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S1 Definitions

We first give some definitions about heavy-tailed functions from Peng and

Qi (2017), which is used for defining the heavy-tailed SCM.

Definition S1. A distribution function F (x) is said to have a (right) heavy

tail with tail index δ > 0 if it satisfies that

lim
t→∞

1− F (tx)
1− F (t)

= x−δ for all x > 0.

Definition S2. A measurable function a(x) defined over (0, x0) for some

x0 > 0 is said to be regularly varying or a regular variation at zero with an

exponent υ ∈ R, denoted by a(x) ∈ RVυ if

lim
t→0

a(tx)

a(t)
= xυ for all x > 0.

In this section, we also introduce the definition of topological layers of

a DAG. A node m is a root node if pam = ∅. We denote the length of the

longest directed path of node m to one root node as Lm. It is clear that

the root node has zero length and 0 ≤ Lm ≤ p − 1. Let the topological

layers At = {m : Lm = t} be the collection of nodes with the same length t

to the root node. Without loss of generality, a DAG can be reorganized as

the layer structure with a total of T topological layers. Then, A0 := S1 ⊆
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A0 ∪A1 := S2 ⊆ . . . ⊆ A0 ∪ . . .∪At−1 := St ⊆ A0 ∪ . . .∪AT−1 = V , where

St includes all ancestors of m ∈ At, but excludes its descendants. Thus, the

layer structure assures the acyclicity in G. We remark that the topological

layer structures of G are unique, which is in contrast to the topological

ordering (Peters et al., 2017) only requiring that the parent node arrives

before its children.

S2 Hyperparameters

Note that the numerical performance of the proposed TopHeat algorithm

largely depends on the choice of the hyperparameters, including the index

of the order statistic k, the significant level α in the CIT procedure, and the

threshold for the layer ϵt. Here, we perform initial simulations to determine

k, which is related with the tail index θ of the underlying distribution, and

select an optimal value for α; More details are provided in Section 5.2. To

adaptively select the optimal values for ϵt, we employ the stability selection

criterion in Sun et al. (2013).

The key idea is to measure the reconstruction stability by randomly

splitting the training sample into two parts and comparing the disagreement

between the two estimated active sets. Specifically, given a value ϵt, we

randomly split the training sample D into two parts D1 and D2. Then the
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proposed method is applied to D1 and D2 and we obtain two estimated

active sets Ê1
ϵt and Ê2

ϵt , respectively. The disagreement between Ê1
ϵt and

Ê2
ϵt is measured by Cohen’s kappa coefficient

κ(Ê1
ϵt , Ê

2
ϵt) =

Pr(a)− Pr(e)
1− Pr(e)

,

where Pr(a) = n11+n22

pt
and Pr(e) = (n11+n12)(n11+n21)

p2t
+ (n12+n22)(n21+n22)

p2t

with n11 = |Ê1
ϵt ∩ Ê

2
ϵt |, n12 = |Ê1

ϵt ∩ Ê
2,C
ϵt |, n21 = |Ê1,C

ϵt ∩ Ê
2
ϵt |, n22 = |Ê1,C

ϵt ∩

Ê2,C
ϵt |, pt = p − |St|. Here, | · | denotes the set cardinality and Êj,C

ϵt is the

complementary set of Êj
ϵt for j = 1, 2. The procedure is repeated for B

times and the estimated reconstruction stability is measured as

ŝ(Ψϵt) =
1

B

B∑
b=1

κ(Ê1
b,ϵt , Ê

2
b,ϵt),

where Ê1
b,ϵt

and Ê2
b,ϵt

are the estimated active sets in the b-th splitting.

Finally, we set ϵ̂t = min
{
ϵt :

ŝ(Ψϵt )

maxϵt ŝ(Ψϵt )
≥ 1− a

}
, where a ∈ (0, 1) is some

given percentage. As recommended by Sun et al. (2013), the threshold

parameter a approaches zero as n grows to ensure asymptotic selection

consistency, and more discussion are presented in Section 4. Empirical

studies in Section 5.2 demonstrate satisfactory performance while we choose

a and B varying with n.
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S3 Proof of Theorem 1

Before giving the proof of Theorem 1, we first restate the results about Γjm

in Gnecco et al. (2021) below.

Lemma 1. (Theorem 1 in Gnecco et al. (2021)) Under the heavy-tailed

linear SCM model in (2.1), for any two variables Xj and Xm with j ̸= m,

there holds that

Γjm =
1

2
+

∑
l∈Anj∩Anm

πθ
jl

2
∑

l∈Anj
πθ
jl

. (S3.1)

Further, Table S1 gives the corresponding values of Γjm when: (a) j ∈ Anm;

(b) m ∈ Anj; (c) Anj ∩ Anm = ∅; or (d) Anj ∩ Anm ̸= ∅ neither j /∈ Anm

nor m /∈ Anj.

Table S1: Values of Γjm and Γmj under different scenarios, where − indicates impossible
scenarios for the heavy-tailed linear SCM model (2.1).

Γmj = 1 Γmj ∈ (1/2, 1) Γmj = 1/2
Γjm = 1 − (a) −
Γjm ∈ (1/2, 1) (b) (d) −
Γjm = 1/2 − − (c)

It is clear that Table S1 provides the criteria to identify the ancestor and

descendant relationship between any two nodes, which helps to reconstruct

the topological layers of a heavy-tailed DAG in a top-down fashion.
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Proof of Theorem 1: Assume that the number of topological layers

is in total T . We now prove the reconstruction of topological layers by

induction.

For the layer A0, if m ∈ A0, and thus pam = ∅, there exists no node

j ∈ V such that Γjm = 1, and thus maxj∈V Γjm < 1 holds. Next, we show

that if maxj∈V Γjm < 1 with m ∈ V , then m ∈ A0. If not, without loss of

generality, we assume that m /∈ A0 and thus m ∈ At with t ≥ 1, and then

there exists a directed path from a root node j ∈ A0 to node m such that

j ∈ Anm. It follows from Lemma 1 that Γmj ∈ (1/2, 1) and Γjm = 1, which

implies that maxj∈V Γjm = 1. Therefore, A0 is identified.

For the layer At, assume that the first t layers have been correctly

identified, denoted as A0,A1, . . . ,At−1. Now, we show that the statement

also holds for At.

If node m ∈ At, then pam ⊆ St where St = ∪t−1d=0Ad. This implies that

maxj∈St Γjm = 1 and thus maxj∈Ct Γjm ∈ [1
2
, 1) holds as Anm ∩ Ct = {m}

with Γmm = 1
2
and anm ∩ Ct = ∅. Thus, maxj∈Ct Γjm < 1 holds. On the

other hand, we show that if maxj∈Ct Γjm < 1 for m ∈ Ct, then m ∈ At. If

not, for m /∈ At, we suppose m ∈ Ct\At, there must exist a directed path

from one node j to node m such that j ∈ anm and thus Γjm = 1. This leads

to maxj∈Ct Γjm = 1 holds by Lemma 1. Now, At is identified. By induction,
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the proof is completed. ■

S4 Proof of Theorem 2

We first give necessary lemmas as follows. The following Lemma 2 shows the

limit result of an approximation for the quantity E(Fm(Xm)|Fj(Xj) > u).

Lemma 2. For θ > 0, there holds that

lim
u→1−

1

1− u
E(Fm(Xm)|Fj(Xj) > u) =

∫ ∞
0

R(1− Fm(s), 1)dFm(s).

Proof of Lemma 2: By applying the definition of conditional expectation

and the change of variables, we have

E(Fm(Xm)|Fj(Xj) > u)

=

∫ ∞
0

P (Xm > s|Fj(Xj) > u)dFm(s)

=
1

1− u

∫ ∞
0

P (Xm > s, Fj(Xj) > u)dFm(s)

=
1

1− u

∫ ∞
0

P (Fm(Xm) > s(1− u) + u, Fj(Xj) > u)(1− u)ds

=

∫ ∞
0

P (Fm(Xm) > Fm(s)(1− u) + u, Fj(Xj) > u)dFm(s). (S4.2)

Therefore, the definition of the upper tail dependence function implies that

lim
u→1−

1

1− u
P (Fm(Xm) > Fm(s)(1− u) + u, Fj(Xj) > u)
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= lim
u→1−

1

1− u
P (1− Fm(Xm) ≤ (1− Fm(s))(1− u), 1− Fj(Xj) ≤ 1− u)

=R(1− Fm(s), 1). (S4.3)

Next, we show that the integral in (S4.2) and the limit procedure u→ 1

can be exchanged by applying dominated convergence theorem. Note that

1
1−uP (Fm(Xm) ≤ Fm(s)(1 − u) + u, Fj(Xj) > u) ≤ 1

1−uP (Fj(Xj) > u) = 1

with u < 1−ε for a small ε > 0, and 1 is integrable on [0, 1]. This completes

the proof. ■

To emphasize the dependence on the first k + 1 larger order statistics

of the estimator Γ̂jm in (3.4), we rewrite it as

Γ̂
1−k/n
jm = Γ̂jm =

1

k

n∑
i=1

F̂m(X
n
i,m)1

{
Xn

i,j > Uj

(
n

ken

)}
,

since en = (n/k)(1−Fj(X
n
(n−k),j))

P→ 1 as n→∞. Furthermore, we denote

Γ̃
1−k·/n
jm as a random function over the interval [1/2, 2],

Γ̃
1−ky/n
jm =

1

ky

n∑
i=1

F̂m(X
n
i,m)1

{
Xn

i,j > Uj

(
n

ky

)}
. (S4.4)

The main idea to prove Theorem 2 is to apply y = en and combine the

asymptotic behavior of en, and then we prove the asymptotic normality of

Γ̂
1−k/n
jm .
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We write Rn(xj, xm) = (n/k)P (1 − Fj(Xj) ≤ kxj/n, 1 − Fm(Xm) ≤

kxm/n) and its pseudo estimator is given as Tn(xj, xm) = 1
k

∑n
i=1 1{1 −

Fj(X
n
i,j) ≤ kxj/n, 1 − Fm(X

n
i,m) ≤ kxm/n}. For x > 0, we denote sn(x) =

n
k

(
1− Fm

(
Um

(
n
k

)
x−1/θ

))
and its derivative is defined by gn

k
(x) = n

k
Um

(
n
k

)
fm
(
Um

(
n
k

)
x−1/θ

)
.

