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Supplementary Material

In the supplementary materials, we provide all the technical proofs for the main

results of the paper, and supplementary numerical results.

S1. Proof of Proportion 1

Let y1 = (Y1.1,---,Yn1) and Yo = (Y19,...,Yn2)  be the response vectors collected
from the first and second experiments. According to the true model (2.1), the co-
variance matrix of the combined response vector y = (y, ,y, )" is given by
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v=|
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with
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vi=

—72I, (o} + 79I,

and the covariates matrix is

with @y = (Z14,...,%nx) | be the design of the k-th experiment for k = 1,2. There-
fore, the weighted least squared estimator of the linear coefficients @ = (v, aa, 51, 32) "
is

0" = (ay", 63", g, )T = (XTV X)X TV Ny, (SL.1)

with variance-covariance matrix

Var(6"*) = (X TV 1X)7L. (S1.2)



Under the orthogonal assumption
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Therefore, the hybrid estimators are equivalent to the weighted least squared estima-
tors, i.e., the best linear unbiased estimator under the given assumptions. Thus, the
conclusion in part (i) holds.

Notice that
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random vectors, the Lindbergh-Feller multivariate central limit theorem gives that,
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We can directly find the joint asymptotic normal distribution of Bf — (1 and Bg — Bs

. . . . T
as the linear combination of <Bf — By, BV — B1, B — Pa, BY — 52> . This completes

the proof of part (ii).

S2. Proof of Proportion 2

We first provide the weighted least squared estimators of §; and f5. Define the

following notations:
e vy first experiment’s output for the shared users with the 2nd experiment.
® Yy s first experiment’s output for the non-shared users.
e ys: 2nd experiment’s output for the shared users with the first experiment.
® Ys,s: 2nd experiment’s output for the non-shared users.

Given Table 1, the sizes of the four vectors are ng, ni, ng, and ns, respectively.
Similarly, we define the random effects us as the ones for the shared users, of size
ng, and u s and usy,s are the random effects of the non-shared groups for the two

experiments, of size n; and ng, respectively. There are also four random noise, €,



€1ns, €25, and €3,,5. Based on the model assumptions in (2.1), we have that
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Then the weighted least squared estimator is given by
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Let
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which are constant matrices. Under Assumption 3, we have that
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Also, we can express the collaborative estimators by

T T T T T T
—ex| (Yrs — Y2,5) 0T, Yins + (@ €)Xy Y15 ax) Y15+ 0T, Y10s + €Ty Yo

b= ang + bny B ano + bny ’
and
Bc . _ew;—,s(yls - yl,s> + dw;nsylns + (C + 6)332T,5y2,s . €$2T,5y1,s + C$2T,Sy2,s + dm;nsyQ,ns
2 cng + dngy N cng + dns '
We can then express
Be 0 0 1/(ang+ bny) 011
gl —X'Vvly
. n
5 00 0 1/(eng+ dno)
Let
Gule 0 0 1/(ang+ bny) 0
M, = nVar (n_lBT) (n‘lA)*1 I, | —n
Jule 00 0 1/(cno + dny)

Then M, — 0 as n — oco. Therefore,

Qule Bc
1

S I S VN Ve P
n

Byt 3



as n — oo, which shows the asymptotic equivalence between the weighted least
squared estimators and the collaborative estimators. This completes the proof of
part (i).

For part (ii), let r;x be a 0-1 value indicating whether or not the k-th response

from the i-th user is available. Therefore, we can express
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First, we apply the Lindbergh-Feller’s multivariate central limit theorem to
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with
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which indicates the joint asymptotic normal distribution of Bf and Bg

S3. Bias and Variance for Different Types of Responses

In Figures 1-3, we provide the estimated bias corresponding to Figures 3-5 in the

main paper. Following (4.18) and (4.21), the estimated bias is given by
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for continuous responses in Figure 1, and
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Figure 1: Bias under user effect settings (a)-(d) for continuous responses.

for binary or count responses in Figure 2 or 3, respectively. These figures show that
bias of the three methods are around zero for all three methods. Overall, no method

appears to exhibit a clear advantage or disadvantage in terms of bias.



(a) Missing Rate 0.1| [Missing Rate 0.3] (b) Missing Rate 0.1| [Missing Rate 0.3
0.002 0.004 1
0.000 1 > 0.0021 >
/\\
S i/ SRS S
~0.002 4 8 0.000 A REDN 8
—-0.002
) —0.004 %]
o o
M 0.0024 m 0.004 1
= =
0.000 A 1" 0.002 A 1l
= L )
-0.002 A =] 0.000 o= N k=
o T o
—-0.002 -
—0.004
1 23 45 12 3 45
T
(C) Missing Rate 0.1| [Missing Rate 0.3] (d) Missing Rate 0.1| [Missing Rate 0.3
0.002
0.002 =] =]
1 0.000 A 1
S S
0.000 A S —-0.002 =]
o o
t -0.004 A :
8 —-0.002 1 8 .
m m
0.002
0.002 1 = = 1 a0 | 5
R L 0.000 =20 =7 FNG.-- 2|
= T K , = .~ VY =7 | =
/ B 7 /| o o
0.0001% N7 A i 8 -0.0021 : S
SON LS An o o
-0.004 4
_0002 L T T T T T T T T T T T T T T T T T T T T
1 23 45 12 3 405 1 23 45 12 3405
T T
Methods — SINGLE ---- PAIRED --- COE

Figure 2: Bias under user effect settings (a)-(d) for binary responses.

