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A Numerical results

In this section, we perform numerical experiments on simulated datasets to investigate the
performance of the proposed change point estimation and inference procedure, which contains
three steps: (i) the preliminary estimation of the change points, (ii) the refinement of change
point estimators and (iii) the construction of confidence intervals. Throughout, we refer to our
combined procedure as ‘FRBS’.

A.1 Simulation studies

Settings. We modify the simulation settings of Yuan and Cai (2010) and Cai and Yuan
(2012) by introducing temporal dependence in {X j}?:l and changes in {,BJ* 1. Specifically,
we simulate data from the model described in (1.1) where the error process {¢; }?:1 is a sequence
of i.i.d. standard normal random variables, and {X; }?:1 is a stationary process following

50
X;=> lnZmjbm, 1<j<n,
m=1

with ¢1 = 1, ¢pmi1 = V2cos(mnt) for m > 1 and (, = (=1)" 'm~!. For each m > 1,
{Zmu‘}?:l is independently generated as an autoregressive process, i.e. Z,,; = 0.3Z, ;-1 +

V1—0.32-¢p,; with ey, ; - N(0,1). Note that (2, = m~2 are the eigenvalues of the covariance
function of X, and ¢, are the corresponding eigenfunctions. Let

50 50
BO) =4 Z (=)™ m =4, and BN = (4 - cg) Z (=)™ m2¢,,
m=1 m=1
where the coefficient c¢g € {0.5,1}. We consider the slope functions
B(O) for je {17"'7771}7

B(l) for jG {771+17"')772}7

pkmed 2 for je{nc+1,...,n}.



The cases with cg = 0.5 and cg = 1 correspond to the settings with small and large jump sizes,
respectively. We further assume that for each j, the random function X; is observed in an
evenly spaced fixed grid with size p = 200. We choose the reproducing kernel Hilbert space
H(K) as the Sobolev space

Wy = {f € L2[0,1] : [[fD]lz2 < 00, j = 0,1},

with the corresponding reproducing kernel

cosh(iinc}(;gl)( 1—s) PR

cosh(s)cosh(1—t) ¢ < ¢ < 1
K(s,t) =
sinh(1) -

Note that the reproducing kernel and the covariance function of X; share a common ordered
set of eigenfunctions (see Cai and Yuan, 2012).

Evaluation measurements. Let {n;}~_, and {7jx}}_, be the set of true change points and a
set of estimated change points, respectively. To assess the performance of different methods in
localization, we report (i) the proportions (out of 200 repetitions) of over- or under-estimating
K, ie. K>Kand K < IC, respectively; and (ii) the average and the standard deviation of the

scaled Hausdorff distances between {n;}X_, and {7 }X_, defined as

1

dy = —max{ max min  |7; —ng|, max min |7 — k|

ply ] ks = 77] nk )
n j=0,..K+1 k=0,...,K+1 k=0,...,K+1 j=0,...,K+1

where we set 7p = 1 and ﬁ,@ g =n+L We computed the refined estimators using interpolated
refinement intervals, defined in (2.10). Given a confidence level a € (0,1), we evaluate the
performance of the proposed confidence intervals by measuring their coverage of 7, defined as

~ gu(a/2) a.(1—a/2
coverg(l —a) = ]L{nk IS [ﬁk + %2/)7 T + q“(A2/)] }7
/ik K’k
for each k € {1,...,K}. To ensure the validity of the above definition, we compute the averaged

coverage among all the repetitions where we obtain K = .

Comparison. To the best of our knowledge, no method currently tackles change point problems
in the scalar-on-function (functional linear) regression setting we study. To provide meaning-
ful baselines, we construct three competitors. (1) FPCABS replaces the RKHS slope-function
estimator in our procedure with the FPCA-based estimator of Yao et al. (2005) and applies ex-
actly the same seeded binary segmentation. (2) HDLR is the high-dimensional linear-regression
change-point method of Xu et al. (2024). We include it because densely sampled functional pre-
dictors can be viewed as high-dimensional vectors; moreover, HDLR, like our FRBS algorithm,
follows a two-stage “preliminary-then-refinement” strategy, allowing a step-by-step performance
comparison. Note that among the 3 methods, FRBS and FPCABS belong to the functional lin-
ear regression framework, treating covariates explicitly as discretely observed functions, whereas
HDLR falls within the high-dimensional linear regression paradigm, viewing covariates simply
as high-dimensional vectors in a design matrix.

Selection of tuning parameters and estimation of unknown quantities. Four tuning
parameters are involved in the proposed change point localization and inference procedures.
These are the number of layers M for the seeded intervals (see Definition 1), w and 7 for
the FRBS algorithm (see Algorithm 1) and the block size 2¢ for long-run variance estimation
(see Algorithm 2) in the confidence interval construction. We set M = [logy(10)] + 1. In



place of w, which is used in specifying Ae_s, we propose to select a single Ae_s = A along
with the threshold 7, adapting the cross-validation method proposed by Rinaldo et al. (2021).
Specifically, we first divide {(yj,Xj)}?zl into those with odd and even indices, respectively.

For each possible combination of A € {0.1,0.2,0.3,0.4,0.5} and 7 € {1,1.5,2,2.5,3} x n?/5,

we obtain the FRBS outputs (l?, K and {Bk}fzo) based on the training set, and compute the
least squared prediction error on the test set as the validation loss. We select the combination
of A and 7 that minimize the validation loss. Following the discussion after Theorem 3, we
set ¢ = KmaX1<k<l€{ek - sk})2/5/2-| with {(sk,ex)}x_, given in (2.10). We note that the
simulation results remain robust against the choices of the tuning parameters M and gq.

For the FPCABS, we tune the number of principal components K and the threshold 7
using the similar CV approach as for the FRBS. Specifically, for each combination of K &
{5,10,15,20} and 7 € {1,1.5,2,2.5,3} x n*®, we select the combination of K and 7 that
minimize the validation loss.

For the HDLR, we use the CV method in Xu et al. (2022) to select the tuning parameters,
specifically A (Lasso penalty) and £ (Lo penalty), for the DPDU algorithm therein, with candi-
date sets A € {0.05,0.1,0.5,1,2,3,4,5} and £ € {5, 10, 15, 20, 25, 30, 35,40}, and use the default
values of the other tuning parameters.

Scenario I: single change point. Let £ =1 and n = n/2. We vary n € {200, 400, 600, 800},
cg € {0.5,1} and fix p = 200. Tables 1 and 2 summarize the localization and inference per-
formance of FRBS, FPCABS and HDLR. Table 2 excludes the case with n = 200 where there
are a large number of repetitions with mis-estimated K for all methods. In Table 1, comparing
the Hausdorff distance computed with the preliminary (d};®) and the refined estimators (dir),
we see that the refinement step improves the performance for all methods in consideration as n
increases and/or the jump size increases. The detection power improves with the sample size as
evidenced by the decrease in the proportion of under-detection. At the same time, FRBS and
FPCABS do not detect more false positives as the sample size increases, unlike HDLR. Overall,
the proposed FRBS outperforms both competitors by a large margin, in its detection accu-
racy as well as localization performance, demonstrating the advantage of adopting a functional
approach over the high-dimensional one of HDLR. Although the RKHS and the covariance
function of X; are well-aligned, the dimension reduction-based approach of FPCABS comes
short of the RKHS-based FRBS. Table 2 shows that our proposed construction of confidence
intervals performs well especially when the jump size is relatively high. In contrast, the inter-
vals constructed based on HDLR perform poorly in capturing the change points, often with the
intervals being too narrow. All these observations suggest the benefit of adopting the proposed
functional approach.

Scenario II: unequally-spaced two change points. Let K = 2 and the unequally-spaced
change points {1,772} = {n/4,5n/8}. We vary n € {400,600,800} and fix p = 200. Table 3
shows the localization performance of both preliminary and final estimators improve as n in-
creases. The proposed FRBS again significantly outperform the FPCABS and the HDLR in all
configurations.

Due to the overall poor detection performance HDLR and FRBS when cg = 0.5, we only
report the results from the confidence intervals produced by FRBS for the setting with cg =1
in Tables 4 and 5. The comparison between Tables 4 and 5 reveals that our inference procedure
performs better when applied to 7, associated with larger spacing with adjacent change points.



Table 1: In Scenario I, the proportions of under-, over-detection, and the average and standard
deviation (in parentheses) of scaled Hausdorff distance over 200 repetitions are reported for
FRBS, FPCABS and HDLR. The best performance of each measurement is highlighted in bold

in each configuration. The single change point is located at n = n/2.
K =1and p=200
n K<K K>K e din K<k K>k ane din
FRBS, cs = 0.5 (small jump size) FRBS, ¢ =1 (large jump size)
200 0.310 0.015 0.198 (0.212) 0.190 (0.216) 0 0.025 0.033 (0.053) 0.027 (0.045)
400 0.105 0.045 0.091 (0.150) 0.084 (0.151) 0 0.025 0.018 (0.032) 0.013 (0.026)
600 0.045 0.030 0.060 (0.111) 0.048 (0.108) 0  0.020 0.017 (0.037) 0.012 (0.035)
800 0.005 0.020 0.033 (0.053) 0.020 (0.044) 0  0.010 0.013 (0.028) 0.009 (0.027)
FPCABS, ¢z = 0.5 (small jump size) FPCABS, ¢3 =1 (large jump size)
200 0.385  0.050 0.247 (0.213)  0.245 (0.216)  0.005  0.140  0.069 (0.082)  0.053 (0.079)
400 0110 0.130  0.114 (0.151) 0.103 (0.153) 0 0.05 0.031 (0.048)  0.024 (0.046)
600 0.045 0.095 0.068 (0.112) 0.058 (0.112) 0 0.060  0.022 (0.046)  0.017 (0.046)
800 0.015  0.085 0.048 (0.079)  0.037 (0.077) 0 0.030  0.015 (0.035)  0.010 (0.032)
HDLR, ¢g = 0.5 (small jump size) HDLR, ¢g =1 (large jump size)
200 0.630  0.050 0.350 (0.196) 0.354 (0.195) 0.080  0.150  0.118 (0.138)  0.115 (0.151)
400 0275  0.070  0.200 (0.196)  0.201 (0.202)  0.005  0.180  0.066 (0.078)  0.063 (0.104)
600 0.00 0110 0.127 (0.146) 0.126 (0.159) 0  0.100  0.041 (0.061)  0.034 (0.076)
800 0.080 0105 0112 (0.137) 0.105(0.147) 0  0.135 0.040 (0.059)  0.033 (0.078)
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—

Table 2: In Scenario 1, the averaged coverage and the average and standard deviation (in
parentheses) of the width of the confidence intervals from FRBS and HDLR over 200 repetitions
are reported. The single change point is located at n = n/2.
K =1 and p =200
a=0.01 a = 0.05
n  cover(l —a)  width(l —«)  cover(l —«) width(l — «)
FRBS, ¢g = 0.5 (small jump size)
400 0.982 109.923 (38.551) 0.935 72.441 (24.811)
600 0.973 111.502 (28.749) 0.924 73.076 (19.474)
800 0.974 117.712 (32.737) 0.918 77.015 (20.509)
FRBS, cg =1 (large jump size)

400 0.989 42.877 (9.479) 0.923 28.515 (6.469)

600 0.974 43.505 (7.582) 0.969 28.299 (4.811)

800 0.990 43.892 (7.125) 0.949 28.831 (4.435)
HDLR, ¢g = 0.5 (small jump size)

400 0.405 19.504 (4.493) 0.321 13.450 (2.944)

600 0.424 23.690 (4.432) 0.367 16.000 (2.849)

800 0.497 26.650 (4.294) 0.387 17.975 (2.685)
HDLR, cg =1 (large jump size)

400 0.748 18.153 (3.826) 0.681 12.712 (2.464)

600 0.828 20.722 (3.553) 0.750 14.272 (2.344)

800 0.896 92.879 (3.551) 0.821 15.740 (2.284)




Table 3: In Scenario 11, the proportions of under-, over-detection, and the average and standard
deviation (in parentheses) of scaled Hausdorff distance over 200 repetitions are reported for
FRBS, FPCABS and HDLR. The best performance of each measurement is highlighted in bold
in each configuration. The single change point is located at 7 = n/2. The two change points
are located at n; = n/4 and 1 = 5n/8.
K =2 and p = 200
n K<K K>K di® din
FRBS, c¢g = 0.5 (small jump size)
400 0.460 0.015 0.194 (0.154) 0.190 (0.157)
600 0.265 0.025 0.120 (0.134) 0.108 (0.139)
800 0.150 0.015 0.081 (0.108) 0.068 (0.109)
FRBS, cg =1 (large jump size)
400 0.010 0.025 0.029 (0.042) 0.024 (0.042)
600 0  0.015 0.020 (0.023) 0.011 (0.018)
800 O 0.015  0.015 (0.021) 0.011 (0.019)
FPCABS, cg = 0.5 (small jump size)
400 0555  0.120  0.238 (0.144)  0.235 (0.146)
600 0.465 0.085 0.194 (0.152)  0.187 (0.159)
800 0.240 0.140  0.128 (0.130)  0.119 (0.135)
FPCABS, ¢ =1 (large jump size)
400 0.015  0.125  0.049 (0.057)  0.039 (0.057)
600 0 0.070  0.027 (0.031)  0.017 (0.028)
800 0 0.075  0.023 (0.035)  0.017 (0.035)
HDLR, ¢g = 0.5 (small jump size)
400 0.930 0.015 0.275 (0.073)  0.300 (0.084)
600 0.890 0.010 0.252 (0.062)  0.275 (0.080)
800 0.895 0.015 0.249 (0.055) 0.273 (0.072)
HDLR, cg =1 (large jump size)
400 0.820 0.020 0.224 (0.045)  0.244 (0.058)
600 0.900 0.015 0.229 (0.039) 0.244 (0.043)
800 0.865 0.005 0.228 (0.039) 0.239 (0.039)

Table 4: In Scenario II, the averaged coverage and the average and standard deviation (in
parentheses) of the width of the confidence intervals from FRBS over 200 repetitions for n; are
reported.

FRBS, p = 200
a=0.01 a = 0.05
n  cover;(l —a) width;(1 —«a) cover;(l —a) width;(1 — «)
cg =1 (large jump size)

400 0.959 43.591 (12.428) 0.933 28.741 (7.823)
600 0.994 45.492 (12.807) 0.980 29.751 (8.081)
800 0.979 43.477 (9.224) 0.958 28.456 (5.528)




Table 5: In Scenario II, the averaged coverage and the average and standard deviation (in
parentheses) of the width of the confidence intervals from FRBS over 200 repetitions for 7, are
reported.

