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This document contains supplementary material to the main text of the article. Sec-

tion S1 discusses the comparison of HDS with least trimmed squares (LTS) and mean-

shifted-model-based outlier detection (MSMOD). Section S2 provides a detailed algorithm

for the practical implementation of HDS. In Section S3, an additional simulation study is

presented, including Example 2 and 3. Specifically, Example 2 conducts a detailed sensi-

tivity analysis and Example 3 further evaluates the effectiveness and robustness of HDS

on some challenging examples. Lastly, Section S4 presents the proofs of all theoretical

results in the main text.
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S1 The comparison of HDS with LTS and MSMOD

In this section, we compare HDS with LTS and MSMOD. Some notations are first in-

troduced for ease of expression. Given a series a1, a2, . . . , an, let R(ai) =
∑n

k=1 I(ak ≤

ai)−
∑n

k ̸=i I(ak = ai, i < k) be the rank of ai. Define the residual ri(β) = yi − xT
i β. For

a fixed value of β, let r(i)(β) = rk(β) satisfying R(|rk(β)|) = i. As stated in the following

Proposition 1, the proposed HDS in (2.3) is equivalent to the restricted versions of LTS

and MSMOD.

Proposition 1. For a fixed L, any optimal β solution of problem (2.3) is the optimal

solution of the following LTS and MSMOD problems.

min
β

L∑
i=1

[r(i)(β)]
2 subject to ∥β∥0 ≤ K, (S1.1)

min
β

n∑
i=1

(yi − xT
i β − ξi)

2 subject to ∥ξ∥0 ≤ n− L and ∥β∥0 ≤ K, (S1.2)

where ξ = (ξ1, . . . , ξn)
T. Conversely, any optimal solutions of problem (S1.1) or (S1.2) is

the optimal β solution of (2.3).

In (S1.1) and (S1.2), the L observations with the smallest residuals are selected for pa-

rameter estimation; this echoes the motivation of HDS. However, different expressions

of the objective function may lead to diverse algorithms and statistical inferences. For

example, to solve LTS in (S1.1), commonly-used methods include PROGRESS Algorithm

by Rousseeuw and Leroy (1987) and Feasible Set Algorithm by Hawkins (1994). In these
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methods, many candidate subsets of {1, . . . , n} are evaluated, and the candidate subset

with the smallest objective function value provides an approximate LTS estimate. In gen-

eral, many candidate subsets are accounted for to obtain a promising solution; this leads

the estimation to be very time-consuming, especially when n or p is large. Regarding

L0-based MSMOD in (S1.2), it can be optimized by iterative shrinkage thresholding algo-

rithm (similar to equation (7.1) in She and Owen (2011)) or AOS strategy like HDS. In

this paper, we choose (2.3) as our objective because we can design an efficient algorithm

and theoretical inferences with the help of auxiliary weight parameters {vi}ni=1.

To our knowledge, (S1.1) or (S1.2) has not been proposed for robust regression or

outlier detection for high-dimensional regression, not to mention the joint feature screen-

ing. In fact, the penalized LTS and MSMOD are more frequently considered to deal with

high-dimensional data containing potential outliers in recent years. To be specific,

penalized LTS: min
β

L∑
i=1

[r(i)(β)]
2 + Pλ(β), (S1.3)

penalized MSMOD: min
β

n∑
i=1

(yi − xT
i β − ξi)

2 + Pλ(β) + Pλ(ξ), (S1.4)

where Pλ(·) is a specific penalty function. The commonly-used penalty functions for

penalized LTS (S1.3) include l1 penalty proposed by Alfons et al. (2013) and elastic-net

penalty proposed by Kurnaz et al. (2018). For the penalized MSMOD in (S1.4), She and

Owen (2011) suggests using nonconvex penalty functions, such as Hard penalty and SCAD
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penalty. In theory, (S1.3) or (S1.4) also can be considered for feature screening. However,

the number of features retained by the penalized LTS or MSMOD can not determined

in advance. This is due to the final model size in (S1.3) or (S1.4) is determined by the

value of λ, which is a continuous tuning parameter generally requiring much additional

computational cost to train in practice. Since the retained model size, denoted by K, just

needs to be a moderate integer greater than the true model size in feature screening, the

selection of K should avoid excessive training costs. In view of the high efficiency of dual

sample-feature L0 fitting, we adopt (2.3) as the objective function in our HDS.

S2 The implementation details of IHT and the final algorithm

for HDS

In IHT, u−1 can be seen as a step size determining the distance from γ(h) to γ(h+1). It

can be easily proved that L(v(t+1),η(h)) is strictly non-increasing as long as u takes the

value not less than λmax(A(v(t+1))), where A(v) = n−1
∑n

i=1 2vixix
T
i and λmax(·) denotes

the largest eigenvalue of a matrix. Despite the theoretical assurances, an overly small step

size may lead IHT to fail to converge to a good solution. In practice, a larger u−1 often

contributes to boosting the iterations, but an overly large step size makes IHT difficult to

converge. Thus, it is suggested to adjust u−1 adaptively at each step. A commonly-used

strategy is to initialize u−1 with a large value and then adaptively decrease its size by
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multiplying a τ ∈ (0, 1) until L(v(t+1),γ(h+1)) ≤ L(v(t+1),γ(h)) is satisfied. This seems to

be an effective way to balance algorithm convergence and iteration rates.

Next, we provide some discussions regarding the initial value γ(0) in (2.7). A natural

strategy is to choose γ(0) = β
(t)
IHT, based on which u can be determined properly to strictly

ensure that L(v(t+1),β
(t+1)
IHT ) ≤ L(v(t+1),β

(t)
IHT). However, some numerical experiences show

that IHT with γ(0) = β
(t)
IHT often fails to significantly improve L(v,β) in the first few steps

(i.e. t is small). The performance of AOS is much restricted by the initial γ(0) and the

above strictly decreasing property. To be worse, the first β
(t)
IHT and v(t+1) are often seriously

affected by noises; this leads to they are not of high quality. These factors result in that

γ(h) often converges to a bad local solution near to β
(t)
IHT, and the leading β

(t+1)
IHT fails to

find sufficient relevant features. To overcome the above difficulty, we suggest adopting

some more efficient initial for the iterations in IHT, such as lasso-type initial (Tibshirani,

1996). Although the decreasing property can not be guaranteed strictly, the potential

significant decline of L contributes to rapidly searching all relevant features. When v(t)

stabilizes after some steps, it is believed that most clean observations are retained. Then,

we can set γ(0) = β
(t)
IHT to obtain a more accurate β̂ with a refined M̂. Based on the above

discussion, the initial value γ(0) in (2.7) can be set by

γ(0) =


γlasso, if t < T1 and v(t+1) ̸= v(t),

β
(t)
IHT, if t ≥ T1 or v(t+1) = v(t),

(S2.5)
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where γlasso = argminγ L(v(t+1),γ) + λ∥γ∥1 with a λ leading to the sparsity ∥γlasso∥0

closest to L − 1. Based on our numerical experiments, T1 = 20 demonstrates effective

performance across most simulations in this study. Notably, compared to AOS initialized

solely with γ(0) = γlasso, our proposed initialization scheme (γ(0) in (S2.5)) generally

exhibits faster convergence and achieves higher screening accuracy.

Last, we show the whole computing procedure of HDS in the following Algorithm 1.

Algorithm 1 The computing process for HDS

1: input: Data {yi,xi}ni=1.
2: Initialize t = 0, ṽ = 1, and set β̃IHT as the IHT solution for the constrained minimization

argminβ
∑n

i=1(yi − xT
i β)

2 subject to ∥β∥0 ≤ K, where γ(0) denotes the lasso solution with sparsity
level n− 1. Subsequently, specify two numbers of iterations T1 and T2 (1 < T1 < T2) and convergence
threshold ϵγ for the IHT procedure.

3: while t ≤ T2 do

4: Denoising step: update v̂ by

v̂i =

{
1, R(|yi − xT

i β̃IHT|) ≤ L

0, R(|yi − xT
i β̃IHT|) > L

, i = 1, . . . , n.

5: If t < T1 & v̂ = ṽ, set t = T1 − 1.

6: If t ≥ T1 & v̂ = ṽ, break.

7: Update γ(0) by (2.10), where v(t+1) = v̂, v(t) = ṽ, and β
(t)
IHT = β̃IHT.

8: Iterate γ(h+1) by (2.9) until ∥γ(h+1) − γ(h)∥2 ≤ ϵγ .

9: Screening step: update β̃IHT = γ(h+1).
10: Set ṽ = v̂ and t = t+ 1.
11: end while
12: output: v̂, β̂ = β̃IHT, and M̂ = {j : β̂j ̸= 0, j = 1, . . . , p}.

