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Abstract

Section S1 provides proofs for all the lemmas and theorems in the main paper. Section S2

provides more details on the Gauss-Hermite Quadrature we used in the main paper.
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S1 Proofs of Lemmas and Theorems

Lemma 2.1. Firstly, the conditional density function of (R, Y ) given X,

from one observation, is

{
π(y,u)fY |X(y,x;β)

}r {
1−

∫
π(t,u)fY |X(t,x;β)dt

}1−r

.

Thus, we need to show, if

{
π1(y,u)fY |X(y,x;β1)

}r {
1−

∫
π1(t,u)fY |X(t,x;β1)dt

}1−r

(S1.1)

=
{
π2(y,u)fY |X(y,x;β2)

}r {
1−

∫
π2(t,u)fY |X(t,x;β2)dt

}1−r

,(S1.2)

for all r, y and x, then π1(y,u) = π2(y,u) and β1 = β2. When (S1.1)=(S1.2),

let r = 1, it implies π1(y,u)fY |X(y,x;β1) = π2(y,u)fY |X(y,x;β2); let

r = 0, it implies∫
π1(t,u)fY |X(t,x;β1)dt =

∫
π2(t,u)fY |X(t,x;β2)dt,

which is implied by π1(y,u)fY |X(y,x;β1) = π2(y,u)fY |X(y,x;β2). Thus

we have

logfY |X(y,x;β1)− logfY |X(y,x;β2) = logπ2(y,u)− logπ1(y,u).

Note that the above expression is a function not depending on z any more.

We denote it as m(y,u). Since random variable Z is one-dimensional, we

simply take the bounded set I in condition (A2) as the closed interval
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[zl, zu]. Similar arguments naturally follow for other forms of I. As t →

0, we define a sequence of continuously differentiable (with respect to z)

functions qt(y,u, z) as

qt(y,u, z) = I(zl − t < z ≤ zl)Kl

(
z − zl

t

)
m(y,u)zl

+I(zl < z ≤ zu)m(y,u)z

+I(zu < z ≤ zu + t)Kr

(
z − zu

t

)
m(y,u)zu,

where

Kl(x) =



0, x ≤ −1,

2(1 + x)2, −1 < x ≤ −1
2
,

1− 2x2, −1
2
< x ≤ 0,

1, x > 0,

and Kr(x) =



1, x ≤ 0,

1− 2x2, 0 < x ≤ 1
2
,

2(1− x)2, 1
2
< x ≤ 1,

0, x > 1.

One can verify that, when z ̸∈ I, for every fixed t, qt is defined such that

qt = 0 uniformly in (y,u) when z → ∞ or z → −∞. Also when t → 0, qt

is defined such that
∫
z ̸∈I ∂qt/∂zdz → 0. Then we have, for every t,∫

∂qt
∂z

(y,u, z){logfY |X(y,x;β1)− logfY |X(y,x;β2)}dz

= {logπ2(y,u)− logπ1(y,u)}qt(y,u, z) |z=∞
z=−∞= 0.

Additionally, by the definition of qt, one can easily verify∫
z ̸∈I

∂qt
∂z

(y,u, z){logfY |X(y,x;β1)− logfY |X(y,x;β2)}dz

= {logπ2(y,u)− logπ1(y,u)}
∫
z ̸∈I

∂qt
∂z

(y,u, z)dz → 0, t → 0.
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Therefore, we also have

∫
z∈I

∂qt
∂z

(y,u, z){logfY |X(y,x;β1)− logfY |X(y,x;β2)}dz

=

∫
z∈I

{logfY |X(y,x;β1)− logfY |X(y,x;β2)}2dz

= {logfY |X(y,x;β1)− logfY |X(y,x;β2)}2(zu − zl) → 0, t → 0.

Hence, we must have logfY |X(y,x;β1)− logfY |X(y,x;β2) = 0 when z ∈ I.

Following the condition (A3), β1 = β2. Then, we must also have π1(y,u) =

π2(y,u). This completes the model identifiability.

Theorem 3.1. This proof consists of three major steps.

In the first step, we construct some functions in S(m,Kn,Mn) to ap-

proximate the true parameters. To do that, we need the following general

result. From the properties of B-spline functions (Schumaker, 2007), we

can define a linear operator Q mapping W k,∞(D) to the sieve space; that

is, for any g ∈ W k,∞(D),

Q[g] =
Kn∑

l1,...,lp+1=−m+1

Γl1,...,lp+1 [g]B
m
l1
(y) · · ·Bm

lp+1
(up),

where Γl1,...,lp+1 are the linear functionals in L∞(D), where L∞(·) is the set

of all measurable functions that are bounded almost everywhere. Moreover,

Kn∑
l1,...,lp+1=−m+1

|Γl1,...,lp+1 [g]| ≤ (2m+ 1)p+19(p+1)(m−1)∥g∥L∞(D),
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and according to Schumaker (2007),

∥Q[g]− g∥L∞(D) ≤ O(m)K−k
n .