FRBS, p =200
a=0.01 a=0.05
n  covery(l —a) widtha(l — ) coverg(l —a) widtha(1l — )
csg =1 (large jump size)

400 0.980 45.114 (12.250) 0.938 29.389 (7.501)
600 0.990 44.142 (10.934) 0.980 28.909 (6.844)
800 0.990 44.067 (9.165) 0.958 28.798 (5.734)

B Additional real data analysis

We analyze the relationship between the U.S. Treasury yield curve and monthly inflation using
publicly available economic data from January 2000 to December 2024 (300 months). For each
month, the functional covariate is constructed as the vector of Treasury yields at eleven standard
maturities, ranging from 1 month to 30 years, measured on the last trading day of the month.
The scalar response is defined as the month-over-month percentage change in the Consumer
Price Index (CPI), representing the inflation rate for that month. This setup provides a time
series of paired functional-scalar observations, allowing us to investigate potential structural
changes in the predictive association between the yield curve and inflation over the past two
decades, a period that includes several well-documented macroeconomic regime shifts.

More specifically, for each month j from January 2000 to December 2024 (n = 300), let X; (k)
denote the Treasury yield curve in month j evaluated at maturity k, where k ranges over the
set {1m, 3m, 6m, 1y, 2y, 3y, 5y, Ty, 10y, 20y, 30y}. Thus, X; = {X;(k)}; represents a discretely
observed yield curve for month j. We use the yield from the last trading day of each month and
impute missing values where necessary to ensure a complete functional covariate. The scalar
response is the monthly inflation rate, defined as the month-over-month percentage change in the
CPI. All data are obtained from publicly available sources at https://fred.stlouisfed.org
and are plotted in Figure 1.
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Figure 1: The monthly inflation rate, (y;, left); the U.S. Treasury yield curves (X;(k), right).
The refined change points estimated by FRBS are marked by vertical dashed lines.

Our empirical analysis of the U.S. Treasury yield curve and inflation relationship reveals
that the proposed FRBS method successfully identifies two major structural change points,
July 2007 and April 2020, both of which correspond closely to well-documented macro-financial


https://fred.stlouisfed.org

regime shifts: the onset of the global financial crisis and the market turmoil at the onset of the
COVID-19 pandemic (see e.g. Guidolin and Tam, 2013; Gorton et al., 2020; He et al., 2022).
In contrast, the HDLR detects only a single change point in March 2008, which, while broadly
consistent with the financial crisis period, does not align as precisely with established economic
milestones. The FPCABS estimates two change points at June 2009 and February 2014, which
do not coincide with the main documented policy or market turning points. Overall, these results
highlight the superior temporal alignment and interpretability of the change points detected by
FRBS, demonstrating its advantage in uncovering regime shifts that are both statistically and
economically meaningful.

C Proof of Theorem 1
Proof. For (s, en] € J and for all t € (s, €] we define

éim,em _ (t — sm)(em —
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For the interval (s, ], consider the event

A(Sm, em) = {for all t € (s, em),
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and define the event

A= [ Alsm.em). (1)
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We established in Lemma C.2 that

P(.A)—>1 as i — 00.

All the analysis in the rest of this proof is under this asymptotically almost sure event A. The
strategy here is to use an induction argument. Denote

(n/A)AI/(2r+1) 10g1+2§ n

9 =Ch
K

Step 1: We show that, FRBS will consistently reject the existence of change points if they are
no undetected change points in (s, e]. By induction hypothesis, we have

Ik — s| < g, le = Meg1| < Vg

For each (s, ep] € J such that (s, em| C (s, €], there are four possible cases which are outlined
below

1) Sm <Mk < N1 < € With ng — s < Vg and Ngy1 — e < Vppr

1) e < sm < em < Ngg1 with sy — g < Y and g1 — em < Jgya,

)
)

i) np—1 < sm <Mk < e < N1 with ng — s, < g,
)

iv) me—1 < sm <Mk < e < Mgt With e, — mp < Yy



We shall consider the first case, all other cases are simpler and could be handled similarly. There
are two previously detected change point 7 and 7;11 in (s, €] and we are going to show that
FRBS shall not detect any change point in (s, e,,]. On the event A we write that

m’m 2

n
< 3”%(% — Sm) + 3/€%+1(e — Npr1) + 2 (K) nl/@r+1) 10g1+25(n)

< (8C; +2) (%) nl/ @) 166142 (1) < 7

o~ 3~ 1
Vi e (s, ] meem < §G§m,em n (%) log!+2 (n) (nl/(2r+1) + )

where the second last line follows from Lemma C.6 and the last line just follows from the
definition of 7.

Step 2: We show that FRBS will correctly detect the existence of an undetected change point
n (s,e]. In this case, there exists some change point, 7 in (s, €], such that

min{ny, — s,e — N} > A — Iy,

for some 1 < k < K. Realize that A — 9, > 4A/5, asymptotically. For this step, it is sufficient
to show that the set M*¢ form Algorithm 1, is not empty. From the construction of intervals in
J and from Lemma C.1, we can always find an interval (s,,, e,,] € J such that (s, en] C (s, €]
containing 7 such that

em — Sm < A, and min{ng — Sm, em — Mt > A/5. (2)

On the event A, we have
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Since 7y, is the only change point in (s, €y,], using (2), we write that
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We may extend (3) to have
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where the second last line follows from (4) and the last line follows from Assumption 3. Therefore
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Step 3: This is the localization step. We have M®¢ = (). Let b = by« be the chosen point
in Algorithm 1. Let (Sy,», em+] be the corresponding interval. Since it is the narrowest one, we
have (e — Sm+) < (ém — Sm) < A, where (s, ey] is the interval picked at (2). Therefore,
(Sm=*, em=] can contains exactly one change point 7.



Without loss of generality, let’s assume that b > ;. Additionally, we shall assume that (b—mny) >
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Step 3A: the order of magnitude of (6), (7), (8) and (9). Following from the Lemma C.3,

we have
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Step 3B: the order of magnitude of (10) and (11). Observe that from Lemma G.9 we
may have
t/ 2
1 * * /
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where we use =" < 1 and log ((b — sm+)K7) > 1 in the last line. This bound (10). Therefore
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Step 3C: the lower bound of (5): Observe that from Lemma G.8 we may have
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and using Lemma J.4, we may write
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Following (13), we may write
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where we use bb__sink* +1>1 and log ((b — sp+)kz) > 1 in the last line.

Following from step 3A, step 3B and step 3C, we get

(b— nk)mﬁ -0, (\/E\/ (b — mi) kg {loglJrg(b — 77;&&%)})
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with L < n/A, it implies

(b= m)3 = Op (n/A)AY ) logIH€(A) ) (15)

This concludes the induction step when (s, e] contains an undetected change point. ]

C.1 Technical results for the proof of Theorem 1

Lemma C.1. Let (s,e] C (0,n] be given. Let ny be a point in (s, e]. Suppose min{ny—s,e—ni} >
4A /5. Then there exists an interval (Sm,em] € J N (s, €] containing i such that

em — Sm < A, and min{ng — Sm, em — Nk} > A/5.

Proof. There are at most two intervals in each layer J, for 1 < k < M, that contains any given
point. We shall consider the layer with [ = A and by = A/2. Without loss of generality, let

((i—l)A (i—-1)A
2

o+ A} and (%, % + A] are intervals containing 7.

Case I: Suppose 7 — iA/2 > (i + 1)A/2 — ng. Observe that 7 —iA/2 > A/4. The interval
(Sm,em] = (%, % + A] satisfies the required property because np — s, = n — 1A/2 > A/4

and ey, —np > iA/2+ A —((1 —2)A/2+ A) = A)/2.

Case II: Suppose n —iA/2 < (i+1)A/2 —ny. Using arguments akin to the previous case, the

interval (%, % + A} emerges as the necessary interval. ]

C.1.1 Large probability event

Recall for any a > 0, §, < a~27/(r+1),

11



Lemma C.2. Let £ > 0. Then, as n — 0o, we have
P(V(sm,em] €J, Vte (sm,eml

‘ Wtsm em éf'm ,€m

056G < (%) log™* %) (w2 4 0.5) ) Y

Proof. Let (Sm,em] € J be fixed. For notational simplicity, denote s = s,,, and e = e,,. Denote

e

Wt = 3 (V- (X5 Ba)e) - > (¥~ (5. Bugher) - > (% ~ (X Baler)

j=s+1 j=s+1 j=t+1

We show in Step 1 that

max (W — W;>¢| = 0, <(e — )/l pglHe (¢ — 3)) . (16)
s<t<e
In Step 2, we show that
1 *S,€ ~S,e
max ]Wt Gyl =0,0), (17)

s<t<e \/Gs e 10g1+§(

when G£¢ £ 0. It follows from using 4ab < (a + b)? at (17) that

1 ‘ *S,€ ~S,e
max W, =Gy =0,(1).
s<t<e 0.5 (G + logl-i-f( )
Therefore,
P(Vt € (s, €], (WS — GF¢| —0.5GE° < (nl/@?"“) + 0.5) 1og1+25(n)> -1, (18)

asn — oo. The factor log®(n) is to make the event asymptotically almost surely. When (s, e] has
no change point, we have W, = G} = 0 and (18) trivially holds. Following the cardinality
of J at (2.8), the main result now follows from the union bound.

Step 1: Using (a — b)? — (a —¢)? = (b—¢)? — 2(a — ¢)(b — ¢), we may write

T178,€ *5,e
W, =W,

e t

~ 2 ~ 2
= Z <Xj,,3(s7e] - /szs,e]>52 - Z <Xj7/8(5:t] o szsyt]>ﬁ2
j=s+1 J=s+1
5, B,

e 2 ~

_ Z < Bte] te]> +2 Z <Xj,62<8,6} _ﬁ(s,e]>c2 gj
j=t+1 J=s+1
Bs ;31
t e

EPIRC AL NEEED DECR R

j=s+1 Jj=t+1

35 86
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+2 Z <Xj7/5’2‘s,e} - 3<s,e]> 2 <Xj7f33‘k - Ws,e]> 2

j=s+1
s
t
2y (X5, Bio = Broa) o (X585 = Bo) Lo
j=s+
By
.
=23 (X580~ Bual) o (X0 B = Biv) - (19)
Jj=t+1
Bo

We will show the technique to bound By, Bo, Bs and the result for By, Bs, Bg and By, Bg, By follows
from the same outlined idea and the corresponding Lemma G.3 and Lemma G.4 respectively.

Observe that for |Bs|

t

~ 2
max <Xj, Bst) =~ Bisa > 2
- j=s+1

~

= max (t — S)i(st [5 (s,t] — 5(515 Bls) — Biksvtd

s<t<e
< ma ((t — 5)V/ @D joglHE (1 — s)) ma Li [5 — B, 0 Bisy — B ]
- S<t§Xe g S<t§Xe 10g1+€( ) (S t S t (S t (S’t] (S,t}

(s — )/ 1og (e — 5)0, (1),

where the last line follows from the fact that z — 2%logz is strictly increasing for any a > 0
and the Lemma G.2.

For |By], at t = e, we have

e

~ 2
Z <Xj7 B(s,e] — /szs,e]>£2 = (6 — 3)1/(2r+1) 1Og1+£(€ _ S)Op(l)

j=s+1

The bound for the term |Bs| follows by same arguement as B;. This establish (16).

Step 2: Let éfe # 0. Note that

* * _ (€~ t * *
Blss) = Blsel = (e - s) (Bl — Biea))

Bire) = Blse) = <t8> (5@@ —5st})

Using (a — b)? — (a —¢)?2 = (b—¢)? — 2(a — ¢)(b — ¢), we may write

and

t

W=y <X]7/Bst] 5(se]>2 + ZE: <Xj=5?t’e}_ﬂ?&6]>iz

j:s+1 ]:t+1

13



+2 zt: <Xj’ﬁz<s,e] - ’8?8715]>L2 & +2 zez <Xj’62k5’e] B /Ba’e]>£2 <
Jj=s+1 J=t+1
t
+2 <X]" 5?8,8] B /szs,t]>ﬁ2 <‘Xj7 ’BJ* B ﬂ?s’ﬂ>£2
J=s+1
+2 ’Z <Xj,/3€s,e] - 62},6}> 2 <Xa‘w33‘ - ?t,e1>£2
J=t+1
2t —s\? &
<e —) S (X B~ B <Z _Z> > {58~ i)
j=s+1 Jj=t+1
t e
o (Z:i) > (X5 B = Blu) i + 2 (Z:Z) > (X3 B = Blua)
S j=t+1
t
+2<Z:z> < /Bte] Bst]> <Xj’ﬁ;_6{37ﬂ>£2
Jj=s+1
+2 (Z : Z) <Xj, 5@,@ - B(*t,e}>£2 <Xj7 Bj* - 5&,e]>£2 .
Jj=t+1

Observe that

—_

Also, <e—_t> ’ <

e—s

/Ba’e]aﬁ;_ Ekte]]

0. Using the triangle inequality, we may erte

‘Wt*s,e _ éi,e
e—t ! 2
S<€_3> Z << B(St /87&6]> [Bst] 6(te Bst] 6&;,6]])
Jj=s+1

t—s - * * 2 * * * *
+ (e — S> 21 <<Xj75(t,e] - /B(S,t]>52 = Z[B(5 = Bire Blsag — 5(t,e]]>

Jj=t+
t—
€5 -I-Q( 8)
e—S

-1 ! * *
+2<: _s) > (X5oBiea = Biun)

j=s+1 j=t+1

t

2 (S0 | (X8 B (X505 = Bl o = SVt~ B 55— o

j=s+1

1 — - * * * * * *
+2 <6_2) > < Bl — 5te]> <Xj75j _B(t,e}>£2_E[ﬁ(s,t]_ﬁ(t,e]HBj — Bl -

j=t+1

Our approach involves bounding each of the six terms through four distinct sub-steps.

1~ Blrep Blsy — B(te} :

i <Xj752<s,t] - ﬁikt,e}>£2 €j

2
(E22) S S Sl — Bl By - Bl = 0 and 5 DI, -

(22)

(23)

(24)

In

Step 2A, we establish the bound for equations (20) and (21). Progressing to Step 2B, we derive

14



the bound for equation (22). Moving on to Step 2C, we obtain the bound for equations (23) and
(24). Notably, all these derived bounds are uniform across ¢t € (s,e]. The final step, Step 2D,
amalgamates these outcomes into a coherent result.