S3 Additional Examples in Simulations

Example 2. Sensitivity Analysis.
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In this example, we test the sensitivity of HDS on some factors, such as the number of

retained features K, the dimension of features p, the variance of random error in linear

model σ2, and the correlation between features ρj,k. For ease of study, we set all ρj,k = ρ

for j ̸= k. In addition, we further consider the influence of an important factor, that is,

the distance between noises and the clean linear model.

We first assess sensitivity with respect to the choices of K, p, σ2, and ρ. To facilitate

the analysis, we re-conduct a few simulations in Example (1a) with specific setups of noisy

distribution f0(yi|xi) = 0.5fU(−20,−15)(yi)+0.5fU(15,20)(yi) and NCR = 20%. We give some

specific setups as follows.

(2a) Factor K: we fix (n, p, σ2, ρ) = (150, 2000, 1, 0.5), and consider K = 10, 20, . . . , 60.

(2b) Factor p: we fix (n,K, σ2, ρ) = (150, 20, 1, 0.5), and consider p = 1000, 2000, . . . , 8000.

(2c) Factor σ2: we fix (n, p,K, ρ) = (200, 3000, 20, 0.3), and consider σ2 = 1, 2, . . . , 7.

(2d) Factor ρ: we fix (n, p,K, σ2) = (300, 2000, 20, 1), and consider ρ = 0, 0.1, . . . , 0.7.

The rest is in accord with Example (1a). As before, the evaluation criterion is SSR based

on T = 100 repetitions. The screening performance of HDS on these factors is shown in

Figure 1 of supplementary material.

In general, HDS is insensitive to wide ranges of K, p, σ2, and ρ and shows significant

superiority to other methods. Although large values of the above factors may reduce some

accuracy of HDS, its accuracy still maintains at a high level. Some detailed analyses are
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Figure 1: Overall SSRs of the selected screeners over the following setups: (2a) increasing screening size
K; (2b) increasing dimensionality p; (2c) increasing variance σ2; (2d) increasing correlation ρ.

given as follows. When the sample size L is small, a larger K may induce overfitting and

hinder the search for good local solutions in HDS, resulting in some accuracy loss. Thus,

we recommend against selecting an excessively large K when L is moderate in HDS. The

variance σ2 reflects the signal strength of linear model. As σ2 increases, the signal of

relevant features becomes weaker; this results in some difficulty for HDS. Regarding the
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correlation, HDS is very robust to the given candidates of ρ.

Then, we measure the influence of the distances between noises and the clean linear

model. Assume all xi and clean yi follow the same distribution in Example 1, where

M = {1, . . . , 5}, (n, p,K) = (200, 2000, 20), and NCR = 20%. Next, assume noisy

yi = xT
i β

∗ + ϵi, where the distribution of ϵi differs from N(0, σ2). We consider two setups

of ϵi as follows.

(2e) ϵi ∼ ϕN(0, 64) + ϕN(0, 16) + (1− 2ϕ)N(0, 0.25) with ϕ = 0.1, 0.2, . . . , 0.5.

(2f) ϵi ∼ 0.5U(−d,−d+ 5) + 0.5U(d− 5, d) with d = 5, 10, . . . , 40.

In (2e), the noises can be divided into three types with the small, moderate, and large

magnitude of influences, and ϕ determines the proportion of three types of noises. In (2f),

the distances between noises and the clean linear model are determined by the starting

parameter d and the width 5. When ϕ and d are small, clean and noisy responses overlap

strongly. As they increase, the differences between clean and noisy responses will be more

significant. The screening performance of HDS on ϕ and d are shown in Figure 2 of

supplementary material.

It can be seen all classic screening methods are sensitive to the distances between

noises and clean linear models. As ϕ and d increase, their SSRs encounter a drastic drop.

HDS shows great robustness to the distance. In (2f), when d is small, although the overlap

between clean and noisy yi causes some accuracy loss on HDS, its effectiveness still can

be guaranteed. As d increases, the superiority of HDS becomes more significant.



LIMING WANG ET AL.

Figure 2: Overall SSRs of the selected screeners over setups (2e) and (2f).

Example 3. Some challenging setups for HDS

In Example 1, HDS shows its anti-noise and joint-screening performance to three different

types of contaminated data. In this example, we consider some more challenging setups,

such as more complex correlations between features, higher CNRs, a larger number of

relevant features, and new setups of noises. The specific setups are given as follows.

(3a) Each xi ∼ N(0,Σ), where Σ = [ρj,k]j,k=1,...,p, where ρj,j = 1 for j = 1, . . . , p, off-

diagonal elements ρj,k = 0.5, j ̸= k except ρ6,j = ρj,6 = 0.25 for j ̸= 5. For i ∈ I1,

yi = 3xi1 + 3xi2 + 3xi3 + 3xi4 + 3xi5 + 1.5xi6 + ϵi

Then, we consider a two-sided distributed noisy yi. That is,

f0(yi|xi) = 0.5fU(xT
i β

∗−40,xT
i β

∗−20)(yi) + 0.5fU(xT
i β

∗+20,xT
i β

∗+40)(yi).
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(3b) Each xi ∼ N(0,Σ), where Σ = [ρj,k]j,k=1,...,p, where ρj,j = 1, j = 1, . . . , p for j =

1, . . . , p, off-diagonal elements ρj,k = 0.5 except ρ6,j = ρj,6 =
√
0.5 for j ̸= 5. For

i ∈ I1,

yi = 5xi1 + 5xi2 + 5xi3 + 5xi4 − 20
√
0.5xi5 + ϵi.

Then, we consider one-sided distributed noisy yi. That is,

f0(yi|xi) = fU(xT
i β

∗−40,xT
i β

∗−20)(yi).

(3c) Each xi follows the same setup as example (1a) with M = {1, 2, . . . , 8}. Then, we

consider a new setup where clean and noisy responses have overlaps. To be specific,

the distribution of yi is set by

f0(yi|xi) = fU(xT
i β

∗−80,xT
i β

∗)(yi).

Setups (3a)-(3b) consider the impact of correlations between features on screening. In

(3a), most irrelevant features are highly correlated with relevant ones, thus they have

a false marginal correlation with uncontaminated response. However, the relevant fea-

ture x6 is weakly correlated with uncontaminated response because of its corresponding

small coefficient and lower correlations with other features. In (3b), we consider a special

feature x5, which is jointly dependent but marginally independent on uncontaminated
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response. These are two difficult setups for feature screening and are commonly seen in

many literature, such as Fan and Lv (2008) and Cho and Fryzlewicz (2012). Regarding

the distribution of noisy response, we consider the two-sided and one-sided extreme values

to the response in (3a)-(3b). In (3c), the overlap between clean and noisy yi may lead

to some challenges in denoising and variable selection. Besides, we increase the screening

difficulty by enlarging the NCR up to 90% in (3a)-(3b) and the size of M up to 8 in (3c).

For comparison purposes, we consider a wide range of methods for feature screening

in (3a) and (3b) and variable selection in (3c). To show the superiority of HDS in terms of

robustness, we conduct two classic robust screening methods RRCS (Li et al., 2012) and

FKF (Mai and Zou, 2015) with 6 slices. To make them better suitable for joint screening,

we further consider their iterative versions, named iRRCS and iFKF, where the residual of

yi fitted by the current features are used in the next iteration of screening. Three features

are retained in each iteration of iRRCS and iFKF until the total model size is not lower

than K. To show the effectiveness of IHT, we consider two other algorithms, primal-

dual active set (PDAS) discussed in Wen et al. (2020) and adaptive best-subset selection

(ABESS) proposed by Zhu et al. (2020), to update β(t+1) in (2.6). The leading screening

procedures are denoted by HDS-PDAS and HDS-ABESS, respectively. To demonstrate

the necessity of HDS as a preliminary step before in-depth variable selection, we perform

EBIC-based post-screening on the data preserved by HDS. The details can be referred to

the function “smle select” in R package SMLE (Zang et al., 2022). As the competitors of
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HDS in variable selection, we consider sparse least trimmed squares (SLTS) proposed by

Alfons et al. (2013) and penalized mean-shift-model-based outlier detection (PMSMOD)

discussed in Section 7 of She and Owen (2011).

We generate n = 300 independent copies from (y,x) with p = 2000. During screening,

we set L = ⌊0.9π1n⌋ for each setup. Regarding the evaluation criterion in screening and

selection, in addition to SSR, positive selection rate (PSR) and false discovery rate (FDR)

based on T = 100 repetitions are used to assess the screening or selection accuracy. These

indices are computed by

PSR =
1

T

T∑
t=1

N(M∩M̂(t))

N(M)
, FDR =

1

T

T∑
t=1

N(M̂(t)−M)

N(M̂(t))
,

where M̂(t) is the index set of retained features determined by screening or selection

methods. In particular, for the selection procedure in setup (3c), the correct selection rate

(CSR), final model size (FMS), and computational time (Time; in seconds) are further

exhibited, where CSR and FMS are computed by

CSR =
1

T

T∑
t=1

I(M = M̂(t)), FMS =
1

T

T∑
t=1

N(M̂(t)).