In Figures 4-6, we provide the sample variance ratio with respect to the single
experiment estimator associated with Figures 3-5 in the main paper. Following (4.18)

and (4.21), the variance ratio is given by
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Figure 3: Bias under user effect settings (a)-(d) for integer/count responses.

for continuous, binary and count responses in Figures 4-6. The variance behavior of
the three methods is similar to the patterns observed for the mean squared errors in

Figures 3-5 of the main paper.
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Figure 4: Var.ratio under user effect settings (a)-(d) for continuous responses.

S4. Confidence Intervals

We provide statistical inference results for SINGLE, PAIRED and COE estimators.
Under the asymptotic normal distributions of those estimators, the confidence interval
can be easily constructed with estimated variances given in Section 3 of the main

paper. In Figures 7-9, we report the coverage rates of 95% confidence intervals
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Figure 5: Var.ratio under user effect settings (a)-(d) for binary responses.

across 100 micro-replications associated with Figures 3-5 in the main paper. The
coverage rates of the confidence intervals for all three methods are approximately 95%,
indicating that statistical inference based on these methods is effective. However,
since COE has the smallest variance, it provides the shortest confidence intervals

among the three methods.
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Figure 6: Var.ratio under user effect settings (a)-(d) for integer/count responses.

S5. Collaborative experiments with mixed responses

In this section, we evaluate the performance of COE with mixed responses. Par-
ticularly, we generate a pair of experiments under the model assumption in (2.1).
The outcomes of the first experiment are converted to binary responses as in (4.19),

whereas the outcomes of the second experiments are maintained the same as the
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Figure 7: Coverage rate under user effect settings (a)-(d) for continuous responses.

original continuous values. The results on the logarithm of MSE.ratio in (4.18) for
the estimated treatment effects for binary responses (first experiment) and continu-
ous responses (second experiment) are provided in Figure 10. Overall, COE has the

smallest mean squared errors among three methods.
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Figure 8: Coverage rate under user effect settings (a)-(d) for binary responses.

S6. Robust Analysis to Model Misspecification

In the main body of the paper, we assume that the underlying model of the outcome

is the model in (2.1), i.e.,

Yik = Ui + o + 218 + €, k=1,2,
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Figure 9: Coverage rate of 95% Confidence Intervals under user effect settings (a)-(d)
for integer/count responses.

2 In

where the individual effect u; is a random effect with mean zero and variance 7
Section 4.2, to show the robustness of the COE to random effect, we assume four

different models (a)—(d) that generate the data. Our simulation results show that the

proposed COE has smaller MSE compared to the SINGLE and PAIRED estimators.
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Figure 10: Logarithm of MSE.ratio in (4.18) for a paired of experiments with binary
responses (left) and continuous responses (right).

Here, we provide a theoretical justification on the robustness of the COE with respect
to the model misspecification on the random effect assumption.

To facilitate the discussion, we only focus on the case when the two experiments
are exactly overlapped, i.e., 7o = 1 and ng = n in Assumption 2. We assume a more

general model

Yik = Wigr L (Tig = 1) Fupe—I (i = =1) + ap + i + €, k=1,2, (56.6)

where u;;, and wu;_ are independent random effects across different users and the



joint distribution of w; = (w14, Ui, Usor, Uip—)' has mean zero and covariance ¥;
with off-diagonal (I, h)-th entry v;;, and diagonal entries 771,77, _, 77, 77_. Other
terms of (S6.6) are defined in the same way as in model (2.1), such as Var(e; ;) = o}
for k = 1,2. Tt is straightforward to see that this model (S6.6) covers all the scenarios
in (a)—(d) in Section 4.2.

Note that the two experiments are exactly overlapped. Similar to the Single

Analysis in Section 2, we can easily derive the SINGLE estimator and its variance

under (S6.6)

n

ns o —1

1="n E Ti1Yi,
i=1

2 n
A O’ _
Var(fy) = ﬁl +n Z(TﬁHI(xil =1)+ 712,1—](95@'1 =-1))
i=1

0_2 n
1 -2 T
=—+4n g a; X;a;,
n ,
1=1

where a; = (I(x;; = 1),1(z;; = —1),0,0)". Also, similarly to the Paired Analysis

in Section 2, the difference model is

zi=oa+ x5 — 202 + 0; (S6.7)



where

O =¢cin — i+ untl(win =1) Fup_I(xn = —1) —wpr [ (xi2 = 1) — w1 (x;2 = —1),

-
=€&;1 — €2 T C; Uy,

where ¢; = (I(z;1 = 1), I(ziy = —1), — (22 = 1), —I(z;2 = —1)) . Thus, the paired

analysis estimator is given by

Bf = nil inylzi. (868)
i=1
with
v (Bp> 0%+0§+ 1 i Ty
ar = — C. 2,,C;
! n n? — !
Furthermore,