Thus we define ηn(y,u) = Q[logitπ0(y,u)]. Corresponding, we obtain

πn(y,u) = expit(ηn(y,u)).

As a result, we have the bound

∥πn(y,u)− π0(y,u)∥L∞(D) ≤ O(K−k
n ).

For the second step, we first define Pn as the empirical measure based

on the n i.i.d. observations, P as the corresponding expectation, and Gn as

the empirical process
√
n(Pn −P). Recall that, in Section 2.2 we denoted

the likelihood function from one generic observation as

p(r, y,x;β, π) ≡
{
π(y,u)fY |X(y,x;β)

}r {
1−

∫
π(t,u)fY |X(t,x;β)dt

}1−r

.

Then we have

Pn{logp(R, Y,X; β̂n, π̂n)} ≥ Pn{logp(R, Y,X;β0, πn)}.

Equivalently, we have

n−1/2Gn

{
log

p(R, Y,X; β̂n, π̂n)

p(R, Y,X;β0, πn)

}
≥ P

{
log

p(R, Y,X;β0, πn)

p(R, Y,X;β0, π0)

}
+P

{
log

p(R, Y,X;β0, π0)

p(R, Y,X; β̂n, π̂n)

}
.(S1.3)

In the next we will first bound the left hand side of (S1.3) using empirical

process theory. For this purpose, we consider a collection of functions Ln
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defined as

Ln =

{
log

p(R, Y,X; β̃n, π̃n)

p(R, Y,X;β0, πn)
: (β̃n, π̃n) ∈ S(m,Kn,Mn)

}
.

Since ∥Bm
i (·)∥L∞([0,1]) = 1, any function of π̃n given in Ln is bounded by

1. By the assumption, p(R, Y,X;β0, πn) is bounded below by zero. Hence

the class Ln has an upper bound Op(Mn). Also it can be verified that all

the functions in Ln are Lipschitz continuous and the Lipschitz constant is

bounded by Op(e
c0Mn), and they lie in a hypercube of a real space RNn

with Nn = (Kn +m)p+1 + d. Therefore, for any ϵ > 0, if we partition this

hypercube into subcubes with scale length ϵ, the total number of subcubes is

at most O((Mn/ϵ)
Nn). According to the Lipschitz property of the functions

in Ln, the L∞-distance between any two functions of Ln with respective

indexes in the same subcube is no more than Op(e
c0Mn)Nnϵ. Consequently,

we obtain that the bracketing number for Ln satisfies

N[·](Op(e
c0Mn)Nnϵ,Ln, L∞) ≤ O((Mn/ϵ)

Nn).

According to van der Vaart (1998), we have, in probability,

√
nE∗

P∥Pn −P∥Ln ≤ Op(1)

∫ O(Mn)

0

√
log

(
Mnec0MnNn

ϵ

)Nn

dϵ

≤ Op(1)M
2
nK

p+1
2

n logKn.

Thus the left hand side of (S1.3) is bounded above byOp(M
2
nK

p+1
2

n logKn/
√
n).
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We now bound below the right hand side of (S1.3). Firstly, since the

function p(·) is Lipschitz continuous with each argument, we have the first

component

P

{
log

p(R, Y,X;β0, πn)

p(R, Y,X;β0, π0)

}
≥ −Op(1)∥πn − π0∥L∞ ≥ −Op(1)K

−k
n .

The second component is the Kullback-Leibler divergence. We linearize the

last term. The first order term in the expansion vanishes while the second

order term in the expansion is bounded below by

O(e−c1Mn)∥p(R, Y,X;β0, π0)− p(R, Y,X; β̂n, π̂n)∥2L2
.

Combining all the above results, we have

Op(1)

(
ec1Mn

Kk
n

+
ec1MnM2

nK
p+1
2

n logKn√
n

)
≥ ∥p(R, Y,X;β0, π0)− p(R, Y,X; β̂n, π̂n)∥2L2

.(S1.4)

Using some Taylor expansion arguments, although the constant c1 changes

slightly, we can still obtain the same bound for ∥logp(R, Y,X;β0, π0) −

logp(R, Y,X; β̂n, π̂n)∥2L2
, i.e.,

Op(1)

(
ec1Mn

Kk
n

+
ec1MnM2

nK
p+1
2

n logKn√
n

)
≥
∫
{logp(r, y,x;β0, π0)− logp(r, y,x; β̂n, π̂n)}2drdydx.(S1.5)

In the third step, we aim to obtain the L2-convergence of the estimators,

hence the consistency. In (S1.5), if we let r = 1, then∫
{logπ̂n(y,u) + logfY |X(y,x; β̂n)− logπ0(y,u)− logfY |X(y,x;β0)}2dydx

≤ Op(1)

(
ec1Mn

Kk
n

+
ec1MnM2

nK
p+1
2

n logKn√
n

)
.



