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results.

A1 Proofs of main results

Throughout the proofs, notation C denotes a generic positive constant,

which does not depend on sample size k.

A. Properties of sequential estimation for data site j

Once the stopping criterion (8) is satisfied for data site j, we record the

stopping time and cease sampling. The confidence ellipsoid for θ0 is then
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computed:

RÑj
= {z ∈ Rp0 :

SÑj

Ñj

≤ d21
µjÑj

}, (A1.1)

where SÑj
= (z − θ̃jÑj

)⊤(LjΣ
−1

jÑj
L⊤

j )
−1(z − θ̃jÑj

), and z = (z1, · · · , zp0)⊤.

Length of maximum axis of this ellipsoid is

D = 2

(
Ñjd

2
1

µjÑj

)1/2

λ1/2
max(Ñj(LjΣ

−1

jÑj
L⊤

j )) = 2d1,

where λmax(A) is the maximum eigenvalue of matrix A.

Proof of Proposition 1 Since ã2j > 0 for all j and are constants, the

definition of the stopping time implies that for each j, the ratio Ñj/N̂ con-

verges to a constant γj > 0. Let θ∗ =
∑M

j=1wjθ̃jÑj, where wj,
∑M

j=1wj = 1,

represent given weights. Then, the variance of θ∗ is given by:

M∑
j=1

w2
jLjΣ

−1

jÑj
L⊤

j =
M∑
j=1

w2
j Ñ

−1
j Lj(ΣjÑj

/Ñj)
−1L⊤

j .

Let

GN(w1, · · · , wM) = N̂
M∑
j=1

w2
j Ñ

−1
j Lj(ΣjÑj

/Ñj)
−1L⊤

j ,

then it follows that as d1 tends to 0,

GN(w1, · · · , wM) −→ G(w1, · · · , wM) =
M∑
j=1

w2
jγ

−1
j LjΣ

−1
j L⊤

j .

We then minimize Tr(G(w1, · · · , wM)) with respect to w1, · · · , wM subject

to
∑

j wj = 1, and obtain that

wj =
γjTr(LjΣ

−1
j L⊤

j )
−1∑M

k=1 γkTr(LkΣ
−1
k L⊤

k )
−1

, j = 1, · · · ,M.
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If we use the same covariates for all data sites, then they have a homoge-

neous covariance Σ1 = Σ2 = · · · = ΣM , asymptotically. It follows that

wj = γj, j = 1, · · · ,M . It follows that θ̂ with the weights ρj achieves the

minimal covariance, asymptotically.

Let Z = (z1, · · · , zp0)T , then

RjÑj
=

{
Z ∈ Rp0:

SjÑj

Ñj

≤ d21
µjÑj

}
(A1.2)

defines a confidence set for θ0, where SjÑj
= (Z−θ̃jÑj

)⊤(LjΣ̃
−1

jÑj
L⊤

j )
−1(Z−

θ̃jÑj
), µjÑj

= λmax

(
ÑjLjΣ̃

−1

jÑj
L⊤

j

)
, andΣjÑj

=
∑Ñj

i=1 xji{µ̇(x⊤
jiβ̃jÑj

)2/ν(x⊤
jiβ̃jÑj

)}x⊤
ji.

We can show that the length of the maximum axis of the confidence set RjÑj

is 2d1.

Lemma 1. Assume that the conditions of Theorem 1 are satisfied, and Ñj

is as defined in (8). Then

lim
d1→0

d21Ñj

ã2jµj

= 1 almost surely, (A1.3)

lim
d1→0

P (θ0 ∈ RjÑj
) = 1− α̃j, (A1.4)

lim
d1→0

d2E(Ñj)

ã2jµj

= 1, (A1.5)

where α̃j satisfies P (χ2
p0

> ã2j) = α̃j, and µj is the maximum eigenvalue of

matrix LjΣ
−1
j L⊤

j .

Proof. Wang and Chang (2013) established the asymptotic consistency and

efficiency of the sequential estimation method for a single linear regression
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model. Furthermore, the authors extended their findings by providing a

rigorous proof of this lemma for the logistic regression model.

