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In this supplementary section, we provide more discussions and collect

all the missing proofs. Connections and differences between Wang and

Ramdas (2023) are made in Section A. Section B is for the proof of main

results and Section C is for the supporting Lemma. Section D is dedicated

for the proof of the lower bound of stitching methods.
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A. Connection and Difference betweenWang and Ramdas (2023)

A high-level comparison between our paper and Wang and Ramdas (2023)

are summarized in Table 1, followed by detailed justifications.

Wang & Ramdas 2023 Our paper

1 < p < 2
Simple modifications from p = 2 Complete Theory

Sub-optimal constant Nearly-optimal constant

Lower Bound Only classical LIL result New Catoni-style lower bound

Application Hypothesis testing Risk control & Confidence set

Table 1: Comparisons between our work and Wang and Ramdas (2023).

Wang and Ramdas (2023) provide a relatively complete theory on es-

tablishing confidence width under p = 2. However, when 1 < p < 2,

they only extend the result by straightforwardly using the result in Chen

et al. (2021). By contrast, with refined calculations, our upper bound re-

sult (Theorem 2) is sharp in the sense that the constant in (4.9) reduces

to 4σ2 and matches that in the case p = 2. Additionally, our constant

Cp :=
(

p−1
p

)p/2(
2−p
p−1

)(2−p)/2

in ψ(x) is tighter than Cp = 1/p. That is, we

increase efficiency by 100(1/(Cpp)− 1)% in terms of sample complexity.

Moreover, Wang and Ramdas (2023) does not derive a Catoni-style lower



bound, and instead they only cite the literature for the classical Law of

Iterated Logarithm (LIL). By contrast, we provide lower bound results by

giving insights that tuning {λi}’s only in Ville’s inequality may still provide

a sub-optimal width. Lastly, we provide two more applications, risk control

and parameter confidence set construction, which bring more interest to

the machine learning field.

B. Proofs of Main Results

In this section, we provide proofs of the theoretical results given in the main

context.

Proof of Theorem 1: Let S+
n =

∑n
i=1 λi(Xi−µ) and S−

n =
∑n

i=1−λi(Xi−

µ) denote two martingales. The confidence intervals and hence the se-

quences are obtained by applying Lemma 1 to each of these martingales.

Let a = 1

mpb
1

p−1

((
2
α

) 1
p−1 − 1

)
. We have from Lemma 1,

P

(
∀ n,

n∑
i=1

λi(Xi − µ) ≤ a+ b

n∑
i=1

λ2iE[|Xi − µ|p|Fn−1]

)

≥ 1− α/2,

P

(
∀ n,−

n∑
i=1

λi(Xi − µ) ≤ a+ b
n∑

i=1

λ2iE[|Xi − µ|p|Fn−1]

)

≥ 1− α/2.



By using the fact that E[|Xi − µ|p|Fn−1] ≤ υp and taking an union bound

the result follows. The sequence that optimizes the width is calculated

using (Waudby-Smith and Ramdas, 2024, Eq. (24-28)) and (Wang and

Ramdas, 2023, Appendix A) as the minimizer of bυpλ
p−1+ a

tλ
, solving which

we obtain the desired sequence.

Proof of Theorem 2: For a fixed x ∈ R the following processes are also

non-negative supermartingales:

M+
n (x) =

n∏
i=1

exp
{
ϕ
(
λi(Xi − x)

)}
(B.1)

exp

{
− (µ− x)

n∑
i=1

λi − Cpvp

n∑
i=1

λpi t
−(p−1)
i − Cp|µ− x|p

n∑
i=1

λpi (1− ti)
−(p−1)

}
and

M−
n (x) =

n∏
i=1

exp
{
−ϕ
(
λi(Xi − x)

)}
(B.2)

exp

{
(µ− x)

n∑
i=1

λi − Cpvp

n∑
i=1

λpi t
−(p−1)
i − Cp|µ− x|p

n∑
i=1

λpi (1− ti)
−(p−1)

}
.

Note that for x = µ and ti ≡ 1, these processes become M+
n and M−

n , cor-

respondingly. Denote fn(x) =
∑n

i=1 ϕ
(
λi(Xi−x)

)
. The maximal inequality

for non-negative supermartingales, for every x ∈ R and h > 0,

P
(
exp

{
fn(x)− (µ− x)

n∑
i=1

λi − Cpvp

n∑
i=1

λpi t
−(p−1)
i − Cp|µ− x|p

n∑
i=1

λpi (1− ti)
−(p−1)

}
≥ h

)
≤1/h,



which is the same as

P

(
fn(x) ≥ (µ− x)

n∑
i=1

λi + Cpvp

n∑
i=1

λpi t
−(p−1)
i + Cp|µ− x|p

n∑
i=1

λpi (1− ti)
−(p−1) + log h

)
≤ 1/h.