Step 2A. Using Lemma G.8 we have

2
i 2
E |: Z <<Xj762<s,t] - /Bz(t,e}>£2 - E[/szsyt] - Bte] 6 (s,t] — B te]]) ]

Jj=s+1
:O(t - S)E[ﬁg&t} - /BZL@] 9 BZ;J] - Bz{t@}]'

Writing E[B{Sﬂ - /szt,e]’ ,BEks’t B e] = %éf’e, we may also write it as

2
(e—t)(t—s) 1 | < ( 2 . )
E o /B S /B e - B g B e /B s 5 e = O t_s
{ R j;l (X5 Bl = Bleat) o = ElBle = Bt Ble = Bl (t=s)
Using the Lemma J.3, we may write
El ma e—t 1 1
X —
s<t<e (e — 5) log! (¢t — s) Gy*
2
t 2
Z <<Xj’6€s,t} - /B?t,e]>£2 - [5 (s,t] — B(te 5 (s8] — szt,e]]> =0(1)
Jj=s+1
and
(t—ys) 1 1
E [srgtaé(e (6 — 8) log1+£(t —5) GS €
2
© 2
5> ({50800t~ B o — 6~ Bl Bl — B | | = O
Jj=t+1

This lead us to

(20) + (21) = O, <\/éfe log!+(t — s)> .

Step 2B. Using Lemma G.9, we may have

t

> (X5 Bl = Blan) o

j=s+1

(e—t)(t—s) 1
E{ =) G

2
] =O0(t—s).

And again from Lemma J.3, it follows that

_ (e—1t) 1 ! i
E — i =0(1
sSi<e (e — s)log'*é(t — s) Gy° j:zs;rl < Bt = s }>£2 J (1)
- 9
(t—s) 1 - . .
— E a. — X', — e Ej == O 1 5
8H<1t§Xe (6 _ S) 10g1+§(t - S) Gi,e jZH:_I< J 6(3,15] /B(t7 ]>£2 J ( )

15



This lead us to

(22) = O, <\/ G5 log (1 — s)> .

Step 2C. Using Lemma G.9, we may have

(e—t)(t—s) 1 !
T e-s o jzs:ﬂ (Ko B = Bl ) o (X085 = Bl )
* * * * 2
= X[Be) = Blsap B5 — 5@]]‘ =O0(t — ).
And again from Lemma J.3, it follows that
o ~S,e\—1
o e-n @
s<t<e(e — s) log!*e(t — s)
2
t
> (X5 ot = Bian) o (X585 = Blan) o = Zl6ecr = Bl 85 = Blaa] | = OLL)
Jj=s+1
and
o ~S,e\—1
o s @
s<t<e(e — ) log!*é(t — s)
. 2
> (X5 Bl = B o (X085 = B o =SB0 = B 5 — Biall| | = O(D)
j=t+1
This lead us to
(23) + (24) = O, <\/C~¥fe log! ™+ (t — s)> .
Step 2D. Combining the results in Step 2A, Step 2B and Step 2C, we get
1 -
max —— W5 = Gyel =0, (1).
s<t<e \/Gf’e 10g1+§(t _ S) ’
O

Lemma C.3. Let £ > 0 and (s,e] C (0,n]. Suppose np—1 < s < np < e < nNg+1. Then we have
uniformly for all t € (s, €],

t t
Z (YJ - <Xj’g(s’ﬂ>52>2 B Z (Yj B <Xj’6{57ﬂ>c2>2

j=s+1 j=s+1
=0, ((t — 5)0;_slog! e (t — 3)) ) (25)
i (Yj B <Xj’3(t’€]>z;2)2 B i <Yj B <Xj’ﬁ{t’e]>c2>2
j=t+1 j=t+1
~0, <(e — 1)0e_t log (e — t)) . (26)
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Consequently, following from the union bound we have uniformly for all (sm,em| € J and for
all t € (Sm,, €m)

S (- (% R),) - X (- (%))

]:5m+1 Jj=sm+1

~0, ((n/A) (t — sm)0s_s,, log+é(t — sm)) . (27)

Proof. Observe that

t t

Z (Yj - <Xj’§(s7ﬂ>£2>2 B Z <Yj B <Xj’ﬂ:s’t]>c2)2
j=s+1 Jj=s+1
t

t
=) <Xj73(s,t] - 52},q>; +2 ) <Xj7ﬁz<s,t] - B(svt]>£2 €j

j=s+1 Jj=s+1
¢
+2 3 (X580 = Bioat) o (X085 = Bsa) -
Jj=s+1
Following from Lemma G.2, we have uniformly

t

Z <Xj7 B\(s,t] - »szs,t]>; =0p ((75 — 8)0t—s 10g1+£(t - 3)) :

Jj=s+1
From Lemma G.3

t

> <Xj7ﬂiks7t] - B\(s,t}>£2 gj| = Op ((t — 5)6;s log'*4(t — 3)) :

Jj=s+1
From Lemma G.4

t

Z <Xj75£ks,t] - B(s,t]>£2 <Xj75; — B(s’t]>ﬁ2 =0, ((t — 5)0;_slog! e (t — 3)) )

j=s+1

The (25) of this lemma follows from these three bounds. Given the cardinality of J in (2.8),
the expression (27) follows from (25) by the union bound. O

C.1.2 Population CUSUM of functional data

All the notation used in this subsection are specific to this subsection only. We use these general
results to prove some results earlier.

Assumption 1. Let {f;}", € L% Assume there are {np}ff:'gl C {0,1,...,m} such that 0 =
np<m<...<ng<ngyjp=m and

ft # fra1 if and only if  t € {ny,...,n,}.

17



Let inflgpSK ”fnp — fnp+1 H%Q = inflSPSK ﬁ% = ﬁQ.

For 0 < s <t < e <m, the CUSUM statistics is

e e—t
= (e—s)(t—s) Zfz_\/ (e —s) Zfz (28)
i=s+1 i=t+1

It can be easily shown that the CUSUM statistics at (28) are translational invariant. Con-
sequently assuming > ", f; = 0, we may also write

(i £ (£ )T
1=s+1 i=s+1 i=s+1

The form at (29) is useful proving many important properties of CUSUM.

The Lemma C.4 below follows directly from the definition of CUSUM statistics.
Lemma C.4. Suppose (s, €] contains only one change point n,, then
t— 2 @2
Hffs,e”%z _ {(e s)(i t) (6 — np) ﬁp7 t < ny
t = t 232
o= (W —8)° %, =y

Consequently, we may write

s.e (e—np)(np—s) 2
1,2?<X ||ft HLQ - (6— 8) ﬁ10'

Lemma C.5. Let (s, €] be such that
n 1 <s<n, <e.
Then for any s <t < ny,
T5e12 (t - S)(e —Ilp) 7s.e(2
Hft ”L2 - (Ilp _ S)(é’—t)”fnp HCQ'

Consequently, we may write

2 _ (£5,€ 2
max [} ez = max [z (30)

Proof. With the form outlined at (29)

e e- B D
7l = =5 =p Z;f e el
- s)(e—%) (e~ ) (t=5)(e ~ 1)

— ) |Ifu |22 = —— P52,
= (np—s)(e—t) (np_S)(e—np)(np )pr”ﬁ (np—s)(e—t)Hf ”L

18



Lemma C.6. Let (s,e] contains exactly two change points ny, and nyi1. Then

Jnax 71172 < 2(e — “p+1)ﬁ;12)+1 +2(np — 3)ﬁ§'
Proof. Let
o — Fess if s<t<n,
ft, if n,+1<t<np.
Then Vt > n,

t

p Np t
A e ] DOLED VLD DD D

i=s+1 i=s+1 i=np+1 i=np+1

B (e —s) . 3
= (e —0)(t —5) (np )(fnp fnp+1)-

(e = s)(ny = s)

== Hf?e - 5?6”%2 = (6 _ t)(t _ S) (np B S)Ri < (np - 3)ﬁ;20 (31)
Observe that
~s,e|2  _ ||=s, 2 (e_anrl)(“erl —5) 2
SIE?SXe g 122 = llon,, Iz2 = (c— ) R < (e—mpi1)8R (32)

where the equality follows from the fact that g; just have one change point and Lemma C.4.
Observe that

~S,€

~5,€112
) 2 ’
Iz +2 max |lg;

Fellz. = o2, < 2 e _
max ||| 2 ngge\m llz2 < ngl;;ge!!ft g;

2
L2
<2(np — s)ﬁf, +2(e — np+1)ﬁ}27+1,

where the first line follows from Lemma C.5 and the triangle inequality, and the last line follows
from (31) and (32). O

D Proof of Theorem 2

Prior to presenting the proof of the main theorem, we will establish the existence and finiteness
of the long-run variance.

Lemma D.1. Suppose the Assumption 1 hold. For k € {1,...,K}, the long-run variance
defined in (3.13) exists and is finite.

Proof. Denote

<X]’/B1>’]kk - /B;k+1>£28j
K .

(X85, = %%] B[] -0 (Ew

Z; =

Observe that

3
E[|Z:]°] < ,|E 7 2

<XJ”8;k ’B;k+l>%2]> _ 0(1)7

where the second last equality follows from Assumption 1. Given that we have > 3>, a'/3(k) <
oo which is implied by 3222, k¥/3al/3(k) < oo in Assumption 1, all the conditions of Theorem
1.7 of Ibragimov (1962). It follows from therein that o2 (k) exists and is finite.

O]
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Sketch of the proof of Theorem 2. We refer to A1 and B1 jointly as uniform tightness.
Their proof proceeds in multiple steps where we control diverse errors associated with time
series functional linear regression modelling uniformly over the seeded intervals. Let

€k

Qi = 3 (X80 + Y (V- (X )e) ()

j:5ky+1 ]Zt-‘rl

be the population version of the objective function in (2.9). Observe that 7 is the minimiser
of Q(t) and 7, is the minimiser of the Qj(t). Establishing the limiting distribution in A2,
involves understanding the behavior of both QF (nx +t) — Q. (mk) and Qp(nk +t) — Qi (nk), for
fixed t. We show that max; |Qr(nk +t) — Qr(ne) — Q5 (nk +t) + Q5 (nk)| = 0p(1), which in turn
hinges on the convergence of //B\(skyﬁk] to f;, and symmetrically, that of B(ﬁk,ek} to BZH , in an
appropriate norm. This establishes that Qj(n; +t) — Qi (nk) and Qi(nk + t) — Qi(nk) have
asymptotically same distribution. We then proceed to show that Qj (mx +1t) — Qj(nx) converges
strongly to S (t), and consequently, Qr(nx +t) — Qk(nx) converges to Sk(t) in distribution.

Finally, we leverage the Argmax continuous mapping theorem (e.g. Theorem 3.2.2 of van der
Vaart and Wellner, 1996) to translate the convergence from the functional to the minimizer of
the functional, which leads to A2. In this regime, it is noteworthy that ¢ is only taking discrete
values, and we are not invoking any central limit theorems.

In the vanishing regime, additional complexities arise. Since kj converges to 0, in the light
of tightness demonstrated in B1, we invoke the functional CLT and establish that Qj(m; +
tk;2) — Qf(nk) converges in distribution to a two-sided Brownian motion W(t), where 1/x2
acts as a local sample size. The subsequent steps parallels the non-vanishing case but additional
intricacies arise due to the convergence behavior as ki — 0.

Proof of Theorem 2. Let 1 < k < K be given. By construction and Lemma D.3, (s, ex] contains
only one change point 7 and

nk_SkZA/57 ek_nkZA/57
for large enough n. Recall for any a > 0, 8§, < a2/ (2r+1),
Let 7y, denote the minimiser at (2.9). Without loss of generality assume the minimiser 7, =

Nk + v, with v > 0. The results presented here assume that what we establish in Theorem 1
holds.

Uniform tightness: x7|7; — nx| = Op(1)

Assume v > max{1/k%,2}, if not, the uniform tightness follows directly. Let Qj be defined as
in (2.9). Since Q(ni + 7) is a minimum, we may write

e+ N 9 M+ N 9
0> Qulme +7) — Qulme) = (Yj - <Xja5(sk,ﬁk}>£2) - > (Yj - <Xjaﬁ(ﬁk,ek]>£2>
J=m+1 J=m+1

The preceding inequality is equivalent to

N+ Nk+y

0| > (5@—<Xa‘ﬁ(sk,m>zﬁ)2— > (Y (X5, 850 c2)

J=nk+1 J=mt+1

2
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- ( ”kirf (Yj i+ B, ex] £2) ’7’“2*:7 (Y ',5;k+1>£2)2)

J=nk+1 J=nk+1

J=nk+1 j=nE+1

M+ N+ 9
+ Z (V5 = (X; > ) c2) Z <Y '7ﬁ;k+1>£2> )

e+ N 9 e+ 5
=| X (%% Baane) - X (8- (X5.8)0) (34)

J=nk+1 J=nk+1

Nkt Nk +

-1 X <YJ‘ 5(%% ) > (Y ~,5;k+1>£z)2) (35)

J=nk+1 J=nk+1

N+
+12 Z 77k+1_ 77k>£2€j (36)

J=nk+1

Ne+y
+ D (X5 B =B e | (37)

J=nk+1
Therefore, we have
(37) < |(36)| + |(35)| + |(34)].
Recall 65 = A~2/(2r+1) " Observe that

M — Sk = A5 = b, =
€k*77kZA/5 = 9

OP (5A) )
Op (0a) -

€k _77k

Also using v > 1/5% and r > 1, we have

53"\ /log! Tty = O (’f” 2) = O (k) 58)
o - 0 (1) - 0 ().
From Assumption 3, we get
-5 Log 2 (7= ) = O, (9a log""*(8) ) = 0, (7).
be 10! "% (e = 7) = Oy (62 log *%(4)) = 0,(+3) .
With (38) and (39) we get
5341 N1og € 5 (63, o)/ \/log™ 2 (. — 1) = 0,(12)
81/24/log' T 5 (6Ak—5k)1/2 \/10g1+2€(77k — s) = op(Ki) (40)
63/ 10g1 € 5 (60, g ) \/10g1+2€(6k — k) = 0p(K})
5121/ 108" 5 (65 )'/* \/ log' % (e — T) = 0p(r7)-



Also, we have from Theorem 1 that

Mk — Nk
A

Mk — Nk
A

Nk — Nk
Mk — 5
Nk — Mk
Mk — e

A

= o0p(1),
(41)

N

= op(1).
Step 1: the order of magnitude of (34). Following from Lemma D.2, we have
(34) = Op ( 51/2\/T57(5nk o)’ \/log1+2€ (7k Sk))
+0, <763/4 log! € 5 (85, ) /" 1/ log % (i — sw)
+ Op <7"ék (5ﬁk—sk \/log1+2§ (M — 5k)> +Op (’75% s Log' T2 (7)), — 5k)>
Oy (vAs {log ¢ (v2) +1}) + 0, ( e 2)

= o0,(yi) + Oy (VA {log € (yif) + 1}). (42)

where the last line follows from (40) and (41).