Let

zk =
kµj

µjk

, f(k) = k, t =
ã2j
d21µj

,

where µjk = λmax(LjΣ
−1
jk L

⊤
j ). Then the stopping rule Ñj in (8) becomes

Ñj = min

{
k : k ≥ 1 and yk ≤ f(k)/t, and vAj

≤
(
d2
ap

)2
}
.

The estimate β̃jk is the maximum quasi-likelihood estimate (MQLE) of

βj (McCullagh and Nelder, 1989). Then under conditions (A1) and (A2),

β̃jk is strongly consistent estimate of βj (Chen et al., 1999; Chang, 1999).

From Lemma 1 in Chow and Robbins (1965), we establish the following

relationship:

1 = lim
t→∞

f(N)

t
= lim

d1→0

d2Nµj

ã2j
almost surely,

which implies (i).

Property of the uniform continuity in probability (u.c.i.p.) is a suf-

ficient condition such that estimate of parameter with randomly stopped

sequence has the same asymptotic distribution as the fixed sample size es-

timate (Woodroofe, 1982). We know that MQLE β̃jk and Âj are strongly

consistent estimates of βj and Aj, respectively, which shows that β̃jk and

Âj have u.c.i.p. properties (Chang and Martinsek, 1992; Chang, 2011).
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Thence, leveraging the u.c.i.p. properties of β̃jk and Âj, we can establish

the following essential asymptotic properties:√
Ñj(θ̃jÑj

− θ0) −→ N(0,LjΣ
−1
j L⊤

j ) in distribution as d1 → 0,

Âj − Aj√
vAj

−→ N(0, 1) in distribution as d2 → 0.

Hence, we have

(θ̃jÑj
− θ0)

⊤
[
LjΣ

−1
jNj

L⊤
j

]−1

(θ̃jÑj
− θ0) −→ χ2

p0
, as d1 → 0.

It follows that

lim
d1→0

P (θ0 ∈ RjÑj
)

= lim
d1→0

P

(
(θ̃jÑj

− θ0)
⊤
[
LjΣ

−1
jNj

L⊤
j

]−1

(θ̃jÑj
− θ0) ≤

Ñjd
2
1

µjÑj

)

= lim
d1→0

P

(
(θ̃jÑj

− θ0)
⊤
[
LjΣ

−1
jNj

L⊤
j

]−1

(θ̃jÑj
− θ0) ≤ ã2j

)
=1− α̃j,

which confidently affirm the validity of result (ii).

Now, let us proceed with the proof of (iii). To begin, let us define a last

time

Lρ = sup{k ≥ 1 : ∥ln(β)− ln(βj)∥ < ∥ln(βj)∥, ∃β ∈ ∂Bjρ},

where Bjρ = {β : ||β − βj|| ≤ ρ} and

ln(β) ≡
k∑

i=1

µ̇(x⊤
jiβ)w(x

⊤
jiβ)[yji − µ(x⊤

jiβ)]xji.
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Hence, if k > Lρ, then we have ∥ln(β)− ln(βj)∥ ≥ ∥ln(βj)∥ for ∀β ∈ ∂Bjρ,

which implies that

n > Lρ ⇒ inf
β∈∂Bjρ

∥ln(β)− ln(βj)∥ ≥ ∥ln(βj)∥ with probability one.

Based on Lemma 3 from Yin et al. (2006), the existence of the root

β̃jn for ln(β) = 0 has been established. Moreover, leveraging result (i),

which implies that from (i), we know that limd1→0 d
2
1Ñj/(ã

2
jµj) = 1 almost

surely. Hence, we only have to prove that {d21Ñj : d1 ∈ (0, 1)} is uniformly

integrable. Similar to proof of Theorem 3.2 in Chang (2001), to show that

for d1 ∈ (0, 1), we have

d21Ñj = d21ÑjI{Ñj > Lρ}+ d21ÑjI{Ñj ≤ Lρ}

≤ d21

{⌈
cã2j
d21

⌉
+ 1

}
+ Lρ ≤

⌈
cã2j
⌉
+ 1 + Lρ .