(B.3)

Choose h = 2/εn for 0 < εn < 1 and denote

B+
n (x) = (µ− x)

n∑
i=1

λi + Cpvp

n∑
i=1

λpi t
−(p−1)
i + Cp|m− x|p

n∑
i=1

λpi (1− ti)
−(p−1) + log 2/εn.

(B.4)

Then (B.3) translates into

P
(
fn(x) ≥ B+

n (x)
)
≤ εn/2. (B.5)

Consider now the equation

B+
n (x) = −Cpvp

n∑
i=1

λpi − log 2/α. (B.6)

We will establish conditions under which this equation has real roots. As-

suming, for a moment, that such roots exist, let yn denote the smallest such

root. Using (B.6) with x = yn tells us that on an event of probability at

least 1− εn/2, we have fn(yn) < −Cpvp
∑n

i=1 λ
p
i − log 2/α. We conclude by

the definition of x−,n in (4.6), that

P
(
x−,n < yn for all n for which (B.6) has real roots

)
≥ 1−

∞∑
n=1

εn/2. (B.7)



We now establish conditions for the equation (B.6) to have real roots.

The function B+
n is a strictly convex function of x, diverging to infinity at

±∞, so it has a unique minimum, achieved at the point

z+ = µ+

( ∑n
i=1 λi

pCp

∑n
i=1 λ

p
i (1− ti)−(p−1)

)1/(p−1)

,

and we have

B+
n (zn) = − p

p− 1

(
∑n

i=1 λi)
p/(p−1)

(pCp

∑n
i=1 λ

p
i (1− ti)−(p−1))

1/(p−1)

+Cpvp

n∑
i=1

λpi t
−(p−1)
i + log 2/εn. (B.8)

If this minimal value satisfies

− p

p− 1

(
∑n

i=1 λi)
p/(p−1)

(pCp

∑n
i=1 λ

p
i (1− ti)−(p−1))

1/(p−1)
+ Cpvp

n∑
i=1

λpi t
−(p−1)
i + log 2/εn

≤ −Cpvp

n∑
i=1

λpi − log 2/α, (B.9)

then the equation (B.6) has real roots. Note that we can rewrite the con-

dition (B.9) in the form

Cpvp

n∑
i=1

λpi (1 + t
−(p−1)
i ) + log 2/α + log 2/εn

≤ p

p− 1

(
∑n

i=1 λi)
p/(p−1)

(pCp

∑n
i=1 λ

p
i (1− ti)−(p−1))

1/(p−1)
. (B.10)

We claim that this condition holds for all large n, at least if (tn) are bounded

away from 0, and if εn is not too small. Indeed, in this case for some constant



C,
n∑

i=1

λpi (1 + t
−(p−1)
i ) ≤ C

n∑
i=1

λpi , (B.11)

while

(
∑n

i=1 λi)
p/(p−1)

(
∑n

i=1 λ
p
i (1− ti)−(p−1))

1/(p−1)
≥ (

∑n
i=1 λi)

p/(p−1)

(
∑n

i=1 λ
p
i )

1/(p−1)
. (B.12)

Since the ratio of the expressions in the right-hand sides of (B.12) and

(B.11) is

1

C

(
(
∑n

i=1 λi)∑n
i=1 λ

p
i

)1/(p−1)

→ ∞

by (4.5), we conclude that (B.10) holds and, hence, the equation (B.6) has

real roots, at least for all large n, as long εn does not go to zero too fast.

Notice that, if εn ≤ 2, then

B+
n (µ) = Cpvp

n∑
i=1

λpi t
−(p−1)
i + log 2/εn > 0

> −Cpvp

n∑
i=1

λpi − log 2/α.

Furthermore, the minimum of B+
n is achieved to the right of µ. Therefore,

under the condition (B.10), the equation (B.6) has one or two real roots to

the right of µ, and yn is the smallest of these roots.

For x > µ the equation (B.6) becomes

Cp(x− µ)p
n∑

i=1

λpi (1− ti)
−(p−1) − (x− µ)

n∑
i=1

λi (B.13)

+ Cpvp

n∑
i=1

λpi
(
1 + t

−(p−1)
i

)
+ log 2/εn + log 2/α = 0.



We can rewrite (B.13) in the form

Kzp − z +M = 0 (B.14)

for z = x− µ > 0 and

K =
Cp

∑n
i=1 λ

p
i (1− ti)

−(p−1)∑n
i=1 λi

and

M =
Cpvp

∑n
i=1 λ

p
i

(
1 + t

−(p−1)
i

)
+ log 2/εn + log 2/α∑n

i=1 λi
.

