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This Supplementary Material contains an illustrative figure that highlights the parameter sen-

sitivity and computational complexity of numerical solvers for a simple DDE model (referenced

in Section 1 of the main text), expressions of the posterior distribution in MAGI (referenced in

Section 2 of the main text), conditions and proofs of the theoretical error bounds of the approx-

imation schemes along with numerical validations (referenced in Section 3.2 of the main text),

the investigation of effects of the discretization set (referenced in Section 3.3 of the main text),

the implementation details and supplementary results for method comparisons (referenced in

Section 4.1 of the main text), summary of parameter values and implementation details for the

lac operon model along with a comparison to the NLS approach (referenced in Section 4.2 of the

main text), and data processing steps with implementation details for the real data application

and prediction using the time-delayed SIRD model (referenced in Section 5 of the main text).
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S1 DDE Example: Effects of the Time-delay Parame-

ter on Oscillation Behavior and Numerical Solver

Complexity

We take Hutchinson’s equation,

dP (t)/dt = 0.8 · P (t) [1− P (t− τ)/2000] ,

as used for the simulation study in Section 4.1 of the main text, to illustrate the

effects of the time-delay parameter τ . Figure 1 shows that the DDE trajectories

are sensitive to small variations in τ : the oscillation behavior of the numerical

solution varies significantly among τ = {0, 1.5, 3, 4}. Note that setting τ = 0 re-

duces the equation to an ODE, and is associated with a trajectory that stabilizes

to a steady state without any oscillation. In contrast, the oscillation behavior

of the DDE trajectories for τ = {1.5, 3, 4} suggests that a numerical solver will

require finer discretization time steps to maintain accuracy in the numerical solu-

tion, compared to τ = 0. This intuition is confirmed by benchmarking: running

the ODE solver (for τ = 0) takes approximately 0.9 milliseconds per repetition,

while running the DDE solver (for τ = {1.5, 3, 4}) takes approximately 8 mil-

liseconds per repetition. Hence, the DDE numerical solver is associated with an

increased computational cost, taking approximately 9 times longer than solving

the corresponding ODE. It has been previously noted that optimization-based
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algorithms using a numerical solver (e.g., nonlinear least squares, or NLS) may

only converge to local optima due to the sensitivity of the numerical solution

to the parameters and initial conditions (Liang and Wu, 2008). This example

further illustrates that for DDEs, the convergence difficulties of NLS can be even

more pronounced due to the numerical solution’s sensitivity to the time delay

parameter; a detailed investigation using NLS and numerical solvers for this in-

ference problem is presented in Section S8.3 of the Supplementary Material.
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Figure 1: The effect of time-delay parameter τ on the oscillation behavior of the system

trajectory in Hutchinson’s equation: dP (t)/dt = 0.8 · P (t) [1− P (t− τ)/2000] .
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S2 Detailed Expression of Posterior Distribution in

MAGI

This section reviews the details of the original MAGI posterior distribution in

Yang et al. (2021). According to Bayes’ rule, the posterior distribution of θ and

x(I) given WI = 0 and y(γ) is

p(θ,x(I)|WI = 0,y(γ)) ∝ p (θ,x(I),WI = 0,y(γ)) . (S2.1)

Factorizing Equation (S2.1) yields the four terms,

p (θ,x(I),WI = 0,y(γ)) = π(θ)︸︷︷︸
(1)

× p (x(I)|θ)︸ ︷︷ ︸
(2)

× p (y(γ)|x(I),θ)︸ ︷︷ ︸
(3)

× p (WI = 0|y(γ),x(I),θ)︸ ︷︷ ︸
(4)

.

The first term is the prior distribution of the model parameters. Since θ

is independent of x(I) from the GP, p (x(I)|θ) can be simplified to p (x(I)).

Similarly, due to the independence between the noisy observations and model

parameters, the condition on the parameters can be also be suppressed, yielding

p (y(γ)|x(I)) for the third term.

We apply the definition of WI = 0 in the fourth term and note that the

distribution of the GP derivative x′(I) given x(I) is conditionally independent

of both the model parameters and the noisy observations; hence the fourth term

can be rewritten as p (x′(I) = f(x(I),θ, I)|x(I)), i.e., evaluating the density of

x′(I) at x′(I) = f(x(I),θ, I).

Combining the above with the fact that the second, third, and fourth terms
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are all multivariate Gaussian, this leads to the following expression of the poste-

rior:

π(θ)× p (x(I))× p (y(γ)|x(I))× p (WI = 0|x(I))

∝ π(θ)︸︷︷︸
(1)

exp

−1

2

m∑
i=1

|I| log(2π) + log |Ci|+ |xi(I)− µi(I)|
2
C−1

i︸ ︷︷ ︸
(2)

+Ni log
(
2πσ2

i

)
+ ∥xi (γi)− yi (γi)∥

2
σ−2
i︸ ︷︷ ︸

(3)

+ |I| log(2π) + log |ζi|+
∥∥∥fx,θi,I − µ′

i(I)−mi {xi(I)− µi(I)}
∥∥∥2
ζ−1
i︸ ︷︷ ︸

(4)


 ,

where ∥v∥2A = v⊤Av, |I| is the cardinality of I, and µi(I) is the mean function

of the i-th component. Moreover, σi denotes the noise level for component i, Ni

denotes the number of observations for the i-th component, and fx,θi,I represents

the i-th component of f (x(I),θ, I). For each component i, the multivariate

Gaussian covariance matrices Ci and ζi are computed via



Ci = Ki(I, I)

mi = ′Ki(I, I)Ki(I, I)
−1

ζi = K′′
i (I, I)− ′Ki(I, I)Ki(I, I)

−1K′
i(I, I)

,

where ′Ki =
∂
∂sKi(s, t),K′

i =
∂
∂tKi(s, t), and K′′

i = ∂2

∂s∂tKi(s, t).
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S3 Conditions of Theorems 1 and 2

We state the required differentiability assumptions in Conditions 1–3.

Condition 1. For any i ∈ {1, · · · ,m} and t ∈ I, fi(x(t),x(t − τ ),θ, t) is

continuously differentiable with respect to x(t−τ ) in a neighborhood of x(t−τ ).

Condition 2. For any i, d ∈ {1, · · · ,m}, any xd,0 lying in a neighborhood of

xd(t− τd), and t ∈ I, there exists C1 > 0, such that

∣∣∣∣∂fi(x(t),x(t− τ ),θ, t)

∂xd(t− τd)

∣∣
xd(t−τd)=xd,0

∣∣∣∣ < C1.

Condition 3. For any i, d, k ∈ {1, · · · ,m}, any xk,0 lying in a neighbourhood of

xk(t− τk), and t ∈ I, there exists C2 > 0, such that

∣∣∣∣∂2fi(x(t),x(t− τ ),θ, t)

∂xd(t− τd)∂xk(t− τk)

∣∣
xd(t−τd)=xd,0

xk(t−τk)=xk,0

∣∣∣∣ < C2.

