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In the supplementary materials, we provide all the technical proofs for the main

results of the paper, and supplementary numerical results.

S1. Proof of Proportion 1

Let y1 = (y1,1, . . . , yn,1)
⊤ and y2 = (y1,2, . . . , yn,2)

⊤ be the response vectors collected

from the first and second experiments. According to the true model (2.1), the co-

variance matrix of the combined response vector y = (y⊤
1 ,y

⊤
2 )

⊤ is given by

V =

 (σ2
1 + τ 2)In τ 2In

τ 2In (σ2
2 + τ 2)In





with

V −1 =
1

(σ2
1 + τ 2)(σ2

2 + τ 2)− τ 4

 (σ2
2 + τ 2)In −τ 2In

−τ 2In (σ2
1 + τ 2)In


and the covariates matrix is

X =

 1n 0 x1 0

0 1n 0 x2



with xk = (x1,k, . . . , xn,k)
⊤ be the design of the k-th experiment for k = 1, 2. There-

fore, the weighted least squared estimator of the linear coefficients θ = (α1, α2, β1, β2)
⊤

is

θ̂wls = (α̂wls
1 , α̂wls

2 , β̂wls
1 , β̂wls

2 )⊤ = (X⊤V −1X)−1X⊤V −1y, (S1.1)

with variance-covariance matrix

Var(θ̂wls) = (X⊤V −1X)−1. (S1.2)



Under the orthogonal assumption

X⊤V −1X =
1

(σ2
1 + τ 2)(σ2

2 + τ 2)− τ 4



n(σ2
2 + τ 2) −nτ 2 0 0

−nτ 2 n(σ2
1 + τ 2) 0 0

0 0 n(σ2
2 + τ 2) 0

0 0 0 n(σ2
1 + τ 2)


.

Also,

X⊤V −1y =
1

(σ2
1 + τ 2)(σ2

2 + τ 2)− τ 4



(σ2
2 + τ 2)

∑n
i=1 yi,1 − τ 2

∑n
i=1 yi,2

(σ2
1 + τ 2)

∑n
i=1 yi,2 − τ 2

∑n
i=1 yi,1

(σ2
2 + τ 2)

∑n
i=1 xi,1yi,1 − τ 2

∑n
i=1 xi,1yi,2

(σ2
1 + τ 2)

∑n
i=1 xi,2yi,2 − τ 2

∑n
i=1 xi,2yi,1



Therefore,

β̂wls
1 =

(σ2
2 + τ 2)

∑n
i=1 xi,1yi,1 − τ 2

∑n
i=1 xi,1yi,2

n(σ2
2 + τ 2)

=
τ 2β̂p

1 + σ2
2β̂

s
1

σ2
2 + τ 2

= β̂c
1,

and

β̂wls
2 =

(σ2
1 + τ 2)

∑n
i=1 xi,1yi,2 − τ 2

∑n
i=1 xi,1yi,1

n(σ2
1 + τ 2)

=
τ 2β̂p

2 + σ2
1β̂

s
2

σ2
1 + τ 2

= β̂c
2.



Therefore, the hybrid estimators are equivalent to the weighted least squared estima-

tors, i.e., the best linear unbiased estimator under the given assumptions. Thus, the

conclusion in part (i) holds.

Notice that

β̂s
1 = β1 +

1

n

n∑
i=1

xi,1(εi,1 + ui), β̂p
1 = β1 +

1

n

n∑
i=1

xi,1(εi,1 − εi,2)

β̂s
2 = β2 +

1

n

n∑
i=1

xi,2(εi,2 + ui), β̂p
2 = β2 +

1

n

n∑
i=1

xi,2(εi,2 − εi,1).