It easily shows that

∞∑
k=0

P (Lρ ≥ k) =
k′∑

k=0

P (Lρ ≥ k) +
∞∑

k=k′+1

P (Lρ ≥ k) ≤ k′ + 0 < ∞,

(A1.6)

where k′ is a number sufficiently large such that when k > k′, infβ∈∂Bjρ
∥ln(β)−

ln(βj)∥ ≥ ∥ln(βj)∥ ≥ c with some c > 0 (Yin et al., 2006). Hence, (A1.6)

implies ELρ < ∞. And then {d2Td : d ∈ (0, 1)} is uniformly integrable

which indicates that (ii) holds.
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B. Proof of Theorem 1

If the stopping criterion defined in (8) holds for the procedure j , then we

have used Ñj observations, and obtained a confidence set RÑj
as defined in

(A1.1). Via Lemma 1,

lim
d1→0

d21Ñj

ã2jµj

= 1 almost surely, (A1.7)

lim
d1→0

P (θ0 ∈ RjÑj
) = 1− α̃j, (A1.8)

lim
d1→0

d21E(Ñj)

ã2jµj

= 1, (A1.9)

where α̃j satisfies P (χ2
p0

> ã2j) = α̃j. Equations (A1.7) and (A1.9) implies

that as d1 → 0,

d21Ñj −→ ã2jµj almost surely,

d21E(Ñj) −→ ã2jµj.

Because ã21 + ã22 = a2, it follows that

d21N̂ = d21(Ñ1 + Ñ2) −→ (ã21 + ã22)µ = a2µ almost surely,

d21E(N̂) = d21E(Ñ1 + Ñ2) −→ (ã21 + ã22)µ = a2µ,

which implies that

lim
d1→0

d21N̂

a2µ
= 1 almost surely,

lim
d1→0

d21E(N̂)

a2µ
= 1.
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For simplicity, we suppose that j = 1, 2, in the following matrix alge-

bra, which can be easily extended to the case for j = 1, · · · ,M . Matrix

LjΣ
−1

jÑj
L⊤

j can be used to estimate covariance of θ̃jÑj
. Since two procedures

are independent, we can use ρ21LjΣ
−1
1N1

L⊤
j + ρ22LjΣ

−1
2N2

L⊤
j to estimate vari-

ance of θ̂. We already have that
√

Ñj(θ̃Ñj
− θ0) has asymptotic normality

as d1 tends to 0. It follows that as d1 → 0, θ̂ follows an asymptotic normal

distribution, and

(θ̂ − θ0)
⊤ [ρ21LjΣ

−1
1N1

L⊤
j + ρ22LjΣ

−1
2N2

L⊤
j

]−1
(θ̂ − θ0) −→ χ2

p0
. (A1.10)

By definition of µN̂ , µN̂ → µ and N̂d21/µN̂ → a2 almost surely, as d1 → 0.

Thus, (A1.10) implies that

lim
d1→0

P (θ0 ∈ RN̂)

= lim
d1→0

P

(
(θ̂ − θ0)

⊤ [ρ21LjΣ
−1
1N1

L⊤
j + ρ22LjΣ

−1
2N2

L⊤
j

]−1
(θ̂ − θ0) ≤

N̂d21
µN̂

)

= lim
d1→0

P
(
(θ̂ − θ0)

⊤ [ρ21LjΣ
−1
1N1

L⊤
j + ρ22LjΣ

−1
2N2

L⊤
j

]−1
(θ̂ − θ0) ≤ a2

)
= 1− α.

This completes the proof of Theorem 1.

A2 Additional Numerical Results and Flowchart for

the Proposed Procedure
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PROPOSED PROCEDURE

Here, we present additional numerical results that further support the main

findings. Under the random selection with covariate set H1 and parameter

setting B1, Tables T1 and T2 report the stopping times, AUC, coverage

frequency (CF), and absolute bias of the estimate for θ = (β1, β2).