Note that the regularly varying function property guarantees that limt→∞ Um(tx)/Um(t) =

x1/θ, which implies that sn(x)→ x as n→∞. Density convergence, given

as dsn(x)/dx→ 1, leads to gn
k
(x)→ θx1+1/θ.

Next, we restate the following Lemmas 3–5 in Cai et al. (2015), where

Lemma 3 gives the asymptotic behaviour of the pseudo estimator Tn(·, ·),

Lemma 4 shows the WR-process is bounded with proper functions, and

Lemma 5 clarifies the role of sn(x) replaced by x in the limit for the integrals.

The following three lemmas will be used and their proofs are omitted here.

Lemma 3. (Lemma 1 in Cai et al. (2015)) Assume that this limit limt→∞ tP (1−

Fj(Xj) ≤ x/t, 1−Fm(Xm) ≤ y/t) = R(x, y) exists for (x, y) ∈ [0,∞]2\{(∞,∞)}

and j,m ∈ {1, . . . , p}. For any η ∈ [0, 1
2
) and positive ℓ, with probability

one, there holds that

sup
x,y∈(0,ℓ]

∣∣∣√k(Tn(x, y)−Rn(x, y))−WR(x, y)

xη

∣∣∣→ 0,

sup
x∈(0,ℓ]

∣∣∣√k(Tn(x,∞)− x)−WR(x,∞)

xη

∣∣∣→ 0,
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sup
y∈(0,ℓ]

∣∣∣√k(Tn(∞, y)− y)−WR(x,∞)

yη

∣∣∣→ 0.

Lemma 4. (Lemma 2 in Cai et al. (2015)) For any ℓ > 0 and η ∈ [0, 1
2
),

with probability one,

sup
0<x≤ℓ,0<y<∞

|WR(x, y)|
xη

<∞, sup
0<x<∞,0<y<ℓ

|WR(x, y)|
yη

<∞.

Lemma 5. (Lemma 3 in Cai et al. (2015)) Assume that this limit limt→∞ tP (1−

Fj(Xj) ≤ x/t, 1−Fm(Xm) ≤ y/t) = R(x, y) exists for (x, y) ∈ [0,∞]2\{(∞,∞)}

and j,m ∈ {1, . . . , p}. Denote ℓ as a bounded and continuous function on

[0,M0) × [a, b] with 0 < M0 ≤ ∞ and 0 ≤ a < b < ∞. Moreover, suppose

that there exist η1 > 1/θ and K > 0 such that

sup
0<x≤M0,a≤y≤b

|ℓ(x, y)|
xη1

≤ K,

If M0 <∞, we further require that 0 < M < M0. Then

lim
n→∞

sup
a≤y≤b

∣∣∣ ∫ s

0

ℓ(sn(x), y)− ℓ(x, y)dx−1/θ
∣∣∣ = 0.

Furthermore, suppose that |ℓ(x1, y)− ℓ(x2, y)| ≤ |x1 − x2| holds for all 0 ≤
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x1, x2 < M0 and a ≤ y ≤ b. Under Assumptions 2 and 3, we have that

lim
n→∞

sup
a≤y≤b

√
k
∣∣∣ ∫ s

0

ℓ(sn(x), y)− ℓ(x, y)dx−1/θ
∣∣∣ = 0.

Now, we first give the asymptotic behaviour of Γ̃
1−ky/n
jm in the following

Lemma 6.

Lemma 6. Suppose that Assumption 2 holds and for θ > 1, we have

sup
1/2≤y≤2

∣∣∣∣ n√k
(
Γ̃
1−ky/n
jm − E

(
Fm(Xm)|Fj(Xj) > 1− ky

n

))
+
1

y

∫ ∞
0

WR(x, y)dx
−1/θ

∣∣∣∣ P→ 0.

Proof of Lemma 6: Following (S4.2) and (S4.3) in Lemma 2, we use the

change of variables,

1

ky/n
E(Fm(Xm)|Fj(Xj) > 1− ky/n)

=
1

ky/n

∫ ∞
0

P

(
Fm(Xm) > Fm(s)

ky

n
+ 1− ky

n
, Fj(Xj) > 1− ky

n

)
dFm(s)

=

∫ ∞
0

1

ky/n
P

(
1− Fm(Xm) ≤

ky

n
(1− Fm(s)), 1− Fj(Xj) ≤

ky

n

)
dFm(s)

=−
∫ 1

0

1

(ky/n)2
P

(
1− Fm(Xm) ≤ t, 1− Fj(Xj) ≤

ky

n

)
dt.

The above equality multiplies the term ky2/n in both sides and we obtain
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that

yE(Fm(Xm)|Fj(Xj) > 1− ky/n)

=− n

k

∫ 1

0

P

(
1− Fm(Xm) ≤

k

n
× nt

k
, 1− Fj(Xj) ≤

ky

n

)
dt

=−
∫ 1

0

Rn

(
nt

k
, y

)
dt

=

∫ ∞
0

Rn

(n
k
(1− Fm(s)), y

)
dFm(s)

=Um

(n
k

)∫ ∞
0

Rn(sn(x), y)fm

(
Um

(n
k

)
x−1/θ

)
dx−1/θ, (S4.5)

since sn(x) = (n/k)
(
1− Fm

(
Um

(
n
k

)
x−1/θ

))
and the last step in (S4.5)

follows from the fact that

∫ ∞
0

Rn(sn(x), y)fm

(
Um

(n
k

)
x−1/θ

)
dx−1/θ

=

∫ ∞
0

Rn

(n
k

(
1− Fm

(
Um

(n
k

)
x−1/θ

))
, y
)
fm

(
Um

(n
k

)
x−1/θ

)
dx−1/θ

=
1

Um

(
n
k

) ∫ ∞
0

Rn

(n
k
(1− Fm(s)), y

)
fm(s)ds.

Similar to (S4.5), we also have

yΓ̃
1−ky/n
jm = Um

(n
k

)∫ ∞
0

Tn(sn(x), y)fm

(
Um

(n
k

)
x−1/θ

)
dx−1/θ.
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Then, for any L > 0, there holds that

sup
1/2≤y≤2

∣∣∣∣ n√k
(
yΓ̃

1−ky/n
jm − yE(Fm(Xm)|Fj(Xj) > 1− ky

n
)

)
+

∫ ∞
0

WR(x, y)dx
−1/θ

∣∣∣∣
= sup

1/2≤y≤2

∣∣∣∣∫ ∞
0

√
k
(
Tn(sn(x), y)−Rn(sn(x), y)

)
gn

k
(x)dx−1/θ +

∫ ∞
0

WR(x, y)dx
−1/θ

∣∣∣∣
≤ sup

1/2≤y≤2

∣∣∣∣∫ ∞
L

WR(x, y)dx
−1/θ

∣∣∣∣
+ sup

1/2≤y≤2

∣∣∣∣∫ ∞
L

√
k
(
Tn(sn(x), y)−Rn(sn(x), y)

)
gn

k
(x)dx−1/θ

∣∣∣∣
+ sup

1/2≤y≤2

∣∣∣∣∫ L

0

√
k
(
Tn(sn(x), y)−Rn(sn(x), y)

)
gn

k
(x)−WR(x, y)dx

−1/θ
∣∣∣∣

:=K1(L) +K2,n(L) +K3,n(L). (S4.6)

It suffices to show that for any ε > 0, there exists L0 = L0(ε), n0 = n0(L0)

such that

P (K1(L0) > ε) < ε. (S4.7)

and for any n > n0 there holds that

P (K2,n(L0) > ε) < ε, P (K3,n(L0) > ε) < ε. (S4.8)

Note that the term K1(L) is the same as the term I1(T ) in the proof of

Proposition 2 in Cai et al. (2015). We apply Lemma 4 with η = 0 and there
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exists L1 = L1(ε) such that P
(
sup0<x<∞,0≤y≤2 |WR(x, y)| > L

1/θ
1 ε
)
< ε.

Thus,

P (K1(L0) > ε) < P
[

sup
x>L1,0≤y≤2

|WR(x, y)| > L
1/θ
1 ε
]
< ε, (S4.9)

holds for any L0 > L1.

Next, we deal with the term K2,n(L). Denote P̃n and P̃ by the probabil-

ity measure defined by (1− Fj(Xj), 1− Fm(Xm)) and the empirical proba-

bility measure by (1−Fj(X
n
i,j), 1−Fm(X

n
i,m))1≤i≤n, respectively. Therefore,

we have

P (K2,n(L) > ε)

=P

(
sup

1/2≤y≤2

∣∣∣∣∫ ∞
L

√
k
(
Tn(sn(x)gn

k
(x), ygn(x))−Rn(sn(x)gn

k
(x), ygn

k
(x))

)
dx−1/θ

∣∣∣∣ > ε

)

≤P

(
sup

x>L,1/2≤y≤2

∣∣∣√k(Tn(sn(x)gn
k
(x), ygn

k
(x))−Rn(sn(x)gn

k
(x), ygn

k
(x))

)∣∣∣ > L1/θε

)

≤P

(
sup

x>L,1/2≤y≤2

∣∣∣∣√n(P̃n − P̃
){(

0,
ksn(x)gn

k
(x)

n

)
×
(
0,
kygn

k
(x)

n

)}∣∣∣∣ > εL1/θ
√
k/n

)

:=K̃2.

Let Q = [0, 1] × [0, 1], and thus

(
0,

ksn(x)gn
k
(x)

n

)
×
(
0,

kygn
k
(x)

n

)
⊂ Q holds

with arbitrary high probability with P (Q) = 1 in K̃2. By applying Inequal-

ity 2.5 in Einmahl (1986), there exist a constant C5 > 0 and a function ψ
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satisfying limt→0 ψ(t) = 1 such that

K̃2 ≤C5 exp

(
−
(εL1/θ

√
k/n)2

2P (Q)
ψ

(
εL1/θ

√
k/n√

nP (Q)

))

=C5 exp

(
−ε

2L2/θk

2n
ψ

(
εL1/θ

√
k

n

))
.

