-

tions [2(v)-2(vi), implies (S5.20) in Lemma[I7] that is,

- 1/2
D Il < (1= Q) ISa 7 (578ab) (56.26)

j€Sa

Since Dy, < exp(no1) Diyy,, combining (S6.22), (S6.23) and (S6.26) yields

Cuol|b]|1

) S6.27
— exp(—Clo|b[]1) ( )

Diyy, < exp(mon)é5(1 — Cl)_lVf2|Sa|>\%1
Since (A; — 1)A\|b]y < DY, and Assumption (ii) holds, (56.27)) implies that
1 — exp(—Cuol|bll1) < (A1 — 1)~ exp(no)&5 (1 — ¢1) i ?[Sa| M Cao <1 < 1.

As a result, Cy||bl]s < —1In (1 —n9), which leads to

1 — exp(—Cyl|b||1
Caol|b][1

1
)zjkme@meMZwM%mwmzrw}
0

Combining the inequality with (§6.27), we obtain Dy, < exp(no1)é2vy 2(1—n2) 2| S5| A2,
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Therefore, we obtain

DI, (6"G,a" G, 7) + exp(no1) (A — DA ||@ — alf

< exp(dnor) & H{C1(1 — m3)} (M) S5ING) + exp(2n01) &35 2 (1 — n2) %[ Sa AT,

Let M11 = exp(4n01)§2_2{01(1 —7’]3>}_1M1 and Mlg = exp(27701)§§1/2_2(1 —7]2>_2, then

(4.2) holds.

S7 Proof of Theorem 1

S7.1 Lemmas for the proposed estimator
Lemma 18. Suppose that Assumptions [1[i), (i), [2(ii), and [2(vi) hold, if

1n(ﬁ)
Ao > \/5{1 + exp(—By) } C Ne )

then, P(y) > 1 — 2¢ for any r > 0, where {25y denotes the event

sup < BiAor,

la—al|1 <r;j=0,...,d

&-5) {4 -1} o) - vae) 2

where Bj is a positive constant, depending on (Cy, Cy, C3, Cs).

Proof. This can be shown similarly to Lemma 13 in the Supplement of Tan| (2020al).
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Lemma 19. Suppose Assumptions , and [3| hold, if a function h(:) on a set of
samples satisfying h[{ X} ] < M{|S5|\o(€)+|Sa|A1(€)} for some constant M with

probability 1 — ce for some constant ¢ > 0 and any € > 0, then, h[{X,;}Y,] = op(l)ﬂ

Proof. For Ve > 0, let Q. be the event where h[{X,;}¥,] < M{]S;|\o(¢/c) +

|Sa|A1(€e/c)} holds. Suppose |S5|Ao(€/c) < |SalAi(€/c), then, on €,

N Q-‘rl
A X by < ) < oM ln +ln( )<2M1/1—|—ln( )
|Salv/In{e( q—i—l ln{e qg+1 € €

(S7.28)

which implies that

IF’[ WX LV >P(Q2)=1—¢.

|Salv/In{e(¢+ 1)} —

<oM,/1+1n (E>

Similarly, suppose |Sz|A1 < |S5|Ao, then, on €2,

P[ XY, N‘
1S5/ In{e(p+ 1)} —

< oM 1—|—ln< )] >PQ) =1

For Ve > 0, we have

[ W{X N VN
|Salv/In{e(q + 1)} + |S5]/In{e(p+ 1)}

<M 1+ln<€>] >1—e

We write Ao, A1 as Ag(€), A1(e), since we treat them as functions of e.
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thus, BUX )LV = 0,(1), and by Assum tion i), it follows that
Sty Say/merny O Y ption 3(vi) v

DX Y] = o, | SelvIntelet D} + 155 VIndelp + 1)}

Vi = 0,(1).

O

Lemma 20. Suppose Assumptions , and [3| hold, if a function h(-) on a set of
samples satisfying h[{ X} ] < M(]S5]| +|Sa|)Ao(€) M1 (€) for some constant M with

probability 1 — ce for some constant ¢ and any € > 0, then, h[{X;}¥,] = 0,(1/V/N).

Proof. By similar trick used in the proof of Lemma |19 it can be easily shown that

h[{Xz}zA;l] =0, (\Sﬂ’y|+|5’aD\/ln{egg-i-l)}\/ln{e(p-i-l)} = op(l/\/N) by Assumption (VI)

0

Lemma 21. Under Assumptions and , suppose either the PS model (3.1) is

correct or the OR model (3.2) is correct, the AIPW estimator 3 L g

Proof. First, we notice that when 7(X;~) is correct or ¢(X;a) = Y(a"G) is
correct, * is the unique solution to E{7(O, a, 8,7)} = 0. If #(X;~) is correct, we

obtain,

E{7(0,a,5%,7)}
R

B |2z 1o @) - v 2) 2

N
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—E[{Y - (5" 2)}2]

=0.