Table T3 provides parameter estimates for the COVID-19 data using

random selection, d2 = 0.05, and equal site proportions (C1). Tables T4

and T5 compare parameter estimates under the adaptive and random sam-

pling, respectively, using unequal site proportions (C2). Figure 1 shows

flowchart of the distributed sequential federated estimation.

We also examine the performance of the proposed method under par-

tially overlapped parameter settings and model misspecification. In the

partially overlapped case, we set the common parameter θ = (β1, β2) =

(2.0, 1.0) for all five sites, and define a partially site-specific parameter ζ =

(ζ1, ζ2) as follows: for sites 1–3, ζ = (1.0, 0.5); for site 4, ζ4 = (0.5, 0.75);

and for site 5, ζ5 = (0.5, 1.0).

This analysis uses the adaptive sampling setup, covariate set H1, and γ

configuration G2 as an illustrative example. For ζ, the sample proportions

across the first three sites are 1/6, 1/6, and 4/6, respectively. Table T6

reports the stopping times, AUC, and CF for both θ and ζ. Tables T7 and

T8 present the absolute biases for the estimates of θ and ζ, respectively.



FIRSTNAME1 LASTNAME1 AND FIRSTNAME2 LASTNAME2

Figure 1: Flowchart of the distributed sequential federated estimation.

We observe that both θ and ζ are accurately estimated. In particular,

the proposed method (RW) consistently achieves smaller or comparable

biases compared to the equal-weight (EW) method, demonstrating its ef-

fectiveness under parameter overlap and model misspecification.
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To evaluate the robustness of the proposed method under model mis-

specification, we consider two types of contamination:

(1) Common parameter contamination (denoted as Contamina-

tion 1): under the regression parameter setting B1, a proportion ρoutlier

of the simulation data is generated from a model with a different common

parameter θ = (1.0, 2.0);

(2) Other parameter contamination (Contamination 2): again un-

der B1, a proportion ρoutlier of the data is generated with a different local

parameter ηj = (0.5, 1.0).

We consider contamination levels ρoutlier = 0.05, 0.10, and 0.15. Ta-

ble T9 reports the absolute bias of the estimates for the common parameter

θ = (β1, β2) under adaptive sampling, with d2 = 0.05, covariate set H1,

and parameter configuration G1.

We find that for small contamination levels, the estimation bias remains

close to zero when d1 = 0.2, indicating robustness to mild model misspec-

ification. In general, contamination in the other (local) parameters has a

weaker impact on the estimation of the common parameter than contam-

ination in the common parameter itself. As ρoutlier increases, estimation

accuracy gradually deteriorates, as expected.
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Table T1: Stopping times, AUC and coverage frequency (CF) of the random selection

case with covariate set H1 and parameter set B1.

d2 d1 N N1 N2 N3 N4 N5 AUC CF

0.05 0.3 G1 Est. 1845.15 377.32 368.59 369.10 365.54 364.60 0.902 0.930

Sd 173.02 84.75 68.49 78.39 77.61 79.50 0.008 -

G2 Est. 1918.81 217.02 214.13 219.31 218.96 1049.38 0.905 0.930

Sd 150.88 43.84 41.13 42.15 42.51 139.78 0.007 -

0.2 G1 Est. 3987.3 807.74 792.77 796.12 799.63 791.11 0.902 0.925

Sd 271.47 121.61 101.41 131.26 127.29 126.29 0.005 -

G2 Est. 3950.75 408.00 399.74 409.42 400.18 2333.41 0.901 0.960

Sd 252.43 79.62 77.76 81.77 77.38 211.23 0.006 -

0.04 0.3 G1 Est. 1899.81 374.90 378.05 391.03 378.69 377.14 0.903 0.925

Sd 140.62 63.19 61.75 71.76 67.32 67.66 0.007 -

G2 Est. 2133.28 268.43 282.93 275.99 272.10 1033.84 0.905 0.965

Sd 164.46 52.07 54.90 51.46 49.52 127.39 0.007 -

0.2 G1 Est. 3953.78 774.38 786.03 810.62 798.30 784.47 0.902 0.935

Sd 267.60 113.54 122.17 123.86 118.16 124.12 0.006 -

G2 Est. 3953.59 411.45 414.44 410.12 414.44 2303.13 0.901 0.935

Sd 251.09 69.29 75.60 70.17 72.97 198.68 0.006 -

G1 and G2 denote two different sets of γj ’s, j = 1, · · · , 5. d1 and d2 are the sizes of

confidence set and prefixed parameters for AUC, respectively.
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Table T2: Absolute bias of estimate of θ = (β1, β2) with the random selection strategy,

covariate setup H1 and parameter set B1.

