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In this supplementary section, we provide more discussions and collect

all the missing proofs. Connections and differences between Wang and

Ramdas| (2023) are made in Section [A] Section [B]is for the proof of main

results and Section [C]is for the supporting Lemma. Section [D]is dedicated

for the proof of the lower bound of stitching methods.
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A. Connection and Difference between Wang and Ramdas| (2023))

A high-level comparison between our paper and Wang and Ramdas| (2023)

are summarized in Table [T} followed by detailed justifications.

Wang & Ramdas 2023 Our paper
Simple modifications from p = 2 Complete Theory
l<p<?2
Sub-optimal constant Nearly-optimal constant
Lower Bound Only classical LIL result New Catoni-style lower bound
Application Hypothesis testing Risk control & Confidence set

Table 1: Comparisons between our work and |Wang and Ramdas (2023)).

Wang and Ramdas| (2023)) provide a relatively complete theory on es-
tablishing confidence width under p = 2. However, when 1 < p < 2,
they only extend the result by straightforwardly using the result in |Chen
et al.| (2021). By contrast, with refined calculations, our upper bound re-
sult (Theorem [2) is sharp in the sense that the constant in reduces
to 402 and matches that in the case p = 2. Additionally, our constant

S \P2 [ N\ @ D2 L _
Cp, = <—> (—) in ¢(x) is tighter than C, = 1/p. That is, we

p p—1

increase efficiency by 100(1/(Cpp) — 1)% in terms of sample complexity.

Moreover, [Wang and Ramdas| (2023) does not derive a Catoni-style lower



bound, and instead they only cite the literature for the classical Law of
Iterated Logarithm (LIL). By contrast, we provide lower bound results by
giving insights that tuning {\;}’s only in Ville’s inequality may still provide
a sub-optimal width. Lastly, we provide two more applications, risk control
and parameter confidence set construction, which bring more interest to

the machine learning field.

B. Proofs of Main Results

In this section, we provide proofs of the theoretical results given in the main
context.

Proof of Theorem |1} Let S =37 \(X;—p) and S, = D7 | =\ (X;—
i) denote two martingales. The confidence intervals and hence the se-

quences are obtained by applying Lemma [1| to each of these martingales.

Let a = — <<3>F - 1). We have from Lemma ,

=i a
mpbP—

(v n, Z/\ ) <a+ bZ)\ZE 1X; — M|pyfn1]>

=1

>1-—a/2,

(v n, —Z/\ ) < a+bZA2]E 1X; — u|p|}‘n_1]>

>1—a/2.



By using the fact that E[|.X; — p|?|F,-1] < v, and taking an union bound
the result follows. The sequence that optimizes the width is calculated
using (Waudby-Smith and Ramdas, 2024, Eq. (24-28)) and (Wang and

Ramdas, [2023, Appendix A) as the minimizer of bu,\*~! 4 % solving which

t/\’

we obtain the desired sequence.

Proof of Theorem [2} For a fixed € R the following processes are also

non-negative supermartingales:

M (@) = [Texp{o(n(x; - 2))} (B.1)
wp{—@raﬂ}jA (7%§:A%(p” (”M_xPEZAp pu}
and

= Hexp{—aﬁ(Ai(Xi — 1))} (B.2)
exp{(u—x)ZAi—OpvaAftﬂ (J|M—x|pZAp ~l- 1>}

Note that for z = p and ¢; = 1, these processes become M and M, , cor
respondingly. Denote f,(z) = >, gb()\i(XZ- — m)) The maximal inequality

for non-negative supermartingales, for every x € R and h > 0,

expy fo(z) — (0 — ) )\ C’Up /\pt v _ ¢ |u—x|p /\p
P(

<1/h,

e} s



which is the same as

n

P(fn(x) > (=) Y N+ Cpup Y NG 4 Oyl — 2P YN (1 — 1) +log h) < 1/h.

i=1 i=1 i=1

(B.3)