The simulation results of screening on setups (3a) and (3b) are summarized in Table 1,

and the results of selection on setups (3c) are summarized in Table 2.

Table 1 shows that HDS outperforms other screening methods in setups (3a) and (3b),
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Table 1: The simulation result of setups (3a) and (3b), where K = ⌊n1/4 log(n)⌋.

Setup Methods
NCR = 0% NCR = 60% NCR = 90%

SSR PSR FDR SSR PSR FDR SSR PSR FDR

(3a) HDS-IHT 1.00 1.00 0.74 0.96 0.98 0.74 0.90 0.95 0.75

HDS-PDAS 1.00 1.00 0.74 0.24 0.51 0.87 0.10 0.30 0.92

HDS-ABESS 1.00 1.00 0.74 0.37 0.56 0.85 0.12 0.33 0.91

RRCS 0.00 0.81 0.79 0.00 0.17 0.96 0.00 0.10 0.98

iRRCS 1.00 1.00 0.74 0.00 0.11 0.97 0.00 0.08 0.98

FKF 0.00 0.36 0.91 0.00 0.18 0.95 0.00 0.16 0.96

iFKF 1.00 1.00 0.74 0.00 0.07 0.98 0.00 0.04 0.99

(3b) HDS-IHT 1.00 1.00 0.78 0.99 1.00 0.78 0.97 0.98 0.79

HDS-PDAS 1.00 1.00 0.78 0.84 0.95 0.79 0.49 0.73 0.84

HDS-ABESS 1.00 1.00 0.78 0.74 0.87 0.81 0.37 0.59 0.87

RRCS 0.36 0.84 0.82 0.04 0.52 0.89 0.01 0.39 0.91

iRRCS 1.00 1.00 0.78 0.01 0.47 0.90 0.01 0.45 0.90

FKF 0.08 0.66 0.86 0.00 0.37 0.92 0.00 0.39 0.92

iFKF 1.00 1.00 0.78 0.03 0.54 0.88 0.04 0.49 0.89

no matter with NCR=0%, 60%, and 90%; this is reflected by its higher SSRs and PSRs.

HDS-PDAS and HDS-ABESS obtain satisfactory accuracy in the setup without noises

(NCR = 0%). However, they lose some effectiveness when the number of noises increases;

this indicates that they converge to some bad local optimal solution for β(t+1). In our HDS-

IHT, the adaptive step size and the lasso initials in the first T1 iterations contribute to

avoiding bad local optimal solutions; this leads HDS-IHT to be more accurate in screening.

Regarding RRCS, FKF, and their iterative versions, their performances are also sensitive

to scenarios with many noises. Moreover, HDS performs promisingly in both setups with

two-sided and one-sided noises.

From FMS in Table 2, it can be found that the model size determined by HDS together
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with EBIC is further reduced and close to N(M). Together with CSR, it is shown that

HDS can determine the true model M in the majority of simulations. High SSR indicates

that only in a very small number of simulations, some relevant features are lost. The results

of PSR and FDR further support the effectiveness of the proposed selection procedure.

Generally, HDS is robust to setup (3c) with overlap between clean and noisy responses.

Regarding SLTS, it tends to output a large model, in which all relevant features are

usually can be retained but many irrelevant ones are also selected; this is supported by its

high SSR and low CSR. Regarding PMSMOD, its CSR decreases more drastically than

that of HDS as NCR increases. To be worse, when NCR=60%, it is hard to retain all

relevant features in the final model by PMSMOD. In addition, PMSMOD tends to retain

the most features among the three involved methods. Regarding the computational time

of all methods, as L decreases, the computational time of HDS is also reduced. When

NCR is not lower than 10%, the computational cost of SLTS encounters a drastic increase;

this leads it to be computationally expensive. It is worth noting that the computational

time of HDS is not least in three methods; this is due to the high computational cost of

HDS used for step size adaption and lasso initial; this contributes to improving selection

accuracy of HDS.
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Table 2: The simulation result of setup (3c), where K = 2N(M) in HDS.

NCR Method SSR CSR PSR FDR FMS Time

HDS 1.00 0.94 1.00 0.01 8.06 5.89

0% SLTS 0.97 0.08 1.00 0.47 23.46 0.72

PMSMOD 1.00 0.94 1.00 0.06 18.79 0.80

HDS 0.98 0.89 0.99 0.02 8.03 5.20

10% SLTS 0.99 0.01 1.00 0.54 26.25 18.16

PMSMOD 1.00 0.38 1.00 0.59 97.83 0.81

HDS 0.99 0.83 1.00 0.02 8.19 4.07

30% SLTS 1.00 0.02 1.00 0.67 34.95 22.15

PMSMOD 0.96 0.00 0.99 0.93 117.15 0.90

HDS 0.76 0.64 0.86 0.10 7.52 3.04

60% SLTS 1.00 0.00 1.00 0.71 33.62 23.05

PMSMOD 0.04 0.00 0.45 0.96 93.35 1.09

S4 Proofs

S4.1 Proof of Proposition 1

Denote (v̂HDS, β̂HDS) the optimal solution of problem (2.3) and β̂LTS the optimal solution

of problem (S1.1). Based on the definition of v̂HDS, we have

v̂i,HDS =


1, R(|yi − xT

i β̂HDS|) ≤ L

0, R(|yi − xT
i β̂HDS|) > L

, i = 1, . . . , n.

Therefore, we have

L(v̂HDS, β̂HDS) =
L∑
i=1

[
r(i)(β̂HDS)

]2
,
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where ∥β̂HDS∥0 ≤ K. Then, with the optimality of β̂LTS, it follows that

L∑
i=1

[
r(i)(β̂LTS)

]2
≤

L∑
i=1

[
r(i)(β̂HDS)

]2
= L(v̂HDS, β̂HDS). (S4.6)

On the other hand, by the definition of r(i)(β), we have

L∑
i=1

[
r(i)(β̂LTS)

]2
=

n∑
i=1

v̂i,LTS(yi − xT
i β̂LTS)

2

with

v̂i,LTS =


1, R(|yi − xT

i β̂LTS|) ≤ L

0, R(|yi − xT
i β̂LTS|) > L

, i = 1, . . . , n.

By letting v̂LTS = (v̂1,LTS, . . . , v̂n,LTS), we have
∑L

i=1

[
r(i)(β̂LTS)

]2
= L(v̂LTS, β̂LTS). Then,

with the optimalty of (v̂HDS, β̂HDS), it follows that

L(v̂HDS, β̂HDS) ≤ L(v̂LTS, β̂LTS) =
L∑
i=1

[
r(i)(β̂LTS)

]2
. (S4.7)

Together with (S4.6) and (S4.7), we have

L(v̂HDS, β̂HDS) =
L∑
i=1

[
r(i)(β̂HDS)

]2
=

L∑
i=1

[
r(i)(β̂LTS)

]2
= L(v̂LTS, β̂LTS). (S4.8)

Then, we deal with the relationship between LTS and MSMOD. Denote (β̂OD, ξ̂OD)
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the optimal solution of problem (S1.2). Therefore, we have

ξ̂i,OD =


0, R(|yi − xT

i β̂OD|) ≤ L

yi − xT
i β̂OD, R(|yi − xT

i β̂OD|) > L

, i = 1, . . . , n.

By letting LOD(β, ξ) =
∑n

i=1(yi − xT
i β − ξi)

2, it follows that

L∑
i=1

[
r(i)(β̂LTS)

]2
≤

L∑
i=1

[
r(i)(β̂OD)

]2
= LOD(β̂OD, ξ̂OD). (S4.9)

Define

ξ̂i,LTS =


0, R(|yi − xT

i β̂LTS|) ≤ L

yi − xT
i β̂LTS, R(|yi − xT

i β̂LTS|) > L

, i = 1, . . . , n.

Then, it can be obtained that

LOD(β̂OD, ξ̂OD) ≤
n∑

i=1

(yi − xT
i β̂LTS − ξ̂i,LTS)

2 =
L∑
i=1

[
r(i)(β̂LTS)

]2
. (S4.10)

Together with (S4.9) and (S4.10), we have

LOD(β̂OD, ξ̂OD) =
L∑
i=1

[
r(i)(β̂LTS)

]2
. (S4.11)

Based on (S4.8) and (S4.11), Proposition 1 can be proved. ■
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S4.2 Proof of Theorem 1

The proof of Theorem 1 is built upon the following technical lemma.