Consider (xi,1(εi,1+ui), xi,1(εi,1−εi,2), xi,2(εi,2+ui), xi,2(εi,2−εi,1))
⊤’s as independent

random vectors, the Lindbergh-Feller multivariate central limit theorem gives that,

as n → ∞

1√
n

(
β̂s
1 − β1, β̂

p
1 − β1, β̂

s
2 − β2, β̂

p
2 − β2

)⊤
→ N4(04,Σ4),

in distribution with

Σ4 =



σ2
1 + τ 2 σ2

1 0 0

σ2
1 σ2

1 + σ2
2 0 0

0 0 σ2
2 + τ 2 σ2

2

0 0 σ2
2 σ2

1 + σ2
2


.



We can directly find the joint asymptotic normal distribution of β̂c
1 − β1 and β̂c

2 − β2

as the linear combination of
(
β̂s
1 − β1, β̂

p
1 − β1, β̂

s
2 − β2, β̂

p
2 − β2

)⊤
. This completes

the proof of part (ii).

S2. Proof of Proportion 2

We first provide the weighted least squared estimators of β1 and β2. Define the

following notations:

• y1,s: first experiment’s output for the shared users with the 2nd experiment.

• y1,ns: first experiment’s output for the non-shared users.

• y2,s: 2nd experiment’s output for the shared users with the first experiment.

• y2,ns: 2nd experiment’s output for the non-shared users.

Given Table 1, the sizes of the four vectors are n0, n1, n0, and n2, respectively.

Similarly, we define the random effects us as the ones for the shared users, of size

n0, and u1,ns and u2,ns are the random effects of the non-shared groups for the two

experiments, of size n1 and n2, respectively. There are also four random noise, ϵ1,s,



ϵ1,ns, ϵ2,s, and ϵ2,ns. Based on the model assumptions in (2.1), we have that



y1,s

y1,ns

y2,s

y2,ns


=



1n0 0 x1,s 0

1n1 0 x1,ns

0 1n0 0 x2,s

0 1n2 0 x2,ns





α1

α2

β1

β2


+



us

u1,ns

us

u2,ns


+



ϵ1,s

ϵ1,ns

ϵ2,s

ϵ2,ns



The covariance matrix of the responses is

V =



(σ2
1 + τ 2)In0 0 τ 2In0 0

0 (σ2
1 + τ 2)In1 0 0

τ 2In0 0 (σ2
2 + τ 2)In0 0

0 0 0 (σ2 + τ 2)In2



with inverse V −1



(
σ2
1 +

σ2
2τ

2

σ2
2+τ2

)−1

In0 0 −
[
(σ2

1 + τ2)(σ2
2 + τ2)/τ2 − τ2

]−1
In0 0

0 (σ2
1 + τ2)−1In1 0 0

−
[
(σ2

1 + τ2)(σ2
2 + τ2)/τ2 − τ2

]−1
In0 0

[
(σ2

2 + τ2)− τ4

σ2
1+τ2

]−1

In0 0

0 0 0 (σ2
2 + τ2)−1In2





Then we have that X⊤V −1X =



(an0 + bn1) en0 a1⊤
n0
x1,s + b1⊤

n1
x1,ns e1⊤

n0
x2,s

en0 cn0 + dn2 e1⊤
n0
x1,s c1⊤

n0
x2,s + dc1⊤

n2
x2,ns

a1⊤
n0
x1,s + b1⊤

n1
x1,ns e1⊤

n0
x1,s (an0 + bn1) ex⊤

1,sx2,s

e1⊤
n2
x2,s c1⊤

n0
x2,s + dc1⊤

n2
x2,ns ex⊤

1,sx2,s cn0 + dn2


.

Here a =
(
σ2
1 +

σ2
2τ

2

σ2
2+τ2

)−1

, b = (σ2
1+τ 2)−1, c =

[
(σ2

2 + τ 2)− τ4

σ2
1+τ2

]−1

, d = (σ2
2+τ 2)−1,

and e = − [(σ2
1 + τ 2)(σ2

2 + τ 2)/τ 2 − τ 2]
−1
. Also, we have that

X⊤V −1y =



a1⊤
n0
y1,s + b1⊤

n1
y1,ns + e1⊤

n0
y2,s

e1⊤
n0
y1,s + c1⊤

n0
y2,s + d1⊤

n2
y2,ns

ax⊤
1,sy1,s + bx⊤

1,nsy1,ns + ex⊤
1,sy2,s

ex⊤
2,sy1,s + cx⊤

2,sy2,s + dx⊤
2,nsy2,ns


.

