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S1 Proofs

S1.1 Tail approximation to the distribution function

In this subsection, we give a lemma regarding the tail approximation to the

distribution function F .

Lemma S1. Assume F satisfies the second order condition (2.2) with γ ∈ R

and ρ < 0. Then,

lim
t→∞

sup
x∈D

∣∣∣∣ (1 + γx)−1/γ

t(1− F (b0(t) + xa0(t)))
− 1

∣∣∣∣ = O(A(t)).

Remark 1. A similar, but somewhat different result has been shown in

Drees et al. (2006), see also Theorem 5.1.1 in de Haan and Ferreira (2006).

The ‘supremum’ is taken over D∗ =
{
x : (1 + γx)−1/γ ≤ ct−δ+1

}
with δ > 0

in Drees et al. (2006) and it is obvious that D ⊂ D∗. However, when the
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‘supremum’ is taken over D∗, the upper bound in Lemma S1 is o(1) instead

of a precise speed, O(A(t)).

Proof of Lemma S1. We define

y :=
1

t {1− F (b0(t) + xa0(t))}
,

which implies that,

x =
U(ty)− b0(t)

a0(t)
.

First, note that for sufficiently large t, x ∈ D for some x0, if and only if

y ≥ (1+γx0)
1/γ for some, possibly different, x0. So, the supremum of x ∈ D

can be replaced by the supremum of y ≥ c for any c > 0.

This leads to the following expansion, where the notation g(y) := (1 +

γy)−1/γ and qt(y) := (U(ty)− b0(t)) /a0(t)− (yγ − 1) /γ is used:

t(1− F (b0(t) + xa0(t)))− (1 + γx)−1/γ

= −
(
1 + γ

U(ty)− b0(t)

a0(t)

)−1/γ
+

(
1 + γ

yγ − 1

γ

)−1/γ
= −g

(
U(ty)− b0(t)

a0(t)

)
+ g

(
yγ − 1

γ

)
= qt(y)

(
−g′

(
yγ − 1

γ

))
−
∫ qt(y)

0

∫ s

0

g′′
(
yγ − 1

γ
+ u

)
duds

= y−γ−1qt(y)− (1 + γ)

∫ qt(y)

0

∫ s

0

(
1 + γ

(
yγ − 1

γ
+ u

))−1/γ−2
duds.

The integrand function (1 + γ((yγ − 1)/γ + u))−1/γ−2 always lies between

its value for u = 0 and u = qt(y), i.e., between y−1−2γ and y−1−2γ(1 +

γy−γqt(y))
−1/γ−2.
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S1. PROOFS

By (2.3) and recall that ρ < 0, we have

lim
t→∞

sup
y≥c

y−γ |qt(y)| = O(A0(t)). (S1.1)

Hence, we have (
1 + γ

(
yγ − 1

γ
+ u

))−1/γ−2
≤ 2y−1−2γ

for y ≥ c and t sufficiently large, which leads to

∣∣t(1− F (b0(t) + xa0(t)))− (1 + γx)−1/γ − y−1−γqt(y)
∣∣ ≤ 2 |1 + γ| y−1−2γqt(y)2.

Combining the inequality above with (S1.1), we have

lim
t→∞

sup
y≥c

∣∣y(1 + γx)−1/γ − 1
∣∣ = O(A0(t)).

S1.2 Proofs for Section 3

We start with proving Proposition 1. Without loss of generality, we will

skip the superscript j and consider the approximation in a specific machine.

We start with considering the ‘simple’ case where F is the standard uniform

distribution.

Assume U1, . . . , Un are i.i.d. uniform distributed random variables. We

define the uniform empirical process as

en(s) := n1/2 {Un(s)− s} , s ∈ [0, 1],
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where

Un(s) :=
1

n

n∑
i=1

I{Ui≤s}.

First, we give a weighted approximation to the uniform empirical pro-

cess en(s).

Proposition S1. For any v ∈ (0, 1/2) and sufficiently large n, under

proper Skorokhod construction, there exist a sequence of Brownian bridges

{Bn, n ≥ 1} and a constant C2 = C2(v) > 0 such that for all r > 0,

P

(
sup
0<s<1

|en(s)−Bn(s)|
{s(1− s)}1/2−v

> n−vr log r

)
≤ C2r

− 1
1/2−v .

Proof of Proposition S1. Note that, given any r0 > 0, for 0 < r ≤ r0, by

setting C2 = r
1

1/2−v

0 such that C2r
1

1/2−v ≥ 1, the statement of Proposition S1

follows. Therefore, we only need to handle the case r > r0, for instance, we

assume that r > 8. By Theorem 3.1.2 in Mason (2001), for any v ∈ (0, 1/2)

and sufficiently large n, under proper Skorokhod construction, there exist

constants C2,1 > 0, C2,2 > 0 and a sequence of Brownian bridges {Bn, n ≥ 1}

such that for all r > 0,

P

(
sup

1/n≤s≤1−1/n

|en(s)−Bn(s)|
{s(1− s)}1/2−v

> n−vr

)
≤ C2,1 exp (−C2,2r) .

Therefore, the statement of Proposition S1 holds for 1/n ≤ s ≤ 1−1/n.

By symmetry, we only handle s ∈ [0, 1/n] here.
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S1. PROOFS

Note that (1 − s)v−1/2 → 1 uniformly for all 0 < s ≤ 1/n, it suffices

to show that for any v ∈ (0, 1/2) and sufficiently large n, there exists a

constant C2,3 > 0 such that for all r > 8,

P

(
sup

0<s≤1/n

|en(s)−Bn(s)|
s1/2−v

> n−vr log r

)
≤ C2,3r

− 1
1/2−v . (S1.2)

Denote

δ0 := sup
0<s≤1/n

|en(s)−Bn(s)|
s1/2−v

≤ sup
0<s≤1/n

|en(s)|
s1/2−v

+ sup
0<s≤1/n

|Bn(s)|
s1/2−v

=: δ1 + δ2.

Then, we have that P (δ0 > n−vr log r) ≤ P (δ1 > 1
2
n−vr log r) + P (δ2 >

1
2
n−vr log r).

First, we handle δ2. WriteBn(s) = Wn(s)−sWn(1), where {Wn : n ≥ 1}

is a sequence of Brownian motions. Then δ2 ≤ sup0<s≤1/n |Wn(s)|/s1/2−v +

sup0<s≤1/n |sWn(1)|/s1/2−v. It follows that

P

(
δ2 >

1

2
n−vr log r

)
≤P

(
sup

0<s≤1/n
|Wn(s)|/s1/2−v >

1

4
n−vr log r

)

+ P

(
sup

0<s≤1/n
|sWn(1)|/s1/2−v >

1

4
n−vr log r

)
.

Since Wn(1) ∼ N(0, 1), there exist constants C2,4 > 0, C2,5 > 0 such that

P

{
sup

0<s≤1/n

s |Wn(1)|
s1/2−v

>
1

4
n−vr log r

}
= P

(
|Wn(1)| ≥

1

4
n1/2r log r

)
≤ C2,4 exp(−C2,5r

2 log2 r)

≤ r−
1

1/2−v ,
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for sufficiently large r. By replacing s with s/n and using
√
n {Wn (s/n)}

d
={

W̃n(s)
}

where
{
W̃n(s) : n ≥ 1

}
is also a sequence of Brownian motions,

we get that there exist constants C2,6 > 0, C2,7 > 0 such that

P

{
sup

0<s≤1/n

|Wn(s)|
s1/2−v

>
1

4
n−vr log r

}
= P

 sup
0<s≤1

∣∣∣W̃n(s)
∣∣∣

s1/2−v
>

1

4
r log r


≤ C2,6 exp(−C2,7r

2 log2 r)

≤ r−
1

1/2−v ,

for sufficently large r, where the first inequality follows by Lemma 4.2.1

in Csörgö and Horváth (1993). Combining the two parts, we obtain that,

there exists a constant C2,8 such that for all r > 0,

P

(
δ2 >

1

2
n−vr log r

)
≤ C2,8r

− 1
1/2−v .

Next, we handle δ1. Note that for r > 8,

P

(
δ1 >

1

2
n−vr log r

)
= P

(
δ1 >

1

2
n−vr log r, U1,n ≤ 1/n

)
,

since for U1,n > 1/n, δ1 = sup0<s≤1/n
√
ns1/2+v = n−v < 1

2
n−vr log r. On

the set {U1,n ≤ 1/n}, we have that

δ1 ≤ sup
0<s<U1,n

√
ns1/2+v + sup

U1,n≤s≤1/n

|
√
n(Un(t)− t)|
s1/2−v

≤
√
n(U1,n)

1/2+v + sup
U1,n≤s≤1/n

√
nUn(s)

s1/2−v
+ sup

U1,n≤s≤1/n

√
ns1/2+v

≤ 2n−v + n−vnUn(1/n)(nU1,n)
v−1/2.
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It follows that

P

(
δ1 >

1

2
n−vr log r, U1,n ≤ 1/n

)
≤ P

(
2n−v + n−vnUn(1/n)(nU1,n)

v−1/2 >
1

2
n−vr log r

)
≤ P

(
nUn(1/n)(nU1,n)

v−1/2 >
1

4
r log r

)
≤ P

{
nUn(1/n) >

2

1/2− v
log r

}
+ P

{
(nU1,n)

v−1/2 >
1/2− v

2

1

4
r

}
= P

{
n∑

i=1

I{Ui≤ 1
n} >

4

1− 2v
log r

}
+ P

{
U1,n <

(
16

1− 2v

) 1
1/2−v r−

1
1/2−v

n

}

≤ 2 exp

{
−
(

2

1− 2v
log r − 1

2

)
+

1

4

}
+ 1−

(
1−

(
16

1− 2v

) 1
1/2−v r−

1
1/2−v

n

)n

,

where the last inequality follows by applying Lemma S2 with x = 4
1−2v log r−

1 and t = 1/2. Thus, there exists a constant C2,9 > 0 such that

P

(
δ1 >

1

2
n−vr log r

)
≤ C2,9r

− 1
1/2−v .