If ¥(a™G) is correct, we obtain,

E{r(O,a,p",7)}
R
m(X;7)

=E[{y(a"G) - 4(87 2)} Z]

Y — (32 Z + {1 - L} [0(a'G) — (3 2)} 2

= (X:7)

=ER{Y —v¢(8"2)}Z]
=0.

The uniqueness is determined by the uniqueness of 5*.
Since Assumptions [3[(ii) and [3](iii) hold, by standard argument of consistency (e.g.

Van der Vaart| (2000)), it suffices to show that
E{7(0,a,5,7)} = 0,(1). (S7.29)

We consider the following decomposition,
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=4 + A,

where

8 =E(r(0,0,3,9)) ~Blr(0.a. 5.1} =B [{ -~ 1} 0(a6) - via"6)} 2.

A} =E{r(0,a,5,7)} —E{r(0,a,5,9)} = E {R{w(;ﬂ) N w(}i;,}) } {v - w<aTG>}Z} :

By Assumptions [Ifiv) and [2vi), we know that 3 (1o < 0 a constant, such that
155120+ 1Sa] A1 < Gro- By (4.2) in Proposition 2, we know that 3 M{ > 0 a constant,
such that in the event QOO N Q()l N 903 N QlO N Qlla ||6z - @Hl S Mg(|8;/|/\0 + |S@|)\1).

Consider the j-th coordinate of A},

24, = B [{ ot -1} e - sty

e
R 2
1\ 72
{W(X;?) } !

<E'/? ([R — 1+ Rw(X;7) exp{—(§ — 7)"F}]’ Zf)

<E2 X BV 0(a7G) - h(a" @)

x V2E'2 [{(a"G) — ¥(a"G)}¢ (3" G) (& — )" G]
<V2C5E'? [(R = 1)° + Ruw?(X;7) exp{—2(3 — 7)" F}]

x EY/? { /0 1 i {a"G + u(a@ — a)"GYdu, (A"G){ (& — a)TG}2]
<V2C5{1 + exp(—2B, + 2Co|| — 711 }2

x EV2[y2(a" Q) exp(2C5|6"G — a"G|){(a — )" G}
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<205{1 + exp(—2By + 2101)}2 x CoCy exp(C5Cyllé — al|1)||é — alfs
<V2C,C4C5{1 + exp(—2By + 27701)}% x exp(C3Cy Mg o6 — ally
=M, (IS5 X0 + [SalA1)

=0p(1)

where M| is a constant, & = u&+ (1 — u)a for some constant v € (0, 1) and the last
equality holds by Lemma [19,
We consider the j-th coordinate of Al. By Cauchy-Schwarz inequality, Lemma

B and Lemma [f, since Assumption [2(iv) holds, we obtain

‘ & { SR UG

= B [Ru(X;9) exp{—u(y = 3)'F}(7 = 3)"F{Y - ¥(a"G)}Z]

<E'? [Rw(X;7) exp{—2u(§ —7)"FH (¥ - 3)"F}*Z
x EV2[Ru(X;7){Y — (@ @)}

<exp(—Bo/2 + Col|¥ — 4|[1)CoCs|Y — A1

% \/E[Rw(X:3){Y —$(a"G)}?] + (D3 + DoD1)Ag

< exp(~Bo/2 + 101)CaCsy/ (DG + D) {ho + exp(~Bo)} 15 — 71l

SM{)(|S§|)‘O+ |SalA1)

=0p(1),
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where u € (0,1) and M? are both constants. Therefore, |[E{r(O,a,3,7)} e <

| Ao + Ao = 0p(1). Hence, 3 = 3. O

S7.2 Proof of Theorem 1(i)

We show the asymptotic normality of v N (B — [*). First, we consider the following

decomposition,

T(O 737’?)_7—(070_@B*77)

_|_R A G G (6T

~ L ) e 1 66 - v 2) | 2
i or R . i

_ [W(X;a){y_d}(ﬁ Z)}—{m—l}{w(a G)— (B Z)}}Z

={(u(5"2) — ("2} Z + R { X T } ¥V -vl@G)2

Hi- d e -varey 2

?

R R @
+{W(X;7)_7T(X.%}{¢<a G)-¥(@'G)} Z,

I

denoted as 63 + 69 4 69 4 69. Then, —E7(0, &, 8*,7) = A2 + A? + A2 + A2, with
A? = E(60), i = 0,1,2,3. First, we show that A? 4+ A2 + A2 = 0,(1/V/N). To
2

upper-bound A?, consider A7, the j-th coordinate of A2, By Taylor expansion in

a neighborhood of 7,

22 [{ o ) O v

= — (5 = 9)"E[FRu(X; ){Y — (a"G)} Z}]
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(3 = N'E[FRo(X, 3){Y — (@ @)} Z;F"| (5 - 7).