Qinglong Tian AND Donglin Zeng AND Jiwei Zhao

To proceed, we temporarily denote the right hand side bound in the

above expression as An. Similar to the proof of Lemma 2.1, we take the

compact set I in condition (A3) as the closed interval [zl, zu]. Note that, for

each fixed n, logfY |X(y,x; β̂n)− logfY |X(y,x;β0) is a function of y,u, z and

we temporarily denote it as l(y,u, z). We denote one of its original functions

(with respect to z) as L(y,u, z) such that ∂L(y,u, z)/∂z = l(y,u, z). As

t → 0, we define a sequence of continuously differentiable (with respect to

z) functions wt(y,u, z) as

wt(y,u, z) = I(zl − t < z ≤ zl)Kl

(
z − zl

t

)
l(y,u, zl)

+I(zl < z ≤ zu)L(y,u, z)

+I(zu < z ≤ zu + t)Kr

(
z − zu

t

)
l(y,u, zu),

where Kl and Kr were defined in the proof of Lemma 2.1.

One can easily verify, when z ∈ I, ∂wt/∂z = l(y,u, z) = logfY |X(y,x; β̂n)−

logfY |X(y,x;β0) for any t. When z ̸∈ I, for every fixed t, wt is defined such

that wt = 0 uniformly in (y,u) when z → ∞ or z → −∞; also when

t → 0, wt is defined such that
∫
z ̸∈I ∂wt/∂z l(y,u, z)dz → 0 for any bounded

function l(y,u, z).

Firstly, we have∫
∂wt

∂z
{logπ̂n(y,u) + logfY |X(y,x; β̂n)− logπ0(y,u)− logfY |X(y,x;β0)}dydudz ≤ A1/2

n

∥∥∥∥∂wt

∂z

∥∥∥∥
L2

.
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Because∫
∂wt

∂z
{logπ̂n(y,u)− logπ0(y,u)}dydudz =

∫
{logπ̂n(y,u)− logπ0(y,u)}wt |z=∞

z=−∞ dydu = op(1),

we have∫
∂wt

∂z
{logfY |X(y,x; β̂n)− logfY |X(y,x;β0)}dydudz ≤ A1/2

n

∥∥∥∥∂wt

∂z

∥∥∥∥
L2

.

By the definition of wt, we then have∫
I

∂wt

∂z
{logfY |X(y,x; β̂n)− logfY |X(y,x;β0)}dydudz ≤ A1/2

n

∥∥∥∥∂wt

∂z

∥∥∥∥
L2

.

Let t → 0, this is equivalent to∫
I
{logfY |X(y,x; β̂n)− logfY |X(y,x;β0)}2dydudz ≤ An = Op(1)

(
ec1Mn

Kk
n

+
ec1MnM2

nK
p+1
2

n logKn√
n

)
.

Therefore, if we choose a subsequence fY |X(y,x; β̂n) and we suppose β̂n →

β∗, from the above inequality as well as the condition (A3), we must have

β∗ = β0. Hence, we obtain∫
I
{logfY |X(y,x; β̂n)− logfY |X(y,x;β0)}2dydudz

≤ Op(1)

(
ec1Mn

Kk
n

+
ec1MnM2

nK
p+1
2

n logKn√
n

)
,

as well as ∫
I
{logπ̂n(y,u)− logπ0(y,u)}2dydudz

≤ Op(1)

(
ec1Mn

Kk
n

+
ec1MnM2

nK
p+1
2

n logKn√
n

)
.



Qinglong Tian AND Donglin Zeng AND Jiwei Zhao

Then, using the Taylor’s expansion and provided that condition (A3) is

satisfied, we can achieve the same bound for ∥β̂n − β0∥22 and ∥π̂n − π0∥2L2
.