By combining the result for δ1 and δ2, the proposition is proved.

Next, we give a weighted approximation to the tail empirical process of

the i.i.d. uniform random variables, which is defined as

wn(s) =
√
k

{
n

k
Un

(
ks

n

)
− s

}
, s > 0.

Proposition S2. For any 0 < v < 1/2 and c > 0, under proper Skorokhod

construction, there exist a sequence of Brownian motions {Wn : n ≥ 1} and

a constant C3 = C3(v, c) > 0 such that for sufficiently large n and t satis-
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fying condition (3.6),

P

(
sup
0<s≤c

s−v |wn(s)−Wn(s)| ≥ t

)
≤ C3r

− 1
1/2−v ,

where r = r(t, k) is defined by k−vr log r = t.

Proof of Proposition S2. Replace s by ks/n in Proposition S1 and note that

(1− ks/n)v−1/2 → 1 uniformly for 0 < s ≤ c. After some arrangement, we

obtain that there exists a constant C ′3,1 > 0 such that,

P

(
sup
0<s≤c

sv−1/2
∣∣∣∣wn(s)−

(n
k

)1/2
Bn

(
ks

n

)∣∣∣∣ ≥ t

)
≤ C ′3,1r

− 1
1/2−v ,

where t = k−vr log r. Note that we can construct a sequence of Brownian

motions {W ∗
n : n ≥ 1} such that Bn(t) = W ∗

n(t)−tW ∗
n(1), 0 ≤ t ≤ 1. Define

δ0 = sup
0<s≤c

sv−1/2
∣∣∣∣wn(s)−

(n
k

)1/2
W ∗

n

(
ks

n

)∣∣∣∣ ,
δ1 = sup

0<s≤c
sv−1/2

∣∣∣∣wn(s)−
(n
k

)1/2
Bn

(
ks

n

)∣∣∣∣ ,
δ2 = sup

0<s≤c
sv+1/2

(
k

n

)1/2

|W ∗
n(1)| .

Then,

δ0 ≤ δ1 + δ2.

Note that 1− Φ(x) ≤ 1/2 exp(−x2/2), where Φ is the cumulative distribu-

tion function of a standard normal distribution. Then we obtain that

P

(
δ2 ≥

1

2
t

)
= P

(
|W ∗

n(1)| ≥
1

2
c−v−1/2k−1/2n1/2t

)
≤ exp

(
−c−2v−1

8

n

k
t2
)
.
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Without loss of generality, we assume that r > 1, otherwise Proposition S2

holds by choosing C3 = 1. Since t = k−vr log r → 0, we have log k/ log r →

∞ as n → ∞. Combining with condition (3.6), we have that, as n → ∞,

n
k
t2

log2 r
=

nt2

k log k2

log2 k

log2 r
→ ∞,

Thus, for sufficiently large r,

P

(
δ2 ≥

1

2
t

)
≤ exp

(
−c−2v−1

8
log2 r

)
≤ r−

1
1/2−v .

The proposition is proved by combining δ1 and δ2 and defining a new Brow-

nian motion Wn(s) = (n/k)1/2W ∗
n (ks/n) for 0 < s ≤ c.

Now, we are ready to prove Proposition 1.

Proof of Proposition 1. Define

Yn(x) =
n

k
F̄n

{
b0

(n
k

)
+ xa0

(n
k

)}
, zn(x) =

n

k
F̄
{
b0

(n
k

)
+ xa0

(n
k

)}
.

With replacing s by zn(x) in Proposition S2, and using the same Skorokhod

construction as in Proposition S2, we have that there exists a constant C ′3

such that for sufficiently large n, and for t satisfying condition (3.6),

P

(
sup

0<zn(x)≤c
{zn(x)}v−1/2

∣∣∣√k (Yn(x)− zn(x))−Wn {zn(x)}
∣∣∣ ≥ 1

3
t

)

≤ C ′3r
− 1

1/2−v ,

(S1.3)
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where r = r(t, k) is defined by k−vr log r = t. Note that D1 := {x : 0 < zn(x) ≤ c}

is equivalent to

{
x :

U
(
1
c
n
k

)
− b0

(
n
k

)
a0(n/k)

≤ x <
1

(−γ) ∨ 0

}
.

Since as n → ∞,

U
(
1
c
n
k

)
− b0

(
n
k

)
a0(n/k)

→ c−γ − 1

γ
,

by choosing a sufficiently large c and a sufficiently large n1, we get
U(n/(ck))−b0(n/k)

a0(n/k)
<

x0 for n ≥ n1. Thus, we can replace the supremum over D1 by the supre-

mum over D and use the bound in Lemma S1.

Our goal is to replace the three zn(x) terms in (S1.3) by its limit z(x) =

(1 + γx)−1/γ, and derive a probability inequality for

δ0 = sup
x∈D

{z(x)}v−1/2
∣∣∣√k (Yn(x)− z(x))−Wn {z(x)}

−
√
kA0(n/k) {z(x)}1+γ Ψγ,ρ {1/z(x)}

∣∣∣.
First, Lemma S1 allows us to replace the factor {zn(x)}v−1/2 by {z(x)}v−1/2.

Then, we obtain that there exists a constant C1,1 > 0 such that

P

(
sup
x∈D

{z(x)}v−1/2
∣∣∣√k (Yn(x)− zn(x))−Wn {zn(x)}

∣∣∣ ≥ 1

3
t

)
≤ C1,1r

− 1
1/2−v .

(S1.4)
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Define

δ1 = sup
x∈D

{z(x)}v−1/2
∣∣∣√k (Yn(x)− zn(x))−Wn {zn(x)}

∣∣∣ ,
δ2 = sup

x∈D
{z(x)}v−1/2

√
k
∣∣z(x) + A0(n/k) {z(x)}1+γ Ψγ,ρ {1/z(x)} − zn(x)

∣∣ ,
δ3 = sup

x∈D
{z(x)}v−1/2 |Wn {z(x)} −Wn {zn(x)}| ,

Then,

δ0 ≤ δ1 + δ2 + δ3.

Since δ1 has been handled in (S1.4), the statement of Proposition 1 follows

if we can prove that there exists a n0 > 0 such that for all n ≥ n0,

(a) δ2 <
1
3
t,

(b) δ3 <
1
3
t a.s..

By Proposition 3.1 in Drees et al. (2006), we have that δ2 = o(1)
√
kA0(n/k).

Then (a) holds from the condition (3.6). For δ3, by the modulus of con-

tinuity of Brownian motions and Lemma S1, we have that for any ε̃ > 0,

δ3 = O{A(n/k)}1/2−ε̃ a.s.. Then (b) holds from the condition (3.8).

Finally, we prove Theorem 1.

Proof of Theorem 1. For each given N , we can construct an enlarged prob-

ability space to accommodate all X1, X2, . . . , XN and
{
W

(j)
n

}m

j=1
such that

X1, X2, . . . , XN are i.i.d. and
{
W

(j)
n

}m

j=1
are independent acorss 1 ≤ j ≤ m.
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Next define ∆N :=
√
mmax1≤j≤m δ

(j)
n . We are going to show that for any

constant C > 0, as N → ∞,

P (∆N > C) → 0.

Take t = C/
√
m and define r = r(t, k) by k−vr log r = t. Since v > (2+η)−1,

by using the condition (A2), we have that r → ∞ and log r/ log k → 0 as

N → ∞. First, we verify that this choice of t satisfies conditions (3.6)-(3.8).

For condition (3.6),

k1/2n−1/2 log k/t =

(
km

n

)1/2
1

C
log k = O(1),

as N → ∞, from the condition (A3). For condition (3.6), by using the

condition (A1), we have that,

k1/2A0(n/k)/t = C−1
√
kmA0(n/k) = O(1),

as N → ∞. Condition (3.8) holds with ε̃ = η/(4 + 4η), since, as N → ∞,

{A0(n/k)}1/2−ε̃ /t = C−1m1/2 (A0(n/k))
(2+η)/(4+4η)

= C−1
(

m

(km)(2+η)/(4+4η)

)1/2 {√
kmA0(n/k)

}(2+η)/(4+4η)

= O(1)

(
m2+3η

k2+η

)1/(8+8η)

= o(1),

where the last step follows from the condition (A2).

Then, by Theorem 1, we have that,

P
(
δ(j)n ≥ C/

√
m
)
≤ C1r

− 1
1/2−v .
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By construction, δ
(j)
n , j = 1, 2, . . . ,m are independent. Hence, we have that,

P (∆N > C) ≤ P

(
max
1≤j≤m

δ(j)n > C/
√
m

)
≤ 1−

(
1− Cr−

1
1/2−v

)m
.