Condition 1 guarantees the differentiability of fi(x(t),x(t − τ ),θ, t) with

respect to x(t− τ ). Conditions 2 and 3 ensure the boundedness of the first and

second derivatives in a neighborhood of x(t− τ ). Under these three conditions,

we have Theorems 1 and 2, which respectively provide the asymptotic error

bounds for fi(x(t), x̂(t − τ ),θ, t) using the conditional expectation and linear

interpolation schemes.
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S4 Proof of Theorem 1

Consider Ω = [0, T ] as the time interval of interest. Without loss of generality,

assume T = 1 and suppose the discretization set I = {t1, · · · , tn} follows a

uniform space-filling design, such that tj =
j
n , for j = 1, · · · , n.

Using conditional expectation to approximate the historical output xi(t−τi)

if t > τi, we may write x̂i(t − τi) = E[xi(t − τi)|xi(I)] for i = 1, 2, · · · ,m. We

denote x̂(t − τ ) = (x̂1(t − τ1), · · · , x̂m(t − τm)). Recall that if t < τi, we set

x̂i(t− τi) = x(0) based on the history function.

Define the demeaned Gaussian process zi(t) = xi(t) − µi(t), then zi(t) ∼

GP(0,Ki). Then according to Example 1 from Wang et al. (2020),

sup
r∈[0,1]

∣∣∣∣E[zi(r)|zi(I)]− zi(r)

∣∣∣∣ = OP

(
n−ν(log(n))

1

2

)
.

Substituting the definition of zi(t), we obtain

sup
r∈[0,1]

∣∣∣∣E[zi(r)|zi(I)]− zi(r)

∣∣∣∣ = sup
r∈[0,1]

∣∣∣∣E[xi(r)− µi(t)|zi(I)]− xi(r) + µi(t)

∣∣∣∣
= sup

r∈[0,1]

∣∣x̂i(r)− xi(r)
∣∣

=OP

(
n−ν(log(n))

1

2

)
.

Clearly, when ν = 2.01 or 2.5, n−ν log1/2(n) → 0 as n → ∞, so that

sup
r∈[0,1]

∣∣∣∣E[xi(r)|xi(I)]− xi(r)

∣∣∣∣ = op(1).
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Next, consider the uniform deviation

max
t∈I

∣∣∣∣fi(x(t),x(t− τ ),θ, t)− fi(x(t), x̂(t− τ ),θ, t)

∣∣∣∣.
Expanding fi(x(t),x(t− τ ),θ, t) around x(t− τ ) = x̂(t− τ ),

fi(x(t),x(t− τ ),θ, t) = fi(x(t), x̂(t− τ ),θ, t)

+

m∑
d=1

∂fi (x(t),x(t− τ ),θ, t)

∂xd(t− τd)

∣∣
xd(t−τd)=x̂d(t−τd)

· (xd(t− τd)− x̂d(t− τd)) + err

Since n−ν log1/2(n) → 0 as n → ∞, we have
∣∣x̂i(r) − xi(r)

∣∣ = op(1). By the

mean value theorem, there exists a ξd lying between xd(t− τd) and x̂d(t− τd) for

d = 1, · · · ,m, such that

|err| =
∣∣∣∣12

m∑
d=1

m∑
k=1

∂2fi (x(t),x(t− τ ),θ, t)

∂xd(t− τd)∂xk(t− τk)

∣∣
xd(t−τd)=ξd,xk(t−τk)=ξk

· (xd(t− τd)− x̂d(t− τd)) · (xk(t− τk)− x̂k(t− τk))

∣∣∣∣.
Using Condition 3 yields

|err| <1

2
m2 · C2 · sup

(t−τd)∈[0,1]

∣∣(xd(t− τd)− x̂d(t− τd))
∣∣ · sup

(t−τk)∈[0,1]

∣∣(xk(t− τk)− x̂k(t− τk))
∣∣

=OP

(
n−2ν log(n)

)
.

Similarly, for the first-order term, we use Condition 2, obtaining

∣∣∣∣ m∑
d=1

∂fi (x(t),x(t− τ ),θ, t)

∂xd(t− τd)

∣∣
xd(t−τd)=x̂d(t−τd)

· (xd(t− τd)− x̂d(t− τd))

∣∣∣∣
= OP

(
n−ν(log(n))

1

2

)
.
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Therefore, by the triangle inequality,

max
t∈I

∣∣∣∣fi(x(t),x(t− τ ),θ, t)− fi(x(t), x̂(t− τ ),θ, t)

∣∣∣∣
= OP

(
n−ν(log(n))

1

2

)
+OP

(
n−2ν log(n)

)
= OP

(
n−ν(log(n))

1

2

)
.

S5 Proof of Theorem 2

Take the settings of the space-filling design to be same as in S4. We use linear

interpolation to approximate the historical output xi(t − τi) if t > τi for i =

1, 2, · · · ,m as described in Section 3.2. Denote x̂i(t) as the linear interpolated

values at time points t and x̂(t− τ ) = (x̂1(t− τ1), · · · , x̂m(t− τm)). Let zi(t) =

xi(t)− µi(t) denote the demeaned Gaussian process. Let δi(t) = xi(t)− x̂i(t) =

zi(t)− ẑi(t) be the deviation process that quantifies the linear interpolation error,

and maxt∈[0,1] |δi(t)| denotes the uniform deviation. We begin by verifying two

lemmas.

Lemma 1. For any i ∈ 1, 2, · · · ,m, there exists L > 0, 2 ≥ α > 0, such that

E
[
(z′i(t)− z′i(s))

2
]
≤ L2|t− s|α.

Proof. Since increasing ν will increase the smoothness of the Matern covariance

function, to have the lemma hold for ν = 2.01 and ν = 2.5, it suffices to verify

the lemma for the Matern covariance with any smaller ν. We will prove this

lemma under a rougher covariance function, namely the Matern with ν = 3/2,
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which is twice-differentiable so that E
[
(z′i(t)− z′i(s))

2
]
is well-defined. Note that

the Matern covariance function is 2m times differentiable if and only if ν > m,

m ∈ N+ (Stein, 2012).

Suppose zi(t) is a zero mean Gaussian process, with a Matern covariance of

ν = 3/2 that can be written as

Ki(d) = σ2

(
1 +

√
3d

ρ

)
exp

(
−
√
3d

ρ

)
,

where d = |t− s|, and 0 ≤ d ≤ 1. Consider

E
[
(z′i(t)− z′i(s))

2
]
= 2 ·

[
K′

i(0)−K′
i(d)

]
,

where K′
i(d) is the covariance function for z′i(t). Since this Matern covari-

ance function is twice-differentiable, the covariance function for z′i is
∂2Ki(s,t)

∂s∂t =

∂2Ki(d)
∂2d (d) · ∂d

∂s ·
∂d
∂t = −∂2Ki(d)

∂d2 .