We choose L2 = L2(ε) and n1 = n1(L2) such that for n > n1, ψ

(
εL

1/θ
2

√
k

n

)
>

1
2
, and thus for L > L2 and n > n1(L), K̃2 ≤ C5 exp

(
− ε2L2/θk

4n

)
≤ ε holds.

Therefore, for L0 > L2 and n0 > n1, we have

P (K2,n(L0) > ε) < ε. (S4.10)

Lastly, we consider K3,n(L). Note that

P (K3,n(L) > ε)

=P

(
sup

1/2≤y≤2

∣∣∣∣∫ L

0

√
k
[
Tn(sn(x)gn

k
(x), ygn

k
(x))−Rn(sn(x)gn

k
(x), ygn

k
(x))

]
−

WR(x, y)dx
−1/θ∣∣ > ε

)
≤P

(
sup

1/2≤y≤2

∣∣∣∣∫ L

0

√
k
[
Tn(sn(x)gn(x), ygn(x))−Rn(sn(x)gn(x), ygn(x))

]
−WR(sn(x)gn

k
(x), ygn

k
(x))dx−1/θ

∣∣ > ε

2

)
+ P

(
sup

1/2≤y≤2

∣∣∣∣∫ L

0

WR(sn(x)gn
k
(x), ygn

k
(x))−WR(x, y)dx

−1/θ
∣∣∣∣ > ε

2

)
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:=K̃31 + K̃32.

Next, we first deal with the term K̃31. For any L > 0, there exists

n2 = n2(L) such that for all n > n2, sn(x) ≤ L and gn
k
(x) < θL1+1/θ, which

implies that sn(x)gn
k
(x) ≤ θL2+1/θ and gn

k
(x)y ≤ 2θL1+1/θ for y ∈ (1/2, 2).

Thus, we denote L̃ = max{θL2+1/θ, 2θL1+1/θ} and for n > n2 and any

θ > max
{

1
2η0
− 1

2
, 1
η0
− 1
}
= 1

η0
− 1 with η0 ∈ ( 1

2θ+1
, 1
2
),

K̃31 ≤P

(
sup

0<s,t≤L̃

∣∣∣∣∣
√
k (Tn(s, t)−Rn(s, t))−WR(s, t)

(s ∨ t)η0

∣∣∣∣∣
×
∣∣∣∣∫ L

0

(
max

{
sn(x)gn

k
(x), ygn

k
(x)
})η0 dx−1/θ∣∣∣∣ > ε

2

)
. (S4.11)

It follows from Lemma 3 that sup0<s,t<L̃

∣∣∣√k(Tn(s,t)−Rn(s,t))−WR(s,t)
(s∨t)η0

∣∣∣→ 0 holds

in (S4.11) with L̃ > 0 and η0 ∈ [0, 1
2
). Since sup0<x≤L

|(θx2+1/θ)η0 |
xη0

< Lθη0

satisfies the condition in Lemma 5, we have

lim
n→∞

∣∣∣∣∫ L

0

(sn(x)gn
k
(x))η0dx−1/θ

∣∣∣∣ =∫ L

0

(θx2+1/θ)η0dx−1/θ

=
θη0

η0 + 2η0θ − 1
L(η0−1)/θ+2η0 . (S4.12)

Similarly, we have

lim
n→∞

∣∣∣∣∫ L

0

(ygn
k
(x))η0dx−1/θ

∣∣∣∣ =yη0 ∫ L

0

(θx1+1/θ)η0dx−1/θ
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=
(θy)η0

θη0 + η0 − 1
L−

1
θ
(1−η0)+η0 . (S4.13)

Thus, there exists n3(L) > n2(L) such that for n > n3(L), K̃31 < ε/2 holds.

Now, the term K̃32 is bounded by

K̃32 ≤P

(
sup

0<s≤θL2+1/θ,0<t<∞,1/2≤y≤2

|WR(s, t)|
sη0

∣∣∣∣∫ L

0

(sn(x)gn
k
(x))η0dx−1/θ

∣∣∣∣ > ε

4

)

+ P

(
sup

0<s≤L,0<t<∞,1/2≤y≤2

|WR(s, t)|
sη0

∣∣∣∣∫ L

0

xη0dx−1/θ
∣∣∣∣ > ε

4

)

:=K̃32,1 + K̃32,2. (S4.14)

Similar to (S4.12) and (S4.13), we first consider the term K̃32,1,

K̃32,1

≤P

(
sup

0<s≤θL2+1/θ,0<t<∞,1/2≤y≤2

|WR(s, t)|
sη0

∣∣∣∣∫ L

0

(sn(x)gn
k
(x))η0 − (θx2+1/θ)η0dx−1/θ

∣∣∣∣ ≥ ε

8

)

+ P

(
sup

0<s≤θL2+1/θ,0<t<∞,1/2≤y≤2

|WR(s, t)|
sη0

∣∣∣∣∫ L

0

(θx2+1/θ)η0dx−1/θ
∣∣∣∣ ≥ ε

8

)

:=K̃32,1,1 + K̃32,1,2.

Similar to K̃31, by combining the fact that sup0<s≤L,0<y<∞
|WR(s,y)|

sη0
< ∞

for any L > 0 and limn→∞

∣∣∣∫ L

0
(sn(x)gn

k
(x))η0 − (θx2+1/θ)η0dx−1/θ

∣∣∣ = 0 from

Lemma 5 under Assumption 2, there exists n4(L) > n2(L) such that for
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n > n4(L), K̃32,1,1 is smaller than ε/8. For the term K̃32,1,2, we write it as

K̃32,1,2 ≤P

(
sup

0<s≤θL2+1/θ,0<t<∞

|WR(s, t)|
sη0

>
ε(η0 + 2η0θ − 1)

8L(η0−1)/θ+2η0

)
.

For any fixed ε, Lemma 4 ensures that there is a positive L(ε) such that for

all L < L(ϵ), we have K̃32,1,2 < ϵ/8 with the aforementioned η0 ∈ ( 1
2θ+1

, 1
2
).

Combining the above results, we have

K̃32,1 < ε/4. (S4.15)

For the term K̃32,2 in(S4.14), we have for n > n2 and η0 ∈ (1
θ
, 1
2
),

K̃32,2 ≤P

(
sup

0<x≤L,1/2<y≤2

|WR(x, y)|
sη0

>
ε(θη0 − 1)

4Lη0−1/θ

)
. (S4.16)

Similar to K̃32,1,2, we have for L < L(ε), K̃32,2 < ε/4. It follows from (S4.15)

and (S4.16) that K̃32 < ε/2 holds. Thus, P (K3,n(L0) > ε) < ε holds for

any L0 and n > max(n2(L0), n3(L0), n4(L0)).

To summarize, we let L0 = L0(ε) > max(L1, L2) and n0(L0) = max1≤j≤4 nj(L0),

and thus (S4.8) holds, which implies the desired result. ■

To prove Theorem 2, we first prove a non-stochastic limit relationship

as shown in Lemma 7.

Lemma 7. Suppose that Assumptions 1 and 3 are satisfied. Therefore,
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there holds that

sup
1/2≤y≤2

√
k

∣∣∣∣∫ ∞
0

Rn(sn(x), y)gn
k
(x)−R(x, y)θx1+1/θdx−1/θ

∣∣∣∣→ 0, as n→∞.

Proof of Lemma 7: Note that

√
k

∣∣∣∣∫ ∞
0

Rn(sn(x), y)gn(x)−R(x, y)θx1+1/θdx−1/θ
∣∣∣∣

≤
√
k

∣∣∣∣∫ ∞
0

[
Rn(sn(x), y)−R(x, y)

]
gn(x)dx

−1/θ
∣∣∣∣

+
√
k

∣∣∣∣∫ ∞
0

R(x, y)
[
gn(x)− θx1+1/θ

]
dx−1/θ

∣∣∣∣
:=H1 +H2.

It follows from Equation (4.7) in Assumption 1 with τ1, τ2 < 0 and Assump-

tion 3 with γ < min
{

2τ1
2τ1−1 ,

2(τ1+τ2)
2(τ1+τ2)−1

}
= 2τ1

2τ1−1 that

H1 ≤
√
k sup

0<x<∞,1/2≤y≤2
|Rn(x, y)/R(x, y)− 1|

∣∣∣∣∫ ∞
0

gn(x)R(x, y))dx
−1/θ

∣∣∣∣
≤O(
√
k(n/k)τ1)

(∣∣∣∣∫ ∞
0

(gn(x)− θx1+1/θ)R(x, y)dx−1/θ
∣∣∣∣

+

∣∣∣∣∫ ∞
0

θx1+1/θR(x, y)dx−1/θ
∣∣∣∣)

≤O(
√
k(n/k)τ1+τ2)

∣∣∣∣∫ ∞
0

R(x, y)dx−1/θ
∣∣∣∣

+O(
√
k(n/k)τ1)

∣∣∣∣∫ ∞
0

θx1+1/θR(x, y)dx−1/θ
∣∣∣∣
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P→0. (S4.17)

For H2, by Equation (4.8) in Assumption 1 with τ2 < 0 and Assumption 3

with γ < −2τ2
−2τ2+1

, we have

H2 ≤
√
k sup

0<x<∞

∣∣gn
k
(x)− θx1+1/θ

∣∣ ∣∣∣∣∫ ∞
0

R(x, y)dx−1/θ
∣∣∣∣

=O
(√

k
(n
k

)τ2) ∣∣∣∣∫ ∞
0

R(x, y)dx−1/θ
∣∣∣∣→ 0, (S4.18)

as
∫∞
0
R(x, y)dx−1/θ < ∞ holds. By combining (S4.17) and (S4.18), the

desired result is derived. This completes the proof. ■

Next, we proceed to establish the asymptotic normality of Γ̂jm.