Setting y = K1/(p−1)z > 0 and D = K1/(p−1)M transforms (B.14) into the

equation

yp − y +D = 0. (B.15)

Let τn > 0 and suppose that

D ≤ τ
1/(p−1)
n

(1 + τn)p/(p−1)
. (B.16)

Then the equation (B.15) has a positive solution y(D) satisfying

y(D) ≤ (1 + τn)D,

which implies that

yn ≤ µ+ (1 + τn)M = µ+ (1 + τn)

·
Cpvp

∑n
i=1 λ

p
i

(
1 + t

−(p−1)
i

)
+ log 2/εn + log 2/α∑n

i=1 λi
. (B.17)



Note that the condition (B.16) can be rewritten in the form

Cpvp

n∑
i=1

λpi (1 + t
−(p−1)
i ) + log 2/α + log 2/εn

≤ τ
1/(p−1)
n

(1 + τn)p/(p−1)

(
∑n

i=1 λi)
p/(p−1)

(Cp

∑n
i=1 λ

p
i (1− ti)−(p−1))

1/(p−1)
. (B.18)

Similarly to the condition (B.10), this condition holds for all large n as long

as εn and τn do not go to zero too fast. We conclude by (B.7) and (B.17)

P

(
x−,n < µ+ (1 + τn)

Cpvp
∑n

i=1 λ
p
i

(
1 + t

−(p−1)
i

)
+ log 2/εn + log 2/α∑n

i=1 λi

(B.19)

for all n for which (B.18) holds

)
≥ 1−

∞∑
i=1

εi/2.

The same argument shows that

P

(
x+,n > µ− (1 + τn)

Cpvp
∑n

i=1 λ
p
i

(
1 + t

−(p−1)
i

)
+ log 2/εn + log 2/α∑n

i=1 λi

(B.20)

for all n for which (B.18) holds

)
≥ 1−

∞∑
i=1

εi/2.

We conclude by (B.19) and (B.20) that

P

(∣∣In(α)∣∣ ≤ 2(1 + τn)
Cpvp

∑n
i=1 λ

p
i

(
1 + t

−(p−1)
i

)
+ log 2/εn + log 2/α∑n

i=1 λi

(B.21)

for all n for which (B.18) holds

)
≥ 1−

∞∑
n=1

εn.



With εn as in the statement, (B.21) is transformed into

P

(∣∣In(α)∣∣ ≤ 4(1 + τn)
Cpvp

∑n
i=1 λ

p
i

(
1 + t

−(p−1)
i

)
+ log 2/α∑n

i=1 λi
(B.22)

for all n for which (B.18) holds

)
≥ 1− α

∞∑
n=1

exp

{
−Cpvp

n∑
i=1

λpi
(
1 + t

−(p−1)
i

)}
.

It follows from (4.5) that the sum in the right hand side is finite, and can

be made small if α is small.



Proof of Proposition 1. From (2.1), we have that

Ln(X1, · · · , Xn) := solution to
n∑

i=1

ψ(λi(Xi − x)) = bn,

Un(X1, · · · , Xn) := solution to
n∑

i=1

ψ(λi(Xi − x)) = an.

Written in another way, we have

bn − an =
n∑

i=1

ψ(λi(Xi − Ln))−
n∑

i=1

ψ(λi(Xi − Un))

=
n∑

i=1

ψ(λi(Xi − Ln))− ψ(λi(Xi − Un))

Using the fact that the Catoni [2012] influence function ψ(·) is 1−Lipschitz,

we have

bn − an ≤
n∑

i=1

|ψ(λi(Xi − Ln))− ψ(λi(Xi − Un))|

≤
n∑

i=1

|λi(Xi − Ln)− λi(Xi − Un)|

=
n∑

i=1

|λi(Un − Ln)|.

It follows that

Wn := |Un − Ln| ≥
bn − an∑n

i=1 λi
.

Proof of Theorem 3:

We make use of the general law of iterated logarithm by Wittmann

(1985) to support key arguments.



Let s2n =
∑n

i=1 Var(Yi) for n = 1, 2, · · · . We will first show that Var(Yi) ∼

λ2iσ
2 as i→ ∞. Indeed,

EYi = Eψ(λi(X − µ))

≤ E[log(1 + λi(X − µ)) + λ2i (X − µ)2/2]

≤ E[λi(X − µ) + λ2i (X − µ)2/2]

= λ2iσ
2/2.