If t = s, the inequality L2|t− s|α ≥ 0 clearly always holds. Now considering

t ̸= s, K′
i(0) =

σ2

ρ2 · ν
ν−1 |ν=1.5 = 3σ2

ρ2 , and

2 ·
[
K′

i(0)−K′
i(d)

]
=2 ·

[
3
σ2

ρ2
+

∂2K

∂d2

]
=2 ·

[
3
σ2

ρ2
− 3σ2e−

√
3d

ρ (ρ−
√
3d)

ρ3

]

=6
σ2

ρ2

[
1− e−

√
3d

ρ

(
1−

√
3d

ρ

)]
.

Let
√
3d
ρ = q, then 0 < q ≤

√
3
ρ , and

6
σ2

ρ2

[
1− e−

√
3d

ρ

(
1−

√
3d

ρ

)]
= 6

σ2

ρ2
[1− e−q (1− q)]. (S5.2)
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Now let w(q) = 1 − e−q (1− q) − 4 · q. w′(q) = e−q(2 − q) − 4 < e0(2) − 4 <

0. Then w(q) is monotonically decreasing when q > 0 and w(q) < w(0) = 0.

Thus, 1 − e−q (1− q) < 4 · q when q > 0. Returning to Equation S5.2, we have

6σ2

ρ2 · w(q) < 0, or equivalently,

6
σ2

ρ2
[1− e−q (1− q)] < 24

σ2

ρ2
· q.

Therefore, we can choose α = 1 and L =
√

24
√
3σ2

ρ3 to satisfy

E
[
(z′i(t)− z′i(s))

2
]
= 2 ·

[
K′

i(0)−K′
i(d)

]
≤ L2|t− s|α,

which completes the proof.

Lemma 2. When Lemma 1 holds, maxt∈[0,1] |δi(t)| = OP

(
(log(n))

1

2n−1−α/2
)
.

Proof. Let u = C(2 log(n))
1

2 . According to Theorem 4 from Seleznjev (1996) and

Lemma 1, for any u > 2, we will have that

P

(
max
t∈[0,1]

|δi(t)| > ϵ(n)

)
≤ C2KαC

2
αn(2 log(n))

1/αΨ(u)

where Bα = 2−α/2, Cα = 21+α/2, andKα = 2 exp(5·2/α)(2α)1/α. Ψ(u) = ϕ(u)/u,

where ϕ(u) is the standard normal density function.

By setting ϵ(n) = CBαL(2 log(n))
1

2n−1+α/2 (Seleznjev, 1996), where C is an

arbitrary constant larger than 1,

P

(
max
t∈[0,1]

|δi(t)| > ϵ(n)

)
≤ C2KαC

2
αn(2 log(n))

1/αΨ(u)

⇔ P

(
maxt∈[0,1] |δi(t)|
(log(n))

1

2n−1−α/2
>

√
2CBαL

)
≤ C2KαC

2
αn(2 log(n))

1/αΨ(u),

(S5.3)
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and we further investigate the asymptotic behavior of C2KαC
2
αn(log(n))

1/αΨ(u),

or simply n(log(n))1/αΨ(u) after dropping the constant terms.

Note that Ψ(u) = ϕ(u)/u is asymptotically equivalent to Φ(u), where Φ(u) is

the standard normal distribution function, according to the asymptotic behavior

of Mill’s ratio of the standard normal distribution (Wainwright, 2019). Thus, we

alternatively explore the asymptotic behavior of n(log(n))1/α(1 − Φ(u)). Using

the approximation of Φ(u) from Bowling et al. (2009) yields

n(log(n))1/α(1− Φ(u)) ≈ n log(n)

(
1− 1

1 + exp(−1.5976u− 0.07056u3)

)
=

n(log(n))1/α

1 + exp(1.5976u+ 0.07056u3)
.

Replacing u = C(2 log(n))
1

2 the equation above becomes

n(log(n))1/α

1 + exp
(
1.5976C(2 log(n))

1

2 + 0.07056C(2 log(n))
3

2

)
By L’Hospital’s rule and some algebra,

lim
n→∞

n(log(n))1/α

1 + exp
(
1.5976C(2 log(n))

1

2 + 0.07056C(2 log(n))
3

2

)
=

6250
√
2n (α log (n) + 1)

Cαlog (n)
α−2

2α exp

(√
2C
√

log(n)(882 log(n)+9985)

6250

)
(2646 log (n) + 9985)

=
6250

√
2 (α log (n) + 1)

Cαlog (n)
α−2

2α exp(99856250)n
√
2C 882

6250

√
log(n)−1 (2646 log (n) + 9985)

= 0.

As n → ∞, n(log(n))1/α(1 − Φ(u)) → 0, and C2KαC
2
αn(2 log(n))

1/αΨ(u) →

0. Then, for any ϵ > 0, there exists an N1, such that for all n > N1, we
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have C2KαC
2
αn(2 log(n))

1/αΨ(u) < ϵ. Denote M =
√
2CBαL < ∞ and an =

(log(n))
1

2n−1−α/2. For all n > N1,

P

(∣∣∣∣maxt∈[0,1] |δi(t)|
an

∣∣∣∣ > M

)
≤ C2KαC

2
αn(2 log(n))

1/αΨ(u) < ϵ.

Therefore, by definition, maxt∈[0,1] |δi(t)| = OP

(
(log(n))

1

2n−1−α/2
)
, which com-

pletes the proof of this part.

Using Lemma 1 and 2, we can now show that Theorem 2 holds.

Proof. Consider the uniform deviation

max
t∈I

∣∣∣∣fi (x(t),x(t− τ ),θ, t)− fi (x(t), x̂(t− τ ),θ, t)

∣∣∣∣.
Expanding fi (x(t),x(t− τ ),θ, t) around x(t− τ ) = x̂(t− τ ), we obtain

fi (x(t),x(t− τ ),θ, t) = fi (x(t), x̂(t− τ ),θ, t)

+

m∑
d=1

∂fi (x(t),x(t− τ ),θ, t)

∂xd(t− τ)

∣∣
xd(t−τd)=x̂d(t−τd)

· (xd(t− τd)− x̂d(t− τd)) + err

Clearly, as n → ∞, (log(n))
1

2n−1−α/2 → 0. For any t ∈ [0, 1], |xi(t) − x̂i(t)| ≤

maxt∈[0,1] |δi(t)|, and |xi(t)− x̂i(t)| = op(1).