So, to prove ∆N = oP (1), as N → ∞, it suffices to show that,

mr−
1

1/2−v → 0. (S1.5)

Recall that r log r = Ckv/
√
m, we have that

mr−
1

1/2−v = m (r log r)−
1

1/2−v (log r)
1

1/2−v

= o(1)m
(
kv/

√
m
)− 1

1/2−v (log k)
1

1/2−v

= o(1)m1+ 1
1−2v k−

v
1/2−v (log k)

1
1/2−v

= o(1)k(1+
1

1−2v )(
1

1+η )−
v

1/2−v (log k)
1

1/2−v ,

where the last equality follows from the condition (A2). Since (2 + η)−1 <

v < 1/2, we get that,(
1 +

1

1− 2v

)(
1

1 + η

)
− v

1/2− v
< 0.

Hence (S1.5) holds, which implies that ∆N = oP (1) as N → ∞.

S1.3 Proofs for Section 4

To prove Theorem 3, we need some preliminary lemmas.
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Lemma S2. [Gut (2013), Theorem 1.2 (ii) in Chapter 3 with b = 1]

Let X1, X2, . . . , Xn be independent random variables with mean 0. Suppose

that P (|Xk| ≤ 1) = 1 for all k ≥ 1, and set σ2
k = VarXk. Then for 0 < t <

1 and x > 0,

P (|Sn| > x) ≤ 2 exp

(
−tx+ t2

n∑
k=1

σ2
k

)
.

Lemma S3. Assume condition (A3). As N → ∞,

P
(
Q(j)

n (s) ∈ D, j = 1, 2, . . . ,m, 1/k ≤ s ≤ 1
)
→ 1.

Proof of Lemma S3. By checking the expression of b0 and a0 (see Corollary

2.3.7 in de Haan and Ferreira (2006)), we have that for γ < 0,

max
1≤j≤m

Q(j)
n (s) ≤

XN,N − b0(
n
k
)

a0(
n
k
)

<
U(∞)− b0(

n
k
)

a0(
n
k
)

= −1

γ
a.s..

Since Q
(j)
n (s) is a decreasing function of s and Q

(j)
n (s), j = 1, 2, . . . ,m

are independent, it suffices to show that as N → ∞,

Pm
(
Q(1)

n (1) > x0

)
→ 1. (S1.6)

Denote xn = x0a0 (n/k) + b0 (n/k) . Note that,

P
(
Q(1)

n (1) > x0

)
= P

(
X

(1)
n−k,n − b0

(
n
k

)
a0
(
n
k

) > x0

)

= P

(
n∑

i=1

I{
X

(1)
i >xn

} > k

)

= 1− P

(
n∑

i=1

I{
X

(1)
i >xn

} − nF̄ (xn) < k − nF̄ (xn)

)
.
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Note that, nF̄ (xn) ∼ k(1 + γx0)
−1/γ, as N → ∞, and that (1 +

γx0)
−1/γ > 1 since x0 < 0. Then, for sufficiently large N , k − nF̄ (xn) < 0.

We can thus apply Lemma S2 with t = 2−1t0/(1 + t0) and x = nF̄ (xn)− k,

where t0 = (1 + γx0)
−1/γ − 1, to obtain that,

logP

(
n∑

i=1

I{
X

(1)
i >xn

} − nF̄ (xn) < k − nF̄ (xn)

)

≤ log 2− 1

2

t0
1 + t0

(
nF̄ (xn)− k

)
+

1

4

t20
(1 + t0)2

nF̄ (xn)

= log 2− 1

2

t0
1 + t0

kt0 {1 + o(1)}+ 1

4

t20
(1 + t0)2

k(t0 + 1) {1 + o(1)}

= log 2− 1

4

t20
1 + t0

k + o(k).

Thus, (S1.6) holds, which yields the statement in Lemma S3.

Lemma S4. Assume that conditions (A1) and (A2) hold. Then, as N →

∞,

√
km max

1≤j≤m
sup

k−1≤s≤1
sv+1/2

{
t
(j)
n (s)

s
− 1

}2

= oP (1),

where

t(j)n (s) =

(
1 + γ

X
(j)
n−[ks],n − b0

(
n
k

)
a0
(
n
k

) )−1/γ
.

Proof of Lemma S4. Define si = i/k for 1 ≤ i ≤ k. Then

sup
k−1≤s≤1

sv+1/2

{
t
(j)
n (s)

s
− 1

}2

= max
1≤i≤k−1

sup
si≤s<si+1

sv+1/2

{
t
(j)
n (s)

s
− 1

}2

.
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For any s ∈ [si, si+1), we have that t
(j)
n (s) = t

(j)
n (si) and hence, t

(j)
n (si)
si+1

≤

t
(j)
n (s)
s

≤ t
(j)
n (si)
si

. Since (x− 1)2 is a convex function of x, we obtain that,

sup
k−1≤s≤1

sv+1/2

(
t
(j)
n (s)

s
− 1

)2

≤ max
1≤i≤k−1

s
v+1/2
i+1 max


(
t
(j)
n (si)

si
− 1

)2

,

(
t
(j)
n (si)

si+1

− 1

)2
 .

Thus,

√
km max

1≤j≤m
sup

k−1≤s≤1
sv+1/2

{
t
(j)
n (s)

s
− 1

}2

≤ max
1≤i≤k−1

√
kms

v+1/2
i+1 max

1≤j≤m
max


(
t
(j)
n (si)

si
− 1

)2

,

(
t
(j)
n (si)

si+1

− 1

)2
 ,

and hence for any constant C > 0,

P

√
km max

1≤j≤m
sup

k−1≤s≤1
sv+1/2

{
t
(j)
n (s)

s
− 1

}2

> C


≤

k−1∑
i=1

P

√
kms

v+1/2
i+1 max

1≤j≤m

(
t
(j)
n (si)

si
− 1

)2

> C


+

k−1∑
i=1

P

√
kms

v+1/2
i+1 max

1≤j≤m

(
t
(j)
n (si)

si+1

− 1

)2

> C


=:

k−1∑
i=1

Ii,1 +
k−1∑
i=1

Ii,2.
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We start with Ii,1,

Ii,1 = 1− Pm


(
t
(j)
n (si)

si
− 1

)2

<
C

s
v+1/2
i+1

√
km


= 1− Pm

{
1− C1/2

s
v/2+1/4
i+1 (km)1/4

<
t
(j)
n (si)

si
< 1 +

C1/2

s
v/2+1/4
i+1 (km)1/4

}

= 1−

[
1− P

{
t
(j)
n (si)

si
> 1 +

C1/2

s
v/2+1/4
i+1 (km)1/4

}

− P

{
t
(j)
n (si)

si
< 1− C1/2

s
v/2+1/4
i+1 (km)1/4

}]m

=: 1− (1− Ii,1,a − Ii,1,b)
m .

We first handle Ii,1,a. Define

xn =

{
si

(
1 + C1/2

s
v/2+1/4
i+1 (km)1/4

)}−γ
− 1

γ
a0

(n
k

)
+ b0

(n
k

)
.

Then, we have that,

Ii,1,a = P

X
(j)
n−ksi,n <

{
si

(
1 + C1/2

s
v/2+1/4
i+1 (km)1/4

)}−γ
− 1

γ
a0

(n
k

)
+ b0

(n
k

)
= P

(
n∑

i=1

I{
X

(j)
i ≥xn

} < ksi

)

= P

(
n∑

i=1

I{
X

(j)
i ≥xn

} − nF̄ (xn) < ksi − nF̄ (xn)

)
.

We intend to show that

lim sup
N→∞

log Ii,1,a

kv/2− 1
4(1+η)

= −∞. (S1.7)
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By Lemma S1 and using the condition (A1), we have that, as N → ∞,

nF̄ (xn) = k
n

k
F̄ (xn) = ksi

[
1 + C1/2s

−v/2−1/4
i+1 (km)−1/4 {1 + o(1)}

]
.

Thus, for sufficiently large N , ksi − nF̄ (xn) < 0. We can therefore apply

Lemma S2 with t = 2−1t0/(1 + t0) and x = nF̄ (xn) − ksi, where t0 =

C1/2s
−v/2−1/4
i+1 (km)−1/4, to obtain that,

log (Ii,1,a/2) ≤ −1

2

t0
1 + t0

(nF̄ (xn)− ksi) +
1

4

t20
(1 + t0)2

nF̄ (xn)

= −1

2

t20
1 + t0

ksi {1 + o(1)}+ 1

4

t20
(1 + t0)2

ksi [1 + t0 {1 + o(1)}]

= −1

4

t20
1 + t0

ksi {1 + o(1)}+ 1

4

t20
(1 + t0)2

ksio(1)

= −1

4

t20
1 + t0

ksi {1 + o(1)} .

Note that,
t20

1+t0
ksi > 2−1ksit0 if t0 > 1 and that

t20
1+t0

ksi ≥ 2−1ksit
2
0 if t0 ≤ 1.

Hence,
t20

1+t0
ksi ≥ 2−1min {ksit0, ksit20}. Thus, by using the condition (A2),

we get that, as N → ∞,

ksit
2
0

kv/2− 1
4(1+η)

=
Ck1/2m−1/2sis

−v−1/2
i+1

kv/2− 1
4(1+η)

≥ Ck1/2−v/2+ 1
4(1+η)m−1/2s

1/2−v
1 → ∞,

and

ksit0

kv/2− 1
4(1+η)

= C1/2k
3/4m−1/4sis

−1/4−v/2
i+1

kv/2− 1
4(1+η)

≥ C1/2k
3/4m−1/4s

3/4−v/2
1

kv/2− 1
4(1+η)

→ ∞.