Proof of Theorem 2: It follows from Assumption 1 with τ3 < −1 and

Assumption 3 with γ < 1 that

n√
k
(E(Fm(Xm)|Fj(Xj) > 1− k/n)− Γjm) = O

(
n

(1−γ)((1+τ3)
2

)
= op(1).

(S4.19)

Note that Γ̂jm = enΓ̃
1−ken/n
jm holds with probability one, with en = (n/k)(1−

Fj(X
n
(n−k),j)). Then, we have

n√
k

[
Γ̂jm − Γjm

]
−Θ
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=
n√
k

[
Γ̂jm − E(Fm(Xm)|Fj(Xj) > 1− k/n)

]
−Θ

+
n√
k
[E(Fm(Xm)|Fj(Xj) > 1− k/n)− Γjm]

=

{
n√
k

[
enΓ̃

1−ken/n
jm − enE(Fm(Xm)|Fj(Xj) > 1− ken/n)

]
+

∫ ∞
0

WR(s, 1)ds
−1/θ

}
+

{
n√
k

[
enE(Fm(Xm)|Fj(Xj) > 1− ken/n)− E(Fm(Xm)|Fj(Xj) > 1− k/n)

]
−(1/θ − 1)WR(∞, 1)

∫ ∞
0

R(s, 1)s1+1/θds−1/θ
}
+ op(1)

:=I1 + I2 + op(1),

where the second equality follows from the fact (S4.19).

We first deal with the term I1. Similar to the treatment of the Equation

(26) in Cai et al. (2015), it follows from Lemma 3 that Tn(∞, en) = 1 and

then
√
k(en−1)

d→ −WR(∞, 1). This leads to limn→∞ P (|en−1| > k−1/4) =

0. Therefore, with probability approaching one,

|I1| ≤ sup
|y−1|<k−1/4

∣∣∣∣ n√k [yΓ̃1−ky/n
jm − yE(Fm(Xm)|Fj(Xj) > 1− ky/n)

]
+

∫ ∞
0

WR(s, y)ds
−1/θ

∣∣∣∣
+ sup
|y−1|<k−1/4

∣∣∣∣∫ ∞
0

WR(s, y)−WR(s, 1)ds
−1/θ

∣∣∣∣ .
where the first part directly follows from Lemma 6 and the proof of the

second part is outlined in the following. For and ε > 0, 0 < δ < 1, and the



Wei Zhou, Xueqian Kang, Wei Zhong and Junhui Wang

aforementioned η ∈ (1
θ
, 1
2
), we have

P

(
sup

|y−1|<k−1/4

∣∣∣∣∫ ∞
0

WR(s, y)−WR(s, 1)ds
−1/θ

∣∣∣∣ > ε

)

≤P

(
sup

|y−1|<k−1/4

∣∣∣∣∫ δ

0

WR(s, y)−WR(s, 1)ds
−1/θ

∣∣∣∣ > ε

)

+ P

(
sup

|y−1|<k−1/4

∣∣∣∣∫ ∞
δ

WR(s, y)−WR(s, 1)ds
−1/θ

∣∣∣∣ > ε

)

=P

(
sup

0<s≤1, 1
2
≤y≤2

|WR(s, y)|
sη

>
ε(η − 1/θ)

4/θ
δ1/θ−η

)

+ P

(
sup

s>0,|y−1|<k−1/4

|WR(s, y)−WR(s, 1)|δ−1/δ >
ε

2

)

:=I11 + I12.

It follows from Lemma 4 that for any fixed ε, there is a positive ω(ε) =

ε1/(η−1/θ), such that for all ω < ω(ε), I11 < ε holds. Furthermore, it is shown

that sups>0,|y−1|<k−1/4 |WR(s, y) −WR(s, 1)|δ−1/δ > ϵ
2
→ 0 almost surely in

the proof of Proposition 3 in Cai et al. (2015), and thus we omit it here.

Therefore, we have I12 < ϵ, and also I1
P→ 0 as n→∞.

Next, we consider the term I2. It follows from (S4.5) and Lemma 7 that

enn

k
E

(
Fm(Xm)|Fj(Xj) > 1− ken

n

)
=

∫ ∞
0

Rn(sn(x), en)gn
k
(x)dx−1/θ
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=

∫ ∞
0

R(x, en)θx
1+1/θdx−1/θ + op(1/

√
k), (S4.20)

and

n

k
E

(
Fm(Xm)|Fj(Xj) > 1− k

n

)
=

∫ ∞
0

Rn(sn(x), 1)gn
k
(x)dx−1/θ

=

∫ ∞
0

R(x, 1)θx1+1/θdx−1/θ + op(1/
√
k). (S4.21)

By the definition of the functionR(·, ·),
∫∞
0
R(x, y)dx−1/θ = y1−1/θ

∫∞
0
R(x, 1)dx−1/θ

holds for y > 0. This combines with (S4.20) and (S4.21) and we apply

Cramér delta method,

n√
k

[
enE(Fm(Xm)|Fj(Xj) > 1− ken/n)− E(Fm(Xm)|Fj(Xj) > 1− k/n)

]
=
√
k

(∫ ∞
0

R(x, en)θx
1+1/θdx−1/θ −

∫ ∞
0

R(x, 1)θx1+1/θdx−1/θ + op(1/
√
k)

)
=
√
k(e1−1/θn − 1)

∫ ∞
0

R(x, 1)θx1+1/θdx−1/θ + op(1)

P→(1/θ − 1)WR(∞, 1)
∫ ∞
0

R(x, 1)x1+1/θdx−1/θ,

as n→∞. Thus, we have I2
P→ 0. This completes the proof of Theorem 2.

■



Wei Zhou, Xueqian Kang, Wei Zhong and Junhui Wang

S5 Proof of Theorem 3

Denote the event as ξ1,t = {maxj,m∈Ct : |Γ̂jm − Γjm| ≤ ηmin

2
} and ξ1 =

∩T−2t=0 ξ1,t, where we use the notation ξ
c
1 to denote the complementary of the

event ξ1. Note that

P (L̂ ≠ L)

=P (L̂ ≠ L, ξ1) + P (L̂ ≠ L, ξc1)

≤P (L̂ ≠ L, ξ1) + P (ξc1)

≤P (Â0 ̸= A0, ξ1) + P (Â1 ̸= A1, ξ1|Â0 = A0) + . . .

+ P (ÂT−1 ̸= AT−1, ξ1|Â0 = A0, . . . , ÂT−2 = AT−2) + P (ξc1). (S5.22)

Clearly, if Â0 = A0, . . ., and ÂT−1 = AT−1 hold, then T̂ = T .

We now bound the terms in (S5.22) by induction, and first deal with

P (Â0 ̸= A0, ξ1) as follows,

P (Â0 ̸= A0, ξ1)

≤P
(
there exists some m ∈ A0 such that |max

j∈C0
Γ̂jm − 1| ≤ ϵ0, ξ1

)
+ P

(
there exists some m ∈ V\A0 such that min

j∈C0
|Γ̂jm − 1| > ϵ0, ξ1

)
= max

m∈A0

P
(
|max
j∈C0

Γ̂jm − 1| ≤ ϵ0, max
j∈C0
|Γ̂jm − Γjm| ≤

ηmin

2
,Γjm < 1) + 0

=0, (S5.23)
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where the first equality follows from the event ξ1 and the choice of ϵ0 =
ηmin

2
,

and the last equality is obtained by the fact that Γjm < 1− ηmin if j /∈ anm

and ϵ0 is chosen such that Γjm + ηmin

2
< 1− ηmin

2
= 1− ϵ0.

Without loss of generality, we assume all the first t layers have been cor-

rectly recovered at the t-th step such that {Â0, ..., Ât−1} = {A0, ...,At−1}.

Then, at the t+ 1-th step, we turn to bound the following term,

P
(
Ât ̸= At, ξ1|Â0 = A0, . . . , Ât−1 = At−1

)
≤P
(
there exists some m ∈ At such that |F̂jm − 1| ≤ ϵt for some j ∈ Ct, ξ1

|Â0 = A0, . . . , Ât−1 = At−1
)

+ P
(
there exists some m ∈ Ct\At such that min

j∈Ct
|F̂jm − 1| > ϵt, ξ1

|Â0 = A0, . . . , Ât−1 = At−1
)

=0,

where the inequality follows from a similar treatment as that of (S5.23).

Clearly, the upper bound of (S5.22) reduces to

P (L̂ ≠ L) ≤P (ξc1) ≤
T−2∑
t=0

P (ξc1,t) =
T−2∑
t=0

P

(
max
j,m∈Ct

|Γ̂jm − Γjm| >
ηmin

2

)
≤Tp2 max

j,m∈Ct
P
(
|Γ̂jm − Γjm| >

ηmin

2

)
≤C0Tp

2
√
k/n,
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for some positive constant C0 and the last inequality follows from the

Markov’s inequality by Theorem 2. This completes the proof of Theorem

3. ■

In practice, the tuning parameter ϵt are chosen by the stability selec-

tion method (Sun et al., 2013), which is originally proposed to choose the

tuning parameter for variable selection. Note that Assumptions 1 and 2

in Sun et al. (2013) can be verified in our case with λ = 1/ϵt. For exam-

ple, we illustrate that Assumption 1 in Sun et al. (2013) holds in terms

of ϵ0. Since Theorem 3 implies that the layer recovery consistency re-

sult holds if ϵ0 ∈ (r0, ηmin/2] for some r0 > 0, we have P (Âϵ0∗ = A0) ≥

1 − an for some an → 0 as n → ∞ if ϵ0
∗ ∈ (r0, ηmin/2]. Furthermore,

this yields that P (∩λ0r0≤ϵ0≤ϵ∗0{Âϵ0 = A0}) ≥ 1 − c0(λ0) with c0(λ0) =

P (there exists some m ∈ A0 such that maxj∈Ĉ1 |Γ̂jm − 1| < ϵ0, ξ1) → 0 as

λ0 diverges. Therefore, the required Assumption 1 in Sun et al. (2013) is

verified.