By the mean value theorem, there exists a ξd for d = 1, 2, · · · ,m, lying

between xd(t− τd) and x̂d(t− τd) such that

|err| =
∣∣∣∣12

m∑
d=1

m∑
k=1

∂2fi(x(t),x(t− τ ),θ, t)

∂xd(t− τd)∂xk(t− τk)

∣∣
xd(t−τ)=ξd,
xk(t−τ)=ξk

· (xd(t− τd)− x̂d(t− τd))(xk(t− τk)− x̂k(t− τk))

∣∣∣∣
≤
∣∣∣∣12

m∑
d=1

m∑
k=1

∂2fi(x(t),x(t− τ ),θ, t)

∂xd(t− τd)∂xk(t− τk)

∣∣
xd(t−τd)=ξd,
xk(t−τ)=ξk

∣∣∣∣ · max
t−τd∈[0,1]

|δd(t− τd)| · max
t−τk∈[0,1]

|δk(t− τk)|
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After using Condition 3, the error term will be

|err| < 1

2
·m2 · C2 · max

t∈[0,1]
|δd(t)| · max

t∈[0,1]
|δk(t)|

= OP

(
log(n) · n−2−α

)
.

Similarly, for the first-order term, we apply Condition 2,∣∣∣∣ m∑
d=1

∂fi (x(t),x(t− τ ),θ, t)

∂xd(t− τd)

∣∣
xd(t−τd)=x̂d(t−τd)

· (xd(t− τd)− x̂d(t− τd))

∣∣∣∣
≤
∣∣∣∣ m∑
d=1

∂fi (x(t),x(t− τ ),θ, t)

∂xd(t− τd)

∣∣
xd(t−τ)=x̂d(t−τd)

· max
t−τd∈[0,1]

|δd(t− τd)|
∣∣∣∣

= OP

(
(log(n))

1

2n−1−α/2
)
.

Therefore, for any i ∈ {1, 2, · · · ,m}, by the triangle inequality,

max
t∈I

∣∣∣∣fi(x(t),x(t− τ ),θ, t)− fi(x(t), x̂(t− τ ),θ, t)

∣∣∣∣
= OP

(
(log(n))

1

2n−1−α/2
)
.

Finally, since we have shown that taking α = 1 satisfies Lemma 1, the proof is

complete.

S6 Numerical Validation of Approximation Schemes

The theoretical results of Section 3.2 indicate that MAGIDDE with approxima-

tion schemes for the historical outputs in Equations (9) and (10) is reasonable

provided that the discretization set I is sufficiently dense. This section provides

numerical validation, by examining the effect of |I| on the parameter estimates,

inferred trajectories, and computation time under the three schemes for histori-
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cal outputs described in Section 3: (i) fully Bayesian framework, (ii) conditional

expectation, (iii) linear interpolation.

We generate 100 simulated datasets based on the setup for the log-transformed

Hutchinson’s equation, given by

dN(t)/dt = r [1− exp(N(t− τ))/(1000 ·K)] .

More details about this benchmark system are provided in Section 4.1. For nu-

merical validation, we consider the scenario with 16 sparse and equally-spaced

observation time points γ = {0, 2, 4, · · · , 30}. We vary the denseness of |I| by

adding 0, 1, 3, 7 equally-spaced discretization points between each pair of ad-

jacent observation time points, so that the cardinalities of the corresponding

discretization sets are |I| = {16, 31, 61, 121}. For the purpose of creating a sim-

ple experiment to compare schemes and discretization sets, in this section only we

treat σ2 as known, set the starting values for r,K, τ , x(I) at the truth, and choose

ν = 2.5 for the Matern covariance for faster computation. Uniform priors over

[0, 5] are placed on r, K, and τ . We set the Matern covariance hyper-parameters

ϕ̃1,1 and ϕ̃1,2 as described in Section 3.3.

For this experiment, the posterior distributions for the fully Bayesian frame-

work, linear interpolation scheme and conditional expectation scheme are all

implemented in Stan (Carpenter et al., 2017), which uses NUTS (No-U-Turn

sampler, Hoffman et al. (2014)) as the default sampling algorithm. For each
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scheme, we run 10,000 MCMC iterations with the first 5,000 discarded as burn-

in.

Table 1 summarizes the parameter estimates from the three schemes, across

the 100 simulated datasets. We visualize the parameter estimates, and RMSEs

between the inferred trajectories and the truth, for each simulation run using

side-by-side boxplots in Figures 2, 3. First, considering the effect of |I|, the

results from all three schemes show a clear decreasing trend in both RMSEs of

parameters and inferred trajectories as |I| increases from 16 to 61. At |I| = 61,

all three schemes provide similarly low RMSEs of the parameters and inferred

trajectories. A further increase to |I| = 121 yields largely similar parameter

estimates as |I| = 61 in Figure 2. These results indicate that all the schemes,

including fully Bayesian, require |I| = 61 as a sufficiently dense discretization

set to achieve stable inference for this problem. Second, we consider the effect

of the approximation schemes for the historical outputs. When |I| = 16, the

fully Bayesian framework outperforms the two approximation schemes to recover

the system, and linear interpolation shows a significant deviation from the other

schemes. When |I| = 31, the conditional expectation scheme already performs

similarly to fully Bayesian, while linear interpolation still has slightly higher er-

ror. This suggests the convergence rate of conditional expectation is faster than

linear interpolation, as supported by the results of Theorems 1 and 2. Once
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|I| reaches 61, the inferences from the three schemes become substantively iden-

tical. This simulation result corroborates the theory, that an increase in the

number of discretization points will lead to a more accurate approximation of

fi(x(t), x̂(t−τ ),θ, t), and in turn the posterior distributions of r,K, τ , x(I) also

become largely indistinguishable between the fully Bayesian and approximate

schemes. Third, computation times follow an expected pattern: linear interpola-

tion scales most favorably with |I|, while the other schemes become increasingly

slow for larger |I|. While approximation via conditional expectation is about one

to two orders of magnitude faster than the fully Bayesian framework, both are

hindered by the dense matrix operations required. For |I| = 61, which would

be recommended for this problem to achieve stable inference (regardless of the

scheme used), linear interpolation is about 200 times faster than fully Bayesian

and 4 times faster than conditional expectation. This suggests the significantly

faster computation speed of linear interpolation is a worthwhile trade-off in prac-

tice, even though conditional expectation has a faster theoretical convergence

rate. Therefore, we recommend MAGIDDE with the linear interpolation scheme

for practical implementation of the method.



18 YUXUAN ZHAO AND SAMUEL W.K. WONG

Table 1: Average parameter estimates (with RMSEs over 100 simulated datasets in

parentheses) and average running time (in minutes, on a single CPU core) for the log-

transformed Hutchinson’s equation, comparing the three schemes for historical outputs.