We also have

EYi ≥ E[− log(1− λi(X − µ) + λ2i (X − µ)2)/2]

≥ E[−(−λi(X − µ) + λ2i (X − µ)2/2)]

= −λ2iσ2/2.

Therefore, |EYi| ≤ λ2iσ
2/2 for i = 1, 2, · · · . Next,

EY 2
i = Eψ2(λi(X − µ))

≤ E
{
[log(1 + λi(X − µ) + λ2i (X − µ)2)/2]21(X ≥ µ)

}
+ E

{
[log(1− λi(X − µ) + λ2i (X − µ)2)/2]21(X < µ)

}
.



There is x0 > 0 such that log(1 + x) ≤ x1/2 for x ≥ x0. We have

E
{
[log(1 + λi(X − µ) + λ2i (X − µ)2)/2]21(X ≥ µ)

}
≤ E

{
[λi(X − µ) + λ2i (X − µ)2/2]21(µ ≤ X ≤ µ+ x0/λi

}
+ E

{
[λi(X − µ) + λ2i (X − µ)2/2]21(X > µ+ x0/λi)

}
= λ2iE[(X − µ)21(µ ≤ X ≤ µ+ x0/λi)] + o(λ2i )

= λ2iE[(X − µ)21(X ≥ µ)] + o(λ2i ). (B.23)

Similarly,

E
{
[log(1− λi(X − µ) + λ2i (X − µ)2)/2]21(X < µ)

}
= λ2iE[(X − µ)21(X < µ)] + o(λ2i ). (B.24)

From (B.23) and (B.24), we have that EY 2
i ≤ λ2iσ

2 + o(λ2i ). On the other

hand,

EY 2
i ≥ E

{
[log(1− λi(X − µ) + λ2i (X − µ)2)/2]2

1(µ ≤ X ≤ µ+ x0/λi)
}

+ E
{
[log(1 + λi(X − µ) + λ2i (X − µ)2)/2]2

1(µ− x0/λi ≤ X < µ)
}
.

On the other hand, for every ϵ > 0 there is 0 < x1 < 1 such that



| log(1 + x)| ≥ (1− ϵ)|x| for all |x| ≤ x1. Therefore,

EY 2
i ≥ E

{
[log(1− λi(X − µ) + λ2i (X − µ)2)/2]2

1(µ ≤ X ≤ µ+ x1/λi)
}

+ E
{
[log(1 + λi(X − µ) + λ2i (X − µ)2)/2]2

1(µ− x1/λi ≤ X < µ)
}

≥ (1− ϵ)2λ2iE[(X − µ)21(|X − µ| ≤ x1/λi)]

= (1− ϵ)2λ2iσ2 + o(λ2i ).

Since ϵ can be taken as small as we wish, then it holds EY 2
i ≥ λ2iσ

2+o(λ2i ).

Therefore, we conclude that

EY 2
i = λ2iσ

2 + o(λ2i ).

It follows from the above arguments that

s2n ∼ σ2

n∑
i=1

λ2i , and

θn := (sn2 log log s
2
n)

1/2 ∼ σ
(
2

n∑
i=1

λ2i log log
n∑

i=1

λ2i

)1/2
.

We verify that the condition (2, α) in Wittmann (1985) holds for se-

quence θn and ϑ. Denoting by c a generic positive constant that may change



from time to time, we have for large n0,

∞∑
n=n0

θ−(2+ϑ)
n E|Yi − EYi|2+ϑ

≤ c
∞∑

n=n0

( n∑
i=1

λ2i log log
n∑

i=1

λ2i

)−1−ϑ/2

E|Yi|2+ϑ.

Using log(1+x+x2/2) ≤ 2 log(1+x/
√
2) and log(1−x+x2/2) ≥ 2 log(1−

x/
√
2), we have

E|Yi|2+ϑ ≤ E[[2 log(1 + λi(X − µ)/
√
2)]2+ϑ1(X > µ)]

+ E[[2 log(1− λi(X − µ)/
√
2)]2+ϑ1(X < µ)]

≤ cλ2+ϑ
i . (B.25)

Therefore, as (λn) is non-increasing,

∞∑
n=n0

θ−(2+ϑ)
n E|Yi − EYi|2+ϑ

≤ c
∞∑

n=n0

( n∑
i=1

λ2i

)−1−ϑ/2

λ2+ϑ
i ≤ c

∞∑
n=n0

1

n1+ϑ/2
<∞.

Hence the condition (2, α) in Wittmann (1985) holds. It follows that

lim sup
n→∞

sn+1

sn
= lim sup

n→∞

(∑n+1
i=1 λ

2
i∑n

i=1 λ
2
i

)1/2
≤ lim sup

n→∞

(n+ 1

n

)1/2
= 1.