Lemma 1. Let emax(v
(t+1)) be the largest eigenvalue of A(v(t+1)) = n−1

∑n
i=1 v

(t+1)
i xT

i xi

with a given v(t+1). If u ≥ emax(v
(t+1)),

L(v(t+1),γ(h+1)) ≤ L(v(t+1),γ(h))− u− emax(v
(t+1))

2
∥γ(h+1) − γ(h)∥22. (S4.12)

Moreover, if A(v(t+1), s) = n−1
∑n

i=1 v
(t+1)
i xT

i,sxi,s is positive defined for any s satisfying

N(s) ≤ K, γ(h) in IHT converges to a local minimum of L(v(t+1),β).

The proof of Lemma 1 can be referred to the proof of Theorem 1 in Xu and Chen

(2014). With Lemma 1, we prove Theorem 1 as follows.

Proof of Theorem 1. We first prove that L(v(t),β
(t)
IHT) decreases after each iteration.

Based on the definition (3.14), it is obvious that L(v(t+1),β
(t)
IHT) ≤ L(v(t),β

(t)
IHT). Then, we

show that L(v(t+1),β
(t+1)
IHT ) ≤ L(v(t+1),β

(t)
IHT). Recall emax = max{λmax(A(v)), ∥v∥0 = L}.

Given a γ(h), together with the condition in Theorem 1 and Lemma 1, we have

L(v(t+1),γ(h+1)) ≤ L(v(t+1),γ(h)). (S4.13)

Thus, as β
(t+1)
IHT is a limiting point of γ(h), it follows that L(v(t+1),β

(t+1)
IHT ) ≤ L(v(t),β

(t)
IHT).

Since L(v,β) is lower bounded by 0, |L(v(t+1),β
(t+1)
IHT )− L(v(t),β

(t)
IHT)| → 0 as t → ∞.
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Next, we prove {v(t),β
(t)
IHT} converges by contradiction. If {v(t),β(t)} does not con-

verge, there must exist a δ > 0 independent with t and infinite t1, t2, . . . , t∞ such that

v(tk+1) ̸= v(tk) or ∥β(tk+1)
IHT − β

(tk)
IHT∥2 > δ. At least one of the following Cases 1-3 happens,

and we prove that each case will result in a contradiction.

Consider Case 1: v(tk+1) = v(tk), ∥β(tk+1)
IHT − β

(tk)
IHT∥2 > δ. Since the intial β(t) = β

(tk)
IHT

and v(tk+1) = v(tk), we have γ(h) = γ(0) for all h ≥ 1 in IHT update for β
(t+1)
IHT . Thus,

β
(tk+1)
IHT = β

(tk)
IHT; this leads to a contradiction.

Consider Case 2: v(tk+1) ̸= v(tk), β
(tk+1)
IHT = β

(tk)
IHT. Since the update of v(t+1) in (3.14)

is unique, it follows that v(tk+2) = v(tk+1) when β
(tk+1)
IHT = β

(tk)
IHT. By the result of Case 1,

for all t ≥ tk + 1, we have v(t+1) = v(t) and β
(t+1)
IHT = β

(t)
IHT. This results in a contradiction

with that there must exist a δ > 0 and infinite t1, t2, . . . , t∞ such that v(tk+1) ̸= v(tk) or

∥β(tk+1)
IHT − β

(tk)
IHT∥2 > δ.

Consider Case 3: v(tk+1) ̸= v(tk), ∥β(tk+1)
IHT − β

(tk)
IHT∥2 > δ. By the definition of β

(tk+1)
IHT

with γ(0) = β
(tk)
IHT, we have γ

(h) → β
(tk+1)
IHT as h → ∞. Since n and p are finite, the pattern

numbers of (v, s) is
(
n
L

)(
p
K

)
, where ∥v∥0 = L and N(s) = K. Thus, there exists a unified

finite h∗ such that ∥γ(h∗)−β
(tk)
IHT∥22 > δ/2 for all possible v(tk+1) and β

(tk)
IHT. Based on (S4.12)

in Lemma 1, we have

L(v(tk+1),γ(h))− L(v(tk+1),γ(h+1)) ≥ 1/2(u− emax)∥γ(h+1) − γ(h)∥22.
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When u > emax, it follows that

L(v(tk+1),β
(tk)
IHT)− L(v(tk+1),β

(tk+1)
IHT ) ≥ L(v(tk+1),β

(tk)
IHT)− L(v(tk+1),γ(h∗))

=
h∗−1∑
h=0

[L(v(tk+1),γ(h))− L(v(tk+1),γ(h+1))]

≥ 1

2
(u− emax)

h∗−1∑
h=0

∥γ(t+1) − γ(t)∥22

≥ 1

2h∗ (u− emax)∥γ(h∗) − β
(tk)
IHT∥

2
2

≥ δ

4h∗ (u− emax) > 0.

There exists a exists a constant c > 0 such that

L(v(tk+1),β
(tk)
IHT)− L(v(tk+1),β

(tk+1)
IHT ) > c.

As k → ∞, L(v(tk+1),β
(tk+1)
IHT ) → −∞, this contradicts the fact L is lower bounded.

Based on the contradictions in Cased 1, 2, and 3, we have {v(t),β(t)} converges to a

limiting point {ṽ, β̃}. In addition, Lemma 1 shows that given v(t+1), γ(h) in IHT converges

to a local minimum of L(v(t+1),β) subject to ∥β∥0 ≤ K. This indicates that β̃ is a local

minimum of L(ṽ,β) subject to ∥β∥0 ≤ K. The Theorem 1 is therefore proved. ■
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S4.3 Proof of Theorem 2

At first, we show that ∇β Gρ(β|β∗)
∣∣
β=β∗ = 0 under the assumption that f0(y|x) = 0 for

all (y,x) satisfying |y − xTβ∗| ≤ ν∗
ρ . To be specific,

∇β Gρ(β|β∗)
∣∣
β=β∗ =

∫
X

∫
Y
I(|y − xTβ∗| ≤ ν∗

ρ)2x(x
Tβ∗ − y)f(x, y)dydx

= 2

∫
X

∫ xTβ∗+ν∗ρ

xTβ∗−ν∗ρ

x(xTβ∗ − y)
π1√
2πσ

e
−(y−xTβ∗)2

2σ2 dyf(x)dx

= 2

∫
X
x(xTβ∗ − xTβ∗)

∫ xTβ∗+ν∗ρ

xTβ∗−ν∗ρ

π1√
2πσ

e
−(y−xTβ∗)2

2σ2 dyf(x)dx

= 0,

where X and Y are the support of x and y, respectively.

Next, for any β̃ = (β̃1, . . . , β̃p)
T satisfying that β̃ ̸= β∗ and ∥β̃∥0 ≤ K, we show that

Gρ(β
∗|β∗) < Gρ(β̃|β∗). Denote η =

∫ xTβ∗+ν∗ρ
xTβ∗−ν∗ρ

π1√
2πσ

e
−(y−xTβ∗)2

2σ2 dy, and we have

Gρ(β
∗|β∗)−Gρ(β̃|β∗) =

∫
X

∫
Y
I(|y − xTβ∗| ≤ ν∗

ρ)[(y − xTβ∗)2 − (y − xTβ̃)2]f(x, y)dydx

=

∫
X

∫ xTβ∗+ν∗ρ

xTβ∗−ν∗ρ

[2y(xTβ̃ − xTβ∗) + (xTβ∗)2 − (xTβ̃)2]f(y|x)dyf(x)dx

= η

∫
X
[2xTβ∗(xTβ̃ − xTβ∗) + (xTβ∗)2 − (xTβ̃)2]f(x)dx

= −η

∫
X
[x(β̃ − β∗)]2f(x)dx

= −η(β̃ − β∗)TM′

[∫
xM′xT

M′f(xM′)dxM′

]
(β̃ − β∗)M′ , (S4.14)
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where M′ = M ∪ M̃ with M̃ = {j : β̃j ̸= 0}. Since
∫
xsx

T
s f(xs)dxs is assumed to be

positive defined for any s satisfying N(s) ≤ N(M) +K and η > 0, we have Gρ(β
∗|β∗)−

Gρ(β̃|β∗) < 0.

Then, we work on γ(h+1) = H(Q̃(γ(h));K) with γ(0) = β∗. Considering h = 1, we

have

Q̃(γ(1)) = β∗ − u−1∇β Gρ(β|β∗)
∣∣
β=β∗

= β∗.

Since ∥β∗∥0 ≤ K, γ(1) = H(Q̃(β∗);K) = β∗. As a result, γ(h) = γ(h−1) = . . . = γ(0) = β∗

and

γ(h+1) = H(Q̃(γ(h));K) = β∗.