S6 Proof of Proposition 1

Since a very appealing CIT measure aimed to the sub-exponential distribu-

tions is proposed in Azadkia and Chatterjee (2021), our goal is to extend the

CIT measure to accommodate the heavy-tailed distributions. Denote X̃n
i as

the nearest neighbor (NN) of Xn
i among Xn

1 , . . . ,X
n
i−1,X

n
i+1, . . . ,X

n
n. Note
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that Lemma 14.1 in Azadkia and Chatterjee (2021) establishes the upper

bound for E(∥Xn
i − X̃n

i ∥) for each i = 1, . . . , n, under the sub-exponential

distribution assumption. Next, we first provide the corresponding result for

the variables from the heavy-tailed distributions, given in Lemma 8 below.

Lemma 8. Under the heavy-tailed distribution assumption (2.2), there ex-

ists a positive constant C6 which may rely on cj in (2.2) and |St| such that

E(min{∥Xn
1 − X̃n

1∥, 1}) ≤


C6n

−1(log n)3, |St| ∈ {1, 2},

C6n
−1/p(log n)|St|, |St| ≥ 3.

Proof of Lemma 8: The proof of Lemma 8 is similar to that of Lemma

14.1 in Azadkia and Chatterjee (2021), and here we only point out the dif-

ferences. Since the heavy-tailed assumption (2.2) implies that P (Xj > t) ∼∑
k∈Anj

πjkh(t)t
−θ as t→∞, for ε ∈ (n−1/|St|, 1), any t > 0, and some con-

stants C7, C8 > 0, we have

P (∥Xn
1 − X̃n

1∥ ≥ ε) ≤C7
1

tθ
+ (1− δ)n−1 + C8t

|St|ε−|St|δ ≤ C5(log n)
|St|+1

nε|St|
,

with δ = C9
logn
n2|St| and t = C9nε

|St| for some large enough C9 > 0 and C7 is

determined by πjk and h(t). The completes the proof. ■

Note that we replace Lemma 14.1 in Azadkia and Chatterjee (2021)
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with our modified Lemma 8 here, and thus we can apply other results in

Azadkia and Chatterjee (2021) under the heavy-tailed distribution assump-

tion in the proof of Proposition 1.

For convenience, we give some notations below. LetXn
m = (Xn

1,m, . . . , X
n
n,m)

T

for m = 1, . . . , p and Xn
St\{j} = (Xn,T

1,St\{j}, . . . ,X
n,T
n,St\{j})

T . Recall that the

CIT measure Qm,j,t is defined in (3.6), we rewrite it as

Qm,j,t :=
Y (Xm, Xj|XSt\{j})
Z(Xm, Xj|XSt\{j})

:=
Y

Z
.

For its estimator Q̂m,j,t given in Azadkia and Chatterjee (2021), we have

Q̂m,j,t =

∑n
i=1{min(Ri, RNM(i))−min(Ri, RNN(i))}∑n

i=1{Ri −min(Ri, RNN(i))}

:=
Yn(Xm, Xj|XSt\{j})
Zn(Xm, Xj|XSt\{j})

:=
Yn
Zn

,

where Ri is the rank of Xn
i,St\{j}, and NN(i) and NM(i) are the indices of

NN of Xn,T
i,St\{j} and Xn,T

i,St , respectively, with

Ri =
n∑

i1=1

I(Xn,T
i1,St\{j} ≤ Xn,T

i,St\{j}),

NN(i) =
{
i1 ̸= i : Xn,T

i1,St\{j} is the NN of Xn,T
i,St\{j}

}
,

NM(i) =
{
i1 ̸= i : Xn,T

i1,St is the NN of Xn,T
i,St

}
.
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In practice, the asymptotic variance σ2 can be estimated by nearest

neighbor graphs guided by Lemma 3.2 and 3.3 in Shi et al. (2024) with σ2 =

4
5
+ 2

5
(q|St|+ q|St|−1)+

4
5
(o|St|+ o|St|−1) where qh and oh denote as the sample

proportion of the nearest neighbor and the v structure in a h-dimensional

vector, respectively. Denote GNN as a directed nearest neighbor graph with

n nodes and its edge sets ENN . The graph GNN contains a directed edge from

i1 to i2 if Ji1 is a nearest neighbor of Ji2 with J = {Ji ∈ Rp, i = 1, . . . , n}.

Thus, σ2 can be estimated with

σ̂2 =
4

5
+

2

5
(q̂|St| + q̂|St|−1) +

4

5
(ô|St| + ô|St|−1)

where q̂h = Ê( 1
n
#{(i1, i2) : i1 → i2 and i2 → i1 ∈ ENN}), and ôh =

Ê( 1
n
#{(i1, i2, i3) : i1 → i3 ← i2 ∈ ENN}) with h ∈ {|St|, |St| − 1}, which are

the empirical versions of qh and oh, respectively. It is important to remark

that the bootstrap method Efron (1992) can also be used to estimate the

variance σ2 with the extensive computational cost.

Proof of Proposition 1: Note that for any η > 0,

P (|Q̂m,j,t −Qm,j,t| ≤ η) =P
(∣∣Yn − Y

Zn

− Y

Z

Zn − Z
Zn

∣∣ ≤ η
)

≥1− P
(∣∣Yn − Y

Zn

∣∣ > η

2

)
− P

(∣∣Y
Z

Zn − Z
Zn

∣∣ > η

2

)
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:=1− V1 − V2. (S6.24)

We first deal with the term V1. It follows from Lemma 13.1 in Azadkia

and Chatterjee (2021) that

Yn(Xm, Xj|XSt\{j}) = Yn(Xm,XSt)− Yn(Xm,XSt\{j}),

Y (Xm, Xj|XSt\{j}) = Y (Xm,XSt)− Y (Xm,XSt\{j}),

where

Y (Xm,XSt) =

∫
V ar (P (Xm ≥ t|XSt)) dFm(t),

Yn(Xm,XSt) =
1

n

n∑
i=1

min{Fn,m(X
n
i,m), Fn,m(X

n
N(i),m)} −Gn,m(X

n
i,m)

2,

(S6.25)

with Fn,m(t) = 1
n

∑n
i=1 1{Xn

i,m ≤ t}, Gn,m(t) = 1
n

∑n
i=1 1{Xn

i,m ≥ t}, and

N(i) = {j : Xn
j,m is the nearest-neighbor of Xn

n,m for1 ≤ j ≤ n and j ̸= i}.

Therefore, there holds that

V1 =1− P (|Yn − Y | ≤
η

2
|Zn|)

=1− P (|Yn(Xm,XSt)− Y (Xm,XSt)

−[Yn(Xm,XSt\{j})− Y (Xm,XSt\{j})]
∣∣ ≤ η

2
|Zn|)
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≤P (|Yn(Xm,XSt)− Y (Xm,XSt)| ≥
η

4
|Zn|)

+ P (
∣∣Yn(Xm,XSt\{j})− Y (Xm,XSt\{j})

∣∣ ≥ η

4
|Zn|)

:=V11 + V12.

Next, we first focus on the term V11, and omit the proof details for V12

as they are similar. We define Y ′n(Xm,XSt) as the statistic by replacing

the empirical distribution function in (S6.25) with the true one such that

Y ′n(Xm,XSt) = 1
n

∑n
i=1min{Fm(X

n
i,m), Fm(X

n
N(i),m)} − Gm(X

n
i,m)

2. There-

fore, we have

V11 =P
(∣∣Yn(Xm,XSt)− E[Yn(Xm,XSt)] + E[Yn(Xm,XSt)]− E[Y ′n(Xm,XSt)]

+ E[Y ′n(Xm,XSt)]− Y (Xm,XSt)
∣∣ ≥ η

4
|Zn|

)
≤C11 exp(−C12nη

2|Zn|2)

holds for some positive constants C11, C12 > 0 by Lemma 14.2 in Azad-

kia and Chatterjee (2021). It follows from Lemma 13.2 in Azadkia and

Chatterjee (2021) that

|Zn| =
∣∣ 1
n

n∑
i=1

(F̂n,m(X
n
i,m)−min{F̂n,m(X

n
i,m), F̂n,m(X

n
N(i),m)})

∣∣.
Thus, the upper bound of |Zn| is 2 by applying triangle inequality. Mean-
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while, the lower bound of |Zn| is obtained with o(1/
√
n) + C10 by the con-

vergence rate of the empirical cdf for some constant C10 > 0. This leads to

that

V11 ≤ C11 exp(−C12nη
2).

Similar to the treatment as in V1, we consider the term V2 and apply

Lemmas 13.2 and 13.3 in Azadkia and Chatterjee (2021),

V2 ≤ C13 exp(−C14nη
2),

for constants C13, C14 > 0. Then, it yields from (S6.24) that

sup
m∈At,j∈St

P (|Q̂m,j,t −Qm,j,t| > η) ≤ V1 + V2 ≤ C15 exp(−C16nη
2),

for constants C15, C16 > 0. This completes the proof. ■

S7 Proof of Theorem 4

Note that

P (Ĝ ̸= G) =P (Ĝ ̸= G, L̂ = L) + P (Ĝ ≠ G, L̂ ≠ L)

≤P (Ĝ ̸= G, L̂ = L) + P (L̂ ≠ L), (S7.26)

where the second term converges to 0 if n = Ω(T 2/(2−γ)p4/(2−γ)) by Theorem

3. Next, we focus on the first term in the right hand of (S7.26).
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Specifically, we estimate directed edges by testing whether m ∈ At and

j ∈ St are dependent while conditioning on St\{j} for t = 1, 2, . . . , T − 1 if

the event L̂ = L is given. The hypothesis test is given as in (3.5) and we

denoteMm,j as the the event that we make an error while performing one

CIT procedure for nodes m, j with its conditioning set St\{j}. Therefore,

we obtainMm,j =MI
m,j ∪MII

m,j, where

Type I error:MI
m,j =

{√
n|Q̂m,j,t|/σ̂2 > Φ−1(1− α/2) and Qm,j,t = 0

}
,

Type II error:MII
m,j =

{√
n|Q̂m,j,t|/σ̂2 ≤ Φ−1(1− α/2) and Qm,j,t ̸= 0

}
.