Bold highlights the best scheme with respect to the lowest values of parameter RMSEs

and shortest running time.

|I| Scheme r K τ N(0) Runtime

16 Fully Bayesian 0.769(0.033) 1.990(0.068) 2.976(0.044) 8.128(0.085) 0.61

Conditional Expectation 0.770(0.033) 2.046(0.082) 2.878(0.132) 8.125(0.087) 0.06

Linear Interpolation 0.850(0.051) 1.741(0.265) 3.171(0.174) 8.033(0.144) 0.03

31 Fully Bayesian 0.795(0.008) 1.977(0.067) 3.014(0.025) 8.117(0.063) 66.7

Conditional Expectation 0.795(0.008) 1.977(0.067) 3.015(0.026) 8.116(0.064) 0.29

Linear Interpolation 0.798(0.007) 1.967(0.071) 3.027(0.035) 8.109(0.069) 0.11

61 Fully Bayesian 0.799(0.004) 1.982(0.064) 3.005(0.013) 8.140(0.045) 251.9

Conditional Expectation 0.799(0.004) 1.982(0.064) 3.005(0.013) 8.139(0.045) 4.50

Linear Interpolation 0.800(0.004) 1.979(0.064) 3.007(0.014) 8.137(0.045) 1.14

121 Fully Bayesian 0.799(0.004) 1.986(0.064) 3.003(0.012) 8.148(0.036) 1295.3

Conditional Expectation 0.799(0.004) 1.985(0.062) 3.003(0.012) 8.148(0.036) 42.2

Linear Interpolation 0.800(0.004) 1.985(0.062) 3.004(0.012) 8.147(0.036) 8.65
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Figure 2: Boxplots of parameter estimates for 100 simulated datasets from the log-

transformed Hutchinson’s equation, comparing the three schemes for historical outputs.

The horizontal orange line indicates the true value of the corresponding parameter.
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Figure 3: Boxplots of RMSEs between the inferred trajectories and the truth, comparing

the three schemes for historical outputs over 100 simulated datasets from Hutchinson’s

equation.

S7 Effect of Denseness of Discretization Points

As noted in Section 3.3 of the main text, MAGIDDE requires choosing a dis-

cretization set I for practical computation. This section illustrates how this

choice impacts computation time and inference accuracy in the context of Hutchin-

son’s equation.

We consider the sparse 16 observation scenario with γ = {0, 2, 4, · · · , 30}.

We then vary the denseness of I by taking |I| = {16, 31, 61, 121}, which we

obtain by respectively inserting 0, 1, 3, or 7 equally-spaced discretization points

between each pair of adjacent observation time points. Otherwise, the settings

are the same as in the simulation study in Section 4.1 of the main text. To
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run MAGIDDE, we obtain the starting values for HMC sampling and estimate

the GP hyperparameters as described in Section 3.3 of the main text. Uniform

priors over the positive real numbers are assigned to K, r, τ , and σ. For each

|I|, we run 40,000 HMC iterations (each with 20 leapfrog steps) and the first

20,000 samples are discarded as warm-up. Table 2 summarizes the parameter

inference results and Figure 4 visualizes the changes in the inferred trajectory

under varying denseness of discretization sets.

Figure 4 illustrates how the qualitative “rule-of-thumb” for choosing I would

be applied. When |I| = 16 or 31, the inferred trajectory looks “bumpy”, i.e.,

there are not enough points to estimate a smooth curve for the system, and the

approximation of the manifold constraint may also be too crude. In contrast,

|I| = 61 can give a relatively smooth trajectory and so would be a reasonable

choice based on this qualitative guideline.

The results in Table 2 further illustrate the idea of taking increasingly dense

discretization sets (starting from the smallest I that includes the observation

time points) until the inference results are stable. As we increase |I| from 16 to

31 to 61, the parameter estimates shift and the width of the 95% credible interval

decreases notably for each parameter. In contrast, a further increase of |I| to

121 has minimal impact on the parameter estimates, which suggests |I| = 61 is

sufficient. Indeed, the parameter RMSEs also stabilize at |I| = 61, while the
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trajectory RMSE for |I| = 121 only improves slightly compared to |I| = 61

(but increases the computation time to ∼0.93 min). Using our MAGIDDE R

package, the computation time scales approximately linearly in the number of

discretization points.

Table 2: Average parameter estimates (with RMSEs in parentheses), average 95% credi-

ble interval (CI) width and average trajectory RMSEs over 300 simulated data sets, with

varying number of discretization points {16, 31, 61, 121} equally spaced over time [0, 30].

The last column gives the average runtime (in minutes, on a single CPU core).

|I|
r K τ σ N(0)

Trajectory Runtime (min.)
Estimate Cl Width Estimate Cl Width Estimate Cl Width Estimate Cl Width Estimate Cl Width

16 0.86(0.06) 0.20 1.76(0.24) 0.44 3.16(0.16) 0.32 0.14(0.06) 0.25 8.01(0.16) 0.39 2975.65 0.10

31 0.80(<0.01) 0.07 1.99(0.07) 0.30 3.01(0.03) 0.15 0.09(0.03) 0.12 8.13(0.06) 0.22 282.85 0.17

61 0.80(<0.01) 0.03 2.00(0.07) 0.28 3.00(0.01) 0.08 0.11(0.02) 0.10 8.16(0.04) 0.20 154.33 0.43

121 0.80(<0.01) 0.02 2.01(0.07) 0.24 3.00(0.01) 0.05 0.11(0.02) 0.10 8.16(0.04) 0.16 123.97 0.93

S8 Method Comparison Details

We provide the implementation details of MAGIDDE, deBInfer, and SMCDE as

described in Section 4.1 for Hutchinson’s equation. We follow the setup in Wang

and Cao (2012) and take the time interval of interest as t ∈ [0, 30]. Simulations in

previous studies focused on a relatively dense observation set; however, estima-

tion performance under more challenging scenarios with sparser observations also

deserves attention. Therefore, we consider scenarios with |γ| = 16, 31, 61, and

121 equally-spaced observations over [0,30]. To visualize the performance of each
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Figure 4: Inferred trajectory of Hutchinson’s equation from 16 observations using

MAGIDDE under varying denseness of discretization points. The green solid line rep-

resents the mean inferred trajectory across 300 simulated datasets. The green shaded

area is the 95% pointwise credible interval, constructed by taking the average 0.025 and

0.975 quantiles of the inferred trajectories over the simulated datasets.
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method, we present side-by-side boxplots of parameter estimates and trajectory

RMSEs. Finally, we also examine the efficacy of applying the NLS approach with

a numerical solver to this inference problem.

S8.1 Method Implementations

We compare MAGIDDE with two other representative methods for DDE in-

ference: the ‘deBInfer’ R package and the semiparametric Bayesian collocation

method (SMCDE, Wang et al., 2022). deBInfer uses MCMC to conduct parame-

ter inference with the help of a numerical solver. SMCDE represents the solution

trajectory via a basis function expansion and uses SMC to sample the parameters

and associated trajectories. For each method, we choose similar flat priors for

the model parameters to ensure fair comparison, with detailed implementation

steps provided as follows.