The proof of Theorem 2 is completed. ■

S4.4 Proof of Theorem 3

Recall that for any β̃ ∈ Θ, there exists a corresponding ν̃ρ such that E[I(|y − xTβ̃| ≤

ν̃ρ)] = ρ. In addition, f(y|x) = π1f1(y|x) = π1√
2πσ

e
−(y−xTβ∗)2

2σ2 for (y,x) ∈ Λ. For any
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β̃ ̸= β∗, since E[I(|y − xTβ̃| ≤ ν̃ρ)] = E[I(|y − xTβ∗| ≤ ν∗
ρ)] = ρ, we have ν̃ρ > ν∗

ρ and

Gρ(β̃|β̃) =

∫
X

∫ xTβ̃+ν̃ρ

xTβ̃−ν̃ρ

(y − xTβ̃)2f(y|x)dyf(x)dx

= π1

∫
X

∫ xTβ∗+ν̃ρ

xTβ∗−ν̃ρ

(y − xTβ∗)2f1(y + xTβ̃ − xTβ∗|x)dyf(x)dx

= π1

∫
X

∫ xTβ∗−ν∗ρ

xTβ∗−ν̃ρ

(y − xTβ∗)2f1(y + xTβ̃ − xTβ∗|x)dyf(x)dx

+π1

∫
X

∫ xTβ∗+ν∗ρ

xTβ∗−ν∗ρ

(y − xTβ∗)2f1(y + xTβ̃ − xTβ∗|x)dyf(x)dx

+π1

∫
X

∫ xTβ∗+ν̃ρ

xTβ∗+ν∗ρ

(y − xTβ∗)2f1(y + xTβ̃ − xTβ∗|x)dyf(x)dx

= E1 + E2 + E3.

Letting ∆(y|x) = f1(y + xTβ̃ − xTβ∗|x)− f1(y|x), we have

Gρ(β̃|β̃)−Gρ(β
∗|β∗)

= E1 + E3 + π1

∫
X

∫ xTβ∗+ν∗ρ

xTβ∗−ν∗ρ

(y − xTβ∗)2∆(y|x)dyf(x)dx. (S4.15)

Obviously, given x, there is at most one y′ ∈ [xTβ∗ − ν∗
ρ ,x

Tβ∗ + ν∗
ρ ] such that f1(y

′|x) =

f1(y
′ + xTβ̃ − xTβ∗|x). We first discuss the situation that xTβ∗ − ν∗

ρ < xTβ̃ − ν̃ρ; this

means that xTβ∗ < xTβ̃. Then, two potential cases are analyzed as below.

Consider Case 1: for any y ∈ [xTβ∗−ν∗
ρ ,x

Tβ∗+ν∗
ρ ], f1(y+xTβ̃−xTβ∗|x) < f1(y|x).
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Given an x, we have

∫ xTβ∗−ν∗ρ

xTβ∗−ν̃ρ

(y − xTβ∗)2f1(y + xTβ̃ − xTβ∗|x)dy > ν∗2
ρ

∫ xTβ∗−ν∗ρ

xTβ∗−ν̃ρ

f1(y + xTβ̃ − xTβ∗|x)dy,

(S4.16)∫ xTβ∗+ν̃ρ

xTβ∗+ν∗ρ

(y − xTβ∗)2f1(y + xTβ̃ − xTβ∗|x)dy > ν∗2
ρ

∫ xTβ∗+ν̃ρ

xTβ∗+ν∗ρ

f1(y + xTβ̃ − xTβ∗|x)dy,

(S4.17)∫ xTβ∗+ν∗ρ

xTβ∗−ν∗ρ

(y − xTβ∗)2∆(y|x)dy > ν∗2
ρ

∫ xTβ∗+ν∗ρ

xTβ∗−ν∗ρ

∆(y|x)dy. (S4.18)

Together with (S4.15)-(S4.18), it follows that

Gρ(β̃|β̃)−Gρ(β
∗|β∗)

> π1ν
∗2
ρ

∫
X

[∫ xTβ∗+ν̃ρ

xTβ∗−ν̃ρ

f1(y + xTβ̃ − xTβ∗|x)dy −
∫ xTβ∗+ν∗ρ

xTβ∗−ν∗ρ

f1(y|x)dy

]
f1(x)dx

= π1ν
∗2
ρ

∫
X

[∫ xTβ̃+ν̃ρ

xTβ̃−ν̃ρ

f1(y|x)dy −
∫ xTβ∗+ν∗ρ

xTβ∗−ν∗ρ

f1(y|x)dy

]
f(x)dx

= ν∗2
ρ E[I(|y − xTβ̃| ≤ ν̃ρ)]− ν∗2

ρ E[I(|y − xTβ∗| ≤ ν∗
ρ)]

= ν∗2
ρ (ρ− ρ) = 0. (S4.19)

Consider Case 2: there exists a y′ = (3xTβ∗ − xTβ̃)/2 ∈ (xTβ∗ − ν∗
ρ ,x

Tβ∗) such

that f1(y
′ + xTβ̃ − xTβ∗|x) = f1(y

′|x). Obviously, if y ∈ [xTβ∗ − ν∗
ρ , y

′), we have

f1(y + xTβ̃ − xTβ∗|x) − f1(y|x) = ∆(y|x) > 0; if y ∈ [y′,xTβ∗ + ν∗
ρ ], we have f1(y +
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xTβ̃ − xTβ∗|x)− f1(y|x) = ∆(y|x) < 0. Furthermore,

∫ y′

xTβ∗−ν∗ρ

∆(y|x)dy +
∫ 2y′−xTβ∗+ν∗ρ

y′
∆(y|x)dy = 0. (S4.20)

Since f1(y|x) is symmetric about xTβ∗, f1(y + xTβ∗|x) = f1(−y + xTβ∗|x) holds. As a

result,

∫ y′

xTβ∗−ν∗ρ

(y − xTβ∗)2∆(y|x)dy +
∫ 2y′−xTβ∗+ν∗ρ

y′
(y − xTβ∗)2∆(y|x)dy

=

∫ y′

xTβ∗−ν∗ρ

(y − xTβ∗)2∆(y|x)dy −
∫ y′

xTβ∗−ν∗ρ

(−y + 2y′ − xTβ∗)2∆(y|x)dy

=

∫ y′

xTβ∗−ν∗ρ

[
(y − xTβ∗)2 − (y − 2y′ + xTβ∗)2

]
∆(y|x)dy

=

∫ y′

xTβ∗−ν∗ρ

4(y′ − xTβ∗)(y − y′)∆(y|x)dy > 0. (S4.21)

Then, based on (S4.20) and (S4.21),

∫ xTβ∗+ν∗ρ

xTβ∗−ν∗ρ

(y − xTβ∗)2∆(y|x)dy

=

∫ 2y′−xTβ∗+ν∗ρ

xTβ∗−ν∗ρ

(y − xTβ∗)2∆(y|x)dy +
∫ xTβ∗+ν∗ρ

2y′−xTβ∗+ν∗ρ

(y − xTβ∗)2∆(y|x)dy

> ν∗2
ρ

(∫ y′

xTβ∗−ν∗ρ

∆(y|x)dy +
∫ 2y′−xTβ∗+ν∗ρ

y′
∆(y|x)dy

)
+

∫ xTβ∗+ν∗ρ

2y′−xTβ∗+ν∗ρ

(y − xTβ∗)2∆(y|x)dy

> ν∗2
ρ

(∫ y′

xTβ∗−ν∗ρ

∆(y|x)dy +
∫ 2y′−xTβ∗+ν∗ρ

y′
∆(y|x)dy +

∫ xTβ∗+ν∗ρ

2y′−xTβ∗+ν∗ρ

∆(y|x)dy

)

= ν∗2
ρ

∫ xTβ∗+ν∗ρ

xTβ∗−ν∗ρ

∆(y|x)dy. (S4.22)
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Similar to (S4.19), together with (S4.15), (S4.16), (S4.17), and (S4.22), we have Gρ(β̃|β̃)−

Gρ(β
∗|β∗) > 0.

By using the same techniques, we can also prove Gρ(β̃|β̃)−Gρ(β
∗|β∗) > 0 under the

situation that xTβ∗ + ν∗
ρ > xTβ̃ + ν̃ρ. Therefore, we obtain Gρ(β

∗|β∗) < Gρ(β̃|β̃) under

the conditions specified in the Theorem 3. The proof is complete. ■

S4.5 Proof of Theorem 4

The following Lemma 2-6 are provided for the proof of Theorem 4.