Hence (S1.7) holds, which leads to Ii,1,a = o(1) exp
(
−kv/2− 1

4(1+η)

)
,

where the o(1) term is uniform for 1 ≤ i ≤ k − 1. The term Ii,1,b can
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be handled in a similar way as that for Ii,1,a and we obtain that, Ii,1,b =

o(1) exp
(
−kv/2− 1

4(1+η)

)
. Hence, as N → ∞, m(Ii,1,a + Ii,1,b) → 0, which

implies that

Ii,1 = 1− (1− Ii,1,a − Ii,1,b)
m = o(1)m exp

(
−kv/2− 1

4(1+η)

)
,

where the o(1) is uniform for 1 ≤ i ≤ k. By using the condition (A2), we

conclude that, as N → ∞,
∑k−1

i=1 Ii,1 = o(1). The terms Ii,2 can be handled

in a similar way as that for Ii,1. Thus, the statement in Lemma S4 follows.

Lemma S5. Assume that conditions (A1) and (A2) hold. Let v ∈ ((2 +

η)−1, 2−1). Then, for any δ ∈ (0, 1), as N → ∞,

max
1≤j≤m

sup
k−1+δ≤s≤1

∣∣∣∣∣t(j)n (s)

s
− 1

∣∣∣∣∣ = oP (1).

Proof of Lemma S5. Define i0 = [kδ] and si = i/k for i0 ≤ i ≤ k. Similar

to the proof of Lemma S4, we have that, for any constant C > 0,

P

{
max
1≤j≤m

sup
k−1+δ≤s≤1

∣∣∣∣∣t(j)n (s)

s
− 1

∣∣∣∣∣ > C

}

≤
k∑

i=i0

P

{
max
1≤j≤m

∣∣∣∣∣t(j)n (si)

si
− 1

∣∣∣∣∣ > C

}
+

k∑
i=i0

P

{
max
1≤j≤m

∣∣∣∣∣t(j)n (si)

si+1

− 1

∣∣∣∣∣ > C

}

=:
k∑

i=i0

Ii,1 +
k∑

i=i0

Ii,2.
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We start with Ii,1,

Ii,1 = 1− Pm

(∣∣∣∣∣t(j)n (si)

si
− 1

∣∣∣∣∣ < C

)

= 1−

{
1− P

(
t
(j)
n (si)

si
> 1 + C

)
− P

(
t
(j)
n (si)

si
< 1− C

)}m

= 1− (1− Ii,1,a − Ii,1,b)
m .

We first handle Ii,1,a. Define

xn =
{si(1 + C)}γ − 1

γ
a0

(n
k

)
+ b0

(n
k

)
.

Then, we have that,

Ii,1,a = P
(
X

(j)
n−ksi,n < xn

)
= P

(
n∑

i=1

I{
X

(j)
i ≥xn

} < ksi

)

= P

(
n∑

i=1

I{
X

(j)
i ≥xn

} − nF̄ (xn) < ksi − nF̄ (xn)

)
.

We intend to show that

lim sup
N→∞

log Ii,1,a
kδ/2

= −∞. (S1.8)

By Lemma S1 and condition (A1), we have that, as N → ∞,

nF̄ (xn) = k
n

k
F̄ (xn) = ksi (1 + C) {1 + o(1)} .

Thus, for sufficiently large N , ksi −nF̄ (xn) < 0. Applying Lemma S2 with
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t = 1
2

C
1+C

, we obtain that,

log(Ii,1,a/2) ≤ −1

2

C

1 + C

(
nF̄ (xn)− ksi

)
+

1

4

C2

(1 + C)2
nF̄ (xn)

= −1

2

C

1 + C
ksiC {1 + o(1)}+ 1

4

C2

(1 + C)2
ksi(1 + C) {1 + o(1)}

= −1

4

C2

1 + C
ksi {1 + o(1)} .

Thus, (S1.8) holds since ksi ≥ kδ for all i0 ≤ i ≤ k. The rest of the proofs

are similar to that in Lemma S4.

Now, we are able to give the proof of Theorem 3.

Proof of Theorem 3. Lemma S3 ensures that we can replace x, x ∈ D by

Q
(j)
n (s), s ∈ [k−1+δ, 1] in Proposition 1, and obtain that, as N → ∞,

√
km max

1≤j≤m
sup

k−1+δ≤s≤1

{
t(j)n (s)

}v−1/2 ∣∣∣∣∣s− t(j)n (s)− 1√
k
W (j)

n

{
t(j)n (s)

}
− A0(n/k)

{
t(j)n (s)

}1+γ
Ψ
{
1/t(j)n (s)

} ∣∣∣∣∣ = oP (1).

(S1.9)

Our goal is to replace the three t
(j)
n (s) terms in (S1.9) by its limit s and

show that, as N → ∞,

δ0 :=
√
km max

1≤j≤m
sup

k−1+δ≤s≤1
sv−1/2

∣∣∣∣s− t(j)n (s)− 1√
k
W (j)

n (s)− A0(n/k)s
1+γΨ(s−1)

∣∣∣∣
= oP (1).

Note that, Lemma S5 allows us to replace the first factor
{
t
(j)
n (s)

}v−1/2
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by sv−1/2. So, as N → ∞,

δ1 :=
√
km max

1≤j≤m
sup

k−1+δ≤s≤1
sv−1/2

∣∣∣∣∣s− t(j)n (s)− 1√
k
W (j)

n

{
t(j)n (s)

}
− A0(n/k)

{
t(j)n (s)

}1+γ
Ψ
{
1/t(j)n (s)

} ∣∣∣∣∣ = oP (1).

(S1.10)

Define

δ2 =
√
m max

1≤j≤m
sup

k−1+δ≤s≤1
sv−1/2

∣∣W (j)
n

{
t(j)n (s)

}
−W (j)

n (s)
∣∣ ,

δ3 =
√
kmA0(n/k) max

1≤j≤m
sup

k−1+δ≤s≤1
sv−1/2

∣∣∣{t(j)n (s)
}1+γ

Ψ
{
1/t(j)n (s)

}
− s1+γΨ(s−1)

∣∣∣ .
Obviously, δ0 ≤ δ1 + δ2 + δ3. Since δ1 has been handled in (S1.10), we only

need to show δ2 = oP (1) and δ3 = oP (1), as N → ∞.

Firstly, we handle δ2. By the modulus of continuity of Brownian mo-

tions and Lemma S5, we have that, for any ε̃ > 0,

δ2 ≤
√
m max

1≤j≤m
sup

k−1+δ≤s≤1
sv−1/2

{
t(j)n (s)− s

}1/2−ε̃
a.s.,

which yields δ2 = oP (1) by Lemma S4.

Next, we handle δ3. We only consider the case γ + ρ ̸= 0. The proof

for γ + ρ = 0 is similar. By checking the definition of Ψ, we have that,

{
t(j)n (s)

}1+γ
Ψ
{
1/t(j)n (s)

}
− s1+γΨ(s−1) =

1

γ + ρ
s1−ρ

[{
t(j)n (s)/s

}1−ρ − 1
]
.

By Lemma S4, we have that, as N → ∞,

t
(j)
n (s)

s
= 1 + oP (1)s

−v/2−1/4 (km)−1/4 ,
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where the oP (1) term is uniform for k−1 ≤ s ≤ 1 and 1 ≤ j ≤ m. Thus, as

N → ∞,

max
1≤j≤m

sup
k−1+δ≤s≤1

sv−1/2+1−ρ
[{

t(j)n (s)/s
}1−ρ − 1

]
= oP (1).

Combining with the condition
√
kmA(n/k) = O(1) as N → ∞, we have

that, δ3 = oP (1). Combining δ1, δ2 and δ3, we conclude that, δ0 = oP (1) as

N → ∞.

By applying Taylor’s expansion to the function f(x) =: x−γ−1
γ

around

x = s, and noting that f
′
(x) = −x−γ−1 and f

′′
(x) = (γ+1)x−γ−2 , we have

that,

Q(j)
n (s) = f(t(j)n (s)) =

s−γ − 1

γ
+s−γ−1

{
s− t(j)n (s)

}
+
γ + 1

2

{
u(j)
n

}−γ−2 {
t(j)n (s)− s

}2
,

where u
(j)
n is a random value between s and t

(j)
n (s). It follows that,

√
km sup

k−1+δ≤s≤1
sv+γ+1/2 max

1≤j≤m

∣∣∣∣Q(j)
n (s)− s−γ − 1

γ
− 1√

k
s−γ−1W (j)

n (s)− A0(n/k)Ψ(s−1)

∣∣∣∣
≤δ0 +

√
km max

1≤j≤m
sup

k−1+δ≤s≤1
sv+γ+1/2γ + 1

2

∣∣∣{u(j)
n (s)

}−γ−2 {
t(j)n (s)− s

}2∣∣∣ .
Note that

√
km max

1≤j≤m
sup

k−1+δ≤s≤1
sv+γ+1/2

∣∣∣{u(j)
n (s)

}−γ−2 {
t(j)n (s)− s

}2∣∣∣
≤

 max
1≤j≤m

sup
k−1+δ≤s≤1

∣∣∣∣∣u(j)
n (s)

s

∣∣∣∣∣
−γ−2

max
1≤j≤k

sup
k−1+δ≤s≤1

√
kmsv+1/2

(
t
(j)
n (s)

s
− 1

)2


=: I1 · I2.
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Obviously, I1 ≤ max

{
1,max1≤j≤m supk−1+δ≤s≤1

∣∣∣ t(j)n (s)
s

∣∣∣−γ−2}. By Lemma

S5, we have that I1 = OP (1) as N → ∞. By Lemma S4 , we have that as

N → ∞, I2 = oP (1). Then, the proof is completed.