For MAGIDDE, we obtain the starting values for HMC sampling and esti-

mate the GP hyperparameters as described in Section 3.3. Uniform priors over

the positive real numbers are assigned to K, r, τ , and σ. We run 40,000 HMC

iterations (each with 20 leapfrog steps), with the first 20,000 samples discarded

as burn-in.

For deBInfer, we construct a normal likelihood function for noisy observa-

tions on the log-scale. While we use uniform priors, we restrict their ranges as
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follows: K, r, and τ are uniform on the interval [0, 5], N(0) is uniform on [5, 10],

and σ is uniform on [0, 0.2]. Without such restrictions, deBInfer frequently cannot

converge to a reasonable result; deBInfer employs a variant of the random-walk

Metropolis algorithm with a “reflection” mechanism to handle the boundaries of

the parameter space. The proposal variance of each parameter is tuned to ensure

that convergence is generally achieved in the simulation runs, and we run 40,000

MCMC iterations with the first 20,000 samples discarded as burn-in.

For SMCDE, we follow the authors’ recommendations when running the

code. Specifically, one knot is placed at every two time units, the normalized

conditional effective sample size threshold is set as 0.9, and resampling threshold

is set as 0.5. We use the priors suggested by the authors when they resemble

flat priors: K and r are N(0, 52) restricted to be positive, and τ is uniform on

[0, 50]. For fair comparison, we adjusted the authors’ default inverse-gamma(1, 1)

prior for σ2 to be more uniform, with shape parameter 0.001 and scale parameter

0.001. We found that this flatter prior actually led to more accurate parameter

estimates, compared to the authors’ default. Note that SMCDE expects con-

jugate priors for some parameters, and these cannot be easily adjusted to be

strictly uniform.
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S8.2 Supplementary Results for Method Comparison

Figures 5 and 6 respectively display the side-by-side boxplots of parameter esti-

mates and trajectory RMSEs for 300 simulated datasets from Hutchison’s equa-

tion, as obtained from MAGIDDE, deBInfer, and SMCDE. Among these meth-

ods, MAGIDDE has the most favorable performance in estimating the parame-

ters and reconstructing the trajectory. Both MAGIDDE and SMCDE exhibit a

similar pattern, that increasing the number of observations leads to more accu-

rate parameter estimates; however, deBInfer does not follow this pattern since

the stochastic moves of the random-walk MCMC sampler can be inefficient for

exploring the parameter space, regardless of the number of observations. de-

BInfer is therefore hindered by a number of outliers where its MCMC sampler

did not converge to the correct parameter values, despite tuning the proposal

distribution; its trajectory RMSEs also have large outliers as a result. SMCDE

exhibits some amount of bias in recovering the system, notably in its estimates

for r and τ when the observations are sparse. Overall, SMCDE has relatively

small parameter RMSEs and the inferred trajectories provided in SMCDE’s out-

put (via its spline approximations) have reasonable RMSEs to the ground truth:

using 16, 31, 61, and 121 observations, the average RMSEs of SMCDE’s inferred

trajectories are 290.78, 238.51, 193.94, and 152.18, respectively. However, these

values exhibit notable differences compared to the trajectory RMSEs presented
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in Table 1 of the main text due to the sensitivity of the numerical solution to

the parameters and initial conditions. Figure 7 shows an example of SMCDE’s

inferred trajectory, which aligns reasonably well with the true trajectory. How-

ever, despite having relatively accurate parameter estimates, the corresponding

reconstructed trajectory has a large RMSE and fails to align with the truth

because the solution trajectory is highly sensitive to the parameter values and

initial condition.

S8.3 Parameter Estimation for Hutchinson’s Equation using NLS

To apply the NLS approach with a DDE numerical solver, we construct the ob-

jective function using the error sum of squares (SSE) and choose L-BFGS-B as

the optimization algorithm. We used 300 simulated datasets to study its per-

formance. We set the lower and upper bounds for optimization relatively close

to the truth for all of the model parameters: K, r, and τ are bounded by [0,5].

To initialize NLS, we randomly draw starting parameter values from uniform

distributions with these bounds, and the starting value for N(0) is set to be the

noisy observation at t = 0. With a single run of NLS, the optimizer converged to

local optima with large SSE values for over 90% of simulated data sets, and these

correspond to large trajectory RMSEs that are above 1500; the remaining tra-

jectory RMSEs (i.e., for <10% of simulated datasets) fall below 800, indicating
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Figure 5: Boxplots of parameter estimates for 300 simulated datasets from the log-

transformed Hutchinson’s equation, comparing the MAGIDDE, deBInfer, and SMCDE

methods. The horizontal orange line indicates the true value of the corresponding pa-

rameter. The horizontal orange line represents the corresponding true values.
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Figure 6: Boxplots of trajectory RMSEs for 300 simulated data sets from Hutchinson’s

equation, comparing the MAGIDDE, deBInfer, and SMCDE methods. One outlier from

SMCDE method using 16 observations with a value of 26225.95 was removed.
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Figure 7: Inferred trajectory and reconstructed trajectory of Hutchinson’s equation from

121 observations using SMCDE based on one simulated data set. The blue line represents

the inferred trajectory from the spline approximation using Wang et al. (2022)’s method,

and the red line represents the reconstructed trajectory obtained by numerically solving

Hutchinson’s equation using SMCDE’s estimated parameters ((r̂, K̂, τ̂ , σ̂) = (0.77, 1.97,

2.92, 0.16)) and initial condition (N̂(0) = 8.09).
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good convergence to the expected solution. Running multiple tries of NLS from

different starting parameter values can help mitigate the convergence issue: with

100 NLS tries, the best attempt converged to reasonable parameter estimates

in approximately 90-95% of simulated datasets; however, the remaining datasets

still had very large SSEs. Figure 8 displays the reconstructed trajectory for one

simulated dataset where the best NLS attempt (out of 100) had a trajectory

RMSE ≈ 1500. Other simulated datasets that exhibit poor convergence tend to

yield reconstructed trajectories that resemble this example or worse. Further-

more, the total computational cost of running 100 NLS attempts is expensive:

it ranges from ∼2.5 min (for the case of 16 observations) to ∼5.4 min (for the

case of 121 observations), which is approximately 5 times longer than running

MAGIDDE. Therefore, this example illustrates that the NLS approach may not

be recommended even for inferring simple DDE systems.
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Figure 8: Example of reconstructed trajectory for Hutchinson’s equation based on a 61

observation dataset and the NLS approach. The blue dots represent the noisy obser-

vations. The red line represents the true trajectory and the blue line represents the

reconstructed trajectory using the best parameter estimates from 100 NLS attempts.

The parameter estimates are (r̂, K̂, τ̂ , N̂(0)) = (1.04, 2.37, 2.38, 7.37).



