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S1. Estimation of generalized propensity scores

In this section the estimation of the generalized propensity scores pk(x) is shortly

discussed. First of all, as a consequence of Lorenz (1986) (Th. 8, p. 80), if the

“true” propensity scores pk(x) are s times continuously differentiable, then there exist

L-dimensional vectors πk,L, k = 1, . . . , K such that, for a sequence of orthonormal

polynomials xvec,L, such that

sup
x∈X

∣∣∣∣∣pk(x)− exp{xT
vec,Lπk,L}

1 +
∑K

k=1 exp{xT
vec,Lπk,L}

∣∣∣∣∣ = O
(
L−s/P

)

xvec,L being a L-dimensional vector of coefficients. The orthogonal polynomials in

xvec,L are explicitly constructed in Hirano et al. (2003).

The above considerations would naturally suggest to use a nonparametric logistic

polytomous model, by adopting

pw0 (x) =
1

1 +
∑K

k=1 exp{xT
vec,Lπk,L}

,

pwk (x) =
exp{xT

vec,Lπk,L}
1 +

∑K
k=1 exp{xT

vec,Lπk,L}
, k = 1, . . . , K (S1.1)

as a working model for pk(x).
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The vectors πk,L are then estimated through sieve maximum likelihood estimators.

Consider first the functions

hk(x) = log
pk(x)

1 +
∑K

k=1 pk(x)
, k = 1, . . . , K. (S1.2)

that They are assumed to live in the Hölder space Hq composed by all functions

g : X → R possessing first [q] derivatives that are bounded, and the [q]th derivatives

are Hölder continuous of order q − [q], where [q] is the integer part of q. Using the

orthogonal polynomials in xvec,L, a sequence of finite-dimensional sieve spaces HL ={
h(x) = xT

vec,Lπk,L; ∥h∥qa ≤ c
}
is constructed, that approximate the functions in Hδ

in terms of the Soboles norm, defined as

∥g∥Sq = max
a1+···+aP≤q

sup
x∈X

|∇ag(x)|+ max
a1+···+aP≤q

sup
x,y∈X

|∇ag(x)−∇ag(y)|
(∥x− y∥2)q−[q]

where ∥ · ∥2 is the Euclidean norm, a is the vector of components a1 ≥ 0, . . . , aP ≥ 0,

and

∇ag(x) =
∂a1+···+aP

∂xa1
1 · · · ∂xa1

1

g(x). (S1.3)

The vectors πk,L are then estimated by maximizing the working log-likelihood

π̂k,L = argmax
K∑
k=0

n∑
i=1
Ti=k

log pwk (xi), k = 1, . . . , K.

As estimators of pk(x)s, it is then natural to take

p̂0(x) =
1

1 +
∑K

k=1 exp{xT
vec,Lπ̂k,L}

,

p̂k(x) =
exp{xT

vec,Lπ̂k,L}
1 +

∑K
k=1 exp{xT

vec,Lπ̂k,L}
, k = 1, . . . , K.
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As a minor generalization of results in Hirano et al. (2003) (cfr. also Kim (2013)),

the following result is obtained.

Proposition 1. Suppose that assumptions H1-H3 are verified, and that

H4. The functions hk(x) = log pk(x)

1+
∑K

k=1 pk(x)
, k = 1, . . . , K are s > P times differen-

tiable, and possess finite Sobolev norm of order q > P/2.

If L = Ln = Cnt with 1
4(s/P−1)

< t < 1/6, then

sup
x∈X

|p̂k(x)− px(x)| = op(n
−1/4), k = 1, . . . , K. (S1.4)

S2. Proofs of main results

Proof of Proposition 3. Define first, as in Proposition , Wk,n(y) =
√
n(F̂k(y) −

Fk(y)). By an integration by parts, the relationships

√
n(θ̂jk − θjk) =

√
n

∫ +∞

−∞
(F̂j(y)− Fj(y)) d[F̂k(y)− Fk(y)]

+
√
n

∫ +∞

−∞
Fj(y) d[F̂k(y)− Fk(y)] +

√
n

∫ +∞

−∞
(F̂j(y)− Fj(y)) dFk(y)

=
√
n

∫ +∞

−∞
(F̂j(y)− Fj(y)) d[F̂k(y)− Fk(y)]

+
√
n Fj(y)(F̂k(y)− Fk(y))

∣∣∣+∞

−∞
−
√
n

∫ +∞

−∞
(F̂k(y)− Fk(y)) dFj(y)

+
√
n

∫ +∞

−∞
(F̂j(y)− Fj(y)) dFk(y)

=

∫ +∞

−∞
Wj,n(y) d

[
1√
n
Wk,n(y)

]
+

∫ +∞

−∞
Wj,n(y) dFk(y)

−
∫ +∞

−∞
Wk,n(y) dFj(y) (S2.5)

are obtained, for every j ̸= k = 0, 1, . . . , K. Next, form the Skorokhod representation

theorem (Billingsley (1999), p. 70), there exists on an appropriate probability space
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(Ω̃, F̃ , P̃ ), vector stochastic processes

W̃n(y) =



W̃0n(y)

W̃1n(y)

· · ·

W̃K n(y)


, W̃ (y) =



W̃0(y)

W̃1(y)

· · ·

W̃K(y)



such that

(i) W̃n(y)
d
= Wn(y) ∀n ≥ 1;

(ii) W̃ (y)
d
= W (y);

(iii) max0≤k≤K supy

∣∣∣W̃n(y)− W̃ (y)
∣∣∣ → 0 with P̃ -probability 1 as n → ∞.