Choose h = 2/e, for 0 < &, < 1 and denote

n

Bi(z) = (1 —2) > N+ Cpup Y NPV 4 Cplm — 2P DAL — )" 4 log2/e,.
=1

i=1 i=1

(B.4)
Then translates into
P(fule) > B (@) < a2 (B.5)
Consider now the equation
B (z) = —Cyu, z": N —log2/a. (B.6)

i=1

We will establish conditions under which this equation has real roots. As-
suming, for a moment, that such roots exist, let y,, denote the smallest such
root. Using with x = y, tells us that on an event of probability at
least 1 —¢,,/2, we have f,(y,) < —Cpv, >+ A —log2/a. We conclude by

the definition of z_, in (4.6), that

P(x,yn <y, for all n for which has real roots)

> 1 ign/z. (B.7)



We now establish conditions for the equation to have real roots.
The function B}l is a strictly convex function of z, diverging to infinity at

400, so it has a unique minimum, achieved at the point

2?21 \i 1/(p—1)
)f(pfl) ’

S (pcp SN — 4

and we have

Bi(z) = —2 (S0, A
P =L (pC, S, A1 — 1)~ O

n

+Cpvp Z At P7Y 4 log 2/, (B.8)

i=1

If this minimal value satisfies

» (27‘11 )\i)P/(P—l) n

- +Cu, Y NP L0g /e,
P =1 (pCy L A (L = 1)) Z
< —Cypvp ¥ N —log2/a, (B.9)
=1

then the equation has real roots. Note that we can rewrite the con-

dition in the form

Cpyp Z A (L+ ti_(p_l)) +1log2/a +log2/s,
i=1
p o, )\i)p/(pfl)

TP L (pCy X M (1 — )~ e-0) T

(B.10)

We claim that this condition holds for all large n, at least if (¢,,) are bounded

away from 0, and if ,, is not too small. Indeed, in this case for some constant



YN+ T <y N, (B.11)
i=1 i=1
while
n \p/(p—1) n \p/(p—1)
(i M) > iz M) (B.12)

Since the ratio of the expressions in the right-hand sides of (B.12)) and

(B.10) is

L (T W\
5(2&%) o

by (4.5)), we conclude that (B.10]) holds and, hence, the equation has

real roots, at least for all large n, as long ¢, does not go to zero too fast.

Notice that, if €, < 2, then

Bi(p) = Cypupy Nt; "7V tlog2/e, >0
=1

n
> —Cyu, Z N —log2/a.
i=1
Furthermore, the minimum of B} is achieved to the right of p. Therefore,
under the condition (B.10]), the equation has one or two real roots to

the right of u, and y,, is the smallest of these roots.

For z > p the equation becomes

n

Cplz — )’ Z N1 =t)" " — (@ =) Y N (B.13)

i=1

+ vapZAf(l + ti_(p_l)) +log2/e, +10g2/a = 0.

=1



We can rewrite (B.13) in the form
KX —24+M=0 (B.14)

for z =2 —p >0 and

_ Cp Z:’Lzl )‘?(1 _ ti)_(p_l)

K D
Zz’:l Ai

and
Coop S0, X (14 1,77Y) - 10g 2/e, + log 2/
Z:'Lzl Ai '
Setting y = K'/®Vz > 0 and D = KY®-Y ) transforms into the

M=

equation
y'—y+D=0. (B.15)
Let 7,, > 0 and suppose that
LH/(P=1)
D<M (B.16)

= (14 7, )P/ -1

Then the equation has a positive solution y(D) satisfying
y(D) < (1 +7)D,
which implies that
Yn <p+14+7m)M=p+ (1+T1,)

Cop S0 N (14, 77Y) 4 log 2/e, + log 2/
Dim1 i .