d2 d1 RW EW Site 1 Site 2 Site 3 Site 4 Site 5

0.05 0.3 G1 β1 0.10(0.07) 0.09(0.07) 0.21(0.15) 0.19(0.14) 0.21(0.15) 0.20(0.15) 0.20(0.15)

β2 0.07(0.05) 0.07(0.05) 0.16(0.12) 0.13(0.11) 0.15(0.11) 0.15(0.12) 0.15(0.11)

G2 β1 0.09(0.07) 0.10(0.07) 0.24(0.17) 0.22(0.16) 0.25(0.18) 0.23(0.16) 0.12(0.09)

β2 0.07(0.05) 0.08(0.06) 0.20(0.15) 0.20(0.15) 0.20(0.13) 0.19(0.14) 0.09(0.06)

0.2 G1 β1 0.07(0.05) 0.06(0.05) 0.14(0.11) 0.12(0.09) 0.14(0.12) 0.14(0.10) 0.14(0.11)

β2 0.05(0.04) 0.04(0.03) 0.11(0.07) 0.09(0.08) 0.09(0.08) 0.11(0.07) 0.10(0.08)

G2 β1 0.06(0.05) 0.07(0.05) 0.19(0.14) 0.17(0.14) 0.18(0.14) 0.17(0.14) 0.08(0.06)

β2 0.05(0.03) 0.06(0.04) 0.13(0.10) 0.14(0.10) 0.16(0.11) 0.13(0.11) 0.06(0.04)

0.04 0.3 G1 β1 0.11(0.07) 0.09(0.06) 0.18(0.13) 0.19(0.14) 0.20(0.15) 0.18(0.14) 0.18(0.14)

β2 0.07(0.05) 0.07(0.05) 0.14(0.11) 0.16(0.12) 0.15(0.11) 0.16(0.12) 0.17(0.12)

G2 β1 0.09(0.07) 0.11(0.09) 0.22(0.18) 0.25(0.18) 0.24(0.19) 0.25(0.17) 0.12(0.08)

β2 0.07(0.05) 0.08(0.06) 0.17(0.14) 0.18(0.15) 0.18(0.15) 0.17(0.14) 0.09(0.06)

0.2 G1 β1 0.06(0.05) 0.06(0.05) 0.14(0.09) 0.14(0.11) 0.15(0.11) 0.13(0.10) 0.14(0.10)

β2 0.05(0.03) 0.05(0.03) 0.11(0.08) 0.10(0.08) 0.10(0.08) 0.11(0.08) 0.11(0.09)

G2 β1 0.06(0.05) 0.08(0.06) 0.16(0.12) 0.19(0.14) 0.18(0.14) 0.17(0.13) 0.08(0.06)

β2 0.05(0.04) 0.06(0.04) 0.13(0.09) 0.14(0.11) 0.14(0.12) 0.14(0.10) 0.06(0.04)

Standard deviations are in parentheses.
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Table T3: Parameter estimate for COVID-19 data with d2 = 0.05, random selection and

equal proportion C1.

d1 GE PN AG DI CO AS IM HY OT CA OB CR SM EO

All 0.3 Est. -0.17 1.10 0.01 0.16 -0.29 -0.15 -0.29 0.03 -0.12 -0.31 0.24 -0.28 -0.13 0.27