Lemma 2. (Hoeffding’s inequality; Hoeffding (1963)) Let X1, . . . , Xn be independent ran-

dom variables. Assume that P (Xi ∈ [ai, bi]) = 1 for 1 ≤ i ≤ n, where ai and bi are

constants. Let X̄ = n−1
∑n

i=1 Xi. Then the following inequality holds

P (|X̄ − E(X̄)| ≥ ϵ) ≤ 2exp

(
− 2n2ϵ2∑n

i=1(bi − ai)2

)
,

where ϵ is a positive constant and E(X̄) is the expected value of X̄.

Lemma 3. Let X1, . . . , Xn is a sample of X with distribution function F (x) = P (X ≤ x).

For 0 < ρ < 1, suppose that νρ is the unique solution x of F (−x) ≤ ρ ≤ F (x). The

estimator of νρ is defined by

ν̂ρ =


X(nρ), if nρ is an integer,

X(⌊nρ⌋+1), if nρ is not an integer,



LIMING WANG ET AL.

where X(i) is the ith order statistic. Then, for every ϵ > 0,

P (|ν̂ρ − νρ| > ϵ) ≤ 2 exp(−2nδ2ϵ ),

where δϵ = min{F (νρ + ϵ)− ρ, ρ− F (νρ − ϵ)}.

Proof of Lemma 3. We first decompose

P (|ν̂ρ − νρ| > ϵ) = P (ν̂ρ > νρ + ϵ) + P (ν̂ρ < νρ − ϵ) .

By the definition of ν̂ρ, we have ν̂ρ = inf{x : Fn(x) ≥ ρ}, where Fn(x) is the empirical

distribution function given a sample. Thus,

P (ν̂ρ > νρ + ϵ) = P (ρ > Fn(νρ + ϵ))

= P

(
1

n

n∑
i=1

I(Xi > νρ + ϵ) > (1− ρ)

)

= P

(
1

n

n∑
i=1

I(Xi > νρ + ϵ)− [1− F (νρ + ϵ)] > δ1

)
,

where δ1 = F (νρ+ ϵ)− ρ. Therefore, utilizing Hoeffding’s inequality in Lemma 2, we have

P (ν̂ρ > νρ + ϵ) ≤ exp(−2nδ21).
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Similarly,

P (ν̂ρ < νρ − ϵ) = P (ρ < Fn(νρ − ϵ))

= P

(
1

n

n∑
i=1

I(Xi < νρ − ϵ) > ρ

)

= P

(
1

n

n∑
i=1

I(Xi < νρ − ϵ)− F (νρ − ϵ) > δ2

)
≤ exp(−2nδ22),

where δ2 = ρ− F (νρ − ϵ). Putting δϵ = min{δ1, δ2}, the proof is completed. ■

To better show the following Lemmas 4-6, we introduce some new notations. Let

γ(0.5) = Q(γ(0)), γ
(0.5)
ρ = Qρ(γ

(0)), and M̂(0.5) = {j : |γ(0.5)
j | is among the firstK largest of all}.

For an index set S ⊆ {1, . . . , p}, we define the function T (a;S) as

[T (a;S)]j =


aj, if j ∈ S,

0, if j /∈ S.

Then, we write γ̂
(1)
ρ = T (γ

(0.5)
ρ ;M̂(0.5)).

Lemma 4. (Lemma 5.1 in Wang et al. (2014)) Suppose that we have ∥γ(0.5)
ρ − β∗∥2 ≤

κ · ∥β∗∥2 for some κ ∈ (0, 1). Assuming that we have

K ≥ 4 · (1 + κ)2

(1− κ)2
· M, and

√
K∥γ(0.5) − γ(0.5)

ρ ∥∞ ≤ (1− κ)2

2(1 + κ)
· ∥β∗∥2, (S4.23)
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Then it holds that

∥γ̂(1)
ρ − β∗∥2 ≤

C ·
√
m√

1− κ
· ∥γ(0.5) − γ(0.5)

ρ ∥∞ +
(
1 + 4 ·

√
m/K

)1/2
· ∥γ(0.5)

ρ − β∗∥2,

(S4.24)

where m = N(M).

Lemma 5. Assume that Gρ(β
∗|β∗) ≤ Gρ(β|β∗) for all B(R;β∗). Define γ

(0.5)
ρ = β(t) −

u−1∇Gρ(β|β(t))|β=β(t) with stepsize 1/µ = 2/(C2 + C3). With Conditions C2 and C3, we

have

∥γ(0.5)
ρ − β∗∥2 ≤

(
1− 2 · C3 − C1

C3 + C2

)
∥β(t) − β∗∥2. (S4.25)

Proof of Lemma 5. By the definition of γ
(0.5)
ρ , we have

∥γ(0.5)
ρ − β∗∥2

= ∥β(t) − u−1∇βGρ(β|β(t))|β=β(t) − β∗∥2

= ∥β(t) − u−1∇βGρ(β|β∗)|β=β(t) + u−1∇βGρ(β|β∗)|β=β(t) − u−1∇βGρ(β|β(t))|β=β(t) − β∗∥2

≤ ∥β(t) − u−1∇βGρ(β|β∗)|β=β(t) − β∗∥2

+u−1∥∇βGρ(β|β∗)|β=β(t) −∇βGρ(β|β(t))|β=β(t)∥2 (S4.26)

We deal with the first term in (S4.25). Recall Gρ(β|β∗) is C2-Lipschitz-smooth and C3-
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strongly convex. By invoking standard optimization results for minimizing strongly convex

and smooth objective functions, e.g., in (Nesterov, 2013), for stepsize 1/µ = 2/(C2 +C3),

we have

∥β(t) − u−1∇βGρ(β|β∗)|β=β(t) − β∗∥2 ≤
(
1− C2 − C3

C2 + C3

)
·
∥∥β(t) − β∗∥∥

2
.

(S4.27)

Next, with Condition C1, the second term can be upper bounded by

u−1∥∇βGρ(β|β∗)|β=β(t) −∇βGρ(β|β(t))|β=β(t)∥2 =
2C1

C2 + C3

·
∥∥β(t) − β∗∥∥

2
.

(S4.28)

Taking (S4.27) and (S4.28) into (S4.26), (S4.25) is proved. The proof is completed. ■

Lemma 6. Assume each feature xj is bounded, i.e. ∥x∥∞ ≤ d, where d is a positive

constant. Let δρ = min{P (|yi−xT
i β

(t)| ≤ 2ν
(t)
ρ )−ρ, ρ}. For each ϵ > 0 and n > (8dν

(t)
ρ )/uϵ,

we have

P
(
∥γ(0.5) − γ(0.5)

ρ ∥∞ ≤ ϵ
)
≥ 1− δ,
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where

δ = 2 exp

(
− nu2ϵ2

32(dν
(t)
ρ )2

+
uϵ

2dν
(t)
ρ

− 2

n

)
+ 2 exp(−2nδ2ρ) + 2p · exp

(
− nu2ϵ2

(2dν
(t)
ρ )2

)
.

Proof of Lemma 6. Denote

Gn,ρ(β|β(t)) =
1

n

n∑
i=1

I(|yi − xT
i β

(t)| ≤ ν(t)
ρ )(yi − xT

i β)
2,

where ν
(t)
ρ satisfies E[I(|y − xTβ(t)| ≤ ν

(t)
ρ )] = ρ. Then, we can bound

∥γ(0.5) − γ(0.5)
ρ ∥∞ = ∥Q(γ(0))−Qρ(γ

(0))∥∞

=
1

u
∥∇γL(v(t+1),γ)|γ=γ(0) −∇Gρ(γ|β(t))|γ=γ(0)∥∞

≤ 1

u
∥∇γL(v(t+1),γ)|γ=γ(0) −∇γGn,ρ(γ|β(t))|γ=γ(0)∥∞

+
1

u
∥∇γGn,ρ(γ|β(t))|γ=γ(0) −∇γGρ(γ|β(t))|γ=γ(0)∥∞.

(S4.29)



S4. PROOFS

Recall that γ(0) = β(t). By letting ν̂
(t)
ρ = |y − xTβ(t)|(L), we have

∥∇γL(v(t+1),γ)|γ=β(t) −∇γGn,ρ(γ|β(t))|γ=β(t)∥∞

= ∥ 2
n

n∑
i=1

I(|yi − xT
i β

(t)| ≤ ν̂(t)
ρ )xi(yi − xT

i β
(t))− 2

n

n∑
i=1

I(|yi − xT
i β

(t)| ≤ ν(t)
ρ )xi(yi − xT

i β
(t))∥∞

= 2∥ 1
n

n∑
i=1

[I(|yi − xT
i β

(t)| ≤ ν̂(t)
ρ )− I(|yi − xT

i β
(t)| ≤ ν(t)

ρ )]xi(yi − xT
i β

(t))∥∞

=: 2A1

Denote Fn,r(x) = n−1
∑n

i=1 I(|yi −xT
i β

(t)| ≤ x) be the empirical distribution function

of |yi − xT
i β

(t)|. Then, A1 can be further bounded in probability as follows.