Step 2: the order of magnitude of (35). Following from Lemma D.2, we have

(35) = Op (751/2\/ gy (0e,—a)"? \/10g1+2€(6k - ﬁk))
+ 0y <753/ 4/log €y (3, 5,) /10" (er, ~ ﬁk))
+ Oy (’Yﬁk (O —71) /2 \/10g1+2E (ex — m)) +Op (’Y& log!' ™% (e, — ﬁk))

0, (v foe <o)+ 1}) 4.0, (L)

— Mk
= op(yK}) + O, (ﬁ/ﬁk {log1+§(7/£z) + 1}) . (43)

where the last line follows from (40) and (41).

Step 3: the order of magnitude of (36). Following from Lemma G.9 and Lemma J.4, we
have

2

1 1 M+
max — X, B8 =B i =0,(1). 44
1/KE<y<npe 1=k \ﬁ(logHg ((’Y) kj %:+1< e nk>£2 ! o ()
Using (44), we have
(36) = Oy (Vme {log"*¢(yi2) +1} ) . (45)

Step 4: lower bound of (37). Following from Lemma G.8 and Lemma J.4, we have

2

max - <X-,B* — B > —k > —0,(1). (46)
/w2 <y<merr—m | /7 (log e (vx2) + 1) Kk j%:ﬂ ( e LY P
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Using (46), we have
(37) = vt + O (v {log (i) + 1}). (47)

Combining (42), (43), (45) and (47), we have uniformly for all v > %2
k

240y (s (o< +1}) = 0y (e {ost ¥ +1}) + 50,

which gives us
ki Tk — 1| = Op(1).

Limiting distribution:

Recall the definition of Qf(-) from (33). For any given k € {1,...,K}, given the end points s
and ey and the true coefficients 37 and we have

Mk+1"
M +y Mkt 2
(36)+ 67 = 3. (G- (XF)e) = 3 (¥ = %585 )e2)

= Qe +7) — Qk(mw).
Following from the proof of uniform tightness, we have uniformly in -, as n — oo, that
* * P
|Qk (e + ) = Qrelne) — (Qi(me +7) = Qlnw))| < (3] + [(35)] +[(36)] +[(37)| = 0.

With Slutsky’s theorem, it is sufficient to find the limiting distribution of Q5 (nx +v) — Qf (7k)
when n — oo.

Non-vanishing regime. For v > 0, we have that when n — oo

Nk +7 Nk +Y

2
Qi+~ Qilm) = . (V= (XpBy)e)’ = Y (Y= (X0 By )e)
J=nk+1 J=nk+1
Nk +7 2
= Z {2<Xj’6;k+1 o B:Ik>£2 &+ <X-7"B;k+1 - B;;k>£2}
J=nk+1
N+
LN Z {QQk 32 UL) p2 5 + 0F (Xj,‘I’wiz}-
J=nk+1

For v < 0, we have when n — oo

N+ N+

2
Qi +7) = Qilm) = . (= (XpBy0e)’ = Y (= (X0 By 0e)
J=ne+1 J=nktl
Tk 2
* *
= Z { < ]7ﬁ7lk+1_ >£2€j+<Xj’ M 77k+1>52}
J=Nket+1
D Mk
=Y {—QQk (X, W) o 85 + 03 (X, ‘I’k>i2} :
J=nk+y+1
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where the last line follows because pointwise convergence implies convergence in (, ) 2.

From stationarity, the Slutsky’s theorem and the Argmax continuous mapping theorem (e.g.
Theorem 3.2.2 of van der Vaart and Wellner (1996)), we have

~ D .
Nk — N — argmin Sk (7).
¥

Vanishing regime. Let m = H;Q, and we have that m — oo as n — oco. For v > 0, we have
that

nNg+ym Ne+ym )
Qi +ym) = Qi) = > (Vi = (X5 B5002) = > (Yi = (X585, )e2)
J=nk+1 J=nk+1
Ne+ym 2
= Z {2 <Xj’6;k+1 B ﬁ;k>£2 €5+ <Xj767>7kk+1 B 6;k>£2}
J=nk+1
2
9 Me+ym <Xj, B;;k“ - ﬁ;k>£2 1 Me+ym <X "7k+1 ﬂ;k>£2
77 Z Ej + — 3 1
J=nktl o M et i
Nk+ym
Z 1. (48)
J =ni+1

Following from the definition of the long-run variance and Theorem 1.2, we have

1 9 Ne+ym <X — *>
— ¥ s~ O 22e % D By(y). (49)

Kk

We also have

J=nk+1

following from (74) in Lemma G.8. Using (50), (49) and L Z?’g]:ﬁ 1 — ~ in (48), we write

Qi (i +vm) — Q) = oo (k)Ba(7) + 7

where Bgy(7) is a standard Brownian motion.

Similarly, for v < 0, we may have when n — oo

Qi (ke +ym) — Qi) 2> =7 + oo (K)B1(—7),

(X; 7671k+1 757])@ >L2 €j

where By (r) is a standard Brownian motion. Let Z ;= . To see the indepen-

dence of By (r) and Ba(r) note that ’
1 —1 2mry
~ ( > Z;‘) <Z Zt) = — ZkE (Z1Zv) + > (20— R)E[Z1Z144]
t=—mry k=1 k=mvy+1
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2mry

3 2my
1 (2m’Y 1 3 2 1/3 1
<m;k|E[Z121+k]]< — Zk/ 121203 (k) = O —75) 0.

where the second last inequality follows from Lemma I.1 and stationarity and the last inequality
follows from Y"3° | k/3a!/3(k) < oo and

HZIH3 E'/3 [H <X175 _5;k+1>3E [EﬂXlﬂ < O< )El/G [ k <X1’5 _6;7kk+1>6] :O(l)’

k

which follows from Assumption 1.
From the Slutsky’s theorem and the Argmax continuous mapping theorem we have

Tk — i = argmin {|7] + 000 (k)W (y)} .
Y

D.1 Technical result for the proof of Theorem 2

Recall for any a > 0, §, = a~27/(r+1),

Lemma D.2. Let np_1 < s < < e < Ngy1 be fired. Let & > 0. Then,

N+
max < Z <Y Xj,,@(s’ﬁkﬁﬁz)g

ve(1/K3 Mrt1—nk) H( Mk — $,7) R

Ne+y

-2 (3?—<Xj752k>c2>2>:0p<1>

J=nk+1

where for any t € (s, €]

H(t —s,v) = (1/4 51/4 61/2\/ 1+57—|—<Iik+5/2 lo 1+§(15 3)) 53&}
t—
\/lo 1+5 6t/3+nkf{log1+£(’y/<c )—i—l}—k‘ " Zk VK

2
k

Proof. Let t > ni. The case when t < n follows similar to the proof outlined below. Observe

that .
* * — Nk, o *
B(S,t]_ nk:(t—s( 77k+1_577k))'

We may write the expression

e+ 9 Nty )
> <Y <st1>62) - > (- X800
J=nk+1 J=nk+1
Mty N+
- Z (Y Xivﬂ(st]>£2)2_ Z (1?—<Xj752<s,t}>c2>2 (51)
J=nk+1 Jj=nr+1



N+ 9 N+ )
| X (M- GBge) - X G- Kag)e)’ ] (62)

J=nk+1 J=nr+1

We show in Step 1 that

N+ 2
tgl(??é] H t—s’Y ( Z <Y (St]>£2)

~e(1/K2 Mks1—1r) =t (53)

N+

> (- <Xj,ﬂz;,ﬂ>a)2) _o,)

J=nk+1

where

Hat - s.9) ={ (31/4+817) o2 g 400
+ <mk + (51/2 logt 4 (t — 3)) 52&}52& log!*(t — s).

We show in Step 2 that

Nk +y 9
B >< > (% )

+1
’Ye(l/”i:nk+1*7]k> =T

Ne+7y

- Y (- (X8 e) (54)

J=nk+1

where

Ha(y) = kev/Y {10g1+£ (vr7) + 1} .

The bound for (51) follows from (53) and the bound for (52) follows from (54) and the realization
2
that {1 - (—Z’f_‘j) } > (1 — %k_jj) = (%Zk)-

Step 1: Observe that

ne+y Nk+Y )
Z (Yj Xj?ﬂ(st £2> Z (Y Xj7ﬁz<s,t]>£2>
R J=n+1
N+
= Z < <X B (s,t] — B(s t >
J=nr+1

< Blos] — 55ﬂ> <Xj,ﬁ;k+l—ﬁzﬁs,t]>£2—< Bss — 5st]> 6j>|
e+

Z <Xj,B\(s,t] - B?s,t]>i2

J=nk+1

< (55)
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N+

+2 Z < 6(515 B st]> <vaﬁ;;k+1 - szs,t]>£2 (56)

J=nk+1

N+

+2 Z< Bed lﬁst]>£2€j' (57)

J=nk+1

We are going to bound (55), (56) and (57) in the following three sub-steps. Following from
Lemma G.5 we have that

(55) = O, <7 { (51/4 + 51/4) 51/2W )+ 84 flog (L~ } L flog e 1/4) |

Following from Lemma G.7, we have that

(56) = O, <7 { (51/4 51/4) 51/2 log € (7) + Hk51/4} log !+ (1 — s)éﬁi) '

And following from Lemma G.6, we have that

(57) = O, ({1+< >1/4}51/2\/T1/2\/T>

The stochastic bound (53) now follows directly from these three bounds on (55), (56) and (57).

Step 2: Observe that b’ (5] ~ . t;"g’“( ;kH - B ) We may write the expansion

Mty 2 A 2 m— s\ 2
Z (YJ - <Xj762<s,t]>£2> B Z (Y] N <Xj’5;k>£2) B ( t—s ) T

J="Nk J="Nk
s — 2 Nk +7Y 9

_ . * * 2

_{(t—s> _1} Z (<XJ’5"71€+1_6771¢>52_K%)
J=nk+1

+ Nk Nk+7Y
_2<t—8) Z <Xj’B;k+1_ﬂ;k>£2€j'

J=nk+1

Consequently, we have that

Mty 9 M+ ) N — 2 )
> (B Wbe) - X 0= Kse) - { (550) <1

J=nk+1 J=nk+l1
N — 2 N+ 9
* * 2
< <t—8> -1 Z <<Xj7’877k+1_577k>£2_ﬁk>
J=nk+1
+_ ; N+
+2 <t—5> Z <XJ’ Met1 ;k>£2€j
J=nk+1
Nk+7 9
* * 2
< Z <<Xj’ﬁ77k+1 - 577k>£2 N I{k> (58)
J=nk+1
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N+

+2 Z <Xj’6;k+1_/37*7k>£2€j> (59)

J=nk+1

2
where the last two line follows from 0 < {1 — (%) } < 1and (%) < 1. For the expression

(58), using (46), we get that
M+ 9
> (X0 B = 12) | = 00 (Vi {roe™ € ) 41}) . (00)

J=nk+1

For the expression (59), we use (44) to have

Nkt
3 <Xj,5;kﬂ - 5;;k>£2 el =0, (fw {1Og1+g (yi2) + 1}) (61)
J=n+1
Bringing (60) and (61) together shall establish (54). O

Lemma D.3. Let (si,ex] be the refined interval constructed in (2.10). Then, under the event
A defined in (1), ny is the one and only change point lying in (s, er]. Additionally, under the
same event A, we have

min{ek — Npey M — sk} > A/5.

Since, event A is asymptotically almost sure (Lemma C.2). These results holds with proba-
bility converging to 1 as n — oo.

Proof. Observe that, by construction and by the definition of the event A in (1) as well as
Theorem 1, we have

o >

ek = M = 15 (k1 — k) + (T — 7k) > 158 + 0(A) >

Similary,

ot >

Mo — M = 15 Mk — 1) + (M — k) > 754 + 0(A) >

E Proof of Theorem 3

Proof. Let P = {J1,J2,...,Js}. Let J1 = {t1,t1 + L...,t +(g—1),...,t1+(2¢—1)}. Denote
Jl = Jl\(J1+Q) = {t17t17"'>t1+(q_1)} and Jl = Jl\Jl = {t1+Qa7t1+(2q_1)} as
the two equal partition of the block J;. Recall that 8, =< a=2"/2"+1 for any a > 0. Denote the

population version of the process {Fjv 5:1 as

R R ONCET N BN DS

tey tey teJy
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* 1 * _ O%
where Z] = = <Xt, - 77H1> e¢. Denote

o~

~ 1) 2 -~
/Bl(g = IB(Sk,ﬁk] and Bl(f ) = B(ﬁkvek}

This proof is further divided into two steps. Firstly, we establish the consistency of the pop-
ulation version of the estimate. Secondly, we conclude the proof by demonstrating that the
deviation of the estimate from the estimator is small in probability. The last redundant step is
replacing ki with K and applying Lemma E.1 along with the Slutsky’s theorem.

Step 1la: Note that

2 2

E[(F})%] = 2E %ZZt +2FE %ZZt —QE Sz (Y. %

teji teJi teji teJi

Following stationarity, we may write

29

1 . . 1 q
~E Z Z, E Z, = - ZtE[ZlZH_t] + Z (2q — t)E[ZIZ1+t]
e thl teJy q t=1 t=q+1

2 2/3 24

1 2
=7 Zt E[Z1Z144]] < (Clks Zt1/3||Z1||§a1/3(t)
t=1 b =
1
q1/3

where the second last inequality follows from Lemma I.1 and stationarity and the last inequality
follows from $"7° | k/3a!/3(k) < oo and

1 * * 3
121l =EY/3 [K]% <X1,ﬁnk — ﬂnk+1> E [e§|X1]}

<0 (El/ﬁ [1 <X17% - 5;k+1>6]> —0(1), (63)

we
which follows from Assumption 1.
From this, the definition of the long run variance and stationarity at (3.13), we can write
E[(F})%] = o%(K), a5 g o0, (64)

for all J, € P.

Step 1b: We have from Assumption 1 that 272 (k+1)8/31a4/3)/(8/3+4/3)(k) < 00, E[Z}] = 0
and similar to (63) that

izt = | (X0~ ) B ] <0 (8 (0 -3 ) ) < e
k k

All of the conditions of Theorem 1 of Yokoyama (1980) are satisfied and therefore

8/3
E||> 7 = 0(¢*?).

tedy
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Following stationarity for all v € {1,..., S}, it implies

B [|(F3,)2 ~ B [(#5,)2)[ Y] <2 [| ()]
8/3 8/3

1
<4 |E \/C,]ZZ; Zzt < 00,

ted, ter

where we used (a + b)*/3 < 21/3(a*/3 + b*/3) in the last and the second last inequality. We also
have a(k) = O () which follows from the summability of (kY313 (k)12 . With p = 8 and
p = 4/3, it is what follows that

S E P B 5L

v=1 v=1

We have all the condition of Theorem I.1 satisfied with p = 8 and p = 4/3, therefore,

S
g Z FJv — FJv)2:| —0 a.s.