Therefore, we have

P (Ĝ ̸= G, L̂ = L) ≤p2P (∪m∈At,j∈StMm,j)

≤p2 sup
m∈At,j∈St

[
P (MI

m,j) + P (MII
m,j)
]
.

Then, it suffices to bound both P (MI
m,j) and P (MII

m,j).

We choose α = αn = 2(1−Φ(
√
nϕn/σ

2)) where ϕn satisfies Assumption

5 and obtain that

sup
m∈At,j∈St

P (MI
m,j) = sup

m∈At,j∈St
P (
√
n|Q̂m,j,t −Qm,j,t|/σ̂2 > Φ−1(1− α/2))

≤ sup
m∈At,j∈St

P (|Q̂m,j,t −Qm,j,t| > ϕnσ̂
2/σ2), (S7.27)
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and

sup
m∈At,j∈St

P (MII
m,j) = sup

m∈At,j∈St
P (
√
n|Q̂m,j,t|/σ̂2 ≤ Φ−1(1− α/2))

≤ sup
m∈At,j∈St

P (|Q̂m,j,t −Qm,j,t| > ϕn − ϕnσ̂
2/σ2).

(S7.28)

Combining (S7.27) and (S7.28), we apply Proposition 1,

P (Ĝ ̸= G, L̂ = L) ≤p2 sup
m∈At,j∈St

P (Mmj) ≤ exp
(
2 log p− nϕ2

n(σ̂
2/σ2)2

)
.

(S7.29)

Note that the convergence rate of the variance estimator σ̂2 has not been

directly established in the literature and only the consistency is derived in

Devroye (1988) and Henze (1988). Since the expected number of the nearest

neighbor pairs qh and oh in σ2 is based on the the nearest neighbor distance,

whose convergence rate is given in Biau and Devroye (2015), we can directly

obtain that σ̂2/σ2 = 1+Op(1/n
ξ) with ξ ≤ min

{
1
2
, 2
|St|

}
, where ξ is related

to the convergence rate of the variance estimator σ̂2 .

By Theorem 3, P (L̂ ≠ L)→ 0 if 2 log p ≤ 2−γ
2

log n < 1
2
log n for T ≥ 1.

Combining with (S7.29) and the convergence rate of σ̂2, we obtain

P (Ĝ ̸= G, L̂ = L) ≤ exp
(1
2
log n− n1−2c(1 +Op(1/n

ξ))2
) P→ 0,
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as n→ ∞ if 1−ξ
2
< c < 1

2
for ξ ∈ (0, 1

2
] holds in Assumption 5. This result

combines with (S7.26) and yields that P (Ĝ ≠ G) P→ 0 as n → ∞. This

completes the proof of Theorem 4. ■

S8 Theoretical results for Real-valued coefficients

In this section, we relax the positive assumption of βjm in (2.1), by allowing

βjm ∈ R for j,m ∈ V . Different from (2.2), to describe both the upper and

lower tails of the noise term, we define

P (εj > x) ∼ cj,+h(x)x
−θ, P (εj < −x) ∼ cj,−h(x)x

−θ, (S8.30)

as x → ∞, cj,+, cj,− > 0 and h(·) ∈ RV0. Similar to Gnecco et al. (2021),

the causal tail coefficient matrix λ = (λjm)
p
j,m=1 ∈ Rp×p is given as,

λjm = lim
u→1−

E(µ(Fm(Xm))|µ(Fj(Xj)) > u), (S8.31)

where we consider the effect of both tails and assume that the limit exists

for the function µ : x→ |2x− 1|. Then, λjm in (S8.31) is decomposed as

λjm = lim
u→1−

1

2
E(µ(Fm(Xm))|Fj(Xj) > u) + lim

u→0+

1

2
E(µ(Fm(Xm))|Fj(Xj) < u)

:=λjm,+ + λjm,−, (S8.32)
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where λjm,+ and λjm,− represent the extremely large and extremely small

cases for Xj. Now, we give the following Theorem S1 to recover the topo-

logical layers of a heavy-tailed DAG for the real-valued coefficients based

on λ, similar to Theorem 1.

Theorem S1. We consider the heavy-tailed linear SCM model in (2.1)

with βjm ∈ R. Assume that πjm ̸= 0 if m is an ancestor of j. Given

A0, . . . ,At−1, we let C0 = V and Ct = V\
⋃t−1

d=0Ad, and then there holds that

At = {m ∈ Ct : max
j∈Ct

λjm < 1}.

We define the lower tail dependence between two random variables Xj

and Xm as L(x, y) = limt→0+
1
t
P (Fj(Xj) ≤ tx, Fm(Xm) ≤ ty) for (x, y) ∈

[0,∞]2\{(∞,∞)} and j,m ∈ {1, . . . , p}. Different from the right-hand

heavy-tailed assumption in (2.2), the left-hand lower tail assumption in

(S8.30) implies that limt→−∞ Fj(tx)/Fj(t) = x−θ for x > 0 and we define

U−j = (1/Fj)
←.

Assumption S1. There exist τ ′1, τ
′
2 < 0 and τ ′3 < −1 such that as t→∞,

sup
0<x<∞,1/2≤y≤2

|tP (Fj(Xj) ≤ x/t, Fm(Xm) ≤ y/t)/L(x, y)− 1| = O(tτ
′
1),

sup
0<x<∞

|g−t (x) + θx1+1/θ| = O(tτ
′
2),

∣∣1
2
E (1− 2Fm(Xm)|Fj(Xj) < 1/t)− λjm,−

∣∣ = O(t(τ
′
3−1)/2),



S8. THEORETICAL RESULTS FOR REAL-VALUED COEFFICIENTS

with g−t (xj) = tU−j (t)fj(U
−
j (t)x

−1/θ
j ) for xj > 0.

Assumption S2. There exist ρ′ < 0 and a function A′1 such that as t→∞,

A′1(tx)/A
′
1(t)→ xρ

′
for all x > 0 and supx>1

∣∣x−1/θ U−
j (tx)

U−
j (x)
− 1
∣∣ = O(A′1(t)).

Assumption S3. As n → ∞, k = O(nγ) for some γ satisfying 0 < γ <

min
{ 2τ ′1

2τ ′1−1
,

2τ ′2
2τ ′2−1

, 2ρ′

2ρ′+θ(ρ′−1)

}
.

With slight modifications from Assumptions 1–3 in the main text, we

propose Assumptions S1–S3 to deal with the case for the lower tail when

the extreme small values occur.

Theorem S2. Assume the heavy-tailed SCM (2.1) is encoded with the real-

valued coefficients. Let λ̂jm be the estimator of λjm given in (S8.31). Under

the conditions of Theorem 2 where
∣∣1
2
E (2Fm(Xm)− 1|Fj(Xj) > 1− 1/t)−

λjm,+

∣∣ = O(t(τ3−1)/2) replaces (4.9) in Assumption 1, suppose that Assump-

tions S1–S3 also hold. Therefore, we have

n√
k

[
λ̂jm − λjm

] d→ Θ̃,

where Θ̃ = (1/θ−1)WR(∞, 1)
∫∞
0

[R(s, 1)− L(s, 1)] ds−2
∫∞
0
WR(s, 1)ds

−1/θ.

Similar to Theorem 2, the asymptotic normality for λ̂jm is derived. Note

that the limiting distribution Θ in Theorem 2 is slightly different from Θ̃ in

Theorem S2, where both the left-hand lower tail dependence L(·, ·) and the



Wei Zhou, Xueqian Kang, Wei Zhong and Junhui Wang

right-hand upper tail dependence R(·, ·) are introduced in the first term of

Θ̃, as well as the constant 2 in the second term of Θ̃. This fact coincides

with the decomposition of λjm in (S8.32).

Theorem S3. Assume the heavy-tailed SCM (2.1) is encoded with real-

valued coefficients. Let Ĝ be the estimated DAG based on λ̂. Under the

conditions of Theorem S2, we assume that Assumptions 4–5 hold. If n =

Ω(p4/(2−γ)), we have

P (Ĝ = G)→ 1, as n→∞.

Theorem S3 shows that the heavy-tailed DAG, encoded with a SCM

(2.1) with real-valued coefficients, can be consistently recovered by the ma-

trix λ̂. It requires similar conditions to Theorem 4 and relaxes the positive

assumption of direct causal effects, indicating the general applicability of

our proposed method.

S9 Proof of Theorem S1

Lemma 9. (Theorem 3 in Gnecco et al. (2021)) Under the heavy-tailed

linear SCM model in (2.1) and the coefficient βjm ∈ R. We assume πjm ̸= 0

if m is an ancestor of j. For any two variables Xj and Xm, there holds that

λjm =
1

2
+

∑
l∈Anj∩Anm

cjl,+|πjl|θ

4
∑

l∈Anj
cjl,+|πjl|θ

+

∑
l∈Anj∩Anm

cjl,−|πjl|θ

4
∑

l∈Anj
cjl,−|πjl|θ

, (S9.33)
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where cjl,+ = cl,+, cjl,− = cl,− for πjl > 0 and cjl,+ = cl,−, cjl,− = cl,+ for

πjl < 0

Further, Table S2 gives the corresponding values of λjm when: (a) j ∈

Anm; (b) m ∈ Anj; (c) Anj ∩ Anm = ∅; or (d) Anj ∩ Anm ̸= ∅ neither

j /∈ Anm nor m /∈ Anj.

Table S2: Values of λjm and λmj under different scenarios, where − indicates impossible
scenarios under the heavy-tailed linear SCM model (2.1).

λmj = 1 λmj ∈ (1/2, 1) λmj = 1/2
λjm = 1 − (a) −
λjm ∈ (1/2, 1) (b) (d) −
λjm = 1/2 − − (c)

Based on the result of Lemma 9, the proof of Theorem S1 is identical

to that of Theorem 1, by replacing Γjm with λjm and referring to Lemma

9 rather than Lemma 1. Therefore, we omit the details here.