Therefore, by (Wittmann, 1985, Theorem 2.1)

lim sup
n→∞

θ−1
n

n∑
i=1

(Yi − EYi) = 1, a.s.



That is,

lim sup
n→∞

∑n
i=1(Yi − EYi)

σ
(
2
∑n

i=1 λ
2
i log log

∑n
i=1 λ

2
i

)1/2 = 1, a.s.

This means that the sequence (ãn) and (̃bn) must satisfy

b̃n − ãn > a
(
2

n∑
i=1

λ2i log log
n∑

i=1

λ2i

)1/2
for any a < 2σ

√
2 and large n, which implies the same for bn − an and the

result holds.

Here (B.25) relies on the existence of E[|Xi|2+ϑ]. In fact, we establish

an upper bound of E|Yi|2+ϑ without assuming the (2 + ϑ)-moment of Xi.

To see this, we need to make use of the following lemma.

Lemma 1. There exists a constant Cϑ such that

log(1 + |x|+ 1

2
x2) ≤ Cϑ|x|

2
2+ϑ . (B.26)

Based on Lemma 1, we have

E|Yi|2+ϑ ≤ E[
(
Cϑ|λiXi|

2
2+ϑ

)2+ϑ
] = Cϑλ

2
i . (B.27)

Hence, it holds

∞∑
n=n0

θ−(2+ϑ)
n E|Yi − EYi|2+ϑ

≤ c

∞∑
n=n0

( n∑
i=1

λ2i

)−1−ϑ/2

Cϑλ
2
n <∞.



by assumption. Remark: the above inequality holds automatically when

λi = i−1/2 for any i ≥ 1.

Proof of Theorem 4: The proof idea is very similar to that of Theorem 3.

We first derive the upper and lower bounds of Var(Yi) using the following

lemma.

Lemma 2. There exists constants C1, C2 such that

log(1 + |x|+ Cp|x|p) ≤ C1|x|p/2 (B.28)

and

log(1 + |x|+ Cp|x|p) ≤ C2|x|p/(2+ϑ) (B.29)

Lemma 3. There exist positive constants C3, x1, x2 such that

log(1 + x+ Cp|x|p) ≥ C3|x|p/2, (B.30)

for any x1 ≤ x ≤ x2.

By Lemma 2, we have

Var(Yi) ≤ E[Y 2
i ]

≤ E[(C1|λiXi|p/2)2]

= C2
1λ

p
i v. (B.31)



By Lemma 3 and symmetry of Xi, we have

Var(Yi) = E[Y 2
i ]

≥ E[(C3|λiXi|p/2)21{x1 ≤ |λiXi| ≤ x2}]

= C2
3λ

p
iE[(C3|Xi|p/2)21{x1 ≤ |λiXi| ≤ x2}]

= C2
3λ

p
i

∫ x2
λi

x1
λi

xpf(x)dx

≥ C2
3Cϑ′λp+ϑ′

i (B.32)

for any ϑ′ > 0 and f(x) ∝ x−(1+p+ϑ′).

Again, by Lemma 2, we have

E[|Yi|2+ϑ] ≤ C2+ϑ
2 E[(|λiXi|p/(2+ϑ))2+ϑ]

≤ C2+ϑ
2 λpi . (B.33)

Therefore,

sn = Θ(
n∑

i=1

λp+ϑ′

i ), (B.34)

θn = (sn log log s
2
n)

1/2. (B.35)

Hence, it holds

∞∑
n=n0

θ−(2+ϑ)
n E|Yi − EYi|2+ϑ

≤ c

∞∑
n=n0

( n∑
i=1

λp+ϑ′

i

)−1−ϑ/2

λpn <∞.



Using arguments as in the proof of Theorem 3, we have

b̃n − ãn ≥ a′(
n∑

i=1

λp+ϑ′

i log log
n∑

i=1

λp+ϑ′

i )1/2

by adjusting constant a′.



Proof of Theorem 5.