Recall that U = {1/(1− F )}←. Write X = U(Y ), where Y fol-

lows the Pareto (1) distribution with distribution function 1 − 1/y. Let

{Y1, Y2, . . . , YN} be a random sample of Y . Then we can regard our obser-

vations as {U(Y1), U(Y2),. . . , U(YN)}, which are stored in m machines with

n observations each. And let Y
(j)
n,n ≥ · · · ≥ Y

(j)
1,n denote the order statistics

of the n Pareto (1) random variable corresponding to the observations in

machine j. Then, X
(j)
n−[ks],n = U(Y

(j)
n−[ks],n).

Proof of Proposition 2. First, we show that, as N → ∞.

√
km max

1≤j≤m

∫ k−1+δ

0

g(s)

∣∣∣∣Q(j)
n (s)− s−γ − 1

γ

∣∣∣∣ ds = oP (1). (S1.11)

We intend to apply (2.3) with t = n/k and tx = Y
(j)
n−[ks],n. For this

purpose, we introduce the set Ω1 =
{
Y

(j)
n−k,n ≥ t0, for all 1 ≤ j ≤ m

}
. By

Lemma S.2 in the supplementary material of Chen et al. (2022), we have

that, under condition (A2), limN→∞ P (Ω1) = 1 for any t0 > 0. Conse-

quently, on the set Ω1, we can replace t and tx by n/k and Y
(j)
n−[ks],n in (2.3),
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respectively, for j = 1, 2, . . . ,m and obtain that,

Q(j)
n (s)− s−γ − 1

γ

≤

(
kY

(j)
n−[ks],n/n

)γ
− s−γ

γ
+
∣∣∣A0

(n
k

)∣∣∣Ψ(kY (j)
n−[ks],n/n

)
+ ε

∣∣∣A0

(n
k

)∣∣∣ (kY (j)
n−[ks],n/n

)γ+ρ±δ

=: I
(j)
1 (s) + I

(j)
2 (s) + I

(j)
3 (s).

We are going to prove that, as N → ∞,

√
km max

1≤j≤m

∫ k−1+δ

0

g(s)I
(j)
i (s)ds = oP (1), for i = 1, 2, 3.

We start with I
(j)
1 (s). We consider the cases (i) γ > 0, (ii) γ < 0 and

(iii) γ = 0 separately.

Case (i): γ > 0. First, from the condition β > γ− η
2(1+η)

and condition

(A2), we have that, as N → ∞,
√
km
∫ k−1+δ

0
g(s)s−γds = o(1). Next, note
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that, for γ > 0,

√
km max

1≤j≤m

∫ k−1+δ

0

g(s)
(
kY

(j)
n−[ks],n/n

)γ
ds

≤
√
km max

1≤j≤m

∫ k−1+δ

0

g(s)
(
kY (j)

n,n/n
)γ

ds

=
√
km max

1≤j≤m

(
kY (j)

n,n/n
)γ ∫ k−1+δ

0

g(s)ds

≤
√
km (kYN,N/n)

γ

∫ k−1+δ

0

g(s)ds

= OP (1) (km)γ+1/2 k−(1−δ)(β+1)

= oP (1)k
(γ+1/2)(1+ 1

1+η
)k−(1−δ)(β+1)

= oP (1),

where the last equality follows from the condition that β > 2+η
1+η

γ − η
2(1+η)

.

Case (ii) γ < 0. Similar to the proof for the case γ > 0, we have that,

as N → ∞,
√
km
∫ k−1+δ

0
g(s)s−γds = o(1). Since γ < 0, we have that,

(kY
(j)
n−[ks],n/n)

γ ≤ (kY
(j)

n−[kδ],n/n)
γ. Thus, it suffies to show that, as N → ∞,

√
km max

1≤j≤m

∫ k−1+δ

0

g(s)
(
kY

(j)

n−[kδ],n/n
)γ

ds = oP (1). (S1.12)

First, we introduce the set Ω2 =
{
kY

(j)

n−[kδ],n/n > 2−1k1−δ, for all 1 ≤ j ≤ m
}

and show that, as N → ∞, P (Ω2) → 1. Note that,

P (Ω2) = Pm
(
kY

(j)

n−[kδ],n/n > 2−1k1−δ
)

= Pm

(
n∑

i=1

I{
Y

(j)
i ≥2−1n/kδ

} > [kδ]

)

=

{
1− P

(
n∑

i=1

I{
Y

(j)
i ≥2−1n/kδ

} − 2kδ < [kδ]− 2kδ

)}m

.
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We intend to prove limN→∞ P (Ω2) = 1 by showing that

lim sup
N→∞

logP

{∑n
i=1 I

{
Y

(j)
i ≥2−1n/kδ

} − 2kδ < [kδ]− 2kδ

}
kδ/2

= −∞.

Applying Lemma S2 with t = 1/4 and x = 2kδ − [kδ], we have that,

logP

{
n∑

i=1

I{
Y

(j)
i ≥2−1n/kδ

} − 2kδ < [kδ]− 2kδ

}
≤ log 2− 1

4
kδ +

1

8
kδ = log 2− 1

8
kδ.

Thus, as N → ∞, P (Ω2) → 1.

On the set Ω2, we have that,

√
km max

1≤j≤m

∫ k−1+δ

0

g(s)
(
kY

(j)

n−[kδ],n/n
)γ

ds ≤
√
km max

1≤j≤m

∫ k−1+δ

0

g(s)
(
k1−δ/2

)γ
ds

= O(1)
√
kmkγ(1−δ)k−(1−δ)(β+1).

From the condition that β > γ− η
2(1+η)

, we have that,
√
kmkγ(1−δ)k−(1−δ)(β+1) →

0 as N → ∞ and hence (S1.12) holds.

Case (iii) γ = 0. For γ = 0, the term I
(j)
1 (s) is interpreted as log

(
kY

(j)
n−[ks],n/n

)
−

log s. Since log(x) is an increasing function of x, the case γ = 0 can be han-

dled in a similar way as that for the case γ > 0.

Thus, we conclude that, as N → ∞,

√
km max

1≤j≤m

∫ k−1+δ

0

g(s)I
(j)
1 (s)ds = oP (1).

The terms I
(j)
2 (s) and I

(j)
3 (s) can be handled in a similar way as that for

I
(j)
1 (s). Hence, (S1.11) follows.

27



By using the condition β > γ− η
2(1+η)

and checking the definition of Ψ,

we get that, as N → ∞,

√
kmA0

(n
k

)∫ k−1+δ

0

g(s)Ψ(s−1)ds = o(1).

Thus, the statement in Proposition 2 holds provided that, as N → ∞,

√
km max

1≤j≤m

∫ k−1+δ

0

g(s)

∣∣∣∣ 1√
k
s−γ−1W (j)

n (s)

∣∣∣∣ ds = oP (1).

By the modulus of continuity of Brownian motions, we have that, for any

constant ε > 0,
∣∣∣W (j)

n (s)
∣∣∣ ≤ s1/2−εa.s. for all 0 < s < k−1+δ and sufficiently

large k. Thus, we have that, as N → ∞,

√
km max

1≤j≤m

∫ k−1+δ

0

g(s)

∣∣∣∣ 1√
k
s−γ−1W (j)

n (s)

∣∣∣∣ ds ≤ √
m

∫ k−1+δ

0

g(s)s−γ−1/2−εds,

= o(1)k
1

2(1+η)k−(1−δ)(β−γ+1/2−ε)

= o(1), a.s.

where the last equality follows from the condition that β > η − η
2(1+η)

.

Proposition 2 is thus proved.

S1.4 Proofs for Section 5

Proof of Corollary 2. By applying the same techniques used in proving the

asymptotic normality of the oracle Hill estimator (cf. Example 5.1.5 in
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de Haan and Ferreira (2006)), we have that, as N → ∞,

γ̂D
H − γ =

1

m

m∑
j=1

∫ 1

X
(j)
n−k,n/U(n/k)

s−1/γ
ds

s

+
1

m

m∑
j=1

∫ 1

X
(j)
n−k,n/U(n/k)

[n
k

{
1− F (j)

n

(
sU
(n
k

))}
− s−1/γ

] ds
s

+
1

m

m∑
j=1

∫ ∞
1

[n
k

{
1− F (j)

n

(
sU
(n
k

))}
− s−1/γ

] ds
s

= : I1 + I2 + I3.

For I1, note that, as N → ∞,

I1 =
1

m

m∑
j=1

{
γ
(
X

(j)
n−k,n/U(n/k)

)−1/γ
− γ

}
.