Combining this with (64) and and the stationarity of {F; }v 1, we write

n

Step 2: Let

21 _ 2(2)
E, = \/j{ 2 <Xt,ﬂk K, ! >£2 (yt B <Xt’§‘]“>c2>
2
B Z Kk - >£2 (yt B <Xt’§‘]“>c2> }

Observe that

where

V2 50 _ g e~ B
Ay = ﬂk\/@{ Z <Xt’5’(“1) - 577k>£2 et Z <Xt75nk+l - /6](3)>£2 K

tedy tedy

2 <Xt,51(€1) - 5;k>[:2 <Xt»5jq, - BJU>£2
te,

> <Xt7 i1 T Bz(f)>£2 <Xtvﬁf5v - ng>£2
ted,

_ Z <Xt,ﬂk - nk> Z <Xt’5nk+1 - 3’(€2)>£2 .
teJy teJy

30



S <Xt, 3 _ 5;k>£2 <Xt,6j7v — BJU>L2

tedy
) t; <Xt75;k+1 B 3£2>>£2 <Xt,ﬁfﬁv - EJ“>L2 }

and

e {5 ) (s ),

ted,

S (e - ) (X085 - a,v>£2}.

tedy

Such an expansion is possible because, under the event outlined in Lemma C.2, for 1 <v < S, J,
have no change point. This follows from their construction in Algorithm 2 and conditions
specified in (4.15). As a consequence, B} = (% = f33,. Following from Lemma G.2, Lemma G.3,

Lemma G.5, Lemma G.6 and the choice of the tuning parameter ¢ detailed in (4.15), we may

write
1 1/2-r

A= 0, (vt og (@) = 0, (0¥ 1o 0)) = (1)

For the term B,, we may write

Ii;/\if{ Z <<Xt» i ;;k+1> < X1, 87, — EJU>£2 -3 [ =B B — EJUD
3 (KB B ) (KB~ Ba) L~ B~ B3, — ) }
= /qu{ (E” - E) |:B77k 5;k+175§v - //B\JU} — (ijv - Z) [/B:;k - /B;k+1’6§ - BJ] }

q |9 1 1-2r
— Op (;{kj ﬁ 10g1+£(q)> — Op </€k q2'r+1 10g1+§(q)> — Op(l)’

where the first equality in the last line follows from the Holders inequality <Z la,b] < /% [a,a] X b, b]) ,

(75) of Lemma G.8, Lemma G.1 and Lemma G.2, the last equality follows from (4.15). Since
Ay = 0p(1), By = op(1) and F] = Op(1), we can write

~ 2
(F.) = (F5)* = (Av+ Fj, + B.)* = (F3,)" = 0,(1),
Therefore, from (65)
S
& SFL) B o (k)
v=1

2
i@

The main result now follows from the Slutsky’s theorem because £, = g—:ﬁ 7,, and Zk
Lemma E.1.

1 by
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E.1 Technical results for the Proof of Theorem 3

Lemma E.1. Suppose that assumptions of Theorem 1 holds. The estimator Ry, defined in (4.14)
satisfies
R — ki = O, (A_r/(zrﬂ) log!*¢ A) .
Consequently,
2 p
2
K

Proof. WLOG let 7y, > mg. Observe that

* * e — Sk * *
5(81@,771@] o 6(771@,61@} = < ) |:ﬁ7lk - 7)k+1]

M — Sk

and because A/5 <7 — s, < A from Lemma D.3, following from Theorem 1 we have that

1_7/7\k—7lk:<2k—5k)3>1’ n — 0o.

Nk — Sk Nk — Sk
We may write the expansion

~ ~ ~

~2 2 S n * * * *
7 = 1 =S spen) [Bonl = Bt Biowa = Beaent] = = B = Brrs B = B

= 2(sprer] [ﬁ(skﬁk} - 6?816,%}’6(31@7%] - 5&1&%]}

A
+ E(Sk,ek} [ﬁéﬁk,ek] - B(ﬁk,ek]7ﬁ?ﬁk,ek] - ﬁ(ﬁkﬂk]}
Az
+ 22 (s 1) [B(*Skﬁk} = Blaent Bisiind — B(*Skﬁk}]
A3
+ 285 0] [%km = Blarind Been — /5’(ﬁk,ek}]
Ay
+ 2% (sp el [Bikﬁkzek] N ’B(ﬁkvek]’ﬁ?%ﬁk] B Bz}lk,ek]}
As
+ (Z(Skvek] - E) [szsk,ﬁk] - ﬂ?ﬁk,ek]”@ak:ﬁk] o B?ﬁkﬁk]} (66)
Ag
Nk — Sk ?
+ (ﬁk _3k> B 1] by [B;;k _B;k-;-l’ﬁ;;k _ﬁ;k+1:| :
A7

Observing 7, — s = O(A), it follows from Lemma G.5 that for j = 1,2,4 we have

4] = 0p (9510 A).
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For the expression As, it follows from Lemma G.7 that

|A3| = 2§(Sk,€k} [ﬁ&ksk,ﬁk] - 6?ﬁk,ek}’§(3kyﬁk] — Biksk,ﬁk]}
= 22‘(8’“’6” [6;k B ;k+1”§(8kﬁk] - Békvﬁk]} =0p <\/a10g1+€ A) ;

and for the fifth expression we have }A5} =0, (\/5A log!*¢ A) following the same argument.
For the expression Ag, we have

|A6} = <?/7\k — Sk>2 (i(skaek] - E) [B;k - B;k-&-l”ﬁ;;k - B;;k+1:|

Nk — Sk
S (i(skﬁk] - E) [B;k - ﬁ;kﬂ’ﬁ;k - ﬁ;k+1i| = Op (\}ZH%) ’

where the last equality follows from Lemma G.8 and e — s = O(A). The deviation for the
last expression

Mk =Sk (M — Mk 2 5 o e
Al=1(1 <6l B _ | A
| Az| ( +ﬁk—5k> (ﬁk—sk)ﬁk _6Al-€k(7]k ) = Op (5A og 5( ))

follows from the earlier observation A/5 < — s < M — s < A and (15). The first part this
current lemma 7%% — m% =0, (A*T/ 2r+1) 1pgl+€ A) follows by combining this seven deviation
bounds.

The deviation from the first part lead us to
RR — ki

5]
Ky

_0, (ZA‘” ert1) log”f(A)) — o,(1),

K

where the last equality follows from Assumption 3.
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F Proof of Theorem 4

Proof. Let k€ [1,... ,la be given. For notational simplicity, we denote u = ﬂ,(gb) and z; = zj(-b).
The proof follows a similar pattern as the proof of Theorem 2. In the first step, we establish
the uniform tightness of the minimizer. In the second step, we demonstrate the convergence of

the objective function on a compact domain and use the Argmax continuous mapping theorem.
Step 1. Let @ be a minimizer. Without loss of generality, assume @ > 0. Since 52, (k) = Op(1),
we may write

Ln]

~ ~ 1 - -
u < —a?,o(k:)% Z zj = Oy <\/ulog1+5(u)> ,
=1

where the stochastic bound follows from the uniform result Lemma J.3. Therefore, u = Op(1).

Step 2. Let M > 0. We have 52 (k) LN o2 (k) from Theorem 3. From functional CLT, we

have
Lnr]

1 D
= Z Zj — Bl(?’),

uniformly for all 0 < r < M. Therefore, with the Argmax continuous mapping theorem ( e.g.
Theorem 3.2.2 of van der Vaart and Wellner (1996)), we have

ﬂgargmin{\rl—kaoo(k)W(r)}, n — o0o.
reR

The main result now follows from the Slutsky’s theorem. O
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G Deviation bounds in functional linear regression

G.1 Notations

For any a > 0, we denote d, < a~2r/2r+l) - Also, A\, =< @ 2/+D_ This is used in the
observation (72) to denote f(,, which is estimator of f(*s,t] from (71). The operator T is defined
in (68) and its plug-in estimate 77 is defined in (70). We use I to denote the identity operator.
The expression for g, ;) and H(;y is defined in Proposition G.1 and Lemma G.10 respectively.

G.2 Kernel tools

Following Riesz representation theorem, the norm associated with H(K) from (1.3) can be
equivalently defined through,

(fs L (9)nry = (fr9) 2

One may note that

/ F(5)5(s,8) () ds dt = (Ls(f), )2 = S[F. f]. (67)

Moving forward, the main operator of our interest is the linear operator corresponding to the
bi-linear function K/2XK1/2 and the eigenvalues and eigenfunctions from its expansion.
The linear operator on £2 corresponding to K/2X K2 is given by

Liciasiry2(f)(x) = (KY2SKY2(00), () 2.

We denote the linear operator
T = LK1/22K1/27 (68)

and by Assumption 2
T(¢1) = si1.

Following this, for any a € R, the operator T is defined through the operation T%(¢;) = s{ ¢;.
Also for any 8 € H(K) such that f = Lj—1,2(8),

Y[8,B] = E[Lg1/2(f), Lr2(f)] = (L L2 (f), L2 (f)) g2

1/2 2 (69)
= (Lgzsgrr2(f) ez = (T(f), ez = 1T77(F)l zo-
The estimator of covariance function based on the sub-sample Z C (0,n] is given by
- 1
Yr(u,v) = fZXj(u)X v
JET
The empirical version of 1" is 17 := L K125, K1/2 and its action can be viewed as
Tr(h) =Ly1/2 © Lf)I o Ly1/2(h) = L2 ’I’ Z i, L2 (h)) X
JET
|I| Z Kl/2 >LK1/2(Xj)' (70)

JET
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Since, £? is bijectively mapped to H(K), we may have f(*s 1 and ]?(Sﬂ defined as

t
1 * * * N )
— > =Ry = LBy and fag = Licae(Bea). (71)
Jj=s+1

We may also observe that

. ' 1
f(s4) = argmin =5 > (Wi — (Xi, Lo () 22)? + Ns,g 11172 (72)
fecs j=s+1

Given (y*, X™*) a copy of (y, X) independent of the training data, the excess risk based on (s, t]
is defined as

E[(X*, B — Blan)?] = / / Brsy (@) = Blan ()22, 1) Brsg(v) — Bloy(w))dzdy — (73)
~ ~ 2
= S(Bs = Bugs B = Bug) = |7 Fion = F)|

the last form can be obtained using (67), (69) and (71).

G.3 Roughness regularized estimator and its properties

In order to evaluate the quality of estimation, we rely on the following lemmas. They help us
control various deviation terms in the main result presented in this paper. All the proofs of the
lemmas stated below are in the next section.

Lemma G.1. Let £ > 0. Suppose (s,e] C (0,n]. Then

5L _
§E?§mz Bisi) = Blans Bisiy — Blany| = Op(1).

Lemma G.2. Let £ > 0. Suppose (s,e] C (0,n]. Then

S, - A
Die (W) (5,1 {ﬂm} — B Bt — Blua | = Op(1).

Lemma G.3. Let £ > 0. Suppose (s,e] C (0,n]. Then

0, 1 < . .
312t<e <log1+5(t _ 8)) t— s Z (X Bsay = /B(s,t]>£25j = Op(1).

j=s+1

Lemma G.4. Let £ > 0. Suppose (s,e] C (0,n]. Then

5—15 1 t R .
o <log1+£( )> — D <Xj=5(s,t}—ﬁ<s,t]>£2< X;, By Bst]> = 0,(1).

Jj=s+1
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Lemma G.5. Let £ > 0. Suppose (s',€'| and (s,e] are the subsets of (0,n]. Then

1 ~ ~ ~

mex =y St [Bea = 8o B = B | = 0p(0),
s'<t'<e'

where

! ! /
Jt—s,t' —5)= (1 + (5(;;2 ) ) { tl/i tl,/z \/log1Jr£ )\/log1+5(t—s)}

+ 65 logtte(t — s).

Lemma G.6. Let £ > 0. Suppose (s', €] and (s, €| are the subsets of (0,n]. Then

t/

1 1
gl?ﬁxe H(t—s,t' —s) t’_S/‘Z (X; B(St 6st]>£2€]_0(>
s'<t'<e! j=s'+1

where

H(t — st — 8/) _ (1 . <5§;—z > ) tl/i 1&1’/2 \/logl—i-E )\/logl—i-f(t

Lemma G.7. Let £ > 0. Suppose (s', €] and (s, e] are the subsets of (0,n]. Then

1 1 <

M ey 7 2 K0 Bea = B2 (X5 By - Brder = On(1).
s'<t'<e ’ Jj=s'+1

where

ot o= = (1 (B22) ") 202, o =

+ /fk\/ét_s log!é(t — s).
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G.4 Markov type probability bounds

Lemma G.8. Let {f] _, and h be non-random function in L2. Suppose L[f;, ;] < M < oo,
foralll1 <j<t, where M is some absolute constant. Then

2
t
Z (X5, 1) c2( X5, h) 2 = 2ij, h]| | = O()2 [, ). (74)
When f1 = ... = =1, Then
2
t
Z X, ) e2( X5, by g2 = B[, ]| | = O@®)S[h, WSS, f]. (75)

Proof. Given any sequence of stationary random variables {W; }§'=1 with finite second moment
it holds

t t—1
ar (Z Wj) ZV@T 2) 42> (t—§)Cov (Wy, Wiy;). (76)
j=1 Jj=1

We are going estblish (74). Let z; = (X}, ;) c2(Xj, h) 2 — X[fj, h]. Then

E[ ] E [( f@>£2 (X], h>%2]
< VE [ i) g VE (26, )]
<c ’E [<XJ’fJ>£2] R [<XJ’ h>£2] (77)

5[5, §511h, b < ¢ MS[h, h).

The (77) follows from the Assumption 1, where we have the sixth moment bounded by the
second moment up to a constant factor c.

We have
Ell2jzjkl] = Cov(|zi], 12j4k]) < 2|13l 2j4xll30M3 (k),

following from Lemma I.1. Following from

lzjlls =[1{X;, F5) 2 (X5, h) 2 — Zlfj, b I3
<X F5) 22X, h) g2l + 12[F5, Al
< 20[( X, i) 22X, B) 2|3

one may write

1zjll3 < 201(X5,5) 22( X5, h) 23
< 20[{X5, ) 2l ll{ X5, h) 26

< 2¢|(X;, 55) 2 ll2ell (X, B) e2ll2 = 2¢*\/Slfs, £5]1% [0, h] < 26V M /S[h, h].
The last line here follows the same argument as (77). Similarly

2145l < 2evV M/ E[h, h].
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Therefore
El|z1214;] < 4¢*MS[h, hla/3(5).