S9. INFERRED TRAJECTORY FOR HUTCHISON’S EQUATION FROM 61
OBSERVATIONS USING MAGIDDE33

S9 Inferred Trajectory for Hutchison’s Equation from

61 Observations using MAGIDDE

Analogous to Figure 1 in the main text, Figure 9 shows that MAGIDDE well-

recovers the true underlying trajectory of Hutchison’s equation in the 61 observa-

tion scenario; it can be seen that the 95% pointwise credible interval is narrower

with these denser observations, compared to the scenario with 16 observations in

Figure 1 of the main text.
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Figure 9: Inferred trajectory of Hutchinson’s equation from 61 observations using

MAGIDDE. The green solid line represents the mean inferred trajectory over 300 simu-

lated datasets, and the blue dashed line is the truth. The green shaded area is the 95%

pointwise credible interval, constructed by taking the average 0.025 and 0.975 quantiles

of the inferred trajectories across the simulated datasets.
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S10 Lac Operon Model Details

We present the scientific background and parameters of the lac operon model. We

also provide the implementation details of MAGIDDE described in Section 4.2 of

the main text. For comparison, we also show the performance and computational

costs of the numerical solver-based NLS approach for this more complex model.

S10.1 Background and Parameters of the Lac Operon Model

The processes of transcription and translation are not instantaneous but require

a period of time. Hence, Yildirim and Mackey (2003) incorporated these time

delays into their lac operon model, to help ensure a satisfactory match between

experimental data and the model trajectories. In the system of DDEs presented

in the main text, the time-delay parameter τM represents the time required to

produce mRNA from DNA by transcription, τP denotes the translation time

between mRNA and permease, and τB is the translation time between mRNA

and β-galactosidase.

Yildirim and Mackey (2003) derived formulas for αM , αB, αP according to the

steady-state behaviour of the system to calibrate their values; µ and γA were cal-

ibrated by fitting the model to the experimental data for the induction kinetics of

β-galactosidase; other parameter values were obtained directly from existing lit-

erature. Table 3 summarizes all of the parameters and their corresponding values
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from Yildirim and Mackey (2003). Thus, our goal is to estimate the parameters in

the first column, namely τB, τM , τP , γA, αM , αB, αP , µ,M(0), B(0), A(0), L(0), P (0),

which include the time-delay parameters, initial conditions, and model parame-

ters calibrated by Yildirim and Mackey (2003); others are treated as known.

Table 3: Parameters in the lac operon model.

Parameter Value Parameter Value Parameter Value

τB 2 K1 2.52× 104 βL1 2.65× 103

τM 0.1 K 7200 KL1
1.81

τP 0.83 n 2 βL2
1.76× 104

γA 0.52 Γ0 7.25× 10−7 γL 0

αM 9.97× 10−4 γM 0.411 γP 0.65

αB 0.0166 γB 8.33× 10−4

αP 10 αA 1.76× 104

µ 0.0226 KL 0.97

M(0) 6.26× 10−4 βA 2.15× 104

B(0) 0 KA 1.95

A(0) 0.038 αL 2880

L(0) 0.372 Le 0.08

P (0) 0.0149 KLe 0.26

Some experiments recorded measurements of β-galactosidase every one minute

over a 25-minute observation period (Alpers and Tomkins, 1966). Capturing the
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transcription delay is still a challenge, as the synthesis of β-galactosidase and

initiations of transcription may occur synchronously in 10 seconds (Schwartz

et al., 1970). Other researchers took measurements more frequently at the be-

ginning of the experiments, and gradually less frequently afterwards (Alpers and

Tomkins, 1966). Inspired by these real experiments, we simulate observations

from the system with varying denseness from t = 0 to t = 25. Specifically,

the collection of 23 observation time points for each component is chosen as

γ = {0, 0.25, 0.5, · · · , 2, 3, 4, · · · , 10, 12, 14, · · · , 20, 25}.

S10.2 MAGIDDE Implementation

As stated in Section 4.2 of the main text, the observation time points are not

equally spaced. The smallest evenly spaced set containing all observation time

points is I0 = {0, 0.25, · · · , 24.75, 25}. We set I = I0, which provides stable

inference without need for a further increase in discretization points. We place

uniform priors over (0,∞) for all model parameters and set ν = 2.01 in the

Matern kernel to accommodate rougher system trajectories. We run 50,000 HMC

iterations (each with 200 leapfrog steps) with the first 25,000 discarded as burn-

in. The computational time required for MAGIDDE on each simulated dataset

is ∼30 minutes on a single CPU core.
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S10.3 Parameter Estimation for Lac Operon Model using NLS

To apply the NLS approach with a DDE numerical solver, we construct the

objective function using the weighted error sum of squares (SSE), where the

weights are set as the reciprocal of the variance for each system component. We

used 100 simulated datasets to study its performance. To mitigate the effects of

starting values, we try 100 NLS attempts per dataset and take the estimates to

be those corresponding to the smallest SSE obtained. We also set the lower and

upper bounds for optimization close to the truth for all of the model parameters:

τB is bounded by [0, 5], αP is bounded by [8, 12] and all other parameters are

bounded by [0, 1]. For each NLS attempt, we randomly draw starting parameter

values from uniform distributions with these bounds. The starting values for the

initial conditions are set to be the observed noisy component values at t = 0.

For comparison, we compute the RMSEs of the estimated parameters and

initial conditions for both NLS and MAGIDDE across the 100 simulated data

sets, and these results are summarized in Table 4. The best attempt from NLS no-

tably underperforms MAGIDDE in recovering the parameters, despite the choice

of upper and lower bounds for NLS that are close to the truth. Furthermore,

the total computation time for 100 NLS attempts on each simulated dataset is

∼118 minutes on a single CPU core, which is about 4 times longer than that

of running MAGIDDE. This example further highlights the challenges of using
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numerical solvers to recover a complex DDE system, and hence it is advanta-

geous to consider statistical methods like MAGIDDE that approximate the DDE

solution.

Table 4: Average parameter estimates obtained by MAGIDDE and NLS (with RMSEs

in parentheses) for the lac operon model across 100 simulated datasets.

Parameter Truth MAGIDDE NLS

τB 2 2.0024(0.3074) 2.3405(2.4418)

τM 0.1 0.2990(0.2363) 0.7662(0.7789)

τP 0.83 0.8283(0.3063) 0.6194(0.5173)

γA 0.52 0.4916(0.0382) 0.5168(0.4829)

102 × αM 0.0997 0.0985(0.0034) 6.3861(23.9831)

αB 0.0166 0.0143(0.0025) 0.0045(0.0191)

αP 10 9.6792(0.5053) 8.9830(1.9387)

µ 0.0226 0.0144(0.0109) 0.02083(0.0737)

102 ×M(0) 0.0626 0.0630(0.0014) 0.0759(0.0255)

103 ×B(0) 0 0.0018(0.0023) 0.0157(0.0229)

A(0) 0.038 0.0319(0.0139) 0.0081(0.0363)

L(0) 0.372 0.4018(0.0326) 0.4153(0.4765)

P (0) 0.0149 0.0143(0.0007) 0.0085(0.0107)
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S11 Time-delayed SIRD Model Details

In this section, we describe the procedures for processing the Ontario COVID-19

data to obtain noisy observations for the time-delayed SIRD model. We also

specifically detail the steps for obtaining the initial observation of each compart-

ment, and provide implementation details. Finally we showcase the predictive

performance of MAGIDDE for this SIRD model.