P (A1 > ϵ) ≤ P

(
max

j

∣∣∣∣∣ 1n
n∑

i=1

I(ν(t)
ρ ≤ |yi − xT

i β
(t)| ≤ ν̂(t)

ρ )xij(yi − xT
i β

(t))

∣∣∣∣∣ > ϵ, ν(t)
ρ ≤ ν̂(t)

ρ

)

+P

(
max

j

∣∣∣∣∣ 1n
n∑

i=1

I(ν̂(t)
ρ ≤ |yi − xT

i β
(t)| ≤ ν(t)

ρ )xij(yi − xT
i β

(t))

∣∣∣∣∣ > ϵ, ν̂(t)
ρ < ν(t)

ρ

)

≤ P

([
1

n

n∑
i=1

I(ν(t)
ρ ≤ |yi − xT

i β
(t)| ≤ ν̂(t)

ρ )

]
· dν̂(t)

ρ > ϵ, ν(t)
ρ ≤ ν̂(t)

ρ

)

+P

([
1

n

n∑
i=1

I(ν̂(t)
ρ ≤ |yi − xT

i β
(t)| ≤ ν(t)

ρ )

]
· dν(t)

ρ > ϵ, ν̂(t)
ρ < ν(t)

ρ

)

≤ P

(
Fn,r(ν̂

(t)
ρ )− Fn,r(ν

(t)
ρ ) >

ϵ

2dν
(t)
ρ

, ν(t)
ρ ≤ ν̂(t)

ρ

)
+ P

(
ν̂(t)
ρ > 2ν(t)

ρ

)
+P

(
Fn,r(ν

(t)
ρ )− Fn,r(ν̂

(t)
ρ ) >

ϵ

dν
(t)
ρ

, ν̂(t)
ρ < ν(t)

ρ

)

≤ P

(
|Fn,r(ν̂

(t)
ρ )− Fn,r(ν

(t)
ρ )| > ϵ

2dν
(t)
ρ

)
+ P

(
ν̂(t)
ρ − ν(t)

ρ > ν(t)
ρ

)
. (S4.30)
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We work on the first term in (S4.30). Based on the definition of ν̂
(t)
ρ and ν̂

(t)
ρ , for a

given ϵ > (2dν
(t)
ρ /n), we have

P

(
|Fn,r(ν̂

(t)
ρ )− Fn,r(ν

(t)
ρ )| > ϵ

2dν
(t)
ρ

)

≤ P

(
|Fn,r(ν̂

(t)
ρ )− ρ|+ |Fn,r(ν

(t)
ρ )− E[I(|y − xTβ(t)| ≤ ν(t)

ρ )]| > ϵ

2dν
(t)
ρ

)

≤ P

(
|Fn,r(ν

(t)
ρ )− E[I(|y − xTβ(t)| ≤ ν(t)

ρ )]| > ϵ

2dν
(t)
ρ

− 1

n

)

≤ 2 exp

(
− nϵ2

2(dν
(t)
ρ )2

+
2ϵ

dν
(t)
ρ

− 2

n

)
,

where the last inequality is from Hoeffding’s inequality in Lemma 2.

Then, we deal with the second term in (S4.30). With Lemma 3, it is easy to show the

empirical quantile ν̂
(t)
ρ is consistent. To be specific,

P
(
ν̂(t)
ρ − ν(t)

ρ > ν(t)
ρ

)
≤ 2 exp(−2nδ2ρ),

where δρ = min{P (|yi − xT
i β

(t)| ≤ 2νρ)− ρ, ρ}.
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Thus, for a given ϵ > (4dν
(t)
ρ /un), we have

P

(
1

u
∥∇γL(v(t+1),γ)|γ=β(t) −∇γGn,ρ(γ|β(t))|γ=β(t)∥∞ > ϵ

)
≤ P

(
A1 >

uϵ

2

)
≤ 2 exp

(
− nu2ϵ2

8(dν
(t)
ρ )2

+
uϵ

dν
(t)
ρ

− 2

n

)
+ 2 exp(−2nδ2ρ). (S4.31)

Then, we work on ∥∇γGn,ρ(γ|β(t))|γ=β(t) − ∇γGρ(γ|β(t))|γ=β(t)∥∞ in (S4.29). Let

Zij = I(|yi − xT
i β

(t)| ≤ ν
(t)
ρ )xij(yi − xT

i β
(t)). Obviously, |Zij| can be upper bounded by

dν
(t)
ρ . It follows that

P

(
1

u
∥∇γGn,ρ(γ|β(t))|γ=γ(h) −∇γGρ(γ|β(t))|γ=γ(h)∥∞ > ϵ

)
= P

(
max

j

∣∣ 1
n

n∑
i=1

Zij − E(Zij)
∣∣ > uϵ

)

≤
p∑

j=1

P

(∣∣ 1
n

n∑
i=1

Zij − E(Zij)
∣∣ > uϵ

)

≤ 2p · exp

(
− nu2ϵ2

(dν
(t)
ρ )2

)
. (S4.32)
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Together with (S4.31) and (S4.32),

P
(
∥γ(0.5) − γ(0.5)

ρ ∥∞ ≤ ϵ
)

≤ P

(
1

u
∥∇γL(v(t+1),γ)|γ=β(t) −∇γGn,ρ(γ|β(t))|γ=β(t)∥∞ >

ϵ

2

)
+P

(
1

u
∥∇γGn,ρ(γ|β(t))|γ=γ(h) −∇γGρ(γ|β(t))|γ=γ(h)∥∞ >

ϵ

2

)
≤ 1− 2 exp

(
− nu2ϵ2

32(dν
(t)
ρ )2

+
uϵ

2dν
(t)
ρ

− 2

n

)

−2 exp(−2nδ2ρ)− 2p · exp

(
− nu2ϵ2

(2dν
(t)
ρ )2

)
.

Since ϵ and p are allowed to be varying with n, the above probability bound can be

expressed as 1 − O(exp{−cnϵ2 + log p}) with some positive constant c. This lemma is

proved. ■

Proof of Theorem 4. Given a β(t), we first bound ∥β(t+1)−β∗∥2 as follows. Recall γ(0)

is set to be β(t). When the IHT procedure involves one iteration, we have

∥β(t+1) − β∗∥2 = ∥γ(1) − β∗∥2

= ∥H(γ(0.5);K)− β∗∥2

≤ ∥T (γ(0.5);M̂(0.5))− T (γ(0.5)
ρ ;M̂(0.5))∥2 + ∥γ̂(1)

ρ − β∗∥2.

(S4.33)

With Lemma 6, for each ϵ > 0 and n > (8dν
(t)
ρ )/uϵ, the first term in (S4.33) can be further
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bounded by

∥T (γ(0.5);M̂(t+0.5))− T (γ(0.5)
ρ ;M̂(t+0.5))∥2

= ∥(γ(0.5) − γ(0.5)
ρ )M̂(t+0.5)∥2

≤
√
K∥(γ(0.5) − γ(0.5)

ρ )M̂(t+0.5)∥∞

≤
√
K∥γ(0.5) − γ(0.5)

ρ ∥∞

≤
√
Kϵ

with probability at least 1 − δ. If all assumptions in Lemma 4 hold, the second term

∥γ̂(1)
ρ − β∗∥2 in (S4.33) can be upper bounded by using (S4.24). Denote ϱ = 1 − 2(C3 −

C1)/(C3 + C2) ∈ (0, 1). Then, with Lemma 5, we have

∥β(t+1) − β∗∥2 = ∥γ(1) − β∗∥2

≤
(√

K +
C ·

√
m√

1− κ

)
· ϵ+

(
1 + 4 ·

√
m/K

)1/2
· ∥γ(0.5)

ρ − β∗∥2

≤
(√

K +
C ·

√
m√

1− κ

)
· ϵ+

(
1 + 4 ·

√
m/K

)1/2
· ϱ · ∥γ(0) − β∗∥2,

≤
(√

K +
C ·

√
m√

1− κ

)
· ϵ+

(
1 + 4 ·

√
m/K

)1/2
· ϱ · ∥β(t) − β∗∥2

(S4.34)

occurs with probability at least 1− δ.
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Next, under the event

E =
{
∥Q(β(t))−Qρ(β

(t))∥∞ ≤ ϵ, for all t = 0, 1, . . . , T − 1
}
,

we prove that

∥β(t) − β∗∥2 ≤
√
K + C

√
m/(1− κ)

1−√
ϱ

· ϵ+ ϱt/2 · ∥β(0) − β∗∥2, for all t = 0, 1, . . . , T − 1

(S4.35)

by mathematical induction. By invoking Lemma 5 and setting t = 0, we have

∥γ(0.5)
ρ − β∗∥2 ≤ ϱ∥β(0) − β∗∥2 ≤ ϱR < R = κ∥β∗∥2.