N |

_|_

denoted as Ay ; + A}, ; where 3; = u;y + (1 — u;)7 for some u; € (0, 1).

In the event Qg N Qo1 N 2y, by (4.1) and Lemma , we obtain
ATl < 1A = ALIE [FRw(X; )Y — ("G} 2] lleo < Mig 1S5 1M,
for some constant Mllojj > 0. In the event Qg9 N o1, by (S5.9), we obtain

83,1 =516~ DE[FRu(X: )Y (6" G ZF™] (7))

1 .
<5Cexp(7 =1 Co)E{ Ru(X; MY — (@ @)||(7 = 7) " FF} .

We bound E {Rw(X;7)|Y — ¢(a"G)||(¥ —7)"F|*} by following steps. First, by

Lemma [7] in the event g,
(E—E) [Rw(X; )Y — (@ " G){(¥ —3)"F}] < /D3 + D33 — [} ho-
Second, by Assumption [[iv) and Lemma [5, we have

E{Y —¢(a"G)}*|X] < Dj + Dy
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Therefore,

E [Rw(X;7)|Y — (@ "G){(5 —9)"F}?]

<E'? [Ru(X; 7)Y — 9(@"G)P{(7 = 9)"F}] x BV [Ru(X;7){(5 - 7)"F}’]

<y/D§ + DIE [Ru(X:9){(5 - 7)"F}*].
Third, in the event Qq;, by (S5.6)),
(E —E) [Ruw(X;9){(¥ —9)"F}*] < oll¥ —AlI3.

Combining preceding inequalities and (S5.9) in Lemma |§|, in the event 59 N Qp1 N

Qo3 N Qog,

E{Rw(X;3)|[Y —¢(a"G)||(¥ — )" F|’}
<\/D§ + D213 = AP0 + 1/ DF + Di{oll7 = AT + exp(nor) Mol S5 |25}
2 2 My ’ 243 2 2 2
<24/ D + D7 Ay —1 195170 + 1/ Dgg + D1 exp(no1) Mo |S5|Aq
/ 32 2 Mo ’ 2 2 2 2

Therefore,

1 N = n = ~T A ~\T
|A%1,j| §§C5 eXP(HV - 7”100)15 {Rw(X;7)|Y - ¢(04 G)H(V - 7) F|2}

1 My \?
<5 Cs exp(ifon) x {240\/ D§ + D3 (A . 1) |S5|\6 + 1/ D§ + D? eXP(ﬁOl)MO\Sv\)\g}
-
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1 2
:MH’S’Y’)‘O?
for some constant Mll1 > 0. Hence, in the event Q59 N Qg1 N Qo3 N QLo2 N Qq,

o (83
< sup 1(‘A%O,j‘ + ‘A%Lj’)

< sup MiplSy[AoA 4+ sup Mp[S5IAS

7=0,....m—1 7=0,....m—1

=M{y| S5 MoA1 + M1 [S5A8

<M(|S5] MM + [S51A2),

where M| = max(M,, M,).
To bound A3, consider A3 ;, the j-th coordinate of A3, A3 ; can be decomposed

as

s, =@ [f1- - v -vaen )

i [{1 - w()?; ) } {wa'G) - l/J(ozTG)}Zj] 7

denoted as A3, ; + A3, ;. Since 7(X;7) is correct, A3, ; = 0. By (4.2), IM, > 0,
such that [|a—aly < Mo (|S5|Ao+[Sal M)} Take rq = Ma(]S5/A0+[Ss]A1) in Lemma

7 then in the event QOO N Q()l N Qog N QIO N QH N QQO, we have ||éé — 6(”1 < To and

Note that A\g < Aq.
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hence

|A§0,j| < Bi My (|51 A0 + [SalA1) Ao (S7.30)

Thus, in the event QOO N Q()l N Qog N QIO N QH N QQ(),

sup . |Ag7]| S BlMa(|S'7|)\O + |S@|>\1))\0 = M21(|S:y|>\o + |S@|)\1))\0, (8731)

7=0,....m

for some positive constant M.

To deal with A2 first, by mean value theorem, we obtain for some u € (0, 1),

1 1
— — — =—exp{—uY'F — (1 —uw)y"F}#—3)"F
RX3) mx)  O R s7)
= —w(X;7) exp{—u(y —7)"F}(y - 7)'F
and for some & lies between & and @&,
V(@E'G)—Y(&'G) = -1 (a"G)(a—a)'G. (S7.33)

Combining (S7.32) and (S7.33)) and applying Cauchy-Schwartz inequality to j-th

coordinate of AZ in the event Qg9 N Qo1 N Qoz N Qyp N Q211 N Qgp, We get

A5l = ’]E HW()];; A 7T()](%; ) } W(a'G) —v(@e)} Zj}

=E([Rw(X;7) exp{—u;(§ — 3)"F}# — 7)"F){¥1(a]G) (& — a)"G}) Z;|

<Cs exp(o) B2 [Rw (X5 7){ (5 = 3)"F}?| x EY?|Rw(X;9)¢7 (6] G){(a — a)" GY’|
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<Cs exp(no1) {exp (101) Mo| S| AT}/

x E'? (Rw(X;7)[th (6] G) exp{Cs|(a — a)"G|}*{(a — 2)"G}?)