S11.1 Data Processing Steps

We outline the data processing steps for obtaining noisy observations of the

population size in the compartments on each day. These are then converted

into proportions by dividing by the Ontario population of 14,999,441 in the first

quarter of 2022 (Statistics Canada, 2024). Following Zhao and Wong (2023),

we approximate the daily population size in the I compartment by dividing the

number of hospitalized COVID-19 cases (Government of Ontario, 2024) by the

overall COVID-19 hospitalization rate. We convert the weekly death counts

(Government of Canada, 2024) into daily death counts by linear interpolation;

then, the population in the D compartment on a given day is approximated by

the cumulative sum of daily death counts up to that day. The population in the

S compartment on a given day is estimated by subtracting the daily confirmed

cases (Government of Ontario, 2022) from the previous day’s S compartment
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population. Given these S, I,D population estimates for each day, R then con-

sists of the remainder of the population. The data setup further requires the

population of each compartment on the initial day of the observation period;

this step is detailed in the next subsection.

S11.2 Initial Noisy Observations

The first wave of COVID-19 driven by the Omicron variant began in Ontario,

Canada on January 7, 2022. This wave was marked by a record-high number

of hospital admissions (CBC News, 2022). Due to the high reinfection rate of

the Omicron variant, previously infected individuals remained susceptible; hence

we assume the flow from the S compartment to the I compartment starts from

January 6 and that there are no deaths related to the Omicron variant prior to

January 7. We use the following procedure to approximate the population in

the S, I,R,D compartments on the initial day (January 24) of the observation

period under these two assumptions.

A noisy observation for the I compartment on January 24 can be obtained by

dividing the number of patients hospitalized on that day by the hospitalization

rate of the Omicron variant (Zhao and Wong, 2023). The trend of I observations

on the few days before January 24 is relatively flat, which aligns well with the

history function assumed for the model. Furthermore, based on our assumptions,



S11. TIME-DELAYED SIRD MODEL DETAILS41

a noisy observation for the D compartment on January 24 is obtained by the

cumulative sum of the daily death count from January 7 through January 24.

To obtain noisy observations of S and R on January 24, we need estimates

for all four compartment sizes at the beginning of the Omicron wave (January 6).

First, we obtain a noisy observation for I on January 6 using the aforementioned

hospitalization rate method. Second, based on our two assumptions we set R and

D to be zero on January 6, and so S on January 6 is estimated by subtracting

I from the total population. Third, a noisy observation of S on January 24 is

obtained by taking the estimated S on January 6 and subtracting the cumulative

case counts from January 6 to January 24. Last, we subtract these estimates of S,

I, and D on January 24 from the total population to obtain a noisy observation

of R on January 24.

S11.3 Implementation

To set up MAGIDDE for this system, we first consider the discretization set. The

system is observed at the equally-spaced time points γ = {0, 1, · · · , 29} days. We

insert one additional discretization time point, equally-spaced between each pair

of adjacent observations, i.e., I = {0, 0.5, · · · , 28.5, 29}; a further increase to |I|

yielded similar inference. Second, we take the Matern kernel with ν = 2.01 as a

default choice. Third, we set priors for β̃, µd, and λ to be uniform over (0,∞). To
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incorporate the a priori belief regarding the estimated mean incubation period of

3.5 days for the Omicron variant (Manica et al., 2022), we place an informative

prior of N(3.5, 1) on the time-delay parameter h. Then, we ran 80,000 HMC

iterations (each with 25 leapfrog steps), with the first 40,000 discarded as burn-

in.

S11.4 Predictive Performance

We utilize the SIRD model to showcase the predictive performance of MAGIDDE:

we use the first part of the observations for model fitting and the remainder for

assessing model predictions. We consider two scenarios: in the first, we assume

the model is correctly specified (i.e., we simulate noisy observations from the

SIRD model); in the second, we consider the real Ontario data.

For the first scenario, we set the true values of each model parameter using

the values estimated in Table 3 of the main text, numerically solve the SIRD

model trajectory over [0, 30] and add Gaussian noise to simulate a sample set of

observations. We use MAGIDDE to fit the model using observations from the first

period only (t = {0, 1, · · · , 15}) following the implementation details in Section

S11.3 with I = {0, 0.5, · · · , 29.5, 30}. We generate predictions for the second

period (t = {16, 17, · · · , 30}) using MAGIDDE’s posterior samples, as described

in Section 3.3 of the main text. Figure 11 displays the inferred trajectories of
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all four components using MAGIDDE. In the prediction period, our inferred

trajectory aligns closely with the true trajectory, and the true trajectory is well-

contained by the 95% credible intervals. Hence, when the SIRD model is correctly

specified, MAGIDDE generates highly accurate predictions.
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Figure 10: Inferred trajectory of the time-delay SIRD model using a simulated dataset

based on the estimated parameters in Table 3 of the main text. The noisy obser-

vations consists of two parts: the observations used for fitting (t = {0, 1, · · · , 15})

are marked with solid black dots and the remaining observations used for prediction

(t = {16, 17, · · · , 30}) are marked with hollow black dots. The vertical dotted line sepa-

rates the fitting and prediction periods. The red curve is the true trajectory. The green

curve is the inferred trajectory. The green shaded area represents the 95% credible in-

terval for the fitting period, and the orange shaded area represents the 95% credible

interval for the prediction period.

For the second scenario, we consider the real Ontario data. We use com-
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partment observations from only January 24 to February 8 to fit the model, and

generate predictions for the remaining 15 days (from February 9 to February 23).

We use the same MAGIDDE implementation procedure as in the first scenario,

and visualize the inferred trajectory in Figure 11. MAGIDDE’s predictions are

relatively accurate for the S, R and D components, and not as accurate for the

I component but still reasonable. This may be because the downward trend in

infections (the I component) accelerates during the second half of the real data,

which cannot be captured by fitting the model to the first half only.
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Figure 11: Inferred trajectory of the time-delay SIRD model based on the Ontario

dataset. The noisy observations are divided into two parts: the observations from the

period January 24 to February 8 (t = {0, 1, · · · , 15}) are used for fitting and marked

with solid black dots, while the remaining observations from February 9 to February 23

(t = {16, 17, · · · , 30}) are used for prediction and marked with hollow black dots. The

vertical dotted line separates the fitting and prediction periods. The green curve shows

the inferred trajectory, with the green shaded area representing the 95% credible interval

for the fitting period, and the orange shaded area representing the 95% credible interval

for the prediction period.
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