(B.17)



Note that the condition (B.16)) can be rewritten in the form

vapZ)\f(l +t; 7Y 4 log2/a + log 2/,

=1
_ Tg/(p—l) (Z?:l )\i)p/(p—l)
T (L) (oS NP1 — )~ -y

i=1""

(B.18)

Similarly to the condition (B.10)), this condition holds for all large n as long

as €, and 7, do not go to zero too fast. We conclude by ([B.7)) and (B.17)

Cpvp > N (1+ ti_(p_l)) +log2/e, +log2/a
Z?:l Ai

P(a:_m <p+ 1+
(B.19)

for all n for which (B.18) holds) >1- Z gi/2.
i=1
The same argument shows that
Cpvp >oi AP (1+ t;(pfl)) +log2/e, +1og2/a

Z?:l Ai

P(:uﬁn >u—(1+7,)
(B.20)

for all n for which (B.18) holds) >1- Z €i/2.
i=1
We conclude by (B.19) and (B.20) that
Cpop >oiy N (1 + t;(pfl)) +log2/e, +log2/a

E?:l Ai

P(}In(a)\ <2(1+7,)
(B.21)

for all n for which (B.18) holds) >1- Z En-

n=1



With ¢, as in the statement, (B.21)) is transformed into

Cpop S N (14,779 - 1og 2/
Z?:l Ai

for all n for which (B.18)) holds) >1—« Z exp {—C’pvp Z AP (1+ ti(Pl))} :

i=1

P(\Jn(a)y <41+, (B.22)

n=1
It follows from (4.5 that the sum in the right hand side is finite, and can

be made small if « is small.



Proof of Proposition[]. From ({2.1]), we have that

L, (X1, -+, X,):= solution to Z¢(Ai(Xi — 1)) = by,
i=1

Un(Xy,--+, X,) == solution to Y (M(X; — x)) = ay.
=1

Written in another way, we have

n

b= an =D Y((Xi = La)) = Do (A(X; = Un))

i=1

= qu()\i(Xi — L)) — Y (N(Xi — Uy))

Using the fact that the Catoni [2012] influence function #(+) is 1—Lipschitz,

we have
bn = an < [WO(XG = L)) = o(M(X = Un))|
i=1
< 37 N = L) — A= D)
=1

- Z ’)‘i(Un - Ln)|
i=1

It follows that

bn_an

E?:l /\i.

W, = U, — L,| >

Proof of Theorem [3}

We make use of the general law of iterated logarithm by

(1985) to support key arguments.



Let s2 =" Var(Y;) forn = 1,2, ---. We will first show that Var(Y;) ~
Mo? as i — co. Indeed,
EY; = EdpN(X —p))
< Eflog(1 + M(X — p) + M(X — p)*/2]
< EN(X = p) + N (X —p)?/2]
= M\o?/2.

We also have

EY, > El-log(l - A(X —p) + X(X - 0)*)/2]

Vv

E[—(=Ni(X — p) + A (X — 1)*/2)]

= —\o?%/2.
Therefore, |EY;| < M\?02/2 for i = 1,2,---. Next,

EY}? = E¢*(M(X — 1))
< E{ Jlog(1 + Ai(X — ) + XX = )?)/2P0(X = o)}

+ B flog(1 = A(X — 1) + A(X = p)?)/2P1(X < o) }.



There is 79 > 0 such that log(1 + ) < /2 for z > x5. We have

B log(1 4+ Ai(X — ) + X(X = )?)/2P1(X > o)}

< Bf (X — )+ N2(X = /21 < X < o+ 0/
+E{ (X — )+ (X — )2 /2PU(X > it mo/Ni)

= NE[(X — p)*1(pn < X < p+ 30/ A)] + 0(A])

= NE[(X — p)*1(X > p)] + o(X7). (B.23)
Similarly,

E{ log(1 = Ai(X — ) + XX = ))/2*0(X < o)}
= ME[(X — 1)*1(X < p)] + o(A2). (B.24)

From (B.23) and (B.24), we have that EY;? < A?0% + o(A\?). On the other

hand,

EY? > B{[log(1 = \i(X — o) + A(X = p)?) /2]
(< X < pta0/0) |
+ E{ log (1 + M(X — 1) + A2(X — p)?) /2P

Lp—zo/X < X < M)}

On the other hand, for every e > 0 there is 0 < z; < 1 such that



|log(1 + x)| > (1 — €)|z| for all |z| < x;. Therefore,

EY? > E{ [log(1 — Ai(X — ) + A(X — )?) /2"
mnggu+x¢w}
+ E{ log(1 + M(X — 1) + AX(X — p)?) /2
1w—xM&SX<M%
> (1- ?ME[(X — ) 1(|X — pu| < 21/A)]

=(1- 6)2)\?02 + 0()\?).