For any t between aj−1 and aj, we plug λ
(t)
i ≡ Λj and αj to inequality

(6.15). Therefore, we get that

Cpvp

t∑
i=1

λ
(t)p
i + log(2/αj)

= Cp

t∑
i=1

log(2/αj)a
−j + log(2/αj)

= Cp log(2/αj)ta
−j + log(2/αj)

≤ (Cp + 1) log(2/αj)

≤ (Cp + 1) log(2jq
∞∑
l=1

l−q/α)

≤ (Cp + 1)q log(2j
∞∑
l=1

l−q/α)

≤ (Cp + 1)q log(2(loga t+ 1)
∞∑
l=1

l−q/α). (B.36)

Therefore, we use simplified notation as

Lt := root of
t∑

i=1

ψ(λ
(t)
i (Xi − x)) = bt,

with bt = (Cp + 1)q log(2(loga t+ 1)
∞∑
l=1

l−q/α),

Ut := root of
t∑

i=1

ψ(λ
(t)
i (Xi − x)) = at

with at = −(Cp + 1)q log(2(loga t+ 1)
∞∑
l=1

l−q/α). (B.37)



Next, we will show that there exists a sequence of constants ct’s such that

ct(
t∑

i=1

λ
(t)
i )(Ut − Lt)

≤ 2(Cp + 1)q log(2(loga t+ 1)
∞∑
l=1

l−q/α) (B.38)

holds with high probability and ct → 1. This then leads to the desired

result since

|It| = Ut − Lt ≤ 2(Cp + 1)q log(2(loga t+ 1)
∑∞

l=1 l
−q/α)

ct(
∑t

i=1 λ
(t)
i )

≤
2v

1/p
p

(
(Cp + 1)q log(2(loga t+ 1)

∑∞
l=1 l

−q/α)
)1−1/p

ct · t(1/at)1/p
(B.39)

By noticing (B.37), we know

2(Cp + 1)q log(2(loga t+ 1)
∞∑
l=1

l−q/α)

=
t∑

i=1

ψ(λ
(t)
i (Xi − Lt))−

t∑
i=1

ψ(λ
(t)
i (Xi − Ut))

=
t∑

i=1

∫ Ut

Lt

λ
(t)
i ψ

′(λ
(t)
i (Xi − x))dx. (B.40)

Then it is equivalent to show that

t∑
i=1

λ
(t)
i ψ

′(λ
(t)
i (Xi − x)) ≥ ct

t∑
i=1

λ
(t)
i (B.41)

holds with high probability for all t.

We choose c1t = inf |x|≤Bt ψ
′(x), where 0 < Bt < 1 is a constant that



may depend on time index t. Hence, we only need to show that

t∑
i=1

1{|Xi| ≤ Bt/λ
(t)
i } ≥ c2tt

for some constant c2t. We then can easily take ct = c1tc2t to conclude the

proof.

To show this, we need to make use of the following concentration in-

equality for Bernoulli random variables.

Lemma 4.

P(Z ≤ E[Z]− x) ≤ exp{−x2/2E[Z]}, (B.42)

where Z =
∑
Zi such that Zi ∼ Bern(p).

In our case, for any fixed λ, we let Zi = 1{|Xi| ≤ Bt/λ
(t)
i } and pt :=

E[Zi] ≥ 1 − B−p
t · log( 2

αj
) · a−j with j = ⌈loga t⌉ by Markov inequality.

Therefore, by Lemma 4 and taking x = 2
√
pt · t · log( t

α0
) (where 0 < α0 < 1

is a parameter that can be tuned), we have

P(Z ≤ E[Z]− x) ≤ exp{−x2/2E[Z]} = exp{−4ptt · log(
t

α0

)/2ptt} =
α2
0

t2
.

In other words, we have

P(∃t ≥ 1;
t∑

i=1

1{|Xi| ≤ Bt/λ
(t)
i } ≤ pt · t− 2

√
t · log( t

α0

)) ≤ α2
0

∑
t=1

1

t2
≤ 2α2

0.



In a summary, with probability at least 1− α2
0, we have

t∑
i=1

1{|Xi| ≤ Bt/λ
(t)
i } ≥ c2tt,

where c2t = pt − 2
√

log(t/α0)
t

. By straightforward calculations, we can find

c2t = pt − 2

√
log(t/α0)

t

≥ 1−B−p
t · log( 2

αj

) · a−j − 2

√
log(t/α0)

t

≥ 1−B−p
t · q log(4Cq log t

α
) · a

t
− 2

√
log(t/α0)

t
. (B.43)

(since log(
2

αj

) ≤ q log(
4Cq log t

α
)and a−j ≤ a/t,where Cq =

∑
l

l−q)

By taking Bt = t−1/2p, we then have

c2t ≥ 1− q log(
4Cq log t

α
) · a√

t
− 2

√
log(t/α0)

t
(B.44)

and c1t = inf |x|≤t−1/2p ψ′(x). Therefore, we have ct → 1 as both c1t, c2t → 1

as t → ∞. Then we can make α0 arbitrary close to zero to conclude the

proof.