By taking s = 1 in Theorem 4, we get that, as N → ∞,

√
m max

1≤j≤m

∣∣∣∣∣√k

(
X

(j)
n−k,n

U(n/k)
− 1

)
− γW (j)

n (1)

∣∣∣∣∣ = oP (1). (S1.13)

Thus, as N → ∞,

I1 = −γ(km)−1/2
1√
m

m∑
j=1

W (j)
n (1) + (km)−1/2oP (1).

For I2, the uniform convergence in (S1.13) and Theorem 1 imply that

as N → ∞, I2 = (km)−1/2oP (1).

For I3, since FN = m−1
∑m

j=1 F
(j)
n , we obtain that,

I3 =

∫ ∞
1

[n
k

{
1− FN

(
sU
(n
k

))}
− s−1/γ

] ds
s
.

We can handle γ̂Oracle
H in a similar way and get that,

γ̂Oracle
H − γ = −γ

1√
km

WN(1) + (km)−1/2oP (1) + I3.
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The Corollary is proved by noting that WN = m−1/2
∑m

j=1W
(j)
n .

Proof of Corollary 3. For a continuous function f : [0, 1] → R, define an

operator

L(f) = (1− γ)(2− γ)

∫ 1

0

{(1− 4s)− γ(1− 2s)} {f(s)− f(1)} ds.

It is obvious that L is a linear operator.

Note that, for the oracle PWM estimator using top km exceedances,

we have that, as N → ∞,

γ̂Oracle
PWM − γ =

1√
km

L
(
s−γ−1WN(s)

)
+ A0

(n
k

)
L
(
Ψ(s−1)

)
+

1√
km

oP (1),

see e.g. Section 3.6.1 in de Haan and Ferreira (2006). By using similar

techniques, we obtain that, as N → ∞,

1

m

m∑
j=1

γ̂
(j)
PMW − γ

=
1

m

m∑
j=1

1√
k
L
(
s−γ−1W (j)

n (s)
)
+ A0

(n
k

)
L
(
Ψ(s−1)

)
+OP (1) max

1≤j≤m

∫ 1

0

∣∣f (j)
n (s)

∣∣ ds+OP (1) max
1≤j≤m

∫ 1

0

s
∣∣f (j)

n (s)
∣∣ ds.

Recall that L is a linear operator and WN = m−1/2
∑m

j=1W
(j)
n , we get

that

1√
km

L
(
s−γ−1WN(s)

)
=

1

m

m∑
j=1

1√
k
L
(
s−γ−1W (j)

n (s)
)
.

The Corollary is proved provided that, asN → ∞, I1 := max1≤j≤m
∫ 1

0

∣∣∣f (j)
n (s)

∣∣∣ ds =
(km)−1/2oP (1) and I2 := max1≤j≤m

∫ 1

0
s
∣∣∣f (j)

n (s)
∣∣∣ ds = (km)−1/2oP (1).
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For handling I1, we divide [0, 1] into [k−1+δ, 1] and [0, k−1+δ]. Thus,

I1 ≤ max
1≤j≤m

∫ k−1+δ

0

∣∣f (j)
n (s)

∣∣ ds+ max
1≤j≤m

∫ 1

k−1+δ

∣∣f (j)
n (s)

∣∣ ds
: = I1,1 + I1,2.

We first handle I1,2. Note that, for η > 2γ
1/2−γ , we can always find a v > 1

2+η

such that v + γ < 1/2. Then, by Theorem 3, as N → ∞,

I1,2 = oP (1)(km)−1/2
∫ 1

k−1+δ

s−v−1/2−γds = (km)−1/2oP (1).

The term I1,1 can be handled by Proposition 2 as follows. Choose g(s) = 1.

Since γ < 1/2 and η > max
{
0, 2γ

1/2−γ

}
, the conditions in Proposition 2

hold. The proposition yields that I1,1 = (km)−1/2oP (1). Hence, we obtain

I1 = (km)−1/2oP (1) as N → ∞. The term I2 can be handled in a similar

way with choosing g(s) = s.

Next, we prove Corollary 4, the oracle property of the maximum likeli-

hood estimator (MLE). A detailed proof will be given only for γ > 0. The

cases γ = 0 or −1/2 < γ < 0 can be handled in a similar way.

Let U1, U2, . . . , UN be i.i.d. uniformly distributed random variables

and denote Xi = U
(

1
Ui

)
, i = 1, 2, . . . , N . Assume that the N obser-

vations are stored in m machines with n observations in each machine.

Let U
(j)
n,n ≥ U

(j)
n−1,n ≥ · · · ≥ U

(j)
1,n be the order statistics of uniform ran-

dom variables corresponding to the observations in machine j. Then,
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X
(j)
n−[ks],n = U

(
1

U
(j)
[ks]+1,n

)
.

Lemma S6. Assume that condition (A2) holds. Then, as N → ∞,

max
1≤j≤m

sup
k−1+δ≤s≤1

nU
(j)
[ks]+1,n

ks
= OP (1).

Proof. Define i0 = [kδ] and si = i/k for i0 ≤ i ≤ k. For any s ∈ [si, si+1),

we have that, U
(j)
[ks]+1,n = U

(j)
[ksi]+1,n and hence

nU
(j)
[ks]+1,n

ks
≤

nU
(j)
[ksi]+1,n

ksi
.

Thus, we have that,

max
1≤j≤m

sup
k−1+δ≤s≤1

nU
(j)
[ks]+1,n

ks
≤ max

1≤j≤n
max
i0≤i≤k

nU
(j)
[ksi]+1,n

ksi
.

Hence, for any constant C > 0,

P

{
max
1≤j≤m

sup
k−1+δ≤s≤1

nU
(j)
[ks]+1,n

ks
> C

}
≤

k∑
i=i0

P

{
max
1≤j≤m

nU
(j)
[ksi]+1,n

ksi
> C

}

=
k∑

i=i0

{
1− Pm

(
nU

(1)
[ksi]+1,n

ksi
≤ C

)}

=:
k∑

i=i0

(1− Imi ) .

Note that,

Ii = P
{
U

(1)
[ksi]+1,n > Cksi/n

}
= P

{
n∑

i=1

I
(
U

(1)
i < Cksi/n

)
≤ [ksi]

}

≤ P

{
n∑

i=1

I
(
U

(1)
i < Cksi/n

)
− Cksi < (1− C)ksi

}
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Applying Lemma S2 with t = 1/2, we obtain that,

log Ii ≤ −1

2
(C − 1)ksi +

1

4
ksi

(
1− Cksi

n

)
= −1

4
(2C − 3) ksi {1 + o(1)} .

Since ksi ≤ kδ for all i0 ≤ i ≤ k, by choosing C > 3/2, we have that,

lim sup
N→∞

log Ii
kδ/2

= −∞.

The rest of the proofs are similar to that of Lemma S4.

Define

Z(j)
n (s) = k1/2

(
Q(j)

n (s)−Q(j)
n (1)− s−γ − 1

γ

)
.

We rewrite the equation (10) as∫ 1

0

{
1

(γ̃(j))
2 log

(
1 +

γ̃(j)

σ̃
(j)
0

(
Q(j)

n (s)−Q(j)
n (1)

))

−
(

1

γ̃(j)
+ 1

) (1/σ̃
(j)
0 )
(
Q

(j)
n (s)−Q

(j)
n (1)

)
1 + (γ̃(j)/σ̃

(j)
0 )
(
Q

(j)
n (s)−Q

(j)
n (1)

)
 ds = 0,

∫ 1

0

(
1

γ̃(j)
+ 1

) (γ̃
(j)
0 /σ̃(j))

(
Q

(j)
n (s)−Q

(j)
n (1)

)
1 + (γ̃(j)/σ̃

(j)
0 )
(
Q

(j)
n (s)−Q

(j)
n (1)

)ds = 1,

(S1.14)

where σ̃
(j)
0 = σ̃(j)/a0 (n/k).

Lemma S7. Assume the same conditions as in Corollary 4 and γ > 0. Let

(γ̃(j), σ̃(j)) be such that

|γ̃(j)/σ̃(j) − γ| = Op(k
−1/2)
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uniformly for 1 ≤ j ≤ m. Then,

P

{
1 +

γ̃(j)

σ̃
(j)
0

(
Q(j)

n (s)−Q(j)
n (1)

)
≥ CNs

−γ, s ∈ [k−1+δ, 1], j = 1, 2, . . . ,m

}
→ 1.

Proof. By using the second order condition and Lemma S6, we obtain that,

for all δ > 0,

max
1≤j≤m

sup
s∈[k−1+δ,1]

sγ+ρ+δ

∣∣∣∣∣∣∣∣∣∣∣∣

U

 1

U
(j)
[ks]+1,n

−U(n
k )

a0(n
k )

−

 k

nU
(j)
[ks]+1,n

γ

−1

γ

A0

(
n
k

) −Ψ

(
k

nU
(j)
[ks]+1,n

)
∣∣∣∣∣∣∣∣∣∣∣∣

= oP (1).

We use this approximation simultaneously for s ∈ [k−1+δ, 1] and s = 1.