Sd 0.01 0.02 0.00 0.02 0.06 0.03 0.06 0.02 0.04 0.04 0.01 0.05 0.02 0.01

0.2 Est. -0.16 1.09 0.01 0.15 -0.28 -0.13 -0.33 0.03 -0.14 -0.26 0.24 -0.36 -0.18 0.26

Sd 0.01 0.01 0.00 0.01 0.04 0.02 0.04 0.01 0.03 0.03 0.01 0.03 0.01 0.01

P1 0.3 Est. - 1.12 - - -0.23 -0.20 - - - - - -0.30 - 0.30

Sd - 0.03 - - 0.10 0.05 - - - - - 0.07 - 0.02

0.2 Est. - 1.11 - - -0.30 -0.14 - - - - - -0.25 - 0.28

Sd - 0.02 - - 0.07 0.04 - - - - - 0.05 - 0.01

P2 0.3 Est. -0.17 - 0.01 0.18 - - - 0.03 -0.15 -0.33 0.22 -0.32 -0.12 -

Sd 0.01 - 0.00 0.03 - - - 0.02 0.06 0.07 0.02 0.07 0.03 -

0.2 Est. -0.17 - 0.01 0.16 - - - 0.02 -0.13 -0.29 0.22 -0.30 -0.13 -

Sd 0.01 - 0.00 0.02 - - - 0.02 0.04 0.05 0.02 0.05 0.02 -

All, P1 and P2 stand for all variables, five key variables (PN, CO, AS, CR, EO), and ten

key variables (GE, AG, DI, AS, HY, OT, CA, OB, CR, SM), respectively. GE: gender; PN:

Pneumonia; AG: age; DI: Diabetes; CO: Chronic obstructive pulmonary; AS: asthma; IM:

immunosuppression; HY: Hypertension; OT: Other diseases; CA: cardiovascular; OB: obesity;

CR: Chronic renal failure; SM: smoke; EO: Exposed to other cases diagnosed as SARS CoV-2.
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Table T4: Parameter estimate for COVID-19 data with d2 = 0.05, adaptive selection

and different proportion C2.

d1 GE PN AG DI CO AS IM HY OT CA OB CR SM EO

All 0.3 Est. -0.18 1.03 0.01 0.08 -0.23 -0.13 -0.33 0.05 -0.24 -0.34 0.25 -0.24 -0.19 0.45

Sd 0.03 0.04 0.00 0.04 0.05 0.05 0.05 0.04 0.05 0.05 0.04 0.05 0.05 0.03

0.2 Est. -0.17 0.91 0.01 0.12 -0.21 -0.01 -0.23 0.05 -0.17 -0.29 0.28 -0.21 -0.20 0.46

Sd 0.03 0.03 0.00 0.03 0.04 0.04 0.04 0.03 0.04 0.04 0.03 0.04 0.03 0.03

P1 0.3 Est. - 1.09 - - -0.14 -0.08 - - - - - -0.22 - 0.45

Sd - 0.05 - - 0.07 0.07 - - - - - 0.07 - 0.04

0.2 Est. - 1.03 - - -0.24 -0.10 - - - - - -0.27 - 0.44

Sd - 0.05 - - 0.05 0.05 - - - - - 0.05 - 0.03

P2 0.3 Est. -0.17 - 0.01 0.10 - - - 0.03 -0.26 -0.36 0.23 -0.30 -0.19 -

Sd 0.03 - 0.00 0.05 - - - 0.04 0.06 0.06 0.04 0.06 0.05 -

0.2 Est. -0.18 - 0.01 0.10 - - - 0.05 -0.23 -0.30 0.27 -0.25 -0.22 -

Sd 0.03 - 0.00 0.04 - - - 0.04 0.05 0.05 0.04 0.05 0.04 -

All, P1 and P2 stand for all variables, five key variables (PN, CO, AS, CR, EO), and ten

key variables (GE, AG, DI, AS, HY, OT, CA, OB, CR, SM), respectively. GE: gender; PN:

Pneumonia; AG: age; DI: Diabetes; CO: Chronic obstructive pulmonary; AS: asthma; IM:

immunosuppression; HY: Hypertension; OT: Other diseases; CA: cardiovascular; OB: obesity;

CR: Chronic renal failure; SM: smoke; EO: Exposed to other cases diagnosed as SARS CoV-2.
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Table T5: Parameter estimate for COVID-19 data with d2 = 0.05, random selection and

different proportion C2.