MT(|S51A8 + 19a]A%) }

<Cs exp(no1){exp(no1) Mo| S5 A5} /*C3 exp(CsCyra) { =

<M5{]85 178 + (19511Sa]) ' AoAd}-

The second inequality holds due to (S5.9) in Lemma [0} The third inequality holds

by Assumption (ii), (S6.25), the facts that E [Rw(X; 7)1 (@] G){ (6 — a)"G}?| =
b*3.b in (S6.23) and that by (4.2) in Proposition 2, 3MT > 0 a constant, such that

Dl < MT(]S5|A2 + [Sa|A2). Therefore,

sup A3 < M{]S5108 + (1951Sal) oA}, (S7.34)

7=0,....m

for some constant M;. Thus, on the event Qg9 N Qo1 N Qo3 N Qo2 N Qip N Q211 N Qo

AT+ A+ Al < sup 1|Aij|+, sup 1|A%,j|+, sup  |AZ ]
- J - J

7=0,....m =0,...,m =0,....m—1

<M (155120 + [851A5) + My (85120 + [Sal M) Ao
+ My {[ 55178 + (1S511Sa) Ao}

<MY(S5] + 1S Ao

By Lemma , A2 + A2+ A2]o = 0,(1/VN).

Then, we deal with A§. For the j-th coordinate of A, AF;, by mean value
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theorem,
A =B{w(B7"Z) — (8" 2)}Z;) = —B{v1(B] 2)Z,Z" (3 — B7)},

where ; = (1—u;)5*+u; 3 for some u; € (0,1). We first show that E{¢, (** Z)Z; Z}—
B{y1(572)2;2} 5 0. By Assumption i), we know that for Vu, o, if ;(u) >
Y1 (u'), since ¢ (u') = i (u) exp(—Cslu — o), then [¢hi(u) — ()] < Pr(u){l -
exp(—Cslu — ') }; if ¢i(u) < i(u), P1(u) < i(u) exp(Cslu — '), [1(u) —
Y1 (u)] < i (u){exp(Cslu — u'|) — 1}; therefore, [ty (u) — 91 (u')] < by (u) max{1l —
exp(—Cslu — 1]), exp(Cslu — w/]) — 1}. Consider the i-th element of the difference,

if C3 =0, 1 is a constant, then
{1 (877 X) 2,2} — B{1 (6] Z) Z:Z,}| = 0.
Otherwise,

E{1 (8 X)Z,2;} — B{1 (8} Z) ZiZ;}| < B{[u(8 Z) — (5] 2)||1Z:25]}
<CIE[n (87" Z) max{1 — exp(—Cs| (8 — 5*)" Z|), exp(Cs|(8 — 87)" Z|) — 1}]
—C3CsR{CH|(B — B°)" 2| + 0,(I(B — 8°)" Z])}
<C3C3Cs(15 = B7Ilv + 0p(15 = 57[1n)

=0,(1),
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which leads to —IE{%(@TZ)Z]-ZT} + E{1 (67 2)Z,Z"} % 0. Therefore, we con-

sider the following decomposition,

—E{\(872)Z;Z} + E{u1 (8" 2) Z;Z}
= —B{1(6] 2)2;Z} + E{ (87 X)Z;Z} — B{Un (5" 2) 2, Z} + E{(67 Z)Z;Z}

—0.

Hence,

E{u(512)7,Z} 5 B{uu (87 2) 7,2} = T, (S7.35)

where T'; is the j-th row of T', and (57.35)) holds for j = 0,...,m — 1. Hence,
A} =E(ZZ")(3 — B), where Z; = — (67 Z)Z;, and E(ZZ") & —T. Suppose

VN (B — B 4, G5, by continuous mapping theorem,
VNA2 YL TG, (S7.36)
Besides, by central limit theorem,
VNA2 = VNE{r(0,a,8%,7)} + 0,(1) % N(0, A), (S7.37)
where

A =E{r(0,a,p*,7)7(0,a,5",7)"}



S7. PROOF OF THEOREM 145

& (| x5V ~ UG + (vla6) - w5 2)p | 22°)

+2E{Y —v(a"G)H{y(a"G) — (87 2)} 2 Z"]. (57.38)
Therefore,
VN(B =)L Gy ~ —T7'N(0,A) ~ N(0, ),

where ~ denotes “distributed as”, i.e., for any two distributions Gy and Gy, Gy ~ G

means the two distributions are the same.