On the other hand, from Schumaker (2007) and the condition (A4), we

have

∥∇ky
y ∇ku

u η̂n(y,u)∥L∞ ≤ CKk
n

∑
l1,...,lp+1

|τl1,...,lp+1| ≤ O(MnK
k
n),

thus

∥∇ky
y ∇ku

u π̂n(y,u)∥L∞ ≤ Ce(k+1)MnMnK
k
n ≤ Ce(k+2)MnKk

n,

where ky + ku = k. According to the Sobolev interpolation inequality

(Adams and Fournier, 2003), we have

∥∇(π̂n − π0)∥L∞ ≤ Ce(k+2)MnλKkλ
n

(
ec1Mn

Kk
n

+
ec1MnM2

nK
p+1
2

n logKn√
n

)(1−λ)/2

,

where λ = (p + 3)/(2k) < 1/3. The choice of Kn and Mn will guarantee

this terms goes to zero. Hence we proved that

∥π̂n(y,u)− π0(y,u)∥W 1,∞
p−→ 0.

This completes the proof of the consistency theorem.

Theorem 3.2. We will show that

∥β̂n − β0∥22 + ∥π̂n − π0∥2L2
≤ Op(K

−2k
n ) + op(n

−1/2).

The proof is similar to that of Theorem 3.1. We define Ln as before, but the

functions in Ln are indexed by (β, π), which belongs to a bounded set in
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R ×W 1,∞. Thus, Ln has a bounded covering function and the integration

of the entropy for the class Ln is finite. Moreover, the function in the left

hand side of (S1.3) converges to zero uniformly. Thus we apply Theorem

2.11.23 of van der Vaart and Wellner (1996), to obtain that the left hand

side of (S1.3) is bounded by op(n
−1/2).

For the right hand side of (S1.3), we still perform Taylor expansion at

the true parameters. Since each parameter is in a small neighborhood of

the true parameters, the right hand side of (S1.3) is bounded below by

−Op(1)∥π̂n − π0∥2L2
+Op(1)∥p(R, Y,X;β0, π0)− p(R, Y,X; β̂n, π̂n)∥2L2

.

Therefore we have

op(1)n
−1/2 +Op(1)K

−2k
n ≥ ∥p(R, Y,X;β0, π0)− p(R, Y,X; β̂n, π̂n)∥2L2

.(S1.6)

Note that (S1.6) is the same as (S1.4) in the proof of Theorem 3.1, except for

the bound on the left hand side. In what follows we use the same argument

as in the proof of Theorem 3.1 and then the proof is complete.

Theorem 3.3. We will show that
√
n(β̂n − β0) can be written as a linear

functional of the empirical process Gn, and that β̂n is semiparametrically

efficient.

We have the score function for parameter β is

lβ(β, π) = rSβ(y,x;β)− (1− r)

∫
Sβ(t,x;β)fY |X(t,x;β)π(t,u)dt

1−
∫
fY |X(t,x;β)π(t,u)dt

,
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where Sβ(y,x;β) = ∂logfY |X(y,x;β)/∂β is the score vector, and the score

function for nuisance π(y,u) along the submodel πt(y,u) = {1+th(y,u)}π0(y,u)

is

lπ(β, π) = rh(y,u)− (1− r)

∫
h(t,u)fY |X(t,x;β0)π0(t,u)dt

1−
∫
fY |X(t,x;β0)π0(t,u)dt

.

After some algebra, we have

l∗πlβ = Sβ(y,x;β)fY |X(y,x;β)π(y,u) +

∫
Sβ(t,x;β)fY |X(t,x;β)π(t,u)dt

1−
∫
fY |X(t,x;β)π(t,u)dt

fY |X(y,x;β)π(y,u),

and

l∗πlπa(y,u) = a(y,u)fY |X(y,x;β)π(y,u) +

∫
a(t,u)fY |X(t,x;β)π(t,u)dt

1−
∫
fY |X(t,x;β)π(t,u)dt

fY |X(y,x;β)π(y,u),

where l∗π is the adjoint operator of lπ. The information operator l∗πlπ is the

sum of an invertible operator and a compact operator from the space BV

to itself, where BV contains all the functions of y (for each fixed x) with

bounded variation. By the Fredholm theory (Rudin, 1973), the informa-

tion operator is invertible if it is one to one, or equivalently, the Fisher

information along any nontrivial submodel is zero.

Suppose that the Fisher information is zero along some submodel (β0+

tw, {1 + th(y,u)}π0(y,u)). Then the score function along this submodel,

lTβw+ lπ(h(y,u)), is zero. Set R = 1, we have Sβ(y,x;β)
Tw+ h(y,u) = 0,

for any (y,u, z) ∈ P . Therefore, for any (y,u, zi), i = 1, 2, we have

[∂log{fY |X(y,u, z1;β0)/fY |X(y,u, z2;β0)}/∂β]Tw = 0.