d1 GE PN AG DI CO AS IM HY OT CA OB CR SM EO

All 0.3 Est. -0.15 1.09 0.01 0.16 -0.29 -0.16 -0.33 0.04 -0.15 -0.33 0.24 -0.27 -0.13 0.24

Sd 0.01 0.02 0.00 0.02 0.06 0.03 0.06 0.02 0.04 0.04 0.01 0.05 0.02 0.01

0.2 Est. -0.15 1.08 0.01 0.16 -0.28 -0.14 -0.36 0.04 -0.16 -0.26 0.24 -0.33 -0.19 0.23

Sd 0.01 0.01 0.00 0.01 0.04 0.02 0.04 0.01 0.03 0.03 0.01 0.03 0.01 0.01

P1 0.3 Est. - 1.11 - - -0.15 -0.23 - - - - - -0.30 - 0.26

Sd - 0.03 - - 0.10 0.05 - - - - - 0.07 - 0.02

0.2 Est. - 1.10 - - -0.30 -0.15 - - - - - -0.25 - 0.25

Sd - 0.02 - - 0.07 0.04 - - - - - 0.05 - 0.01

P2 0.3 Est. -0.16 - 0.01 0.18 - - - 0.04 -0.17 -0.31 0.21 -0.29 -0.13 -

Sd 0.01 - 0.00 0.03 - - - 0.02 0.06 0.07 0.02 0.07 0.03 -

0.2 Est. -0.16 - 0.01 0.17 - - - 0.02 -0.16 -0.31 0.22 -0.29 -0.15 -

Sd 0.01 - 0.00 0.02 - - - 0.02 0.04 0.05 0.02 0.05 0.02 -

All, P1 and P2 stand for all variables, five key variables (PN, CO, AS, CR, EO), and ten

key variables (GE, AG, DI, AS, HY, OT, CA, OB, CR, SM), respectively. GE: gender; PN:

Pneumonia; AG: age; DI: Diabetes; CO: Chronic obstructive pulmonary; AS: asthma; IM:

immunosuppression; HY: Hypertension; OT: Other diseases; CA: cardiovascular; OB: obesity;

CR: Chronic renal failure; SM: smoke; EO: Exposed to other cases diagnosed as SARS CoV-2.
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Table T6: Stopping times, AUC and coverage frequency (CF) of the common parameter

θ and partially overlapped parameter ζ with the adaptive selection case, covariate set

H1 and parameter set G2.

d2 d1 N N1 N2 N3 N4 N5 AUC CF

0.05 0.3 θ Est. 1325.39 168.50 170.44 166.25 172.20 648.01 0.897 0.940

Sd 94.10 26.07 24.70 25.75 27.35 79.01 0.005 -

ζ Est. 598.91 149.84 154.01 295.06 - - 0.901 0.970

Sd 65.74 32.33 32.65 40.80 - - 0.008 -

0.2 θ Est. 2522.34 261.50 262.08 264.19 263.98 1470.58 0.889 0.945

Sd 148.96 43.92 43.59 41.76 45.02 117.52 0.005 -

ζ Est. 1046.59 192.59 191.24 662.77 - - 0.893 0.970

Sd 76.57 27.89 23.88 66.39 - - 0.006 -

0.04 0.3 θ Est. 1671.87 252.37 254.72 251.12 260.63 653.02 0.897 0.965

Sd 121.23 50.32 51.13 49.65 45.84 76.71 0.005 -

ζ Est. 807.46 244.45 252.70 310.31 - - 0.899 0.985

Sd 89.08 61.13 59.27 34.46 - - 0.008 -

0.2 θ Est. 2668.68 297.81 296.57 294.98 302.02 1477.30 0.891 0.955

Sd 130.49 34.52 31.63 35.44 38.22 110.60 0.004 -

ζ Est. 1178.12 259.55 260.66 657.91 - - 0.894 0.985

Sd 92.66 42.41 46.44 69.76 - - 0.006 -

d1 and d2 are the sizes of confidence set and prefixed parameters for AUC, respectively.