S7.3 Proof of Theorem 1(ii)

We show the consistency of 3. First, if we let T'; = E{¢,(3"Z)Z; Z}, then
L, SE{ (57 2)Z,2),

ie., f‘j LR I';, which can be shown in the way similar to the proof of (57.35). Then
we get ror.

Next, we want to show that A 2 A. Since A = E{r(O, &, 8*,9)71(0, &, *,5)"}

E{r(0,4&,3,4)7(0,&,B,4)"} —E{r(0,a, 8" ,9)7(0,a,5",9)"} = o,(1).
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We consider the i, j-th element of the difference above:

[E{7(0,&,B,4)7(0,4,3,4)"} —E{r(0,a, 8*,7)7(0, &, 5*,9) "}l

:\E(L( Y U@} + {(a"G) - ww*z»fzizj

[V 0@ @) + (6(d"G) - wwz»] zz-zj)

[V~ 0(6* @)} + {4(a"G) - w<BTz>}]

[<X>

e
sﬁz( 2
[; ¥~ vl@6)} + (vla"6) - w5 2))]

<(J2 (

—[ R v yere)) + uate) - ww“z»]

7.7,

)

7)
R

Y U@ + (w(a"6) - WTZ)}]

)

x:7)
({ )f (¥ — U@ C)} + {U(a"G) — w(572)
R

e Y UaG) - (06 - v(572)) | )

: |
e ([W S~ W@ G} + (W6 G) v 2))
")

Y vEe) U@ 2)}

|

)
<cz(|- )f (¥ ~ 6@ G} + {¥(a7G) - v(52)
R

Y~ @O} + {v1a"G) - v(57 2}

Y - U@ @) - @ e) - w52 )

+2052E2<LT< >{Y W6 G} + {v(6"G) — (8" Z)}
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e Y UG - ) v )] )
« b ({%{Y (@G} + {9(a"G) - WTZ)}] )

therefore, we only need to show that

~ R AT AT N AT
E(L(Xﬂ){y_wa G)} + {U(6"G) — (3" 2)}

R

- Y @6} - a6 — v 2} )

=0,(1).

Consider the following decomposition:

w()];; 3) {Y —¢(a"G)} + {¥(a"G) — v (5" Z)}
B w()?; ) {Y —4(@"G)} — {(@"G) — (5 Z)}

={v(@"G) —¢(@"G)} {1 B n()?; 7)}

_T 1
+ R{Y —¢(a G)}{W(X;/?) B W(X;V)}

FRUEE) - v@ @M g - )

+9(8Z) — (8" Z),

denoted as 03 + 01 + 63 + 64, Let A? =E{(6})?},i=0,..., 3, we only need to show

that A? =0,(1),i=0,..., 3.
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A} =E

By mean value theorem,

m(X;%)

were) - u@ep {1- 5 }]

—9F |1 (6" G){(0°G) — ¥(a* G} — a)'G {1 - %} ]

_oR m&%ﬁLKwﬂJG+u@—afGM4{@_QVGP{I_M;?DF>

- ) 2
<2FE _wl(aTG’) exp(C3Cy1y,) {/0 (0" Q) exp(C’3C’4ra)du} {(& —a)"G}? {1 — W()i ’y)} ]
<2C3C% exp(203Cy14){1 4 exp(—Bo) Y2 ||& — a3

=0,(1).

=k

R @ OF v }]

— — 2B (Ru(X:7)exp{~(7 = 9)"F} = exp{~(3 = 3)"F} x {Y = (a"@)}* (5 - 9)'G)
<2{1 + exp(non) Y exp(—Bo + no)Cill§ = AWE [Ru(X:3){Y - (@ @)Y’

<2{1+ exp(on) > exp(—Bo + o) Calls = 711 (B | Rw(X:7) {Y = 0(@" &)} | + (D} + DaD1)ho)

=0,(1).
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By mean value theorem,

A} =E |R{y(a"G) — (2" G)}? {W(;-v) B 7r<)é&)} ]

—E (R{$:(4"G) — ¥(a" @) Pw(X;7)°[1 — exp{—(§ — 3)" F}]")

<{1+exp(no)} exp(—2By)E [{(4"G) — v (2" @)}’

=2{1+ exp(non)}* exp(—2B0) B [{1(a"G) — (a"G)}1 (6" @) (4 — a)"G]

=2{1 4 exp(no1) }?> exp(—2By) x E(wl(dTG) [/01 {a"G +u(a — a)TG}du] {(a — a)TG}z)
<2C3C3{1 + exp(o1)} exp(2C5Ciry — 2Bo) |6 — a3

=0,(1).

A} =E[{v(82) — v (8" Z)}?]
=2 [{(5"Z) — (87 2) v (3" 2)(B — 6")" 2]
~28((3'2) | [ (52 403 - 57 20 13- 5277
<2C2C3{1 + explon) Y2 exp(2CsCs |5 — 6118 — 6|12

=0,(1).