Proof of Theorem 7. Note that R(β) is a decreasing function of β so

that the event {∃ n s.t. R(β̂n) > r∗} implies the event {∃ n s.t. β̂n < β∗}

which further implies {∃ n s.t. Mn(β
∗) ≥ 1/α} by definition (7.19). Using



the fact that Mn(β
∗) is a non-negative supermartingale, we get

P(∃ n s.t. R(β̂n) > r∗)

≤ P(∃ n s.t. Mn(β
∗) ≥ 1/α)

≤ 1− α (B.45)

by Ville’s inequality. This concludes the proof.

Proof of Theorem 8. Recall that

δt := 2

(
(Cpvp + 1)q log(2(loga t+ 1)

∑∞
l=1 l

−q/α′)
)1−1/p

t(1/at)1/p
,

with α′ := α/(d2 + d). By Theorem 5, we know that

P(|X̂XT [j1, j2]− E[XXT ][j1, j2]| ≤ δt, ∀ t ≥ t0) ≥ 1− α′ (B.46)

and

P(|X̂Y [j]− E[XY ][j]| ≤ δt, ∀ t ≥ t0) ≥ 1− α′ (B.47)

for all j ∈ [d] and j1, j2 ∈ [d].

For any β, we define

∆(β) := l̂n(β)− l̂n(β
∗)− (l(β)− l(β∗)). (B.48)

By the optimality of β̂n, we know

∆(β̂n) ≤ −(l(β)− l(β∗)) ≤ −λmin∥β̂n − β∗∥2, (B.49)



where λmin is the smallest eigenvalue of E[XXT ].

On the other hand, by the straightfoward calcuations, we have

∆(β̂n)

= 2(β∗T X̂XT − X̂Y
T
)(β̂n − β∗) (B.50)

+ (β̂n − β∗)T (X̂XT − E[XXT ])(β̂n − β∗).

By (B.46) - (B.47), it holds

∥β∗T X̂XT − X̂Y
T
∥

≤ ∥β∗T X̂XT − β∗TE[XXT ]∥+ ∥E[Y XT ]− X̂Y
T
∥

≤ d∥β∗∥δn +
√
dδn (B.51)

Then we have

∆(β̂n)

≥ −2(d∥β∗∥+
√
d)δn∥β̂n − β∗∥ − dδn∥β̂n − β∗∥2. (B.52)

Combining (B.49) and (B.49), we have

(λmin − dδn)∥β̂n − β∗∥2 ≤ 2(d∥β∗∥+
√
d)δn∥β̂n − β∗∥, (B.53)

which gives

∥β̂n − β∗∥ ≤ 4(d∥β∗∥+
√
d)δn/λmin,

for n satisfying δn ≤ λmin/2d. This concludes the proof.



C. Proof of Supporting Lemma

Proof of Lemma 2 and 3.

In order to prove Lemma 2 and 3, we only need to show the following

proposition.

Proposition 1. For any p ∈ (1, 2] and q ∈ (0, 1], there exists a constant

Cp,q such that

log(1 + |x|+ Cp|x|p) ≤ Cp,q|x|q. (C.54)

If we can prove Proposition 1, then Lemma 2 holds with p = 2 and

q = 2/(2 + ϑ); Lemma 3 holds with q = p/2 or q = p/(2 + ϑ).

Proof of Proposition 1. If suffices to show that

sup
x∈R

log(1 + |x|+ Cp|x|p)
|x|q

≤ Cp,q, (C.55)

which is equivalent to show

1 + |x|+ Cp|x|p ≤ exp{Cp,q|x|q} (C.56)

for any x. Take k0 = ⌈p/q⌉, we only need to show that

1 + |x|+ Cp|x|p ≤ 1 +

k0∑
k=1

Ck
p,q

k!
|x|qk. (C.57)

We take Cp,q large enough such that

Ck
p,q

k!
≥ 1 + Cp, for 1 ≤ k ≤ k0. (C.58)



Therefore, for any 0 ≤ |x| < 1, we know

1 + |x|+ Cp|x|p ≤ 1 + (1 + Cp)|x|

≤ 1 + Cp,q|x|q

≤ 1 +

k0∑
k=1

Ck
p,q

k!
|x|qk

≤ exp{Cp,q|x|q}. (C.59)

For |x| > 1, we have

1 + |x|+ Cp|x|p ≤ 1 + (1 + Cp)|x|p

≤ 1 +
Ck0

p,q

k0!
|x|qk0

≤ 1 +

k0∑
k=1

Ck
p,q

k!
|x|qk

≤ exp{Cp,q|x|q}. (C.60)

Therefore, Proposition 1 holds and we conclude the proof.

Proof of Lemma 4. For fixed x1, x2 > 0, we write

F (x) =
|x|p/2

log(1 + x+ Cp|x|p)
.