Hence, we may write

√
n(θ̂jk − θjk)

d
= V jk

1,n + V jk
2,n − V jk

3,n (S2.6)

where

V jk
1,n =

∫ +∞

−∞
W̃j,n(y) d

[
1√
n
W̃k,n(y)

]
,

V jk
2,n =

∫ +∞

−∞
W̃j,n(y) dFk(y),

V jk
3,n = −

∫ +∞

−∞
W̃k,n(y) dFj(y).

As far as the term V jk
1,n above is concerned, we have

∫ +∞

−∞
W̃j,n(y) dFk(y) =

∫ +∞

−∞
W̃j(y) dFk(y) +

∫ +∞

−∞
(W̃j,n(y)− W̃j(y)) dFk(y)
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with

∣∣∣∣∫ +∞

−∞
(W̃j,n(y)− W̃j(y)) dFk(y)

∣∣∣∣ ≤ sup
y

∣∣∣W̃j,n(y)− W̃j(y)
∣∣∣ → 0 a.s.− P̃

and hence, as n → ∞,

V jk
2,n → V jk

2 =

∫ +∞

−∞
W̃j(y) dFk(y) a.s.− P̃ . (S2.7)

In the same way, it can be shown that, as n → ∞,

V jk
3,n → V jk

3 =

∫ +∞

−∞
W̃k(y) dFj(y) a.s.− P̃ . (S2.8)

Finally, as far as the term V jk
1n is concerned, observe first that the signed measure

corresponding to W̃k,n(y)/
√
n has total variation not larger than 2, and hence

∣∣∣V jk
3,n

∣∣∣ ≤
∣∣∣∣∫ +∞

−∞
W̃j(y) d

[
1√
n
W̃k,n(y)

]∣∣∣∣+ ∣∣∣∣∫ +∞

−∞
(W̃j,n(y)− W̃j(y)) d

[
1√
n
W̃k,n(y)

]∣∣∣∣
≤

∣∣∣∣∫ +∞

−∞
W̃j(y) d

[
1√
n
W̃k,n(y)

]∣∣∣∣+ 2 sup
y

∣∣∣W̃j,n(y)− W̃j(y)
∣∣∣

with

∣∣∣∣∫ +∞

−∞
W̃j(y) d

[
1√
n
W̃k,n(y)

]∣∣∣∣ → 0 a.s.− P̃

because of the Helly-Bray theorem, and supy

∣∣∣W̃j,n(y)− W̃j(y)
∣∣∣ tending to 0 a.s.-P̃

because of (iii). This shows that A3,n → 0 with P̃ -probability 1, and hence

V jk
1,n + V jk

2,n − V jk
3,n → V jk

2 − V jk
3 =

∫ +∞

−∞
W̃j(y) dFk(y)−

∫ +∞

−∞
W̃k(y) dFj(y) (S2.9)
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a.s.− P̃ , as n → ∞.

Define now the random vectors

Vn =



V 01
1,n + V 01

2,n − V 01
3,n

V 02
1,n + V 02

2,n − V 02
3,n

· · ·

V 0K
1,n + V 0K

2,n − V 0K
3,n

V 12
1,n + V 13

2,n − V 1K
3,n

V 13
1,n + V 13

2,n − V 13
3,n

· · ·

V 1K
1,n + V 1K

2,n − V 1K
3,n

· · ·

V K−1K
1,n + V K−1K

2,n − V K−1K
3,n



, V =



V 01
2 − V 01

3

V 02
2 − V 02

3

· · ·

V 0K
2 − V 0K

3

V 13
2 − V 1K

3

V 13
2 − V 13

3

· · ·

V 1K
2 − V 1K

3

· · ·

V K−1K
2 − V K−1K

3



. (S2.10)

Eqns. (S2.9), being true for each j, k, imply that

√
n(θ̂vec − θvec)

d
= Vn → V a.s.− P̃

as n → ∞, which implies, in its turn

√
n(θ̂vec − θvec)

d→ V as n → ∞. (S2.11)

Finally, the map W 7→ V is a linear map of a (centered) Gaussian process, and hence

it possesses Multivariate Normal distribution with null mean vector and covariance

matrix ΣV . As far as the identification of ΣV is concerned, its elements are essentially

the asymptotic covariances of θ̂jk and θ̂hl (when h = j and l = k they reduce to
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asymptotic variances). They can be written as