Then the weighted least squared estimator is given by

(α̂wls
1 , α̂wls

2 , β̂wls
1 , β̂wls

2 )⊤ =
(
X⊤V −1X

)−1
X⊤V −1y.



Let

A =

 an0 + bn1 en0

en0 cn0 + dn2



B =

 a1⊤
n0
x1,s + b1⊤

n1
x1,ns e1⊤

n0
x2,s

e1⊤
n0
x1,s c1⊤

n0
x2,s + dc1⊤

n2
x2,ns



D =

 an0 + bn1 ex⊤
1,sx2,s

ex⊤
1,sx2,s cn0 + dn2

 .

We have that

Var


 β̂wle

1

β̂wle
2


 =

(
D −B⊤A−1B

)−1

Thus nVar

 β̂wle

1

β̂wle
2





−1

=
1

n
D −

(
1

n
B⊤

)(
1

n
A

)−1(
1

n
B

)

Note that, under Assumption 2, as n → ∞

1

n
A →

 ar0 + br1 er0

er0 cr0 + dr2





and

1

n
D →

 ar0 + br1 0

0 cr0 + dr2


which are constant matrices. Under Assumption 3, we have that

1

n
B → 0

as n → ∞. Therefore,

nVar

 β̂wle

1

β̂wle
2





−1

→

 ar0 + br1 0

0 cr0 + dr2


and

nVar


 β̂wle

1

β̂wle
2


 →

 1/(ar0 + br1) 0

0 1/(cr0 + dr2)

 (S2.3)

as n → ∞. Also, we have that

 β̂wle
1

β̂wle
2

 = Var


 β̂wle

1

β̂wle
2


[

−B⊤A−1 I2

]
X⊤V −1y (S2.4)

= nVar


 β̂wle

1

β̂wle
2


[

−
(
n−1B⊤) (n−1A)

−1
I2

]
1

n
X⊤V −1y (S2.5)



Also, we can express the collaborative estimators by

β̂c
1 =

−ex⊤
1,s(y1,s − y2,s) + bx⊤

1,nsy1,ns + (a+ e)x⊤
1,sy1,s

an0 + bn1

=
ax⊤

1,sy1,s + bx⊤
1,nsy1,ns + ex⊤

1,sy2,s

an0 + bn1

,

and

β̂c
2 =

−ex⊤
2,s(y2,s − y1,s) + dx⊤

2,nsy2,ns + (c+ e)x⊤
2,sy2,s

cn0 + dn2

=
ex⊤

2,sy1,s + cx⊤
2,sy2,s + dx⊤

2,nsy2,ns

cn0 + dn2

.

We can then express

 β̂c
1

β̂c
2

 = n

 0 0 1/(an0 + bn1) 0

0 0 0 1/(cn0 + dn2)

 1

n
X⊤V −1y

Let

Mn = nVar


 β̂wle

1

β̂wle
2


[ (

n−1B⊤) (n−1A)
−1

I2

]
−n

 0 0 1/(an0 + bn1) 0

0 0 0 1/(cn0 + dn2)


Then Mn → 0 as n → ∞. Therefore,

 β̂wle
1

β̂wle
2

−

 β̂c
1

β̂c
2

 = Mn ·
1

n
X⊤V −1y → 0



as n → ∞, which shows the asymptotic equivalence between the weighted least

squared estimators and the collaborative estimators. This completes the proof of

part (i).