Following (76), one may have the expansion

5 _ -
t t t—1
Szl | =E D | +2) (t—H)E[zz14]
j=1 =1 ] J=1
S
<E|Y 22| 42 Z (¢ = R)E [|zizix]] - (78)
[J=1 ]
Using (78), we may write
2
t t t—1
> x| | <E szz +2) (t = HE[|21214]]
j=1 J=1
t—1
< Zc‘*Mzh B+ 23 (8 — k)4 ME R, Bla /()
1=1 Jj=1
t—1
<t MS[h, h] + 8 MtS[h, h] S al/3()
j=1

< tc*MS[h, h] + 8¢* MtX[h, h] i a3 (5) = (t2[h, h]) O(1).
j=1

The last line follows from .-, a1/3(j) < o0.

The proof for (75) is very similar and therefore omitted. O

Lemma G.9. Let h be non-random function in L£2. Then

2
t
Z (Xj,h)p2e;| | = O (t2[h, b)) .

Proof. The proof here closely follows the proof of the Lemma G.8. Let z; = (X, h)2ej. We
can see E [z;] = 0.

Observe that

E [2]] = E [(X;, h) K [ Xi]] < O)[(X;, h) 213 = O(1)2[h, A, (79)

here we use the moment assumption outlined Assumption 1.

Following from
E [|212144]] < 21 ll3ll 21451302 (),
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and
Izill3 < (E [(X;, h)22E [E?lXjH)l/g < OM)|KX;, k) c2ls = O(1)v/Z[h, 1],

we may have

E [[(X, h)ej (X Wejnl] = Elzzj44l) = O(S[h, A3 (k). (80)

The rest of proof follows from the exactly same arguments as the proof of Lemma G.8 and
therefore omitted.
O

G.5 Proofs of Lemmas from Appendix G.3
All the proofs in this section used the notations from Appendix G.1.

G.5.1 Proof of Lemma G.1
The proof of Lemma G.1 follows from Lemma G.13 with a = 1/2 and b = 1.

G.5.2 Proof of Lemma G.2

Proof. Let 0 <v < % — 4. Observe that
E(S’ [ﬂ (sit] — B(St B(S,t] - ﬁ(*s,t]]
< (s8] — f(s t]’T(S 1] (f( ) f(*s,t])>£2

{ <A(s,t} - f(*s,t]’ (TS (sit] = )(f(s 1= f(*&ﬂ)>£2

<f(st Fro T(Fsa = f(st)> }

~

—1
m { HTV(f(s,t] - f&tﬂ’ 2

n HT1/2(ﬁs,t} - f(*syt])‘

~

(T =T Fion = Fo) o

o)

The term on the right is bounded by using Lemma G.12 and Lemma G.14. The term on the
left is bounded by using Lemma G.1. O

G.5.3 Proof of Lemma G.3
Proof. Observe that

t
1 ~ .
(t—s) Z (X5 Bl — B(S,t]>c2€j
=s+

40



t —~
< JEI P(st] T Bzis,t}>
] s+1 r2

t—s Z LK1/2 5]7fst] f(5t>
r2

j s+1

<g(st f(st st]>
=(7

T+ 2 g T T+ M) T~ o)

IN

H VAT Nt S]H HT1/4 (T + M—s)Y/ fst] f(st‘

where the last line follows from Cauchy-Schwarz inequality.

From Lemma G.15, we have

5;—13 —1/4 —1/4
sIE?gXe 7log1+£(t 3 ’T (T + M—s) g(s,t}‘ 2 (1),
and from Lemma G.13
s<t<e 1+£ - (s t] (St P
The above two bounds establish the result.
G.5.4 Proof of Lemma G.4
Proof. Observe that
t
1 o) * * *
= 2 =B =Bl B~ By
J=s+1
because §( 4 = Z§:s+1 B/t —s).
We may write
SR ~
t—s Z <Xj’ (s:1] *Biks,t]>£2 <Xj’ﬁ; 7ﬁ€57t]>£2
j=s+1
t
1 ) * * * a
Tios e (X5 Bt = o) pa (X5 85 = B 1o = = Besst = 8oy 55 = o))
j=s+
t
1 r) * N * *
T 2 (X Bt = Bt} o (X585 = Blan) o = (o = S TS = Te) )
j=s+

< =ry Zt: <<LK1/2 f _f(*s,t]> Lycr/2(X5) — (f_] fst])> f(st fst]>
[

=s+1
<Gst] fst] St]>
=(r

1/4(T+)\ 1)~ 1/4G(s,t],T1/4(T+>\t s ) (fst]—fst])>
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<HT_1/4 (T + N—sI)™ 14 Gs H HT1/4 (T + M- ) (fst]_fst])‘

i

where G, = i §'=s+1 <<LK1/2( i) f* fst]> L2 (Xj) = <f* fst])>

From Lemma G.17, we have

6
T A DT G|, = 0000
i [ [ G|, = 00
and from Lemma G.13
5t
. t=s  ||pl/4p )\_511/ ‘ —0.(1).
STB?EG\/EH T+ XD (T = o) o = 001D
The above two bounds establish the result. O

G.5.5 Proof of Lemma G.5
Proof. Let v < 1/2 — 1/4r. We may write

S s/ 1 |:/8(s 1= Bisapy Bos — B t]}

( (/] — )|:/8(st Blsi B 5fs,t])+‘2rst]—/3ét Bst]_/BEkst:H
=[{((Tw ) = ) Fren - f*;t),fs = Fts)) o |Z (B = By B — B

<T Y(Tior ) — T) (s f(st) Y(Fst) = Fon > + ‘E [B(S,t} — Bl Bt — 5{5@”

(Y“WCngﬂ]—IULf +‘2[3Gﬂ“ﬁéﬂ’BGﬂ“5@ﬂ]L
(81)

IN

IN

st] f(st ‘EQ

where the second line follows from the triangle inequality and the last line follows from the
Cauchy-Schwarz inequality. Observe that

|77 (W = DT = o) o

6t’—s 1/
(1 (32)")
o[

where the first line follows from Lemma G.21 and the last line follows from Lemma G.16 and
Lemma G.13. Following from Lemma G.13, we have

=0, (5;’5 logté (t — s)> = 0p(1), (83)

|77 iy = YT 4+ A1) A1

‘

(5(;,_S> ]1/2\/T 1/2\/T> (82)

op

[T+ 2D G )

t

|77 G = 1) o
and from Lemma G.1 we have
’E [B(s,t] = Blsp B\(s,t] - B?s,t]:| ‘ =0p (5t75 log!**(t — 3)) : (84)
The result now follows using (82), (83) and (84) to bound (81).
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G.5.6
Proof.

At

IN

~|(s

(s',t']» f(s,t] - f(*s,t] >£2

6/_8/ 1/4 3 B
<1+(§t > >HT VT 4 2D g

:0p< 1+

Proof of Lemma G.6
Observe that

t/

1 5 *
pT— Z <Xj,5(s,t] — B(S,t]>£2 E;

Jj=s'+1

Z L2 (X 5]7f(st fst]>
2

Jj=s'+1

1/4 14,7 *
c2 HT T+ M=) (Fo — f(syt])‘ c2

1/2 o g — ) 1/2/ gt )

Oy s
O

where the second last line follows from Lemma G.21 and the last line follows from Lemma G.15
and Lemma G.1.

G.5.7
Proof.

IN

where

(]
Proof of Lemma G.7
Observe that
y
T AZ+1< 32 Bt61 = B ) o (X B = i)
j=s'
(i(s't']_ ) [B\st] B(st Bnkﬂ_@” ‘E [ASt]_/B*st]’ﬁ;;kﬂ_ﬁ;k]
<(T(s’,t’] —T)(Fis) = Flsa) Freon — fnk> ’Z [5(5 8 — Bloap Biot — 5&]} ‘
(@) =TTt = L) s = 30 |+ [Bos = B B, — B3]
Ty = D)o = 5| o [ = Tl o+ |Z [Botr = Bt B = B3] 89)

the second line follows from the triangle inequality and the last line follows from the

Cauchy-Schwarz inequality. Observe that

H(T(s’,t’] ~T)(fss) — fi;t})’

<1+ ()"
o

EQ

H(T(S,’t/] CTYT + Ay 1)~ VAT 1A

op

‘

1*(%5) ]2/2\/ g6 — ) - L5 log! (1 ) (86)

t

|74 + 2 ) Ty = )|
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where the first line follows from Lemma G.21 and the last line follows from Lemma G.16 and
Lemma G.13. Following from Lemma G.1 we have that

‘E [B\(s,t} - 535,1&]»3(87'?] - B(*sﬂ] )
<\/Z [B\(s,t] - Bé,t]vé\(s,t} - 52‘5775]} \/E [ e~ P P — :Zk]
=0, (nk \/6t_s log1+5(t — 3)> . (87)

The result now follows using (86) and (87) to bound (85). O
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G.5.8 Technical results for this section

Proposition G.1. The analytical expression for the estimator in (72) is given by

t

> (Lgra (X)), 1) 2 Lirse (X5) + ggsg
Jj=s+1

1
t—s

f(s,t] = (Tis + Ae—sD) 7!

where g4 = ﬁ Z;:SH €jLy12(X5).

Proof. Observe that
oS, [ ,f,9)r2
— el =2 d —= =g
of fooen af Y
Since the objective function is a quadratic form, we just need to differentiate and make it zero
to find the minima. We may have

o 1 <
0=37 | 705 20 5= (X5 Lyl e + Al
j=8+1 f:]?(s,t]
o 1 > o 2
=57 | 705 2 (X)) + 07 = 203(Laca (X)), ee) + AT I
j=s+1 f:ﬁs,t]
t
X ~ .
Tt—s > (2<LK1/2(XJ)7f(s,t]>E2LK1/2(Xj) - QijK”Q(Xj)) 22 -
Jj=s+1
And it lead us to
t
, ~ ~
0=r— ) (<LK1/2 (X5), fs) 2 Lgrr=(X5) = yJ'LK”Q(Xj)> A
j=s+1
1 < - Ly
R Z (L12(X5)s fs) 2 Lycr2(X5) — — Z (L2(X5), f7) 2 Lgers2(X;)
j=s+1 J=s+1

t
1 —~
P E EjLK1/2(Xj)+)\f(87t]
j=s+1
t

- 1 . _
=Ts,f(s1) — P > (L2 (X5), ) e2 L2 (X5) = 9oy + Mis -
j=s+1

The last equation follows from the action of 77 illustrated at (70) in the previous subsection

and the result follows.
O

One key component is the expansion of variance term in the error bound. The next lemma is
to structure this variance term. Define

fog = T+ M- D) ' Ty, (88)
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Lemma G.10. Given (88) and the form of the estimator in Proposition G.1, the following
holds

<J?(s,t] - f@t]) = (T+N\-sD) ™" <(T —Tls) (fst] I, t]) + 9 + (T = Ts ) /s, g+ Hs, t]>

where Hgy = (t—s)™! E;:sﬂ ((LKl/Z (X;), [P e2 L2 (X5) = TfF ) and g4 defined in Propo-
sition G.1.

Proof.

f(s,t] - f();7t]
=(T+ )\t—sI)il ((T - T(s,t})ﬁs,t] + (Tis) + )‘t—sl)ﬁs,t] — (T + )‘t—sI)f();,tO
¢

=(T+ M—sI)~ 1<(T Tst])fst]‘f‘gst]‘F 15 Z (Lr/2(X5), £7) 2 L2 (X5) — Tfst]>
j=s+1

= (T + \—sI) <(T Tis,) (f —f st]) + 9(s.
) ¢
Jj=s+1
=(T+\—sD) 7" ((T — Tis) (f(s,t] - f(*s,t]> + 9] + (T = Ts ) f (5.4

t
e L S () e L) - S 71;)

J=s+1 ] s+1

In the last line, we use the fact that ff , = Z;:S—l—l [7/(t — s) and linearity of the operator T
The changes at the third last line follows from Proposition G.1 and (88). O

Lemma G.11. Let (¢ >0 and1>b>a > 0.

2(b—a—1) a 1—b/ oA . 2 _
ma 3207 |7+ DS — S| = O

Proof. Note that because f; is bounded, the population average f(*s 1 is also bounded. Precisely,
if f(*S q= >t als’tqﬁl, then 2121(als’t)2 < M < oo, for some absolute constant M > 0, where
{¢1}1>1 is the £2 basis coming from the spectral decomposition of K12y K12,

17T + M) 2 = T = ITT + 0D (T4 A D)V = Fg ) I
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2
_ S
= s+ Ag)? <sl+;t —1) (a")?
—S

1>1
A% s 5,6\2

= 25 (“f )

=1 (81 4+ \—
< {maxsl )\?_5} Z(a?’t)Q (89)
et (54 A_s)?? —

A%—s 5,6\2

< ’
< rglgfwz (a,") (90)

2b
[(1 — afb)-(-a/p) =9/ b(a/b)*a/bgﬁ/b] =1
—(1—aq b 1 a/b a b 2a/b>\ (1+a b) as,t 2
l

— 02Dy — o (/\ (1+a— b)) :(1) (5%18”4’)) ’

where the inequality in (89) is from Holder’s inequality and (90) follows from Young’s inequality
in the following form
a+b< (pa)/P(gh)"/",

where a, b, p, ¢ are positive real numbers and p~! + ¢~ = 1. ]

Lemma G.12. Let £ > 0. Let0<y<f—% Then

TV( (s,t] — f(st)H\/T

max
s<t<e

Proof. Following from triangle inequality and the decomposition at Lemma G.10 we have,

1T (Fioi) = Flaa) ez SITY(FL } = froa)llcz + 1T (Fsg — £l 2

< HTV( (s,t] — f(*st)”ﬁ2 (91)
+ | T(T + M=) (T = Ty )T *”HopHT"(lﬂ—fé,tpuga (92)
HT(T + X D)™ T = Ta) T Nop | T (Flsg = i)z (93)
+ 1 T(T + M—sT) gl 22 (94)
+ T (T + M—sD) ™ (T g = Tllop | £yl 22 (95)
1 T(T + Xe—sD) T Hig gl 22 (96)

We are going to bound each of the four term uniformly to have result.

For (91), from Lemma G.11, we write that with high probability

vt (sel, T (g — Fogller S 0.

47



For (92), from Lemma G.16, we write that in high probability

Ve (siel, I T(T + XesD) HT = T )TV llop S 67— \/log! (¢ = 5),

which would give us R
(92) < o(WIT” (Fiagy — £l

in probability, in uniform sense.
Similarly for (93), from Lemma G.16 and Lemma G.11, we write that with high probability

Vt € (s, €], (93) < 62 \/logt T (t — s).