Then, we have that,

X
(j)
n−[ks],n −X

(j)
n−k,n

a0
(
n
k

) =

U

(
1

U
(j)
[ks]+1,n

)
− U

(
1

U
(j)
k+1,n

)
a0
(
n
k

)
=

1

γ

(
k

nU
(j)
[ks]+1,n

γ
)

− 1

γ

(
k

nU
(j)
k+1,n

)γ

+ A0

(n
k

)
Ψ

(
k

nU
(j)
[ks]+1,n

)
− A0

(n
k

)
Ψ

(
k

nU
(j)
k+1,n

)

+ oP (1)A0

(n
k

) (
s−γ−ρ−δ − 1

)
.
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Hence,

1 +
γ̃(j)

σ̃
(j)
0

X
(j)
n−[ks],n −X

(j)
n−k,n

a0
(
n
k

)
d
=

{
1−

(
k

nU
(j)
k+1,n

)γ}
−

(
γ̃(j)

σ̃
(j)
0

− γ

)
1

γ

(
k

nU
(j)
k+1,n

)γ

+
γ̃(j)

σ̃
(j)
0

1

γ

(
k

nU
(j)
[ks]+1,n

)γ

+
γ̃(j)

σ̃
(j)
0

A0

(n
k

)
Ψ

(
k

nU
(j)
[ks]+1,n

)

− γ̃(j)

σ̃
(j)
0

A0

(n
k

)
Ψ

(
k

nU
(j)
k+1,n

)
+ oP (1)A0

(n
k

) (
s−γ−ρ−δ − 1

)
=: Ij + IIj + IIIj + IVj + Vj + V Ij.

By Lemma S6, we have that, sγIIIj is bounded away from zero uniformly

for s ∈ [k−1+δ, 1] and 1 ≤ j ≤ m. We can show that all the other terms

tend to 0 uniformly for s ∈ [k−1+δ, 1], 1 ≤ j ≤ m when multiplied by sγ,

so Lemma S7 follows with CN := min1≤j≤m infs∈[k−1+δ,1] s
γIIIj − εN , for a

suitable sequence εN ↓ 0.

Proof of Corollary 4. If γ ̸= 0, the equation (S1.14) can be simplified to∫ 1

0

log

(
1 +

γ̃(j)

σ̃
(j)
0

(
Q(j)

n (s)−Q(j)
n (1)

))
ds = γ̃(j),∫ 1

0

1

1 + (γ̃(j)/σ̃
(j)
0 )
(
Q

(j)
n (s)−Q

(j)
n (1)

)ds = 1

γ̃(j) + 1
.

(S1.15)

We will find expansions for the left-hand side of both equations uniformly

for 1 ≤ j ≤ m.
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Rewrite the first one as∫ k−1+δ

0

log

(
1 +

γ̃(j)

σ̃
(j)
0

(
Q(j)

n (s)−Q(j)
n (1)

))
ds+

∫ 1

k−1+δ

log(s−γ)ds

+

∫ 1

k−1+δ

log

{
sγ

(
1 +

γ̃(j)

σ̃
(j)
0

(
Q(j)

n (s)−Q(j)
n (1)

))}
ds

= I
(j)
1 + γ

(
1−O(1)k−1+δ log k

)
+ I

(j)
2 .

We start from handling I
(j)
1 . Note that, as N → ∞,

I
(j)
1 ≤ k−1+δ log

(
1 +

γ̃(j)

σ̃
(j)
0

(
Q(j)

n (0)−Q(j)
n (1)

))
.

and

1 +
γ̃(j)

σ̃
(j)
0

(
Q(j)

n (0)−Q(j)
n (1)

)
= OP (N

γ),

uniformly for 1 ≤ j ≤ m.

Thus, we have that,

I
(j)
1 = OP (1)k

−1+2δ = (km)−1/2oP (1),

uniformly for 1 ≤ j ≤ m.

Next, we handle I
(j)
2 . Define

K(j)(s) = sγ

(
1 +

γ̃(j)

σ̃
(j)
0

(
Q(j)

n (s)−Q(j)
n (1)

))
− 1.

By the mean value theorem, we have that,

I
(j)
2 =

∫ 1

k−1+δ

K(j)(s)ds+

∫ 1

k−1+δ

−1

(1 + ξ(j)(s))2
(
K(j)(s)

)2
ds,

=: I
(j)
3 + I

(j)
4 .
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where ξ(j)(s) is a random value between 0 and K(j)(s).

For I
(j)
3 , note that,

K(j)(s) =

(
γ̃(j)

σ̃
(j)
0

− γ

)
1− sγ

γ
+

γ̃(j)

σ̃
(j)
0

sγk−1/2Z(j)
n (s).

Thus,

I
(j)
3 =

∫ 1

k−1+δ

(
γ̃(j)

σ̃
(j)
0

− γ

)
1− sγ

γ
ds+

γ̃(j)

σ̃
(j)
0

k−1/2
∫ 1

k−1+δ

sγZ(j)
n (s)ds

=

(
γ̃(j)

σ̃
(j)
0

− γ

)
1

γ + 1
+

(
γ̃(j)

σ̃
(j)
0

− γ

)
O(k−1+δ) +

γ̃(j)

σ̃
(j)
0

k−1/2
∫ 1

k−1+δ

sγZ(j)
n (s)ds.

Choose g(s) = sγ. Since η > 2γ, the condition of Proposition 2 holds. By

applying Proposition 2, we obtain that,

∫ k−1+δ

0

sγZ(j)
n (s) = oP (1)m

−1/2,

uniformly for 1 ≤ j ≤ m. Thus, we conclude that,

I
(j)
3 =

(
γ̃(j)

σ̃
(j)
0

− γ

)
1

γ + 1
+

(
γ̃(j)

σ̃
(j)
0

− γ

)
O(k−1+δ)+

γ̃(j)

σ̃
(j)
0

k−1/2
∫ 1

0

sγZ(j)
n (s)ds+oP (1)(km)−1/2.

For I
(j)
4 , by Lemma S6, we obtain that,

max
1≤j≤m

sup
s∈[k−1+δ,1]

1

(1 + ξ(j)(s))2
= OP (1).

Thus,

I
(j)
4 = OP (1)

∫ 1

k−1+δ

(
K(j)(s)

)2
ds = oP (1)(km)−1/2,

uniformly for 1 ≤ j ≤ m.
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Combining I
(j)
3 and I

(j)
4 , we conclude that, as N → ∞,

γ̃(j) = γ +

(
γ̃(j)

σ̃
(j)
0

− γ

)
1

γ + 1
+

γ̃(j)

σ̃
(j)
0

k−1/2
∫ 1

0

sγZ(j)
n (s)ds+ oP (1)(km)−1/2,

uniformly for 1 ≤ j ≤ m. Similarly, we can find the asymptotic expansions

for the second equation of (S1.15):

1

γ + 1
−

(
γ̃(j)

σ̃
(j)
0

− γ

)
1

(γ + 1)(2γ + 1)
−γk−1/2

∫ 1

0

s2γZ(j)
n (t)dt+oP (1)(km)−1/2 =

1

γ + 1
,

uniformly for 1 ≤ j ≤ m.

By Proposition 3.1 of Drees et al. (2004), we can obtain similar expan-

sions for (γ̂Oracle
mle , σ̂Oracle

mle ) and thus the oracle property holds for the MLE

for the extreme value index and the scale parameter.

S2 Simulation

In this section, we conduct a simulation study to demonstrate the finite

sample performance of the distributed estimator. We consider four distri-

butions: the Fréchet distribution (F (x) = exp (−x−3) , x ≥ 0), the Gumbel

distribution (F (x) = exp (−e−x) , x ∈ R), the standard normal distribution

and the reversed Burr distribution (F (x) = 1− (1 + (4− x)−4)−5/4, x ≤ 4).

The first and second order indices of the four distributions are list in Table

S1. The normal distribution is not under our framework as we assume that
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ρ < 0. Note that the distributed Hill estimator in Chen et al. (2022) is only

applicable for estimating a positive extreme value index. As a result, the

distributed Hill estimator will fail for distributions with a negative or zero

extreme value index, such as the Gumbel distribution, normal distribution,

and reversed Burr distribution in our simulation.

Table S1: Distributions for simulation.

Parameters Fréchet Gumbel Normal Reversed Burr

γ 1/3 0 0 -0.2

ρ -1 -1 0 -0.8

S2.1 Distributed PWM estimation for extreme value index

We compare the finite sample performances of the distributed PWM es-

timators for the extreme value index γ̂D
PWM with different levels of m for

various levels of km. Recall that, γ̂D
PWM involves km top exceedances: with

k from each machine. In the calculation of the PWM estimator, we take

the suggestion in Hosking and Wallis (1987) to modify Q
(j)
n as

Q(j)
n :=

1

k

k−1∑
i=0

i+ 0.35

k

(
X

(j)
n−i,n −X

(j)
n−k,n

)
.

We generate r = 200 samples with sample size N = 10000. We assume

that the N = 10000 observations are stored in m = 1, 20, 40 machines
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with n = N/m observations in each machine. Note that the case m =

1 corresponds to applying the statistical procedure to the oracle sample

directly. Thus, the corresponding estimator is the oracle estimator.

In Figure S1, we plot the mean squared errors (MSE) of the estimates

of γ against different levels of km for different distributions. We observe

that, for large m, when km is low, the distributed PWM estimator fails.

This is in line with the condition that m should be much smaller than k.

As km increases, the distributed PWM estimators and the oracle PWM es-

timator (m = 1) have similar MSEs. Although the oracle PWM estimator

outperforms the distributed PWM estimator, it may be impractical in sce-

narios where data is stored in a distributed manner due to privacy, storage,

or memory constraints, as highlighted at the beginning of the introduction.