Since € can be taken as small as we wish, then it holds EY;> > Mo? 4+ o(\?).

Therefore, we conclude that
EY? = Mo? + o(\7).
It follows from the above arguments that
52 ~ o? ZA?, and
i=1
n n 1/2
0, := (sp2loglog s2)Y/? ~ o (2 Z A log log Z Af) .
i=1 i=1

We verify that the condition (2,«) in Wittmann| (1985) holds for se-

quence 6, and 1. Denoting by ¢ a generic positive constant that may change



from time to time, we have for large ny,

Z 97:(2+19)E|}/1 . E}/;|2+19
n=no

<y (i)\?loglogi/\f)119/2E|Yi|2+19.
i=1

n=ng i=1

Using log(1+z +22/2) < 2log(1+2/v/2) and log(1 —z +22/2) > 2log(1 —

x/+/2), we have

B[V, <E[[21og(1+ M(X — p)/ V21X > p)]
+E[[2log(1 — Xi(X — p)/V2)P1(X < p)]

< e (B.25)
Therefore, as (\,) is non-increasing,

Z 9;(2+ﬂ)E‘Y; . E}/i|2+19

n=ng
00 n —1-9/2 00 1
2 2+9
< CZ(Z/\1> A; ScZ—n1+ﬁ/z<oo.
n=ng i=1 n=ng

Hence the condition (2, ) in [Wittmann| (1985) holds. It follows that

Sn+1

n+1 42
1132 172 1\ 1/2
lim sup = lim sup (L) < lim sup (n i )

n 2
n—00 Sn n—o00 Zi:l )‘z n—0o0

Therefore, by (Wittmann, (1985, Theorem 2.1)

limsup 6! Z(Y; —EY)) =1, as.



That is,

" (Y, - EY,
lim sup iz )
e g (2 Sor Aloglog Yo Af)

This means that the sequence (a,) and (b,) must satisfy

~ n " 1/2
b, — a, > a<2 Z A loglogz )\?)
i=1 i=1

for any a < 201/2 and large n, which implies the same for b,, — a,, and the

i 1, a.s.

result holds.
Here (B.25) relies on the existence of E[|X;|?*?]. In fact, we establish

|2+19

an upper bound of E|Y; without assuming the (2 + 9)-moment of Xj.

To see this, we need to make use of the following lemma.

Lemma 1. There exists a constant Cy such that
1, 2
log(1 + |z| + 57 ) < Cylz|>+7. (B.26)

Based on Lemma [I], we have

E|Y;[** < E[(Cy|\Xi|77) "] = CyA2. (B.27)
Hence, it holds
Z 9;(2+19)]E’Y; - EY;'2+19
n=ngo

< c i (i)\?>_l_ﬂ/20§)\i < 00.

n=ng =1



by assumption. Remark: the above inequality holds automatically when

X\, =i~ Y2 for any i > 1.

Proof of Theorem [4; The proof idea is very similar to that of Theorem [3]
We first derive the upper and lower bounds of Var(Y;) using the following

lemma.
Lemma 2. There exists constants Cy, Cy such that

log(1 + [z] + Cylal?) < Ci |z P2 (B.28)
and

log(1 + |z] + Cylz[’) < ColafP/+?) (B.29)

Lemma 3. There exist positive constants Cs, x1, xo such that

log(1 4 z + C,|z[P) > Cs|x|P?, (B.30)
for any 1 < x < x5.

By Lemma [2, we have

Var(y;) < E[Y7]
< E[(C1|AXiP?)?)

= C?\v. (B.31)



By Lemma |3| and symmetry of X;, we have

Var(y;) = E[V]

v

E[(Cs| A Xi[P?)*1{zy < |AXG| < x5}]

CINE[(Cs|X|P/*)21{zy < [NXi| < 29}]

z2

= 032)\?/% 2P f(z)dx

> CICyp N

for any 9 > 0 and f(x) oc x~(+p+9),

Again, by Lemma [2| we have

E[Y;[*"] < C3TE[(IAX[P/CT)> ]

IN

CaTIND.
Therefore,

Sp = @(Z)\?‘i‘ﬂ/),
i=1

0, = (s,loglogs?)/?.