For (94), from Lemma G.15, we write that with high probability

Ve (sl T+ Mesl) Mg ller S 0oy /log (- 5).

For (95), from Lemma G.16, we write that with high probability
vie (s,el, T+ M) Ty — T lopll g
SIT(T 4 M=) ™ (Tisp = T llop
< 7\ Jlog (- 5),

~ —

where we used the fact that Hf(*s 1 o2 < 0.
For (96), from Lemma G.17, we write that with high probability

vt e (s, (T + MsD) ™ Hig gl 2 < 0

~ —

log!Té(t — s).

This six individual bounds come together to give us the required result. O

Lemma G.13. Let§ >0 and 1 >b>a+1/2 > 0.
b a—1)
max ———o— ‘
s<t<e / 1+§

Proof. Using triangle inequality we may write,

)T“(T + M) (fo — f (*s,t})‘

2 Op(1).

HTG(T-{—)\t—s) (f(st fst] H <HTQT+)\ts)7(fst] f(st)‘

+ HTQ T+ At—sl ) _b(f(s,t] B f(Syt}) r2

(97)

where f 5,4 15 defined at (88). The second term on the right of (97) can be bounded using
Lemma G 11, which gives us

50=a=D
max ——— HTG(T'i-)\t—sI) B (fst] f(st )’

s<t<e / 1+§
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< max (5,5(:(1_1) HT“(T + /\t—sI)l_b(f&t} - f(*S,t])’

s<t<e

L= 0.

Now, it is suffice is to bound the first term on the right of (97). Let 0 < v <  — L. Following

the decomposition at Lemma G.10, we may write

ITH(T + M) (fany = S ) 2

<NTHT + X sD) (T = T )T Nlop | T (Foa) = Fs )l 2 (98)
+ 17T + Xe—sD) "g(s.1ll 2 (99)
HTUT + AeesD) ™ (Ts ) = Tllopll £ ]l 22 (100)
+ 17T + Xe—sT) " Hs gl 22 (101)

We are going to bound each of the four terms (98), (99), (100) and (101) uniformly over s < ¢t < e
to have the required result.

For (98), using Lemma G.16 and Lemma G.12, we write that with high probability
vie (s,e], T+ AesD) (T = T )T Nlop I T (fisiy = Fsa)ll 2

<oLte flogh (1 — )07 log (¢ — )

<Ot a7 [log*e(t — s).

For (99), from Lemma G.15, we write that with high probability

vie (siel, I THUT + Ae—sD) Pg(opllz S 6,780 log! e (t — ).

For (100), from Lemma G.16, we write that with high probability

vt e (sel,  NTT + MesD) " (Tis g = Dllopll £ g ll 2
SITHT + Ae—sD) (L5 — T llop

<ot NloghH (1 — ).

here we used the fact that Hf(*s 1 l|lp2 < oo.

For (101), from Lemma G.17, we write that with high probability

Vit € (37 6]7 ||TQ(T + )‘t*SI)_bH(s,t} ||£2 S 5tljsaib 10g1+£(t - 8)'

This four individual bounds come together to give us the required bound for the first term on
the right of (97).
O
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Lemma G.14. Let 0 <v < 3 — L. Let p € {0,v} and £ > 0. Then

-1
5tfs

Jnax m’\T_p(T(s,t] = T)(f(s.) = fisyllc2 = Op(1).

Proof. Using the linear operator norm inequality, we may have

HTﬁp(T(s,t] - T)(fst] f(st )HL2
< HT—p(T(S,t] )T 4 N I) VAT

o ‘T1/4(T + )\tst)l/Zl <ﬁs,t] - f(*s,t]) =

We are going to bound each of the two terms here. For the first one, using Lemma G.16, we

write that with high probability
< 6tlgyﬂog1+5(t —5).

op

YVt € (s, €] HT’p(T(Sﬂ — T)(T + A I)~/A7=1/4

And for the second term, we use Lemma G.13 to have
sY2. o g (¢
2 N t S

The two bounds come together to have the required result. O

vie (s ||TAT DY (Foa = i),

Lemma G.15. Let £ >0 and1>b>a+1/2 > 1/4. Then we have

2(b—a—1)
t—s a b 2 o
E sril?g(e W”T (T + M—sD)g(sgllz2 | = O(1),

where g(sy = ﬁ Z;‘:SH €jLy1/2(X;) defined in Proposition G.1.

Proof. We may write

IT*(T + M—sD) gz = > (THT + MosD) g, 1) 2

>1
= 2 (9 T (T + X D)1}
>1
2a
5l ,
frd e &
>1 (5[ + /\t—s)2b <g(57t] ¢ >E2
570

= Z eiler/2(X;), Bi) %o

2b _
1(5l+>‘t‘9 t Sz s+1
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B ; (s -I-s;\t—s)% t—s j;l €j<Xj’ Liazduee
By linearity of the expectation it lead us to
0 2(b—a—1)
B | s (74 dea) e P ey
5&?—1) 50 ! i
< ZE 212 | (log(t — 5)) 072 (t — 5) (51 + A—s)? ;5j<Xja L2012
:O(l). (102)
Here (102) follows from Lemma G.18. O
Lemma G.16. Let £ >0 and 1 >b>a+1/2>1/4. Let 0 <v < 3 — L. Suppose p € {0,v}.
Then Yo-a-1)
B | e T4 D) 0~ T = 00,

Proof. Using the definition of operator norm, we may write

ITT + X—sD) (T = T )T Pllop = sup (b, T(T + M—sI) (T — T )T P h) 2| -
Let h € £* such that ||h||z2 = 1. This means h = Y-, hjp; and 3~ hZ = 1. Then

(h, TU(T + M- D) (T = T )T Ph) o2
= Bl (b, TUT + A oD) (T = T )T P i) 2

j>1m>1
= Z Z iho(TT + M—sD) 005, (T — Ts.)) T P brm) o2

i>1m>1

_ZZhh< i )b@,(T Tsa])5m ¢m>£2

i>1m>1

_Zzhh f\ ) <¢]7 T Tst])¢m>

i>1m>1

529 _
<\/m\l Z Z m5m2p <¢]7 (T — T(57t])¢m>iz (103)
7>21m>1 j>1m>1

i>1 m>1

o1



The second last inequality (103) follows from Cauchy-Schwarz, where one may think (A, B) =
> i>1 2am>1 AjmBjm. The last equality (104) follows from

DB D DS

i>1m>1 i>1 m>1
by definition of h.
We have,
2a
17T + A )T = T ) T2 < 30N 0 a2 (6 (T — Ty )om) 2 (105)
—s (s,] op = (5j T S)Qb m Js (s,8])Pm ) p2
Jjz1m>1 B
By linearity of expectation
62(b—a—1)
a —b o —p s
E SIE?‘D‘;EHT (T+)\t SI) (T(s,t} T)T Hop 10g1+5t
g2a 62(b—a—1) )
= Z>15m E srgf‘gxe o~ (5]' n At—s)% log1+§t ‘<¢k7 (T(s,t] T)¢]>E2‘
mz Ve
S s P <o,
m>1

where the last line follows from Lemma G.19, and ), < 5m P = > m>1 m~(1=2P)2" is summable
given we have (1 — 2p)2r > 1. O

Lemma G.17. Let £ >0 and 1 > b > a+ 1/2 > 1/4. Suppose {h;} be some L? sequence that
satisfies X [Ly1/2(hj), L1y2(hy)] < M < oo. Then we have

2(b—a—1)
E —t=s (T 4 A D)0 1
srgl?g(e 10g1+§( S) ( +)\t S ) ( 06)
1 < ’
> (LX) By LX)~ Thy) | ||| = 001)
j=5+1 op
Consequently, it holds that
2(b—a—1)
E L@&Xe bgifgﬁHTa (T + \—sT) ™" H(s,t]\gp] =0(1), (107)

where H,y = = Z§'=s+1 ((LKW(X]-),f;‘>£2LK1/2(Xj) — Tf;‘) defined in Lemma G.10, and
that

=0(1), (108)

(b—a—1)
E s 7T 4 MDD 2
e T+ e

where G(s,t] = ﬁ Z;:s—‘,—l ((LK1/2 (Xj) f f(st >£2LK1/2( ) (f* *8 t]))-

52



Proof. We may write

2
t
(T 4 D) (tl S (s (X5), hyes LX) = Thy >)

—5.50 .
. 2
_ 1
=2 <Ta(TJr A-sD) ™" —s > (Lgr/2(X5), hj) g2 Liasa(X5) = Thy) ad)m>
m>1 j=s+1 r2
. 2
1 . _
= < S g (X) b))~ Thy) | T+ 0) b¢m>
m>1 j=s+1 2
520 1 < ’
- (5m +T;\Lt—s)2b — s D (Lgr2(Xg),hy) 2 Lygaa (X)) = Thy) | ém
m21 j=s+1 2
520 1 < :
=2 ot AP (s > {Xe Liasa(hy) (X, Ligradm) ez = (hys Tém) 2}
m>1 Jj=s+1

By linearity of the expectation it lead us to

t

. B 1 5 (b—a-1)
E {fgtag% TUT + A—sI)° (ts jZS;H(<LK1/2(Xj)’hj>£2LK1/2(Xj) Thj)) ltogliﬂt

<) E
m>1

max (5(b Sa 1) (ﬁm -+ >\t 5)
1<t<n \ (t — s)(log(t — s))(1+6)/2
t

2
ST UK, Ly (hy) 2(Xi, Ligajodm) o — <hj,T¢m>52}>

Jj=s+1

—0(1).

(109)

Here (109) follows from Lemma G.20 because we have X [Lj1/2(hj), Lg1/2(hj)] < oo.

The result (107) follows from (106) because |35k < oc. For (108), we can again use (106)

as we have X [BJ* — ,BE‘S,t],ﬁ; — E;t]} < O(1) maxj<g<i Hﬁf;kHH(K) < 00. O

Lemma G.18. Let £ >0 and 1 >b>a+1/2 > 1/4. Then we have

2a 52(1)—0,—1) t

5 t—s 1
E | max (Xjs Lgrs2(dm)) c2e5| | = O(1).
s<t<e o] (5m + Mg )2b 10g1+§( 5) t—s jg;l 1K 7
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Proof. For simplicity, denote Yj,, = (X, Lg1/2(¢m))s2€;. Observe that

Y [LK1/2(¢m)’LK1/2(¢m)] = <T¢ma¢m>£2 =5m.

We are going to prove the result for a general interval {1, ..., T}, the result for the (s, e] follows
from translation and stationarity.

Using Lemma G.9, we may write

2

We apply Lemma J.3 and to have this result: for any non-decreasing sequence {’yt}tT:l

2
t

T
1 1
E | max —E Y; :C’E —5S5m, 110

L<i<T | 4 o — 7 " (110)

for some constant C' > 0.

Observe that

5t2(b—a—1) 5t2(b—a—1) _ 5t_1

< .
(5 + A¢)2o—(142a)+(1+2a) = )\367(1+2a)(5m + ) (1+20) ~ (S + Ap) 120

It led us to
2a 2(b—a—1) ? 2a -1 t 2
S 5t 1 Z Y. < 5 6t 1 '
(5m +)\t)2b 10g1+£t t P Jml o~ (5m 4 /\t)1+2a logH{t t P J,m
2
{ 52a 520 5t—1 1 Zt:
S T A o } "N }/j,m )
7 N o |12
which further implies that
2
537? 6t2(b_a_1) 1 zt: Y
]7m
= (5m 4+ M)? log't€t |t =
2
< 520 520 st i
A - Y . 111
leZN {571n+2a )\%+2a} logl—f—f t t J; J,m ( )

CaseI: a <0

o4



Let f, = [m® V| AT. Using (111), we write

520 6 2(b—a—1) 1 t 2
m Y m
Z (5 + M) log!tet ]z:; 7
5—1/2 2
2a
<2quwg(mmMWaw2zf» (112)
m>1
2
5 1/2 1
+’Z;I{t>>ﬁ”}5 (log 1) 15672 ¢ < Yim

=1

Observe that for 2 <t < T,

d (tdtl/Q(logt)(Hf)/Q) — $040)/@r41) (1o 1)(ED)/2 < Ler 1 +&, gt) 50

dt 2r+1 2
and
d a+1/2¢1/2 (1+€)/2\ _ ya+1/2:1/2 (-2 (L+r— (a+1/2)2r 1+¢
- (m 5% (log 1) ) = AH2512 (160 1) o logt + ——= ) >0.

This says that {tétl/Q (log t)(1+5)/2} and {t)\?H/Q(Stlm(log t)(1+5)/2} satisfies the criteria for {v;}
n (110).

This observation on derivatives and (112) helps us to write

2_
2a 2(b—a—1) t
S 5 1
E m 1 v
lrgtiT Z  (Sm + A)? log' et |t gz; jm
: 5 ;
< aTR
m§>:15m 1505, | (log ) 170072 3o 7172 Z m
2
i e v
+ n;ﬁm f"rngi<T (10g t)(l'f‘f /2 t Z
>t S gt Y g
= S T ire N id2ag m T s.°c %t (113)
FE 142 —
m=l i< fm logh* A2 m>1 t>f 2 log 5t
5;1 1+2a
=c ) 2log' e ¢ > >\1+2a+ > t2log1+5t S
1<t<T m>4, 1/2r 1<t<T m<5;1/2r
Z 5! 1/2 Z 57! "
=c 70((57 7") +c 70(5* r) (114)
2 1ol HE t TP .
1<t<T t?log "ot V=T t?log "5t
5t11/27‘> .
1+§ > -
i tlog™=4 < ! 1<t<T tlog ™t

The (113) follows from (110) and (114) follows from (126) with the observation

PO S Y A
m_ < gOl/ S —
~ e N = o, (m276;) T2 571/ (a2r6,) T

m>6, m>0d,
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Case II: a >0
Let fo, = [m® Y| AT. Using (111), we write
2a 52(b7a71)

S, ¢ 1
— Y.
mz>:1 (5m +A)? log!tet |t 2 Yim

2
512

2a t
< T{t < fu}sy (log £)0072 a+1/2 Z m

m>1

—-1/2 ¢

5; 1
) (1+6)/2 ¢ Z; Yjm

+ ) I{t> fm}sy
m>1 (

5—1/2 1 t

< I{t< f, ¢ Yim 115

m>1

5712 1 ¢
-1 ¢
m>1 j=1

We have t < f,, = A\ > Ay, which gives us (115) and (116).
Observe that for 2 <t <n,

d

a (16172 10g ) (+6)/2) = $0+0)/Cre1) 10 )€ 1)/2 < Lbr  1+8, gt) -0

2r+1 2
and

A (2512100 ) (1H6/2) — Z\L/251/2 (100 (€172 (L 1+¢
o (t)\t 9,/ (logt) ) =\'790,/"(logt) T 11 gt+ 5 > 0.