For part (ii), let ri,k be a 0-1 value indicating whether or not the k-th response

from the i-th user is available. Therefore, we can express

n−1
0

n0∑
i=1

xi,1yi,1 =
n

n0

· n−1

n∑
i=1

xi,1ri,1ri,2yi,1

= β1 +
n

n0

·
∑n0

i=1 xi,1

n
α +

n

n0

· n−1

n∑
i=1

xi,1ri,1ri,2(εi,1 + ui)

n−1
0

n0∑
i=1

xi,1zi = β1 +
n

n0

·
∑n0

i=1 xi,1

n
α− n

n0

·
∑n0

i=1 xi,1xi,2

n
β2 +

n

n0

· n−1

n∑
i=1

xi,1ri,1ri,2(εi,1 − εi,2)

n−1
1

n0+n1∑
i=n0+1

xi,1yi,1 = β1 +
n

n1

·
∑n0+n1

i=n0+1 xi,1

n
α +

n

n1

· n−1

n∑
i=1

xi,1ri,1(1− ri,2)(εi,1 + ui)

also, for estimating β2, we have

n−1
0

n0∑
i=1

xi,2yi,2 =
n

n0

· n−1

n∑
i=1

xi,2ri,1ri,2yi,2

= β2 +
n

n0

·
∑n0

i=1 xi,2

n
α +

n

n0

· n−1

n∑
i=1

xi,2ri,1ri,2(εi,2 + ui)

n−1
0

n0∑
i=1

xi,2zi = β2 +
n

n0

·
∑n0

i=1 xi,2

n
α− n

n0

·
∑n0

i=1 xi,1xi,2

n
β1 +

n

n0

· n−1

n∑
i=1

xi,2ri,1ri,2(εi,2 − εi,1)

n−1
2

n0+n1+n2∑
i=n0+n1+1

xi,2yi,2 = β2 +
n

n2

·
∑n0+n1+n2

i=n0+n1+1 xi,2

n
α +

n

n2

· n−1

n∑
i=1

xi,2ri,2(1− ri,1)(εi,2 + ui)



First, we apply the Lindbergh-Feller’s multivariate central limit theorem to

n−1
∑n

i=1 xi,1ri,1ri,2(εi,1+ui), n
−1

∑n
i=1 xi,1ri,1ri,2(εi,1−εi,2), n

−1
∑n

i=1 xi,1ri,1(1−ri,2)(εi,1+

ui), n
−1

∑n
i=1 xi,2ri,1ri,2(εi,2+ui), n

−1
∑n

i=1 xi,2ri,1ri,2(εi,2−εi,1), and n−1
∑n

i=1 xi,2ri,2(1−

ri,1)(εi,2 + ui). Under Assumptions 2-3, the resulting multivariate asymptotic distri-

bution has mean zero and variance-covariance matrix:



r0(σ
2
1 + τ 2) r0σ

2
1 0 0 0 0

r0σ
2
1 r0(σ

2
1 + σ2

2) 0 0 0 0

0 0 r1(σ
2
1 + τ 2) 0 0 0

0 0 0 r0(σ
2
2 + τ 2) r0σ

2
2 0

0 0 0 r0σ
2
2) r0(σ

2
1 + σ2

2) 0

0 0 0 0 0 r2(σ
2
2 + τ 2)



.

Then we have that

√
n



∑n0
i=1 xi,1yi,1

n0
− β1∑n0

i=1 xi,1zi
n0

− β1∑n0+n1
i=n0+1 xi,1yi,1

n1
− β1∑n0

i=1 xi,2yi,2
n0

− β2∑n0
i=1 xi,2zi

n0
− β2∑n0+n1+n2

i=n0+n+1+1 xi,2yi,2

n1
− β2



d−→ N6 (06,V6) ,



with



r−1
0 (σ2

1 + τ 2) r−1
0 σ2

1 0 0 0 0

r−1
0 σ2

1 r−1
0 (σ2

1 + σ2
2) 0 0 0 0

0 0 r−1
1 (σ2

1 + τ 2) 0 0 0

0 0 0 r−1
0 (σ2

2 + τ 2) r−1
0 σ2

2 0

0 0 0 r−1
0 σ2

2 r−1
0 (σ2

1 + σ2
2) 0

0 0 0 0 0 r−1
2 (σ2

2 + τ 2)



,

which indicates the joint asymptotic normal distribution of β̂c
1 and β̂c

2.