Hence, it holds

Z 9;(2+ﬁ)]E|Y; _ EY;"QJH?
n=ng

N —1-9/2
< ¢ <Z)\f+ﬁ) A< 0.

n=ng =1

(B.32)

(B.33)

(B.34)

(B.35)



Using arguments as in the proof of Theorem [3] we have
by — G > /(> N loglog Y - A2
i=1 i=1

by adjusting constant a’.



Proof of Theorem [l
For any t between a/~! and o/, we plug )\Z(-t) = A, and «; to inequality

(6.15). Therefore, we get that
C UPZ)\ +log(2/a;)

- G, Zlog(Q/Oaj)CL_j +log(2/a;)

i=1

= C,log(2/a;)ta™ +log(2/a;)

IN

(Cp + 1) log(2/a;)

IN

(Cp + 1)log (25> 17/a)

=1

(Cp+1)glog(2j Y 17/a)

=1

IN

o0

(Cp + 1)qlog(2(log, t + 1) Z 7). (B.36)

=1

IN

Therefore, we use simplified notation as

t
Ly = root of Y (A(X; — ) = by,

o0

with b, = (C, + 1)glog(2(log, t +1) Y 17/a),

=1

¢
Uy := root of Z@/J(/\Et)(Xi —x))=a

i=1

with a; = —(C, + 1)qlog(2(log, t + 1) i [7/a). (B.37)

=1



Next, we will show that there exists a sequence of constants ¢;’s such that

Ct(zt: /\Et))(Ut — L)
i=1
< 2(C, + 1)qlog(2(log, t + 1) i 77/ a) (B.38)
1=1
holds with high probability and ¢; — 1. This then leads to the desired
result since
Ll =U— L < 2(Cp + 1)glog(2(log, t +1) "2, 17/ )

o Ct(ZE:l /\z(t))
20)/7((Cy + 1)alog (2008, t +1) 352, 171/a)) 2"

B39
- ce - t(1/at)V/p \ )
By noticing (B.37)), we know
2(C, + 1)qlog(2(log, t +1) Y 17%/a)
=1
t t
= Y vN(Xi = L)) = Y (W (X - 1)
i=1 i=1
t Uy
=S / AOWOD (X, — 2))da. (B.40)
i=1 7Lt
Then it is equivalent to show that
t t
SN (X - ) = e > N (B.A1)
=1 =1

holds with high probability for all ¢.

We choose ¢y = infj,<p, ¢'(z), where 0 < B, < 1 is a constant that



may depend on time index t. Hence, we only need to show that

t
ST{X| < B/AYY > ent
i=1
for some constant co;. We then can easily take ¢; = ¢y;co; to conclude the
proof.

To show this, we need to make use of the following concentration in-

equality for Bernoulli random variables.

Lemma 4.
P(Z < E[Z] — x) < exp{—2*/2E[Z]}, (B.42)
where Z =Y Z; such that Z; ~ Bern(p).

In our case, for any fixed A, we let Z; = 1{|X;| < Bt//\gt)} and p; =
E[Z] > 1- B, " - log(o%) a9 with j = [log,t] by Markov inequality.
Therefore, by Lemmaand taking v = 2, /py - t - log(%) (where 0 < o < 1
is a parameter that can be tuned), we have

o

P(Z < E[Z] — x) < exp{—2?/2E[Z]} = exp{—4p;t - log(— )/2ptt} = —'

In other words, we have

P(3t > 1; Zl{|X|<B/)\ }<prot—24/t- log

=1

ON)

1
Z—zﬁ o



In a summary, with probability at least 1 — a3, we have

t

S 1{1xi < B/AY} > eat,

=1

where cop = p; — 2 M. By straightforward calculations, we can find
log(t/a
Cot = Pr—2 —g(t/ 0)