S10 Proof of Theorem S2

Note that

λ̂jm − λjm =(λ̂jm,+ + λ̂jm,−)− (λjm,+ + λjm,−)

=(λ̂jm,+ − λjm,+) + (λ̂jm,− − λjm,−). (S10.34)

To derive the asymptotic normality property of λ̂jm, we need to establish

the asymptotic normality of λ̂jm,+ and λ̂jm,−, respectively. We first focus
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on λ̂jm,+.

Lemma 10. For both upper and lower tails, we have

lim
u→1−

1

2(1− u)
E(2Fm(Xm)− 1|Fj(Xj) > u) =

∫ ∞
0

R(1− Fm(s), 1)dFm(s),

(S10.35)

lim
u→0+

1

2u
E(1− 2Fm(Xm)|Fj(Xj) < u) =

∫ ∞
0

L(Fm(s), 1)dFm(s).

(S10.36)

Proof of Lemma 10: Since the proof of Lemma 10 is similar to that

of Lemma 2, we only show the differences and omit the details here. Note

that

1

2
E(2Fm(Xm)− 1|Fj(Xj) > u) =

1

2

∫ ∞
0

2P (Xm > s|Fj(Xj) > u)dFm(s)

=

∫ ∞
0

P (Xm > s|Fj(Xj) > u)dFm(s),

and

1

2
E(1− 2Fm(Xm)|Fj(Xj) < u) =

−2
2

∫ 0

−∞
P (Xm < s|Fj(Xj) < u)dFm(s)

=

∫ ∞
0

P (Xm < s|Fj(Xj) < u)dFm(s).

By referring to the proof of Lemma 2, the desired result is obtained. This

completes the proof of Lemma 10. ■
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Similar to (S4.4), we define λ̃
1−ky/n
jm,+ as a random function over the in-

terval [1/2, 2],

λ̃
1−ky/n
jm,+ =

1

2ky

n∑
i=1

(2F̂m(X
n
i,m)− 1)1

{
Xn

i,j > Uj(
n

ky
)
}
.

The asymptotic behaviour of λ̃
1−ky/n
jm,+ is given in Lemma 11 by applying the

results in Lemmas 3–5.

Lemma 11. Suppose that Assumption 2 holds and for θ > 1, we have

sup
1/2≤y≤2

∣∣∣ n√
k

(
λ̃
1−ky/n
jm,+ − 1

2
E
(
2Fm(Xm)− 1|Fj(Xj) > 1− ky

n

))
+

1

y

∫ ∞
0

WR(x, y)dx
−1/θ

∣∣∣ P→ 0.

Combining Lemmas 10–11 with Lemma 7, we similarly establish the

asymptotic result for λ̃jm,+ as follows

n√
k
(λ̃jm,+ − λjm,+)

d→ Θ, (S10.37)

where Θ is given in Theorem 2.

Next, we deal with λ̂jm,−. Define the estimator as

λ̂
k/n
jm,− = λ̂jm,− =

1

2k

n∑
i=1

(1− 2F̂m(X
n
i,m))1{Xn

i,j < Xn
(k),j},

=
1

2k

n∑
i=1

(1− 2F̂m(X
n
i,m))1

{
Xn

i,j < Uj(
n

(n− k)e−n
)
}
,
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since e−n = n
(n−k)(1 − Fj(X

n
(k),j))

P→ 1 as n → ∞. Furthermore, we denote

λ̃
1−k·/n
jm,− as a random function over the interval [1/2, 2],

λ̃
ky/n
jm,− =

1

2ky

n∑
i=1

(1− 2F̂m(X
n
i,m))1

{
Xn

i,j < Uj

( n

(n− k)y
)}
.

We write Ln(xj, xm) = (n/k)P (Fj(Xj) ≤ kxj/n, Fm(Xm) ≤ kxm/n)

and its pseudo estimator is given as Vn(xj, xm) = 1
k

∑n
i=1 1{Fj(Xj) ≤

kxj/n, Fm(Xm) ≤ kxm/n}. Now, we first give the asymptotic behaviour

of the pseudo estimator Vn(·, ·) in the following Lemma 12. Different from

the right-hand heavy-tailed assumption in (2.2), the left-hand lower tail as-

sumption in (S8.30) implies that limt→−∞ Fj(tx)/Fj(t) = x−θ and we define

U−j = (1/Fj)
←. Denote s−n (x) = (n/k)Fm

(
U−m
(
n
k

)
x−1/θ

)
and its derivative

g−n
k
(x) = n

k
U−m
(
n
k

)
fm
(
Um

(
n
k

)
x−1/θ

)
for x < 0. Note that s−n (x) → x as

n→∞ implies that g−n
k
(x)→ −θx1+1/θ.

Next, we first establish the asymptotic result for the pseudo estimator

for the lower tail, similar to Lemma 3 in Cai et al. (2015).

Lemma 12. Assume that this limit L(x, y) = limt→0+
1
t
P (Fj(Xj) ≤ tx, Fm(Xm) ≤

ty) exists for (x, y) ∈ [0,∞]2\{(∞,∞)} and j,m ∈ {1, . . . , p}. For any

η ∈ [0, 1
2
) and positive ℓ, with probability one, there holds that

sup
x,y∈(0,ℓ]

∣∣∣√k(Vn(x, y)− Ln(x, y))−WR(x, y)

xη

∣∣∣→ 0,
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sup
x∈(0,ℓ]

∣∣∣√k(Vn(x,∞)− x)−WR(x,∞)

xη

∣∣∣→ 0,

sup
y∈(0,ℓ]

∣∣∣√k(Vn(∞, y)− y)−WR(x,∞)

yη

∣∣∣→ 0.

Since the lower tail dependence of the random vector (Xj, Xm) is equiv-

alent to the upper tail dependence of the random vector (−Xj,−Xm), we

have

L(x, y) = lim
t→0+

1

t
P (Fj(Xj) ≤ tx, Fm(Xm) ≤ ty)

= lim
t→∞

tP (Fj(−Xj) ≤ x/t, Fm(−Xm) ≤ y/t),

which is the right-hand upper tail dependence between two random vari-

ables −Xj and −Xm by definition. Therefore, the proof of Lemma 12 is

similar to that of Proposition 3.1 in Einmahl et al. (2006) , and thus omitted

here.

Lemma 13. Suppose that Assumption S2 holds and for θ > 1, we have

sup
1/2≤y≤2

∣∣∣ n√
k

(
λ̃
ky/n
jm,− −

1

2
E
(
1− 2Fm(Xm)|Fj(Xj) <

ky

n

))
+

1

y

∫ ∞
0

WR(x, y)dx
−1/θ

∣∣∣ P→ 0.

Proof of Lemma 13: Note that
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E(1− 2Fm(Xm)|Fj(Xj) < ky/n) = −2
∫ 0

−∞
P (Xm ≤ s|Fj(Xj) < ky/n)dFm(s)

=− 2

ky/n

∫ 0

−∞
P (Fm(Xm) ≤ Fm(s), Fj(Xj) ≤ ky/n)dFm(s).

The above equality multiplies y/2 in both sides and we obtain that

y

2
E(1− 2Fm(Xm)|Fj(Xj) < ky/n)

=− n

k

∫ 0

−∞
P (Fm(Xm) ≤ Fm(s), Fj(Xj) ≤ ky/n)dFm(s)

=− n

k

∫ 0

−∞
P (Fm(Xm) ≤

k

n

nFm(s)

k
, Fj(Xj) ≤

ky

n
)dFm(s)

=−
∫ 0

−∞
Ln(

nFm(s)

k
, y)dFm(s)

=

∫ ∞
0

Ln(
n

k
Fm(s), y)dFm(s)

=U−m(
n

k
)

∫ ∞
0

Ln(s
−
n (x), y)fm(U

−
m(
n

k
)x−1/θ)dx−1/θ, (S10.38)

where the last step follows from the fact that

∫ ∞
0

Ln(s
−
n (x), y)fm(U

−
m

(n
k

)
x−1/θ)dx−1/θ

=

∫ ∞
0

Ln(
n

k
Fm(U

−
m(
n

k
)x−1/θ), y)fm(U

−
m(
n

k
)x−1/θ)dx−1/θ

=
1

U−m(
n
k
)

∫ ∞
0

Ln(
n

k
Fm(s), y)dFm(s).

Similar to (S10.38), we also have
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yλ̃
ky/n
jm,− = U−m(

n

k
)

∫ ∞
0

Vn(s
−
n (x), y)fm(U

−
m(
n

k
)x−1/θ)dx−1/θ.

Similar to in Lemma 6, for any L > 0,

sup
1/2≤y≤2

∣∣∣ n√
k
(yλ̃

ky/n
jm,− −

y

2
E(1− 2Fm(Xm)|Fj(Xj) <

ky

n
))

+

∫ ∞
0

WR(x, y)dx
−1/θ

∣∣∣
= sup

1/2≤y≤2

∣∣∣ ∫ ∞
0

√
k
(
Vn(s

−
n (x), y)− Ln(s

−
n (x), y)

)
g−n

k
(x)dx−1/θ

+

∫ ∞
0

WR(x, y)dx
−1/θ

∣∣∣
≤ sup

1/2≤y≤2

∣∣∣ ∫ ∞
L

WR(x, y)dx
−1/θ

∣∣∣
+ sup

1/2≤y≤2

∣∣∣ ∫ ∞
L

√
k
(
Vn(s

−
n (x), y)− Ln(s

−
n (x), y)

)
g−n

k
(x)dx−1/θ

∣∣∣
+ sup

1/2≤y≤2

∣∣∣ ∫ L

0

√
k
(
Vn(sn(x), y)− Ln(sn(x), y)

)
g−n

k
(x)−WR(x, y)dx

−1/θ
∣∣∣

:=K−1 (L) +K−2,n(L) +K−3,n(L).