S3. Bias and Variance for Different Types of Responses

In Figures 1-3, we provide the estimated bias corresponding to Figures 3-5 in the

main paper. Following (4.18) and (4.21), the estimated bias is given by

Bias = 100−1

100∑
l=1

(β̂l
1 − β1)

for continuous responses in Figure 1, and

Bias = 100−1

100∑
l=1

(β̂l
1 − β̃1)
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Figure 1: Bias under user effect settings (a)-(d) for continuous responses.

for binary or count responses in Figure 2 or 3, respectively. These figures show that

bias of the three methods are around zero for all three methods. Overall, no method

appears to exhibit a clear advantage or disadvantage in terms of bias.
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Figure 2: Bias under user effect settings (a)-(d) for binary responses.

In Figures 4-6, we provide the sample variance ratio with respect to the single

experiment estimator associated with Figures 3-5 in the main paper. Following (4.18)

and (4.21), the variance ratio is given by

Var.ratio =
99−1

∑100
l=1(β̂

l
1 − 100−1

∑100
l=1 β̂

l
1)

2

99−1
∑100

l=1(β̂
s,l
1 − 100−1

∑100
l=1 β̂

s,l
1 )2

,
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Figure 3: Bias under user effect settings (a)-(d) for integer/count responses.

for continuous, binary and count responses in Figures 4-6. The variance behavior of

the three methods is similar to the patterns observed for the mean squared errors in

Figures 3-5 of the main paper.
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Figure 4: Var.ratio under user effect settings (a)-(d) for continuous responses.

S4. Confidence Intervals

We provide statistical inference results for SINGLE, PAIRED and COE estimators.

Under the asymptotic normal distributions of those estimators, the confidence interval

can be easily constructed with estimated variances given in Section 3 of the main

paper. In Figures 7-9, we report the coverage rates of 95% confidence intervals
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Figure 5: Var.ratio under user effect settings (a)-(d) for binary responses.

across 100 micro-replications associated with Figures 3-5 in the main paper. The

coverage rates of the confidence intervals for all three methods are approximately 95%,

indicating that statistical inference based on these methods is effective. However,

since COE has the smallest variance, it provides the shortest confidence intervals

among the three methods.
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Figure 6: Var.ratio under user effect settings (a)-(d) for integer/count responses.

S5. Collaborative experiments with mixed responses

In this section, we evaluate the performance of COE with mixed responses. Par-

ticularly, we generate a pair of experiments under the model assumption in (2.1).

The outcomes of the first experiment are converted to binary responses as in (4.19),

whereas the outcomes of the second experiments are maintained the same as the
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Figure 7: Coverage rate under user effect settings (a)-(d) for continuous responses.

original continuous values. The results on the logarithm of MSE.ratio in (4.18) for

the estimated treatment effects for binary responses (first experiment) and continu-

ous responses (second experiment) are provided in Figure 10. Overall, COE has the

smallest mean squared errors among three methods.
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Figure 8: Coverage rate under user effect settings (a)-(d) for binary responses.

S6. Robust Analysis to Model Misspecification

In the main body of the paper, we assume that the underlying model of the outcome

is the model in (2.1), i.e.,

yi,k = ui + αk + xi,kβk + ϵi,k, k = 1, 2,
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Figure 9: Coverage rate of 95% Confidence Intervals under user effect settings (a)-(d)
for integer/count responses.

where the individual effect ui is a random effect with mean zero and variance τ 2. In

Section 4.2, to show the robustness of the COE to random effect, we assume four

different models (a)–(d) that generate the data. Our simulation results show that the

proposed COE has smaller MSE compared to the SINGLE and PAIRED estimators.
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Figure 10: Logarithm of MSE.ratio in (4.18) for a paired of experiments with binary
responses (left) and continuous responses (right).

Here, we provide a theoretical justification on the robustness of the COE with respect

to the model misspecification on the random effect assumption.