FIRSTNAME1 LASTNAME1 AND FIRSTNAME2 LASTNAME2

Table T7: Absolute bias of estimate of the common parameter θ = (β1, β2) with the

adaptive selection case, covariate set H1 and parameter set G2.

d2 d1 RW EW Site 1 Site 2 Site 3 Site 4 Site 5

0.05 0.3 β1 0.10(0.07) 0.11(0.09) 0.23(0.18) 0.24(0.18) 0.24(0.17) 0.23(0.19) 0.12(0.10)

β2 0.06(0.04) 0.07(0.05) 0.16(0.13) 0.17(0.12) 0.14(0.11) 0.14(0.11) 0.08(0.06)

0.2 β1 0.07(0.05) 0.08(0.06) 0.18(0.14) 0.18(0.14) 0.18(0.13) 0.20(0.13) 0.08(0.06)

β2 0.04(0.03) 0.05(0.04) 0.12(0.08) 0.12(0.10) 0.11(0.08) 0.13(0.09) 0.05(0.04)

0.04 0.3 β1 0.09(0.07) 0.12(0.09) 0.23(0.19) 0.21(0.18) 0.21(0.19) 0.20(0.17) 0.12(0.09)

β2 0.05(0.04) 0.06(0.05) 0.15(0.12) 0.12(0.10) 0.13(0.10) 0.13(0.12) 0.07(0.06)

0.2 β1 0.07(0.05) 0.08(0.06) 0.16(0.13) 0.17(0.13) 0.16(0.13) 0.17(0.13) 0.07(0.05)

β2 0.04(0.03) 0.05(0.04) 0.11(0.09) 0.12(0.08) 0.10(0.08) 0.12(0.09) 0.05(0.04)

Standard deviations are in parentheses.
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Table T8: Absolute bias of estimate of the partially overlapped parameter ζ = (ζ1, ζ2)

with the adaptive selection case, covariate set H1 and parameter set G2.

d2 d1 RW EW Site 1 Site 2 Site 3

0.05 0.3 ζ1 0.08(0.07) 0.09(0.08) 0.18(0.16) 0.18(0.14) 0.11(0.08)

ζ2 0.07(0.05) 0.08(0.06) 0.15(0.12) 0.14(0.11) 0.08(0.06)

0.2 ζ1 0.06(0.04) 0.07(0.05) 0.13(0.10) 0.13(0.11) 0.07(0.05)

ζ2 0.05(0.04) 0.06(0.04) 0.10(0.08) 0.10(0.08) 0.06(0.04)

0.04 0.3 ζ1 0.07(0.06) 0.08(0.06) 0.15(0.13) 0.15(0.12) 0.10(0.07)

ζ2 0.06(0.05) 0.06(0.06) 0.12(0.10) 0.11(0.09) 0.08(0.07)

0.2 ζ1 0.05(0.04) 0.06(0.05) 0.12(0.10) 0.12(0.10) 0.07(0.06)

ζ2 0.05(0.03) 0.05(0.04) 0.11(0.09) 0.10(0.07) 0.06(0.05)

Standard deviations are in parentheses.
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Table T9: Absolute bias of estimate of the common parameter θ = (β1, β2) with the

adaptive selection case, covariate set H1 and parameter set G1.

Contamination 1 Contamination 2

ρoutlier Para. d1 = 0.3 d1 = 0.2 d1 = 0.3 d1 = 0.2

0.05 β1 0.09(0.06) 0.08(0.06) 0.10(0.07) 0.06(0.04)

β2 0.07(0.05) 0.05(0.04) 0.06(0.04) 0.04(0.03)

0.10 β1 0.16(0.10) 0.19(0.07) 0.08(0.06) 0.06(0.05)

β2 0.07(0.05) 0.06(0.04) 0.05(0.04) 0.04(0.03)

0.15 β1 0.27(0.11) 0.30(0.08) 0.09(0.06) 0.06(0.05)

β2 0.09(0.06) 0.07(0.05) 0.06(0.04) 0.04(0.03)

Standard deviations are in parentheses.
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