> 1_B;P.1Og(3).a*j_21lw
Oéj t
4C logt log(t
L B qlog(1CLY) _2,/M. (B.A43)

4C, logt . _
—1—=")and a7 < a/t, where C, = Zl 7)
I

v

2
(since log(—) < qlog(
R

By taking B, = t~'/?, we then have

4C’q10gt)‘i_2 log(t/ o)
o Vit t

cor > 1 — qlog( (B.44)

and ¢y = inf|, <4172 ¥’ (). Therefore, we have ¢; — 1 as both ¢y, cor — 1
as t — oo. Then we can make o arbitrary close to zero to conclude the

proof.

Proof of Theorem [7] Note that R(3) is a decreasing function of 8 so
that the event {3 n s.t. R(3,) > r*} implies the event {3 n s.t. 3, < 5*}

which further implies {3 n s.t. M, (5*) > 1/a} by definition (7.19). Using



the fact that M, (5*) is a non-negative supermartingale, we get

P(3 ns.t. R(B,) > %)

< P(En st M, (6) > 1/a)

IN

11—«
by Ville’s inequality. This concludes the proof.

Proof of Theorem [8] Recall that

((vap + 1)qlog(2(log, t + 1) Y12, l—q/a/))l—l/p

0 =2 t(1/at)\/p ’

with o’ := a/(d? + d). By Theorem 5, we know that
P(IXXT[j1, ja) — EIXXT|[ju, jol| < 6, V2 t9) 21—
and
P(IXY[j] — BIXY][j]| <6, V> tg) 21—

for all j € [d] and ji, j2 € [d].

For any 3, we define

A(B) = In(B) — ln(B") = (I(B) = I(B"))-

By the optimality of Bn, we know

A(B,) < —(UB) —1(B)) < il B, — B%,

(B.45)

(B.46)

(B.47)

(B.48)

(B.49)



where A, is the smallest eigenvalue of E[X XT].

On the other hand, by the straightfoward calcuations, we have
A(B,)
— 2BTXXT — XY (B, - B) (B.50)
+ (B, — B (XXT —E[XXT])(B, - B°).
By (B-46) - (B47), it holds
*T/\ ol
187 XXT — XY |

T~ v * ol
|87 XXT — BTE[XXT]| + |[E[Y XT] - XY |

IN

IN

d||B8"[16, + Vs, (B.51)
Then we have
A(B,)
> =2(d||B|| + VA)5,lIB, — B — d&1B, - BTIP.  (B.52)
Combining and (B.49), we have
i — A58, — 812 < 20dl|B"I| + VD518, — B, (B53)

which gives
18, = B°Il < 4(dlIB*Il + V), A,

for n satisfying d,, < Ajin/2d. This concludes the proof.



C. Proof of Supporting Lemma

Proof of Lemma 2 and 3.
In order to prove Lemma 2 and 3, we only need to show the following

proposition.
Proposition 1. For any p € (1,2] and q € (0,1], there exists a constant
Cp,q such that

log(1 + |z| + Cplx|?) < Cpqlx|?. (C.54)

If we can prove Proposition [I| then Lemma 2 holds with p = 2 and
q=2/(2+1); Lemma 3 holds with ¢ = p/2 or ¢ = p/(2 + V).
Proof of Proposition [1| If suffices to show that

log(1 + || + Cplz[")

< C.55
2R ’x‘q — p,q» ( )

which is equivalent to show
1+ |z| + CplzP < exp{C,q|z|?} (C.56)

for any x. Take ko = [p/q], we only need to show that

ko k

C
1+ |z + Cplzf? < 1+Zﬁ|x|qk. (C.57)
k=1
We take C), , large enough such that
Cry
—= >1+4C,, for 1 <k < k. (C.58)

k!



Therefore, for any 0 < |z| < 1, we know

L[z + Gyl < 1+ (14 Gy)lx]

< 1+ Cpqlx)?
ko k
C
< 1+Zﬁ‘x|qk
k=1 ’
< exp{Cpyle]7). (C.59)

For |z| > 1, we have

L+ ]zl + CplzfP < 1+ (14Cp)lxl?

ko
PG| .|qk
< 1+ el
ko Ck
< 1) el
k=1
< exp{Cpqlel’}. (C.60)

Therefore, Proposition [1| holds and we conclude the proof.