Thus, the assumption that ∥γ(0.5)
ρ − β∗∥2 ≤ κ · ∥β∗∥2 for some κ ∈ (0, 1) in Lemma 4

holds. In addition, by assuming (3.17) and (3.18) in Theorem 4, we can also verify that

the assumption in (S4.23) of Lemma 4 on the event E . Thus, for t = 0,

∥β(1) − β∗∥2 ≤
(√

K +
C ·

√
m√

1− κ

)
· ϵ+

(
1 + 4 ·

√
m/K

)1/2
· ϱ · ∥β(0) − β∗∥2.

(S4.36)
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Since it is assumed that K ≥ 16 · (1/ϱ− 1)−2 ·m in (S4.23) of Lemma 4, it follows that

(1 + 4 ·
√

m/K)1/2 ≤ 1/
√
ϱ.

Since 1−√
ϱ < 1 in (S4.35), we can obtain

∥β(1) − β∗∥2 ≤
(√

K +
C ·

√
m√

1− κ

)
· ϵ+√

ϱ · ∥β(0) − β∗∥2

≤
√
K + C

√
m/(1− κ)

1−√
ϱ

· ϵ+√
ϱ · ∥β(0) − β∗∥2.

(S4.37)

Obviously, (S4.35) holds for t = 1. Next, suppose we have that (S4.35) holds for some

t ≥ 1. Since it is assumed that ∥β(0)−β∗∥2 ≤ R and (
√
K+C

√
m/(1− κ))·ϵ ≤ (1−√

ϱ)2·R

in Theorem 4, we have

∥β(t) − β∗∥2 ≤
√
K + C

√
m/(1− κ)

1−√
ϱ

· ϵ+ ϱt/2 · ∥β(0) − β∗∥2

≤ (1−√
ϱ) ·R +

√
ϱ ·R = R. (S4.38)

Hence, β(t) ∈ B(R;β∗). Similar to the situation with t = 0, by invoking Lemma 5 and

setting γ(0) = β(t), we have

∥γ(0.5)
ϱ − β∗∥2 ≤ ϱ∥β(t) − β∗∥2 ≤ ϱR < R = κ∥β∗∥2.
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Following the proof of (S4.37), we obtain

∥β(t) − β∗∥2 ≤
(√

K +
C ·

√
m√

1− κ

)
· ϵ+√

ϱ · ∥β(t) − β∗∥2

≤
(
1 +

√
ϱ

1−√
ϱ

)(√
K +

C ·
√
m√

1− κ

)
· ϵ+√

ϱ · ϱt/2 · ∥β(t) − β∗∥2

≤
√
K + C

√
m/(1− κ)

1−√
ϱ

· ϵ+ ϱ(t+1)/2 · ∥β(0) − β∗∥2, (S4.39)

where the second inequality is obtained by plugging in (S4.35) for t. Hence, we have (S4.35)

holds for t+1. By induction, we conclude that (S4.35) holds conditioning on the event E ,

which occurs with probability at least 1− t · δ. By taking ϱ = 1− 2(C3 −C1)/(C3 +C2) ∈

(0, 1) into (S4.39), Theorem 4 is proved. ■

S4.6 Proof of Theorem 5

By the results in Theorem 4, we have

∥β(t) − β∗∥2 ≤ ϱt/2 ·R +
(
√
K + C ′

√
m/(1− κ)) · ϵ

1−√
ϱ

(S4.40)

holds with probability at least 1 − t · δ and log δ = O(−cnϵ2 + log p). Together with

Condition C4 and the fact R = κ · ∥β∗∥2, (S4.40) can be upper bounded by

∥β(t) − β∗∥2 ≤ ϱt/2 · κ · ω2n
τ2 + c1n

τ3/2 · ϵ, (S4.41)
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where c1 is a positive constant. Recall that it is assumed minj∈M |β∗
j | ≥ ω1n

−τ1 in Con-

dition C4. If the upper bound in (S4.41) is lower than ω1n
−τ1 with an overwhelming

probability, the sure screening property (limn→∞M ⊂ M(t) → 1) is established. To this

end, we first set ϵ = c2n
−ζ with ζ > τ3/2 + τ1. Thus, when n is sufficiently large, we have

c1n
τ3/2 · ϵ = c1c2n

−ζ+τ3/2 < 0.5 · ω1n
−τ1 . (S4.42)

When t > 2 logϱ[ω1/(2κω2)
−1 · n−τ1−τ2 ], it can be verified

ϱt/2 · κ · ω2n
τ2 < 0.5 · ω1n

−τ1 . (S4.43)

Since log p = O(na) for some 0 ≤ a < 1 in Condition C4, there exists a positive

constant c3 such that p ≤ c3n
a. Together with (S4.42) and (S4.43), when by setting

ϵ = cn−ζ and t = t0, t0 + 1, . . . t0 + T , we have that

P
(
M ⊂ M(t)

)
≤ P

(
∥β(t) − β∗∥2 < ω1n

−τ1
)

≤ 1− t ·O(exp{−cnϵ2 + c3n
a})

≤ 1− t ·O(exp{−c · c2n1−2ζ + c3n
a}). (S4.44)

Since it is assumed in Condition C4 that there exists a ζ ∈ (τ3/2+ τ1, (1− a)/2), we have

1− 2ζ > a. By the fact that t ≤ t0+T = o(exp{c · c2n1−2ζ − c3n
a}), the above probability

bound in (S4.44) goes to 1 as n → ∞. The Theorem 5 is proved. ■



LIMING WANG ET AL.

Bibliography

Alfons, A., C. Croux, and S. Gelper (2013). Sparse least trimmed squares regression for

analyzing high-dimensional large data sets. The Annals of Applied Statistics , 226–248.

Cho, H. and P. Fryzlewicz (2012). High dimensional variable selection via tilting. Journal

of the Royal Statistical Society: Series B (Statistical Methodology) 74 (3), 593–622.

Fan, J. and J. Lv (2008). Sure independence screening for ultrahigh dimensional feature

space. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 70 (5),

849–911.

Hawkins, D. M. (1994). The feasible solution algorithm for least trimmed squares regres-

sion. Computational statistics & data analysis 17 (2), 185–196.

Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables.

Journal of the American Statistical Association 58 (301), 13–30.

Kurnaz, F. S., I. Hoffmann, and P. Filzmoser (2018). Robust and sparse estimation meth-

ods for high-dimensional linear and logistic regression. Chemometrics and Intelligent

Laboratory Systems 172, 211–222.

Li, G., H. Peng, J. Zhang, and L. Zhu (2012). Robust rank correlation based screening.

The Annals of Statistics 40 (3), 1846–1877.



BIBLIOGRAPHY

Mai, Q. and H. Zou (2015). The fused kolmogorov filter: A nonparametric model-free

screening method. The Annals of Statistics 43 (4), 1471–1497.

Nesterov, Y. (2013). Introductory lectures on convex optimization: A basic course, Vol-

ume 87. Springer Science & Business Media.

Rousseeuw, P. J. and A. M. Leroy (1987). Robust regression and outlier detection, Volume

589. John wiley & sons.

She, Y. and A. B. Owen (2011). Outlier detection using nonconvex penalized regression.

Journal of the American Statistical Association 106 (494), 626–639.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the

Royal Statistical Society. Series B (Methodological) 58, 267–288.

Wang, Z., Q. Gu, Y. Ning, and H. Liu (2014). High dimensional expectation-

maximization algorithm: Statistical optimization and asymptotic normality. arXiv

preprint arXiv:1412.8729 .

Wen, C., A. Zhang, S. Quan, and X. Wang (2020). Bess: Best subset selection for sparse

generalized linear model and cox model. J Stat Softw 94, 1–24.

Xu, C. and J. Chen (2014). The sparse mle for ultrahigh-dimensional feature screening.

Journal of the American Statistical Association 109 (507), 1257–1269.



LIMING WANG ET AL.

Zang, Q., C. Xu, and K. Burkett (2022). Smle: An r package for joint feature screening

in ultrahigh-dimensional glms. arXiv preprint arXiv:2201.03512 .

Zhu, J., C. Wen, J. Zhu, H. Zhang, and X. Wang (2020). A polynomial algorithm for best-

subset selection problem. Proceedings of the National Academy of Sciences 117 (52),

33117–33123.


	The comparison of HDS with LTS and MSMOD
	The implementation details of IHT and the final algorithm for HDS
	Additional Examples in Simulations
	Proofs
	Proof of Proposition 1
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5