A .1
Therefore, A ZOA Then, by continuous mapping theorem, I' Zrt Thus, by

continuous mapping theorem again, IR 5
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S8 Extension to the setting of stratified sampling

S8.1 Proof of Proposition 3

Let
P(0.0.0.) = 5 3 i v G2+ Z{w (0"G.) ~ ¥(57 20} Z;
(S8.39)
We have

- TS{O 6‘76*77T(X7f7)} = _78{070_[75*77T*(X>} = 78{07&73877%(X>} - 78{07a7 *77T*(X)}

NZ[W( Gi) - ww”z»m—iz[{w G)) — V(5" Z:)} 2]
%Z[{w Gi) — V(8" Z:)}Z)) - —Z[{w Gi) — (I Z)} Z)
+%Z{Y W@ G} Z; ——Z{Y W@ G} 2

=1

denoted as A? + Al + AZ.
We first deal with AY. Let Z;; denote the j-th co-ordinate of the i-th sample Z,.

Then, we consider the j-th coordinate of A3, A§;

0 _
A57j -

ZIH

S I(v(a"G) w3202 - (et G) (2} 2,)

= =1

2

% > {5 Zi) — (5 Z:)} 2]

=1
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1N - .
=5 > {8 Z:)Zi;(B° - B°)" Z:}
1 z;l A A
=N D A(B7Z) 258" = B°) Zi} + Op([18° = B°I1D),
i=1
where Bj = u;0* + (1 — uj)BS for some u; € (0,1). The last equality holds since
1B Z;) exp(—C5C5)| 8 — B[11) < i(BFZ:) < (B Z:) exp(CsCs|8* — B|)1),

which leads to @/Jl(B]TZZ) = 1B Z;) + Op(||5* — BSHl)

Then we deal with A} and A2 together. Consider the j-th coordinate of Al + AZ:

|AS + AF ]

LS l0ta6) - w66} 2+ L SIaG) - w6z,

=1
1 « 1 <
==Y {n@Ga - a6z} + 5 Z{%(d}@)(d ~a)'G,Zy;}
i=1 ,
<llé - all Z ((EGIGZy) -~ z{wl saznl
where &; = u;j& + (1 — u;)@, for some 0 < u; <1, j =0,...,m — 1. Consider the

k-th coordinate of G;. For technical convenience, we assume that n is divisible by

N. Let

n+i(N/n—1)

Ve 2 {5 -1 n@GGazs + Y. hi(aG)Gaz,

s=n+(N/n—1)(i+1)+1

then, 3 constant C7 > 0, such that |V;;,| < C7. Moreover, we have E(V;;) = 0;
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therefore, E(V;3,) = Var(Vij) = {(n—N)?/N?+n?/N?*(N/n—1)}Var{y (&] G)G1Z;} <

Cs for some constant Cg > 0. Let t = \/CsIn{(q + 1)/e}/n, since In(g + 1) = o(n),

dn large enough, such that t2/Cy < 3t/C7, then by Bernstein’s inequality, we have

>t>_IP>< >nt)<exp( 732): C . (S8.40)

8 qg+1
 11/n>00 Vil and

Z V;]k

=1

(e

Let V; denote sup,_

77777

Vivin
V,<t= NeATECES). < /1 —In(e).

It follows that
Vi
v/ CsInfe(q + )}
—1—]P>(V;2t)21—Z]P><

k=0

1—1In(e)| >P(V; < 1)

1 n
E;‘/ijk Zt>

=1 —e.

Therefore, S VT —— O,(1), for j =0,...,m — 1, it follows that
CsInf{e(q+1)}

%Z { )G ZU} Zwl )GiZi;}

o0

=V; =0,(v/In(¢+1)/n).
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Therefore,

AL, + A2] < 0,(v/In(g + 1)/m)0y(1Salv/In(g + 1)/n) = 0,(1/ V),

it follows that A} + A2 = 0,(1/y/n). Hence, by central limit theorem and continuous

mapping theorem, we have

V(B — 89 S Va0, a, 55, 7(X)} ~ N(0, =°).

S8.2 Variance comparison

Because the following relationship holds,

1 1
—A°=—FE
n n

+ g [(wara) - v(p 2)1 2]

y N "are) - Motz 2ZZT
{r-TFruwe) - jooma)

B |y - u@aPzz + (1) e - w2y a2

+SE[Y 00" GHU6G) — 057 2} 227 + B [(0(a" ) — u(5 2) Y 227)
B[y w(@"G))Z2"] + SE[{Y — 6(a"G)}{U("G) — v(572)}22")

+SE [(0(a"6) — (57 2)) 22"
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we obtain

1 1
¥ /n=T" (—A8> r'‘=r (NA) r'=x/N.

n

S9 Details of numerical implementation and simulation

In this section, we provide details of the numerical implementation and simulation.
We consider the estimators of population mean for Z = 1, regression coefficients in
the mean model for Z = X; and Z = X, respectively, and (-) is assumed to be

the identity function.