To facilitate the discussion, we only focus on the case when the two experiments

are exactly overlapped, i.e., r0 = 1 and n0 = n in Assumption 2. We assume a more

general model

yi,k = uik+I(xi,k = 1) + uik−I(xik = −1) + αk + xi,kβk + ϵi,k, k = 1, 2, (S6.6)

where uik+ and uik− are independent random effects across different users and the



joint distribution of ui = (ui1+, ui1−, ui2+, ui2−)
⊤ has mean zero and covariance Σi

with off-diagonal (l, h)-th entry vi,lh and diagonal entries τ 2i,1+, τ
2
i,1−, τ

2
i,2+, τ

2
i,2−. Other

terms of (S6.6) are defined in the same way as in model (2.1), such as Var(ϵi,k) = σ2
k

for k = 1, 2. It is straightforward to see that this model (S6.6) covers all the scenarios

in (a)–(d) in Section 4.2.

Note that the two experiments are exactly overlapped. Similar to the Single

Analysis in Section 2, we can easily derive the SINGLE estimator and its variance

under (S6.6)

β̂s
1 = n−1

n∑
i=1

xi,1yi,1,

Var(β̂s
1) =

σ2
1

n
+ n−2

n∑
i=1

(τ 2i,1+I(xi1 = 1) + τ 2i,1−I(xi1 = −1))

=
σ2
1

n
+ n−2

n∑
i=1

a⊤
i Σiai,

where ai = (I(xi,1 = 1), I(xi1 = −1), 0, 0)⊤. Also, similarly to the Paired Analysis

in Section 2, the difference model is

zi = α + xi,1β1 − xi,2β2 + δi (S6.7)



where

δi = εi1 − εi2 + ui1+I(xi,1 = 1) + ui1−I(xi1 = −1)− ui2+I(xi,2 = 1)− ui2−I(xi2 = −1),

= εi1 − εi2 + c⊤i ui,

where ci = (I(xi,1 = 1), I(xi1 = −1),−I(xi,2 = 1),−I(xi2 = −1))⊤. Thus, the paired

analysis estimator is given by

β̂p
1 = n−1

n∑
i=1

xi,1zi. (S6.8)

with

Var
(
β̂p
1

)
=

σ2
1 + σ2

2

n
+

1

n2

n∑
i=1

c⊤i Σici

Furthermore,

cov
(
β̂s
1, β̂

p
1

)
=

σ2
1

n
+

1

n2

n∑
i=1

c⊤i Σiai.

Therefore, we have that the joint distribution of (β̂s
1, β̂

p
1) has mean β112 and covariance

matrix

Σ =

 Σ11 Σ12

Σ12 Σ22

 = n−1

 σ2
1 σ2

1

σ2
1 σ2

1 + σ2
2

+ n−2

n∑
i=1

[ai ci]
⊤Σi[ai ci].



According to Lemma 1 in the main body of the paper, we can obtain the best linear

unbiased estimator of β1 (denoted by β̂c
1) as a linear combination of β̂s

1 and β̂p
1 , with

weights Σ22 − Σ12 and Σ11 − Σ12 respectively. Note that

n(Σ22 − Σ12) = σ2
2 + n−1

n∑
i=1

c⊤i Σici − n−1

n∑
i=1

c⊤i Σiai

and

n(Σ11 − Σ12) = n−1

n∑
i=1

a⊤
i Σiai − n−1

n∑
i=1

c⊤i Σiai

Following the assumption (S6.6), we have that
S2
1++S2

1−
2

is an estimator of σ2
1 +

n−1
∑n

i=1 a
⊤
i Σiai (denoted by τ 2n,1 for short),

S2
2++S2

2−
2

is an estimator of

σ2
2+n−1

n∑
i=1

(ci−ai)
⊤Σi(ci−ai) = σ2

2+n−1

n∑
i=1

c⊤i Σici+n−1

n∑
i=1

a⊤
i Σiai−2n−1

n∑
i=1

a⊤
i Σici,

(denoted by τ 2n,2 for short), and
S2
+++S2

+−+S2
−++S2

−−
4

is an estimator of σ2
1 + σ2

2 +

n−1
∑n

i=1 c
⊤
i Σici (denoted by τ 2n,3). Here S2

++, S
2
+−, S

2
−+ and S2

−− are the sample

variances of zi’s under experimental setting xi,1 and xi,2 with the sub-index repre-