Proof of Lemma 4. For fixed x1, x5 > 0, we write

|x|p/2

" log(1+ 2+ Cylalp)’

F(x)

It is easy to check that F(x) is a continuously differentiable function on
interval [z,,75]. Moreover, on compact set [x1, s, SUD,c(y, 4, F(7) exists

and we denote it as 1/C3. Hence, it holds that log(1+x+C,|z[P) > Cs|z|P/2.

Proof of Lemma 5. See Theorem 4 in |(Chung and Lul (2006)).



D. Proof of the Lower Bound of Stitching Method

Proof of Theorem [0 The idea of the proof is based on that of Theorem 1

in |Tomkins| (]1974') with some modifications. We denote Y, ; := z/J(AE")Xi) —

E[@/)(/\En)XZ)] Therefore, Y,,; is mean zero and Y, 1,Y, 9, ..., Y, are inde-
pendent. We write S, = >°1" | Y,.;, s, = E[S?Z], and 2 = 2loglog(s2). We
consider choosing a sequence of n;’s with ny being the least integer such that
Sp, = a” where a > 1. This is possible when n - A" 5 0. We also define
Vi =3 41 Yoi and Uy = S, — Vi. Moreover, we denote uj = E[UZ],
v? = E[V?], Ay = (2u2loglog(u?))'/? and B, = (2v?loglog(v?))/2. By

straightforward calculation, we have

2
Up Nk—1
— Av

€(0,1)

2 -y
Son N a P/

and sequence {s,} is increasing and s,1/s, is bounded by a. Therefore,

conditions (c¢) and (d) of Theorem 1 in [Tomkins| (1974)) are satisfied.

In the remaining, we only need to establish

with some constants ¢; and x > 1, and

with some constants ¢y and z < 1.



To prove (D.61) and (D.62), we make use of Berry—Esseen theorem. In

our situation, when 1 < p < 2, we know that E[|Y,,;|*] < C’A™P by Lemma
by taking v = 1 and E[|Y, ;2] > C(A"™)P*" by ([B.32) and adjusting the

constant C’. (For p = 2, 1 can be taken as 0.) Therefore, we have

+39’
n)\ =5

Fuae) — o) < 22

Vi (D.63)

where Fyi(z) is the cumulative distribution function (C.D.F.) of g—: and

®(z) is C.D.F. of the standard normal distribution. Similarly, we have

_p+39’
2

|Fyi(x) — ®(x)| < C” (™)

—_— D.64
= .

where Fy () is the cumulative distribution function (C.D.F.) of L/—: There-

fore, by (D.63]), we have

()\(n))—%‘w

P(U, > zA;,) < 1—®((222loglog(uy))'/?) + C” N

, ()25
< 2Klog(ui)™", (D.66)
_p+3v/
where the last inequality uses the fact that the term (’\())TQ decreases

the polynomially fast as ny — oo when ¢ < (¢ — p)/3, while the term

log(u3)~" is of order log(ng)~" and it is the dominating term.
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Similarly, we have

Ay -2
P(Vi > xB) > 1—®((22%1logl 2y oW
( k=T k) = (( T log Og(vk)) ) C m
A=
> K1 2_‘”—(— D.
- (st - U or
1
> §Klog(vz)*x. (D.68)

Therefore, we have proved ([D.63)) and (D.64)). Lastly, the proof is done by

invoking Lemma 4 in Tomkins| (1974)). O

Remark 1. For p = 2, from Theorem [6, we have that the lower bound

is of order O(y/loglogn/n) for the stitching method. When 1 < p < 2,

with the choice of )\Z(»") = n"Y9 and ¢ = p + ¥, the lower bound give the

(loglogn)'/?
order of w

n p+297

. Therefore, a small gap exists between the lower bound

and upper bound in the infinite variance case. It remains an open question

whether we could further improve the lower bound or upper bound.
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