PR o? 1 &
s pp) __ “1 T
i=1

Therefore, we have that the joint distribution of ( Bf, Bf ) has mean /3115 and covariance

matrix



According to Lemma 1 in the main body of the paper, we can obtain the best linear
unbiased estimator of 3, (denoted by 3¢) as a linear combination of 3 and 37, with

weights Yoo — X1 and X7 — X5 respectively. Note that

n(zgg — 212) = U% + n_l ZCJ—EZCZ — n_l Z C;FE,-ai

i=1 i=1

and
n n
-1 E T -1 E : T
n(EH — 212) =N a,; Eiai —nNn C,; Eiai
i=1 =1

52,452

5 is an estimator of 0% +

Following the assumption (S6.6), we have that

_ S3,4+55_ . .
n~'Y " alYia; (denoted by 77, for short), =552~ is an estimator of

n n n n
2 -1 T 2 -1 § T -1 E : T -1 E : T
O'Q—I—TL (ci—ai) Z,(Cl—a,) = 02+n C, ZZCZ—I—TL a,; 2201—271 a,; Eici,

i1 i=1 i=1 =1

ST +ST_+S2,+52_
(denoted by 7.7, for short), and —H——=——=*

is an estimator of o} + o2 +
n~ 'Y e/ Sic; (denoted by 775). Here ST, S%_, 52, and S?_ are the sample

variances of z;’s under experimental setting x;; and z;» with the sub-index repre-

senting the signs of x; ; and z; 2. Note that

n n n
1
2 2 2 2, 2, -1 T 1 T “1 T
5(7'”’1 + T+ 7o) =01+ 05 +n E c, Yici+n E a; Ya; —n E c, ¥ia;.
i—1 i—1 i1



Then one can have

[ 11 St +SE- | I i T i T
1 1 -1 — 5 n Zi:l a; Ziai —n Zi:l C, Eiai
1 2 2
- S5 455 = 2 i LT
5 1 -1 1 e o —nT Y ¢ Yia,
1 1 1 S~2k++sif+sz++537 2 -1 n TE -1 n TZ
e 1L 1 | | ot Doic1 € NiC —nT Yo ¢ Biay

(56.9)
Therefore, in the implementation, we use the weights of o3 + n™'> " ¢/ Zie; —

n S el Sia; and ST al Sia; — SO0 €] Sia; for 3° and 3P, which are
approximation of the best linear unbiased weights.

We should compare (2.11) and the robust version (S6.9). It is easy to see that
the weights for 35 and 3 of the estimator 3¢ under the model (2.1) and (S6.6)
are exactly the same despite of the different model assumptions. Essentially, the
more general model (S6.6) overparameterized the random effect assumption. For the
estimator Bf, such overparameterization is not needed. Following the same derivation,
Bf under model (56.6) is BLUE and asymptotically unbiased. This explains why

under different data generating models (a)—(d) in Section 2, the proposed COE can

lead to smaller MSE compared to the other two estimators.

S7. Case Study of Customer Campaign

This case study is pseudo-study based on real data on customer campaign. We use

this dataset to extract users’ effects (a linear combination of user covariates and




additional random effects) and add a synthetic additive treatment effect to generate
new responses. This pseudo-study allows us to replicate experiments with user effects
extracted from real data.

We create a case study based on the customer personality dataset in Kaggle
(Patel, 2021). This dataset contains users’ information and their responses to five
campaigns. We take 2216 users with complete records of all the features. Through
variable selection, we keep income, number of kids at home, and number of teens at
home as effective user features in model fitting. The response for each of the five
campaigns is a binary outcome, indicating accept (1) or not (0). Let Accept,, be
the status of the i-th user to the k-th campaign, and income;, kids; and teens; be
the covariates of i-th user. We model the binary campaign records by a generalized

mixed-effect model:

i {P(Acceptiyk = 1)} = qy, + 771 X income; + yo X kids; + 3 X teens; + u;,

where «;’s and «;’s are the fixed effects and ;’s are the random user effects with

mean zero and variance 72

. By fitting this model, we extract the user effect u; be
the conditional mean of v; X income; + 5 X kids; + 73 X teens; + 4; given data. We

then use the extracted user effects to generate responses under (4.17) and convert to

binary and count responses by (4.19) and (4.20), respectively. The results are shown
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Figure 11: MSE.ratio in (4.18) (for continuous responses) or modified MSE.ratio in
(4.21) (for binary and count responses) with user effect extracted from real data.

in Figure 11, which demonstrates a similar comparison as in Section 4.
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