senting the signs of xi,1 and xi,2. Note that

1

2
(τ 2n,1 + τ 2n,2 + τ 2n,3) = σ2

1 + σ2
2 + n−1

n∑
i=1

c⊤i Σici + n−1

n∑
i=1

a⊤
i Σiai − n−1

n∑
i=1

c⊤i Σiai.



Then one can have

1

2


1 1 −1

1 −1 1

−1 1 1




S2
1++S2

1−
2

S2
2++S2

2−
2

S2
+++S2

+−+S2
−++S2

−−
4

 =


n−1

∑n
i=1 a

⊤
i Σiai − n−1

∑n
i=1 c

⊤
i Σiai

σ2
1 − n−1

∑n
i=1 c

⊤
i Σiai

σ2
2 + n−1

∑n
i=1 c

⊤
i Σici − n−1

∑n
i=1 c

⊤
i Σiai

 .

(S6.9)

Therefore, in the implementation, we use the weights of σ2
2 + n−1

∑n
i=1 c

⊤
i Σici −

n−1
∑n

i=1 c
⊤
i Σiai and n−1

∑n
i=1 a

⊤
i Σiai − n−1

∑n
i=1 c

⊤
i Σiai for β̂

s and β̂p, which are

approximation of the best linear unbiased weights.

We should compare (2.11) and the robust version (S6.9). It is easy to see that

the weights for β̂s
1 and β̂p

1 of the estimator β̂c
1 under the model (2.1) and (S6.6)

are exactly the same despite of the different model assumptions. Essentially, the

more general model (S6.6) overparameterized the random effect assumption. For the

estimator β̂c
1, such overparameterization is not needed. Following the same derivation,

β̂c
1 under model (S6.6) is BLUE and asymptotically unbiased. This explains why

under different data generating models (a)–(d) in Section 2, the proposed COE can

lead to smaller MSE compared to the other two estimators.

S7. Case Study of Customer Campaign

This case study is pseudo-study based on real data on customer campaign. We use

this dataset to extract users’ effects (a linear combination of user covariates and



additional random effects) and add a synthetic additive treatment effect to generate

new responses. This pseudo-study allows us to replicate experiments with user effects

extracted from real data.

We create a case study based on the customer personality dataset in Kaggle

(Patel, 2021). This dataset contains users’ information and their responses to five

campaigns. We take 2216 users with complete records of all the features. Through

variable selection, we keep income, number of kids at home, and number of teens at

home as effective user features in model fitting. The response for each of the five

campaigns is a binary outcome, indicating accept (1) or not (0). Let Accepti,k be

the status of the i-th user to the k-th campaign, and incomei, kidsi and teensi be

the covariates of i-th user. We model the binary campaign records by a generalized

mixed-effect model:

Φ−1
{
P(Accepti,k = 1)

}
= αk + γ1 × incomei + γ2 × kidsi + γ3 × teensi + ũi,

where αk’s and γj’s are the fixed effects and ũi’s are the random user effects with

mean zero and variance τ 2. By fitting this model, we extract the user effect ui be

the conditional mean of γ1 × incomei + γ2 × kidsi + γ3 × teensi + ũi given data. We

then use the extracted user effects to generate responses under (4.17) and convert to

binary and count responses by (4.19) and (4.20), respectively. The results are shown
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Figure 11: MSE.ratio in (4.18) (for continuous responses) or modified MSE.ratio in
(4.21) (for binary and count responses) with user effect extracted from real data.

in Figure 11, which demonstrates a similar comparison as in Section 4.
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