σjk;hl = E

[(∫ +∞

−∞
Wj(y) dFk(y)−

∫ +∞

−∞
Wk(y) dFj(y)

)
(∫ +∞

−∞
Wh(y) dFl(y)−

∫ +∞

−∞
Wl(y) dFh(y)

)]
=

∫ +∞

−∞

∫ +∞

−∞
E [Wj(y)Wh(t)] dFk(y) dFl(t) +

∫ +∞

−∞

∫ +∞

−∞
E [Wk(y)Wl(t)] dFj(y) dFh(t)

−
∫ +∞

−∞

∫ +∞

−∞
E [Wj(y)Wl(t)] dFk(y) dFh(t)

−
∫ +∞

−∞

∫ +∞

−∞
E [Wk(y)Wh(t)] dFj(y) dFl(t) (S2.12)

and the covariances Cjh = E [Wj(y)Wh(t)] are in (12).

Proof of Proposition 5. Define the matrices Â, Λ̂ exactly ad A, Λ, but with λk

replaced by nk/n, k = 0, 1, . . . , K. The Strong Law of Large Numbers implies that

nk/n
a.s.→ λk for all k = 0, 1, . . . , K, so that Â

a.s.→ A, Λ̂
a.s.→ Λ, where a.s. convergence

of matrices is component-wise. When F0 = F1 = · · · = FK , all components of the

vector θvec are equal to 1/2, so that

Dn = n(θ̂vec − θvec)
T ÂT Λ̂Â(θ̂vec − θvec)

statement 1 follows from Proposition 4 and Slutsky Theorem.

As far as Statement 2 is concerned, it is enough to observe that, as a consequence

of the Strong Law of Large Numbers, Dn/n
a.s.→ δ as n increases. If δ > 0, eqn. (33)

easily follows.
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S3. Simulation Study 2: exact distribution of potential outcomes

In case K + 1 = 3, under Scenario I (zero treatment effect), the exact distribution

function of Y(k) is

Fk(y) =



0 y < 60

y−60
40

(1
2
· y−60

20
) 60 ≤ y < 70

y−65
20

(1
2
· y−60

20
+ 1

2
· y−70

20
) 70 ≤ y < 80

y−50
40

(1
2
+ 1

2
· y−70

20
) 80 ≤ y < 90

1 y ≥ 90

, k = 0, 1, 2.

Furthermore we have E[Y(0)|T = 0] = 72.0, E[Y(1)|T = 1] = 75.0 and E[Y(2)|T =

2] = 78.0, so that E[Y(1)|T = 1]−E[Y(0)|T = 0] = 3.0, E[Y(2)|T = 2]−E[Y(0)|T = 0] =

6.0, E[Y(2)|T = 2]−E[Y(1)|T = 1] = 3.0. The confounding effect of X makes it difficult

to detect the absence of treatment effect.

Under Scenario II (non-zero treatment effect), the exact distribution functions of

potential outcomes are reported below.

F0(y) =


0 y < 64

y−64
40

60 ≤ y < 104

1 y ≥ 104

F1(y) =


0 y < 65

y−65
40

65 ≤ y < 105

1 y ≥ 105

F2(y) =


0 y < 66

y−66
40

66 ≤ y < 106

1 y ≥ 110

In this case, we have θ01 = 0.52, θ02 = 0.55, θ12 = 0.52, E[Y(0)] = 84.0, E[Y(1)] =

85.0, E[Y(2)] = 86.0. Furthermore it is easy to see that E[Y(0)|T = 0] = E[Y(1)|T = 1] =

E[Y(2)|T = 2] = 85.0, so that E[Y(1)|T = 1]−E[Y(0|T = 0] = E[Y(2)|T = 2]−E[Y(0)|T =

0] = E[Y(2)|T = 2]− E[Y(1)|T = 1] = 0.0. The confounding effect of X again makes it

difficult to detect the presence of treatment effect.
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S4. Simulation Study 2: Comparison of Kruskal-Wallis type test and match-

ing GPSM test

Table 1: Rejection probabilities (nominal significance level 0.95) - K + 1=3

Kruskal-Wallis n=500 n=1000 n=1500
I (H0 true) 0.10 0.08 0.06
II (H1 true) 0.90 0.98 1.00

GPSM n=500 n=1000 n=1500
I (H0 true) 0.12 0.10 0.07
II (H1 true) 0.79 0.94 1.00

Table 2: Rejection probabilities (nominal significance level 0.95) - K + 1=4

Kruskal Wallis n=500 n=1000 n=2000
I (H0 true) 0.11 0.06 0.05
II (H1 true) 0.92 1.00 1.00

GPSM n=500 n=1000 n=2000
I (H1 true) 0.12 0.07 0.05
II (H1 true) 0.88 1.00 1.00
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