This says that {tétl/Q(log t)(1+5)/2} and {t)\;/zétlm(log t)(1+§)/2} satisfies the criteria for {v;}
n (110).

This observation on derivatives and (115) helps us to write

sy |
E | max s - Yjm
1T et (8m 4+ A)? logttet |t st
1/2 t 2
2a -
5 0 1

< m max ¢ Y

= )\?fn 1<t<fm | (log t)(1+€)/2 )\;/Qt ; Jm

1 s g 2
+Zs £ ngtL<T Wtzyj’m

m>1
<Z 2a 1+5t)\t2m+z S Z
m>1 > fm

m>1 fm t<fm

=l (117)

log t2 log

o6



-1 14+2a -1
o o

:sz Z inﬁ\za_‘_czil-‘rgt Z 1
m

2
t t*log
1<t<T Nk fm 1<t<T <oV

5,5_1 —1/2r 5,5_1 —1/2r
1Sz ttlog (S Plog

1 5t—1—1/2r 1
= 0] = ———0(1) < oc.
Z tlog' ™t t Z tlog!*ét (1) <o

1<t<T 1<t<T

The (117) follows from (110). For (118), with the realization Af,, < s, we may write

Y DV 2 S X oy s T PV ),

t
N e m>6;

similar idea is outlined at (126) which comes as a consequence from Lemma J.1.

Lemma G.19. Let £ >0 and 1 >b>a+1/2 > 1/4. Then for any k > 1, we have

G20 52(b—a—1)

]E J t—s T _ T . 2 — .
srgffxe j>1 (5j + >\t—s)2b 10g1+£(t — 5) ‘<¢k’ ( . )¢]>62‘ O(sk)

Proof. Denote uj g = (Xj, Lgr2(61)) g2 and wjm = (Xj, L2 (dm)) 2. Let Y, = ujptjm —
Elujrwjm] = (Xj, L2 (0r)) c2(Xj, L2 (édm)) g2 — (@, Tdm) c2. Observe that

t

1
(ks (Tis) = T)Pj) 2 = i—s Z Y

i=s+1

Again, We are going to prove the result for a general interval {1,...,T}, the result for the (s, €]
follows from translation and stationarity.

Using Lemma G.8, we may write

2
t
E Z ijm = O(t)skSm.
j=1

We use Lemma J.3 to establish for any non-decreasing sequence {v;}

t 2 T
1 1
E =N vk =Cy = 119
1@;2% e ; jm ; V?Skﬁm’ ( )

for some constant C' > 0.
The rest of proof follows exactly as the proof of Lemma G.18, just by replacing ijm with
Y; m and therefore omitted.
O]
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Lemma G.20. Let £ >0 and 1 >b > a+1/2 > 1/4. Let {h;} be sequence of L functions
such that X[Ly1/2(hi), Lyc12(hi)] < M < co. Then we have

. 572# 6t2£bs—a—1)
max
s<t<e £ (8m + Xi—s)? (t — s)log' e (t — s)

t

Z (<Xj7LK1/2(hj)>L2 <Xj7LK1/2 (¢m))c2 — <hjvT¢m>62) =0(1).
Jj=s+1

Proof. Let
ijvm = <‘XJ'7LK1/2 (hj»L? <Xj7 LK1/2 (¢m)>ﬂ2 - <hj’ T¢m>£2

Similar to the last two proofs, we are going to establish the result on a generic interval {1,..., T},
the case in the lemma follows from translation and stationarity.

Observe that
E (X5, Lz (hj)) c2 (X5 Licya (m)) g2] = (b, Tom) 2,
and
Z[LKl/2 (Pm), Ly (d)m)] = <T¢)ma bm) 2 = Sm-
Using this, from Lemma G.8, we may establish

2

t t
E Y Yim| | O s
i=1 i=1

Now, similar to (110), we apply Lemma J.3 to have: for any non-decreasing sequence {7 }._,

2
E | max |— > Vim 202712% (120)
j_

for some constant C' > 0.

The rest of proof follows exact same steps as the proof of Lemma G.18 and therefore omitted.
O

Lemma G.21. Let a,b,q > 0. Let p,r be some constant. Suppose D : L?> — L? be some linear
operator. Suppose f,h € L?. Then we have

)\ q

77011 < (14 (32) ) 7D+ A0 T gl 77T+ AT s (120
)\ q

et < (1 (52) ) IT720+ A 0l 77T+ A (122)

a

o8



Proof. We are going to establish (121) and the proof for (122) follows similarly. The proof is
divided in three steps. We establish some necessary result in Step 1 and Step 2 and complete
the proof in Step 3 by using them.

Step 1: For d > ¢, we are going to establish the following in this step.

774 A s < 1T+ A0 e < (32) 09T 40D s, (123)

Let f = 3,51 a;j$;. Observe that i =<s; >0 and

1 1 ﬁ>5j+)\c

d>c < + A + Ng) = > — :
¢ <53 ) (5] d) (Sj +Aa) (5]‘ + Ac) Ad 55+ Ad

It lead us to

I TP(T + D)2 f| 7o =Y 577 (s; + Aa)®a3 <> a77(55 + Ae)®a] = || TP(T + AL)7f |2
7>1 7>1

and

5; + Ac
IT7(T + AL |2 = 37625, + M) —Z(;i Ad) &2(s; + A)a?
Jj=1 Jj=1

A\ 22 5P A\ 2
<[z —J 2= TP(T + M\g1) 7 ||%s.
<(%) 2 o2 (%) 1@ am

d

Step 2: For d > ¢, we are going to establish the following in this step.
|77 D(T + ML) T |lop < ITP DT + AdL) " |op. (124)

Observe that

1 1
> .
(Ej + )\b) - (ﬁj + )\c)

b>a <= (5;+Ac) > (55 + ) =

It lead us to

TP D(T + AD)™T" |lop

= sup [(h,TPD(T + A1) "T"h) ., |
heL?
1Al z2=1

= sup | )Y hihe (85, TPD(T + A) T ¢y 1o

heL? P> >
HhHL2:1 ]_1 m_l

= sup | )Y hjhe (TP, D(T + AD) T 6y 1o

heL? P> >
HhH£2:1 .7_1 m_l
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217 2r

= sup )Y hjhm 5m+)\)2q<¢g, Dém) 2

heL? P> >
HhH£2:1 12 1m>1

2
5 P52r

< sup E E hjh 4(5 J_'_)\ )2(1 <¢Ja ¢m>
hel? |57 m>1 m
Al po=11"=" "=

= sup Y Y ke (TP, D(T + AD) T ¢} 1y

heL? P> >
HhH£2:1 ]71 mil

= sup |37 bt (65, TPD(T 4+ AdD) T 61n) 1

heL? P> >
HhHL2:1 ]_1 m_l

= sup Kh,TpD(T—i-)\dI)*qTrh%Q}
heL?
7]l 2=1

= TPD(T + AgI) ™T" ||op.

Step 3: Using (123) and (124), we may write

ITPDf]|c2
=I{b > a}| TP D(T + \I) 9T "T" (T + ML) ]| 2 + I{b < a}||[ TP D(T + \I) 9T "T" (T + NI)? f|| z2
<H{b > a}|T"D(T + M) ™ T [|op |77 (T + AaL)? f| c2

+I{b<a} ( ) TP D(T + XN X) 9T ||op|| T (T + AX)? f]| 22

A
< (1 + <Ab> ) 177 DT + XD) T [lop | T"(T' + AaT)? f| c2-
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H Lower bound

Proof of Lemma 1. We prove a more general result and the required result follows as a special

case.
For Zj = (Y}, X;), let P be the joint distribution of {Z;}]_, following

yj = (Xj, B) 2 +¢j, for1 <j <A,
Yj = &js for A < j <nmn,

where {X;}7_; is independent standard Brownian motion and {e;}7_; YN (0,1). Let P be

the joint distribution of {Z}}_; with Z} = (Y], X}) which follows

y}:(X},B)CQ—FE;, for1 <j <A+39,
y;.:&‘;.’ fOYA+5<]§n

where {X]}7_; is independent standard Brownian motion and {e’}"_, N (0,1). We assume

that the two datasets are independent. Observe that

A+0
KL(Py; Pl = Y. KL(B™P"),
j=A+1

where Pg’"(y,x) and Plj’"(y,m) are distributions of (y;, X;) and (y;,X]’) respectively. For A <
j < A 49, one may write

KL (Pg’"; Pf"") = // log {m}pﬁ’"@!w)p(%) dy dx
1 xr
— [[ 5 (@)% — 2o pree) w7 wlepta) dy da
:‘12
— ;5 [ @ Okpeyiz =7

where in the first line we used the conditional density pé’”(y|x), )" (yz), and p(x) as the density
of Xj; in the second and the last line we use the fact that y;|X; ~ N (0,1) under pé’n(y]x).
This lead us to KL (P}; PP*) = 6x*/2 and we already have n(PJ*) — n(P§) = 6. Following from
LeCam’s lemma (see e.g. Yu, 1997 and Theorem 2.2 of Tsybakov, 2004), we may write

inf sup E (17— n(P)] > S0/

n PeP

The result now follows by putting § = % with the realization that, for large n, % <A <nj2.
O
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I oa-mixing
The strong mixing or c-mixing coefficient between two oc—fields A and B is defined as

a(A,B)= sup |P(ANB)— P(A)P(B)|.
AeA,BeB

Lemma I.1. Let X and Y be random variables. Then for any positive numbers p, q,r satisfying
1,11 _
5—&-5—1—;—1, we have
|Cou(X,Y)| < 4| X [[pl|Ylly {a(o(X), o (¥))}/".
1.1 Strong law of large numbers

Theorem 1.1. Let {Z;} be centered alpha mizing time series such that a(k) = O (W)

for some p > 2, where Ly, is non-decreasing sequence satisfying
1
d <o and Li—Lp_1 = O (Ly/k).

Suppose for some 1 < p < p < oo one has

Z E2/p |Zt\l’

t=1

Then Yy 11 Z/n converges a.s to 0.

Proof. Using L, in the Definition 1.4 of McLeish (1975), {a(n)} is sequence of size—p/(p — 2).
Following their Remark 2.6b, the results directly follows from their Lemma 2.9 with g;(x) = P,
dt—land Xt Zt/t ]

1.2 Central limit theorem

Below is the central limit theorem for a-mixing random variable. For a proof, one may see
Doukhan (2012).

Theorem 1.2. Let {Z;} be a centred a-mixing stationary time series. Suppose that it holds for
some § > 0,

Za(k’)‘s/(z*‘s) < oo and E(|Z1*"?) < co.
k=1

Denote S, = > "1 Z and 02 = E [|S,*]. Then

S|t

On

— W(t),

where the convergence is in Skorohod topology and W (t) is the standard Brownian motion on
[0, 1].
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J Inequalities

Lemma J.1. Let f : [0, 00] — [0, 00] be monotonically decreasing continuous function such that
[7° f(@)dx < co. Then

1
/f )dz <Y f(k) /f )dz < f(0 /f

k>1

Lemma J.2. Let r > 1 be a constant. For any positive sequence 5; < i7" and ¢ > 1/2 we

have
5°

Z (7] < cra” VP (125)

j=1 ot s;)? T

given any o > 0. Here c; > 0 is some constant.

Proof. Given s; < j*QT, we have some positive constants co and cg such that cy j*2" <s5; <
C3j_2r7 o
5 (c3j~2")®
J
— — 4 K - =
j; (a+s5)¢ _]Z (o + caj=2r)? SZ 04]2T+02

Now, we shall upper bound the quantity on the right of above equation using Lemma J.1.
Observe that the function defined by = +> m satisfy the conditions of Lemma J.1 and
therefore

= (@7 + e = (aa® + )¢

Observe that

(cg/a)l/Q’" cz/a 1/27 c
5 C5
/ (axQ’" + c2)¥ d:E / dm P = al/?r
. L (126)
/ 3 d:c / s dr = < .
(ca/a)t/2r (az?" + c2)¥ cz/a)1/2”" ar T)w al/2r
Using (126) we may write,
o
/ 1 do < cs + Cg
1 (@ +eo)? al/?r
which lead us to the required result.
O

Corollary J.1. Let {ay},~, be positive sequence converging to 0. Under assumptions of
Lemma J.2, we have

51+2t

S —1/2r
]ZZ:I (an isj)l”% =0 <a"1 i ) (127)

Lemma J.3. Let {Z;} be a sequence of random variable. Let & > 0. Suppose

t 2

> %

m=1

E = O(1).
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Then for any positive non-increasing sequence {7y}, we have

2

t n
2
E | max 1% ) % DO
m=1 t=2
Consequently we have
' 2
E = 0(1).
8 | Ve 22 4] | 700

Proof. Observe that (128) follows directly from Theorem B.3 of Kirch (2006).

n
Note that {1} is a non-increasing sequence and from (128)
t=2

Vtloghtet

t 2

1

and the (129) follows from the fact that > ;°, m < 0.

E | max
1<t<n

1
= O(I)Z Tﬁt’

Pt tlog

Lemma J.4. Let v > 0. Let {Z;} be a sequence of random variable. Suppose we have
E|IS/P| < ¢ - ),
where Sf = i:i Zy. and ¢ > 0 is some absolute constant. Then for any given & > 0

P(Vr>1/u, 1Sy < Clﬁ(logrv—i—l)) >1—e¢,

NG
where C7 = @\/g.

In other words

a Zi| = Op(1).
7"H>11/XV T (log )+1) Z O
Proof. Observe that using Lemma J.3 with 7, = 1, we can get

E [max |St|2] <c(j—1i)

1<t<j

for some absolute constant ¢ > 0.

We are going to use the peeling argument for the proof. With

11
] E[ max ]SHQ} c.

Sk
max

E
m<k<2m f

m<k<2m

64

(128)

(129)



Let’s define A; = [2j “L/v,27/ 1/]. Using Markov’s inequality we may write,

oo |l 2 ) = 5 s, 5| <
max |— < cx
m<k<2m Vk

== P U{ >aj} Sa%j?

max
m<k<2m

kEA]'
c
— P U { >a(log2ku+1)} Soﬂj?'
kEAj

The last equation follows from

27y <k<2 /v = j<loggkv+1<j+1.

And
Sy
P — | > a(logyrv + 1)
r>1/v "
S,
=P {"“ > a(log, kv + 1)}
7>1 kEAj k
§iP U {‘S > a(logy kv + 1)}
— UVE
Jj= kEA;
| cm?
SreD Dl
7=1
With o? = 617222 and log2 < 1, we can have
P ( max |S,| > g\ﬁ(lo rv+1)) <e
r>1/v Ve & -
O
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