It is easy to check that F (x) is a continuously differentiable function on

interval [x1, x2]. Moreover, on compact set [x1, x2], supx∈[x1,x2] F (x) exists

and we denote it as 1/C3. Hence, it holds that log(1+x+Cp|x|p) ≥ C3|x|p/2.

Proof of Lemma 5. See Theorem 4 in Chung and Lu (2006).



D. Proof of the Lower Bound of Stitching Method

Proof of Theorem 6. The idea of the proof is based on that of Theorem 1

in Tomkins (1974) with some modifications. We denote Yn,i := ψ(λ
(n)
i Xi)−

E[ψ(λ(n)i Xi)]. Therefore, Yn,i is mean zero and Yn,1, Yn,2, ..., Yn,n are inde-

pendent. We write Sn =
∑n

i=1 Yn,i, sn = E[S2
n], and t

2
n = 2 log log(s2n). We

consider choosing a sequence of nk’s with nk being the least integer such that

snk
≥ ak where a > 1. This is possible when n · λ(n) → ∞. We also define

Vk =
∑nk

i=nk+1 Yn,i and Uk = Snk
− Vk. Moreover, we denote u2k = E[U2

k ],

v2k = E[V 2
k ], Ak = (2u2k log log(u

2
k))

1/2 and Bk = (2v2k log log(v
2
k))

1/2. By

straightforward calculation, we have

u2k
s2nk

∼ nk−1

nk

∼ 1

a1−p/q
∈ (0, 1)

and sequence {sn} is increasing and sn+1/sn is bounded by a. Therefore,

conditions (c) and (d) of Theorem 1 in Tomkins (1974) are satisfied.

In the remaining, we only need to establish

P(Uk ≥ xAk) ≤ c1(logAk)
−x (D.61)

with some constants c1 and x > 1, and

P(Vk ≥ xBk) ≥ c2(logBk)
−x (D.62)

with some constants c2 and x < 1.



To prove (D.61) and (D.62), we make use of Berry–Esseen theorem. In

our situation, when 1 < p < 2, we know that E[|Yn,i|3] ≤ C ′λ(n)p by Lemma

2 by taking v = 1 and E[|Yn,i|2] ≥ C(λ
(n)
i )p+ϑ′

by (B.32) and adjusting the

constant C ′. (For p = 2, ϑ′ can be taken as 0.) Therefore, we have

|FU,k(x)− Φ(x)| ≤ C ′′ (λ
(n))−

p+3ϑ′
2

√
nk

, (D.63)

where FU,k(x) is the cumulative distribution function (C.D.F.) of Uk

uk
and

Φ(x) is C.D.F. of the standard normal distribution. Similarly, we have

|FV,k(x)− Φ(x)| ≤ C ′′ (λ
(n))−

p+3ϑ′
2

√
nk − nk−1

, (D.64)

where FV,k(x) is the cumulative distribution function (C.D.F.) of Vk

vk
. There-

fore, by (D.63), we have

P(Uk ≥ xAk) ≤ 1− Φ((2x2 log log(uk))
1/2) + C ′′ (λ

(n))−
p+3ϑ′

2

√
nk

≤ K
(
log(u2k)

−x +
(λ(n))−

p+3ϑ′
2

√
nk

)
(D.65)

≤ 2K log(u2k)
−x, (D.66)

where the last inequality uses the fact that the term (λ(n))−
p+3ϑ′

2
√
nk

decreases

the polynomially fast as nk → ∞ when ϑ′ < (q − p)/3, while the term

log(u2k)
−x is of order log(nk)

−x and it is the dominating term.
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Similarly, we have

P(Vk ≥ xBk) ≥ 1− Φ((2x2 log log(vk))
1/2)− C ′′ (λ

(n))−
p+3ϑ′

2

√
nk − nk−1

≥ K
(
log(v2k)

−x − (λ(n))−
p+3ϑ′

2

√
nk − nk−1

)
(D.67)

≥ 1

2
K log(v2k)

−x. (D.68)

Therefore, we have proved (D.63) and (D.64). Lastly, the proof is done by

invoking Lemma 4 in Tomkins (1974).

Remark 1. For p = 2, from Theorem 6, we have that the lower bound

is of order O(
√

log log n/n) for the stitching method. When 1 < p < 2,

with the choice of λ
(n)
i = n−1/q and q = p + ϑ′, the lower bound give the

order of (log logn)1/2

n
(1− 1+ϑ′

p+2ϑ′ )
. Therefore, a small gap exists between the lower bound

and upper bound in the infinite variance case. It remains an open question

whether we could further improve the lower bound or upper bound.
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