S1. PROOFS OF LEMMAS AND THEOREMS

By the local identifiability condition (A5), w = 0, hence h = 0 with prob-

ability one. Thus, the information operator is invertible. Consequently,

there exists a function h such that

l∗πlπ(h) = l∗πlβ.

This means that the least favorable direction for β0 exists. In addition,

by using the arguments in the proof of Theorem 3.4 of Zeng (2005) and

condition (A3), we can show that h belongs to the W k,∞ space.

We now construct the projection of π(y,u) on the tangent space of the

sieve space. First, by simple computation, the tangent vector hn(y,u) for

the nuisance parameter at π̂n has the form π̂nη(y,u), where η(y,u) has the

same form as η(y,u) in the sieve space. Then, one good approximation to

the pseudo least favorable direction is to choose hn(y,u) such that its cor-

responding η(y,u) satisfies η(y,u) = Q[hn/π0]. Thus the previous results

imply that

∥hn(y,u)− h(y,u)∥2L2
≤ Op(K

−2k
n ) + op(n

−1/2).

Since (β̂n, π̂n) maximizes the objective function in the sieve space, the

score with respect to t along the submodel (β̂n + tw, (1 + thn)π̂n) must be

zero, where hn is the projection of h onto the tangent space of the sieve
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space. Then it holds that

Gn{lβ(β̂n, π̂n)− lπ(β̂n, π̂n)[hn]} = −
√
nP{lβ(β̂n, π̂n)− lπ(β̂n, π̂n)[hn]}.

For the left hand side of the above equation, we apply Theorem 2.11.23

of van der Vaart and Wellner (1996). Note that the function in the left

hand side, indexed by both (π̂n, hn) ∈ W 1,∞ and β̂n ∈ [−M,M ]d, belongs

to a P -Donsker class.

Moreover, we linearize the right hand side at the true parameters and

approximate hn by h. Since

P{lππ(β0, π0)[π̂n − π0, h] + lβπ(β0, π0)[π̂n − π0]} = 0,

we obtain that

−P{lπβ(β0, π0)[h] + lββ(β0, π0)}
√
n(β̂n − β0)

= Gn{lβ(β0, π0)− lπ(β0, π0)[h]}+
√
nOp(1){∥β̂n − β0∥22 + ∥π̂n − π0∥2L2

+ ∥hn − h∥2L2
}

= Gn{lβ(β0, π0)− lπ(β0, π0)[h]}+ op(1),

where lββ is the derivative of lβ with respect to β, lβπ[h] is the derivative

of lβ with respect to π along the direction h, lπβ[h] is the derivative of lπ[h]

with respect to β, and lππ[h1, h2] is the derivative of lπ[h1] with respect to

π along the direction h2. Next we can show that

−P{lββ(β0, π0)− lπβ(β0, π0)[h]} = P
[
{lβ(β0, π0)− lπ(β0, π0)[h]}⊗2

]
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is invertible. Therefore, the influence function of β̂n is

ϕ(β0, π0) ≡ −[P{lββ(β0, π0)− lπβ(β0, π0)[h]}]−1{lβ(β0, π0)− lπ(β0, π0)[h]},

which belongs to the space spanned by the scores. Thus, the asymptotic

variance of β̂n isΣ ≡ P
{
ϕ(β0, π0)ϕ(β0, π0)

T
}
, and it is semiparametrically

efficient. This completes the proof.

S2 Gauss-Hermite Quadrature

The Gauss-Hermite quadrature (e.g., Liu and Pierce 1994) can be used to

calculate generic integrals in the form of

∫ ∞

−∞
h(y)ϕ(y;µ, σ2)dy,

where ϕ(·;µ, σ2) is a normal pdf with mean µ and variance σ2. The integral

is approximated by

∫ ∞

−∞
h(y)ϕ(y;µ, σ2)dy =

1√
π

∫ ∞

−∞
exp(−x2)h(

√
2σx+µ)dx ≈ 1√

π

G∑
i=1

ωih(
√
2σxi+µ),

where {xi, i = 1, . . . , G} and the associated weights {ωi, i = 1, . . . , G} are

known constants given G. And a larger G will lead to a more precise ap-

proximation (but computationally heavier). In Equation (4.10), the integral

is an expectation with respect to fY |X(y,X i; β̂
(t)
), which is a normal pdf
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with mean (suppose X and β contain the intercept)

µ̂(t) = XT
i β̂

(t)

and variance (σ̂(t))2. The expectant is

log[fY |X(y,X i;β)]hi(y).

Thus, we can see that (4.11) is the result of directly applying the aforemen-

tioned Gauss-Hermite quadrature.
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