S9.1 Data generating process

Throughout the simulation, we generate the covariates X as follows. We first gener-
ate a random vector from N(0, 3), where the variance matrix 3 € R**3 has elements
3, ; defined as 213l for i, 7 = 1,2,3. Then we clamp each of its coordinates within
[—3, 3] to obtain (X7, X», X3) and X = (1, X3, X5, X3). In addition, the data source
indicator R follows a Bernoulli distribution with success probability 7(X), where
7(X) = {1 + exp(—y"F)} !, the parameter v = (—1.5,-0.8,-0.2,0.3,0,...,0)T
and the basis functions F' are described in Section 6.

Study I. We first focus on the estimation of the population mean and consider

two data-generating mechanisms:

e Case 1. The outcome Y = —0.2+0.1)~(1+0.4)~(2+0.7)~(3+e, where e ~ N(0,0.1)
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and X; = X; - | X[00 + X, - | X[93 + X, - | X[95, for j = 1,2,3. We set Z = 1.

e Case 2. The outcome Y = —0.2+0.1)~(1+0.4)~(2+0.7)~(3+e, where e ~ N (0,0.1)

and X; = |X;|exp(|X;[®" + |X;]°3) for j = 1,2,3. We set Z = 1.

In many scenarios, estimating the conditional mean given a subset of variables in
X garners statistical interest. Accordingly, we design experiments in Study II to
evaluate the performance of the proposed estimator in such setups.

Study II. We further consider three additional cases for estimating regression

coefficients in the conditional mean outcome model.

e Case 3. The outcome Y = 0.4X; + 0.2X, + ¢, where € ~ N(0,0.1), X, =

X; 4+ X? and X, = cos(7/9 - X - X3). We set Z = X.

e Case 4. The outcome Y = 0.4X; + 0.2X, + ¢, where € ~ N(0,0.1), X; =

X, -I{X; > 0}/[X1] and X, = X - X,. We set Z = X.

e Case 5. The outcome ¥ = —0.2 + 0.1)~(1 + 0.4X2 + 0.7X3 + €, where € ~

N(0,01), X1 = X1 - X, Xo = X, - Xy and X3 = X; - X3. Weset Z = X.

Cases 3 and 4 involve Z as a specific covariate X7, while Case 5 involves Z as the

full set of covariates X . In addition, for all Cases 1-5, OR models are misspecified.

S9.2 Implementation details

We compare the proposed method AIPWgcar, with IPW, AIPWgMmp, and AIPW g

introduced in Section 6. Both the Lasso-regularized calibrated and maximum likeli-
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hood estimators for the PS and OR models can be implemented using the R package
RCAL (Tan and Sun|,|2020). We employ 5-fold cross-fitting to select the optimal tun-
ing parameters. In addition, by equation (2.2), * = E(ZZ")'E(YZ). Thus
the true value of 8* is calculated as E(ZZ") 'E(Y Z) through a simulation with

a sample size of 100,000. For Z = X; and Z = X, we denote 5* = [(; and

B* = (Bo, B1, P2, B3)", respectively.

S9.3 Summary of results

We present and analyze the simulation results for Study I and Study II. In the
following tables, we compare various methods in terms of Bias, v/Var, vEVar, CP90,
and CP95. As discussed in the paragraph below Theorem 1, under high-dimensional
settings, the IPW estimator is not VN -consistent, and its asymptotic normality is
not well established. Therefore, we do not report its numerical results for vEVar,
CP90, and CP95.

Results for Study I. Table [If shows the numerical results for the estimation of
population mean E(Y). From the table, the proposed method AIPWgcay, has the
smallest v/Var and vEVar, and Bias. Moreover, CP90 and CP95 of the proposed
method are more aligned with their nominal values of 0.90 and 0.95, respectively.
This indicates the effectiveness of the proposed method in terms of estimating the
population mean.

Figure (1| depicts the box plots of the estimates for Case 1 and Case 2, where the
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Table 1: Summary of estimates of population mean for Study I.

Case 1 Case 2
AIPWRCAL AIPWRML AIPWCF AIPWRCAL AIPWRI\AL AIPWCF
Bias 0.004 0.004 0.006 0.002 -0.006 0.031
v/ Var 0.078 0.078 0.079 0.139 0.143 0.166
v EVar 0.079 0.079 0.082 0.140 0.143 0.161
CP90 0.904 0.908 0.918 0.898 0.886 0.896
CP95 0.948 0.954 0.956 0.948 0.946 0.956

horizontal line indicates the true value. In both cases, our method AIPWgca1, ex-
hibits the smallest biases, interquartile ranges, and whiskers, indicating the smallest
variances compared to the other methods. In addition, AIPW¢r shows more out-
liers than the other two methods, which is more apparent in the results of Study II,

suggesting that cross-fitting may cause instability for the estimates.
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Figure 1: Box plots for estimates of population mean.