The distributed PWM estimator can overcome these challenges by employ-

ing a divide-and-conquer algorithm, achieving performance comparable to

that of the oracle PWM estimator.

We then evaluate the performance of the distributed PWM estimators

for different values of N . Let Ñ be chosen from {1000, 2000, . . . , 20000}.

We fix n = [Ñ0.75], m = [Ñ/n] and k = [n0.55]. Denote N = nm. For

each value of Ñ , we generate B = 50000 samples with sample size Ñ . For

each sample i, we calculate the distributed PWM estimator γ̂D,i
PWM and the
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Figure S1: MSE of γ for 200 samples with sample size N = 10000.
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oracle PWM estimator γ̂O,i
PWM . We then calculate the normalized root mean

squared error (RMSE) for the distributed PWM estimator and oracle PWM

estimator as

√
km

√√√√ 1

B

B∑
i=1

(
γ̂D,i
PWM − γ

)2
,

√
km

√√√√ 1

B

B∑
i=1

(
γ̂Oracle,i
PWM − γ

)2
,

respectively. Moreover, we calculate the normalized distance between the

two estimators as

√
km

√√√√ 1

B

B∑
i=1

(
γ̂D,i
PWM − γ̂Oracle,i

PWM

)2
.

The normalized RMSE and normalized distance across various values of N

for the four distributions are shown in Figure S2. We observe that, the

normalized RMSE remains almost constant, consistent with the fact that

√
km
(
γ̂D
PWM − γ

)
= OP (1) and

√
km
(
γ̂Oracle
PWM − γ

)
= OP (1) as n → ∞.

Furthermore, the normalized distance tends to decrease as N increases,

aligning with Corollary 3, which states that
√
km
(
γ̂D
PWM − γ̂Oracle

PWM

)
= oP (1)

as N → ∞. The observed fluctuations in the normalized distance in

Figure S2 arise due to the relative size of m (the number of machines)

and k (the number of observations per machine). Condition (A2) states

that k/m → ∞ as N → ∞. Due to the finite sample setup and the integer

function, as Ñ varies from 1000 to 20000, the ratio k/m may either increase

or decrease, leading to the observed fluctuations in Figure S2.
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Figure S2: Normalized RMSE and normalized distance between the distributed PWM

estimator and oracle PWM estimator.
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S2.2 Distributed PWM estimation for high quantile

Recall that the estimation procedures for high quantile proposed in Section

5 first compute the distributed estimation for the extreme value index, scale

parameter and location parameter. Then the estimation for high quantile

can be obtained. Nevertheless, one can also directly apply the DC algorithm

to the estimation of the high quantile. The detailed procedures are given

as follows:

• On each machine j, we calculate γ̂
(j)
PWM , â(j)

(
n
k

)
, X

(j)
n−k,n.

• On each machine j, we estimate the high quantile by

x̂(j)(pN) = X
(j)
n−k,n + â(j)

(n
k

) ( k
npN

)γ̂(j)
PWM − 1

γ̂
(j)
PWM

,

and transmit x̂(j)(pN) to the central machine.

• On the central machine, we take the average of these estimates by

x̂D,2(pN) =
1

m

m∑
j=1

x̂(j)(pN).

By using similar techniques as in proving the oracle property of the PWM

estimator for the extreme value index, we can also establish the oracle

property of x̂D,2(pN).

We compare the finite sample performances of the two estimators x̂D(pN)

and x̂D,2(pN) of the 1 − p quantile with p = 1/5000. We also generate
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r = 200 samples with sample size N = 10000. Figures S3 and S4 demon-

strate the performances of the high quantile estimators in terms of the

average of the estimates (bias) and the MSE. We have three main observa-

tions from these figures. First, the performance of distributed high quantile

estimator is similar to that of the oracle estimator both in the bias and the

MSE, and the gap between them widens as m increases. This is in line with

the asymptotic theory.

Second, the average of x̂D,2(pN) is overall higher than that of x̂D(pN)

for the same m, which can be explained by the fact that (ax − 1)/x is a

convex function of x, for large a.

Third, we observe that, the average of x̂D,2(pN) is generally higher

than that of the oracle estimate. Since the oracle PWM estimator tends to

underestimate the high quantile, x̂D,2(pN) performs better than the oracle

estimator in terms of the MSE.

S2.3 Distributed MLE for the extreme value index

We compare the MSE and the computation cost of the distributed MLE and

the oracle MLE. We generate r = 100 samples with sample size N = 5×107.

Fix m = 1000 and n = 50000. We consider three different choices of

k = 1000, 1500, 2500.
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Figure S3: Average of quantile estimation for 200 samples with sample size N = 10000.

Horizontal lines indicate the value of xp with p = 1/5000.
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Figure S4: MSE of quantile estimation (p = 1/5000) for 200 samples with sample size

N = 10000.
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Table S2 summarizes the MSE of the distributed MLE and the oracle

MLE for different levels of k. The values in parentheses are the MSE of the

oracle MLE. For the Gumbel distribution, the distributed MLE achieves

better performance compared to the oracle MLE. For the Fréchet, Normal

and Reversed Burr distributions, the distributed MLE has higher MSE

compared to the oracle MLE for all levels of k. Nevertheless, the MSE of

these two estimators are still comparable.

We further compare the computation time of the distributed MLE and

the oracle MLE. For the calculation of MLE, we use the gpdFit() function

from R package ”fExtremes” (Wuertz et al. (2017)).

First, assume that no parallel computing techniques can be used, then

the distributed MLE must be calculated in sequence. In particular, we split

the datasets into m subsets. For j = 1, 2, . . . ,m, we record the local com-

putation time t(j). The total computation time for the distributed MLE

is
∑m

j=1 t
(j). Table S3 summarizes the computation time of these two esti-

mators. The values in parentheses are the computation time of the oracle

MLE. The distributed MLE performs faster for the Fréchet, Normal and

Reversed Burr distributions. For the Gumbel distribution, the oracle MLE

perfroms slightly faster while the computation time of these two estimators

The comparison is conducted in R on an AMD R5 4600U CPU.
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are still comparable.

Table S2: The MSE of the distributed MLE (and oracle MLE)

k = 1000 k = 1500 k = 2500

Fréchet 1.8× 10−5(5.0× 10−6) 2× 10−5(9.3× 10−6) 3.4× 10−5(2.5× 10−5)

Gumbel 3× 10−5(0.01) 3.3× 10−5(0.011) 5.81× 10−5(0.012)

Normal 0.011(0.0099) 0.013(0.012) 0.015(0.013)

Reversed Burr 3× 10−4(1.5× 10−4) 4.3× 10−4(2.7× 10−4) 8× 10−4(5.4× 10−4)

Next, we consider the computation time of the distributed MLE if we

can utilize parallel computing. We take the maximum of the local compu-

tation time max1≤j≤m t(j) as an estimated time for applying the distributed

MLE. The total computational time for all the 100 samples is shown in

Table S4. The computational efficiency can be significantly improved by

using the distributed MLE and parallel computing.
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Table S3: Total computational time (in seconds) of the distributed MLE (and oracle

MLE) without parallel computing.

k = 1000 k = 1500 k = 2500

Fréchet 804.6(1001.5) 874(1014.2) 1052.5(1322)

Gumbel 811.7(785.4) 906.3(791.3) 1086.9(980.1)

Normal 865.2(984.8) 974.5(1057.9) 1181.5(1361.3)

Reversed Burr 810.5(1062.3) 903(1206.5) 1085.1(1531.8)

Table S4: Total computational time (in seconds) of the distributed MLE with parallel

computing.

k = 1000 k = 1500 k = 2500

Fréchet 5.201 6.12 6.521

Gumbel 3.076 6.295 7.373

Normal 2.699 6.556 7.689

Reversed Burr 2.607 3.189 4.845
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Csörgö, M. and L. Horváth (1993). Weighted Approximations in Probability

and Statistics. J. Wiley & Sons.

de Haan, L. and A. Ferreira (2006). Extreme Value Theory: An Introduc-

tion. Springer Science & Business Media.

Drees, H., L. de Haan, and D. Li (2006). Approximations to the tail empir-

ical distribution function with application to testing extreme value condi-

tions. Journal of Statistical Planning and Inference 136 (10), 3498–3538.

Drees, H., A. Ferreira, and L. de Haan (2004). On maximum likelihood es-

timation of the extreme value index. Annals of Applied Probability 14 (3),

1179–1201.

Gut, A. (2013). Probability: A Graduate Course. Springer Science & Busi-

ness Media.

Hosking, J. R. and J. R. Wallis (1987). Parameter and quantile estimation

for the generalized pareto distribution. Technometrics 29 (3), 339–349.

Mason, D. M. (2001). An exponential inequality for a weighted approxima-

51



tion to the uniform empirical process with applications. Lecture Notes-

Monograph Series , 477–498.

Wuertz, D., T. Setz, and Y. Chalabi (2017). fExtremes: Rmetrics - Mod-

elling Extreme Events in Finance. R package version 3042.82.

52


	Proofs
	Tail approximation to the distribution function
	Proofs for Section 3
	Proofs for Section 4
	Proofs for Section 5

	Simulation
	Distributed PWM estimation for extreme value index
	Distributed PWM estimation for high quantile
	Distributed MLE for the extreme value index