Results for Study II. The simulation results for Cases 3-5 are presented in
Tables and the corresponding box plots are displayed in Figures 2H3] We
observe similar patterns as those in Cases 1 and 2: the proposed method performs

well in terms of all metrics.
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Table 2: Summary of estimates of £; in Cases 3 and 4.
Case 3 Case 4
ATPWRCAL ATPWryL  AIPWor ATPWroaL  AIPWaML ATPWcr
Bias 0.000 -0.011 -0.004 0.002 -0.010 -0.002
V' Var 0.036 0.043 0.058 0.023 0.031 0.042
v EVar 0.036 0.037 0.056 0.021 0.025 0.042
CP90 0.884 0.824 0.840 0.866 0.774 0.838
CP95 0.946 0.886 0.900 0.930 0.834 0.906
Table 3: Summary of estimates of 3y, 51, 82, 83 in Case 5
Bo b1
AIPWRcAL ATPWRML AIPWcg AIPWRcAL ATPWRML AIPWcg
Bias 0.001 0.001 0.013 -0.007 -0.004 0.000
v/ Var 0.024 0.068 0.084 0.036 0.114 0.139
v EVar 0.025 0.055 0.077 0.036 0.089 0.131
CP90 0.910 0.800 0.846 0.886 0.774 0.830
CP95 0.958 0.874 0.914 0.942 0.842 0.900
B2 B3
AIPWRcAL ATPWRML AIPWcp AIPWRcAL ATPWRML AIPWcp
Bias -0.001 0.002 0.001 -0.006 0.114 -0.060
v/ Var 0.033 0.086 0.111 0.040 0.095 0.132
v EVar 0.034 0.075 0.108 0.041 0.095 0.133
CP90 0.920 0.818 0.866 0.898 0.592 0.774
CP95 0.958 0.902 0.938 0.940 0.682 0.842
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Figure 2: Box plots of estimates of 51 in Cases 3 and 4.
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Figure 3: Box plots of estimates of 3y, 51, 82, 83 in Case 5

S10 Details of the application

S10.1 Pre-processing details of the community and crime dataset
We pre-process the data in following steps:

Step 1. remove 22 covariates missing 84% of data and 2 variables missing roughly 59%

of data;

Step 2. remove covariates with weak linear relationships to the response ViolentCrimesPerPop
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based on their correlation coefficients.

Step 3. remove covariates that exhibit multi-collinearity based on their values of vari-

ance inflation factors.

After the process, we obtain 1993 observations of 26 covariates.

S10.2 Test results of the covariate shift

Kernel two-sample test with maximum mean discrepancy
e Kernel: exp(—|| - ||3)
e MMD: 0.39227

e P-value: 0.001

Bootstrap KS-tests for univariate covariates

Covariate Bootstrap-KS P-value | KS-test Statistic | KS-test Approximate P-value
racePctHisp 0.000 0.335 0.000
pctiliiage 0.000 0.230 0.000
pctWInvinc 0.000 0.330 0.000
blackPerCap 0.000 0.421 0.000
PctLess9thGrade 0.010 0.119 0.010
PctUnemployed 0.000 0.231 0.000
PctOccupManu 0.000 0.205 0.000
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MalePctDivorce 0.000 0.373 0.000
MalePctNevMarr 0.000 0.202 0.000
PctTeen2Par 0.000 0.289 0.000
PctIlleg 0.000 0.200 0.000
NumImmig 0.000 0.267 0.000
PctImmigRec10 0.001 0.141 0.001
PctHousLess3BR 0.000 0.218 0.000
MedNumBR 0.000 0.138 0.000
HousVacant 0.000 0.184 0.000
PctHousOccup 0.000 0.195 0.000
PctHousOwnOcc 0.000 0.285 0.000
PctVacantBoarded 0.797 0.040 0.923
PctHousNoPhone 0.000 0.373 0.000
PctWOFullPlumb 0.000 0.146 0.000
RentLowQ 0.000 0.529 0.000
MedRentPctHousInc 0.062 0.089 0.099
NumInShelters 0.022 0.087 0.113
NumStreet 0.001 0.101 0.043
PopDens 0.000 0.266 0.000

Table 4: Bootstrap KS-tests for univariate covariates
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S10.3 Design of basis functions

N
=0

In this application, we design basis functions in the following way: Given {X;;}
i.e., N samples of the i-th coordinate of X, let {§;; ?L be the n; points equally
spaced within the [—a;, b;], where a; = min;—; _n X;; and b; = max;—;_n X;;. Let
fij(X) denote (X;—&;j)+,1=1,...,d;7=1,...,ng Let F = {1, f11(X), ..., fin, (X),
ey fn(X), oo, fan, (X)}T be the basis functions of the PS model, and let G =

{F*,(ZQ F)"}". We choose n; = 4 in this application.
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