Similar to (S4.6) in Lemma 6, the three terms K−1 (L), K
−
2,n(L), K

−
3,n(L) can

be bounded by using the same technique in the proof of Lemma 6 by using

Assumption S2 and by referring to Lemmas 4, 5, and 12. Therefore, we

omit the details here. This completes the proof of Lemma 13. ■

Lemma 14. Suppose that Assumptions 1 and 3 are satisfied. Therefore,

there holds that
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sup
1/2≤y≤2

√
k
∣∣∣ ∫ ∞

0

Ln(s
−
n (x), y)g

−
n
k
(x) + L(x, y)θx1+1/θdx−1/θ

∣∣∣→ 0, as n→∞.

Similar to Lemma 7, we establish the non-stochastic limit relationship

result in Lemma 14. This combines with Lemma 13 and the proof of The-

orem 2, and thus we derive the asymptotic normality of λ̂jm,− similarly.

Here, we only provide the proof sketch and list the main differences below.

Proof of Lemma 14: Different from (S4.20) and (S4.21), it follows from

(S10.38) and Lemma 14 that for lower tails

enn

2k
E(1− 2Fm(Xm)|Fj(Xj) <

ken
n

)

=

∫ ∞
0

Ln(s
−
n (x), en)g

−
n
k
(x)dx−1/θ = −

∫ ∞
0

L(x, en)θx
1+1/θdx−1/θ + op(1/

√
k),

and

n

2k
E(1− 2Fm(Xm)|Fj(Xj) <

k

n
)

=

∫ ∞
0

Ln(s
−
n (x), 1)g

−
n
k
(x)dx−1/θ = −

∫ ∞
0

L(x, 1)θx1+1/θdx−1/θ + op(1/
√
k).

This yields that

n√
k

[e−n
2
E(1− 2Fm(Xm)|Fj(Xj) <

ke−n
n

)− 1

2
E(1− 2Fm(Xm)|Fj(Xj) <

k

n
)
]

=
√
k
[ ∫ ∞

0

L(x, 1)θx1+1/θdx−1/θ −
∫ ∞
0

L(x, e−n )θx
1+1/θdx−1/θ + op(1/

√
k)
]
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=
√
k(1− (e−n )

1−1/θ)

∫ ∞
0

L(x, 1)θx1+1/θdx−1/θ + op(1)

P→(1− 1/θ)WR(∞, 1)
∫ ∞
0

L(x, 1)x1+1/θdx−1/θ. (S10.39)

Combining with Lemma 13, (S10.39), and Assumption S1, thus we have

n√
k
(λ̂jm,− − λjm,−)

=
n√
k
(λ̂jm,− −

1

2
E(1− 2Fm(Xm)|Fj(Xj) <

k

n
))

+
n√
k
(
1

2
E(1− 2Fm(Xm)|Fj(Xj) <

k

n
)− λjm,−)

=
n√
k

{
e−n λ̃

ke−n /n
jm,− −

e−n
2
E(1− 2Fm(Xm)|Fj(Xj) <

ke−n
n

)
}

+
n√
k

{e−n
2
E(1− 2Fm(Xm)|Fj(Xj) <

ke−n
n

)

− 1

2
E(1− 2Fm(Xm)|Fj(Xj) <

k

n
)
}

+
n√
k

{1
2
E(1− 2Fm(Xm)|Fj(Xj) <

k

n
)− λjm,−

}
d→−

∫ ∞
0

WR(x, 1)dx
−1/θ + (1− 1/θ)WR(∞, 1)

∫ ∞
0

L(x, 1)x1+1/θdx−1/θ.

(S10.40)

As a consequence, it follows from (S10.34), (S10.37), and (S10.40) that

n√
k
(λ̂jm − λjm)

d→(1/θ − 1)WR(∞, 1)
∫ ∞
0

(R(s, 1)− L(s, 1))ds− 2

∫ ∞
0

WR(s, 1)ds
−1/θ.
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This completes the proof of Theorem S2. ■

Proof of Theorem S3: It follows from Theorem S2 that the topological

layers of a heavy-tailed DAG can be exactly recovered based on λ̂, and the

proof is similar to that of Theorem 3 with slight modifications. Then, this

combines with the proof of Theorem 4, which leads to Theorem S3, and

thus we omit it here. ■

S11 Additional Figures and Tables

To select an optimal value of k for estimating causal tail dependence Γ, we

choose k = ⌊nγ⌋ with different choices of γ ∈ {0.2, 0.25, · · · , 0.7} where ⌊x⌋

is the greatest integer less than or equal to x. We consider a hub graph and

generate the data from the Student-t distribution with degree of freedom

{1, 2, 3} and Cauchy distribution with scale {1, 3, 9} and location 3, respec-

tively, to evaluate the performance metrics of TopHeat in Figure S1. It is

worth pointing out better performance requires larger k for the Student-t

distribution with smaller degree of freedom, and also for the Cauchy dis-

tribution with different scales. This fact reflects that the best choice for

γ largely depends on the tail heaviness of the noise terms, which also cor-

responds to Assumption 3 where k/n → 0 and k → ∞ as n → ∞. In

practice, we take k = ⌊n0.5⌋ since it is located within the best range of γ



S11. ADDITIONAL FIGURES AND TABLES

under different settings.

Figure S1: The figure presents the results of HM, Recall, Precision, and F1-score of
TopHeat for k = ⌊nγ⌋ with different values of γ ∈ {2.0, 2.5, · · · , 7}. Each point records
the average of 50 repeated experiments and 6 settings with n ∈ {500, 1000} and p ∈
{5, 10, 50}.

To determine the parameters (a,B) in the stability selection method, we

choose the tuning parameter ϵt from the grids {10−2+0.05s, s = 0, 1, . . . , 35}.

It is illustrated in Figure S2 that the effects of different values of a and B

on the estimation accuracy is negligible when p and n are relatively small,

while smaller a and larger B lead to better performance when p and n are

larger. This coincides with the fact that the threshold a and the number

of repetition B vary from p and n, which is supported by the discussion

in Section S5. Therefore, we set (a,B) = (10−1, 5) for p ∈ {5, 20}, and

(a,B) = (10−1.5, 25) for p = 50 in simulated examples.
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(a) (n, p) = (500, 5) (b) (n, p) = (5000, 50)

Figure S2: The figure displays a heatmap of performance metrics for the TopHeat algo-
rithm, with the varying repetitions B ∈ {5, 10, · · · , 40} and the thresholds a ∈ {10−s, s =
1, 1.5, · · · , 4} in stability selection. Figure S2(a) in the left panel and Figure S2(b)
in the right panel correspond to the estimation accuracy results of a hub graph with
(n, p) = (500, 5) and (n, p) = (5000, 50), respectively.

During the CIT procedure of the TopHeat algorithm, a random error is

considered as the conditional variable when |Ŝt| = 1 and we choose it follows

from a standard normal distribution. This is verified by preliminary exper-

iments depicted in Figure S3, which suggests that the estimation accuracy

of TopHeat is not significantly affected by different choices of the error dis-

tribution, including Gaussian, Student-t, Cauchy, and Uniform. However,

Gaussian-distributed errors yield more robust performance compared with

other distributions.

Furthermore, we investigate the performance metrics of TopHeat for

different significant levels α for CIT methods in Figure S4. While consid-

ering the Student-t distribution with 1 degree of freedom and the averaged
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Figure S3: The figure illustrates the estimation results of TopHeat with random errors
drawn from various distributions, depicted by different colored lines. The horizontal axis
delineates 10 distinct settings: (1) t distribution, df=1, linear; (2) t distribution, df=2,
linear; (3) t distribution, df=3, linear; (4) Cauchy, scale=1, linear; (5) Cauchy, scale=3,
linear; (6) Cauchy, scale=9, linear; (7) t distribution, df=1, nonlinear; (8) t distribution,
df=2, nonlinear; (9) t-distribution, df=3, nonlinear; (10) Cauchy, scale=1, nonlinear.
Each point represents the average of 50 repeated experiments across 6 combinations
with n ∈ {500, 1000} and p ∈ {5, 10, 50}.

metrics of three different graphs, we observe that smaller α leads to bet-

ter performance for a small graph with p = 5, and larger α yields higher

accuracy of graph estimation for large graphs when p ∈ 20, 50. The re-

sults indicate that a uniform significant level only controls node-wise false

discoveries, but fails in the graph-wise manner, which is supported by Li

and Maathuis (2021). Theoretically, this finding agrees with Assumption

5, where α is correlated with ϕn. In the sequel, we also consider that the

significance level α should be smaller and tend towards zero as p and n

approach infinity, and choose (α, p) ∈ {(10−2, 5), (10−5, 20), (10−10, 50)} in

simulation studies.
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Figure S4: The figure shows the estimation of performance metrics of TopHeat with
different α with α = 10−s, s ∈ {1, · · · , 12}. Each point records the average of 30 repeated
experiments under different settings.

Figure S5: The figure shows the averaged exact recovery rates of the proposed TopHeat
method and their standard errors over 100 repetations.
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Figure S6: The time complexity of TopHeat, EASE, and TL in terms of the running time
for different graphs. Each column corresponds to one graph setting for the Student-t
distribution under different n and p, and three types of graphs in Examples 1–3 are
considered.
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Figure S7: The histograms of exchange rates for 17 currencies.
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Table S3: The averaged performance metrics of various methods, as well as their standard
errors in parentheses, are presented for a BA graph in Example 2 with the Student-t
distribution.

Model (n, p) Methods HM (%) Recall Precision F1-score

linear

(500, 5)

TopHeat 7.80(0.93) 0.76(0.03) 0.85(0.03) 0.79(0.03)
EASE 8.70(0.98) 0.79(0.04) 0.81(0.03) 0.77(0.03)
TL 7.40(1.07) 0.64(0.05) 0.84(0.05) 0.70(0.05)

Directed-LiNGAM 2.50(0.59) 0.98(0.01) 0.92(0.02) 0.95(0.01)
ICA-LiNGAM 4.50(1.01) 0.94(0.02) 0.87(0.03) 0.90(0.02)
HD-LiNGAM 51.20(1.58) 0.47(0.04) 0.19(0.02) 0.27(0.02)

Rank PC 28.40(1.20) 0.33(0.03) 0.31(0.03) 0.32(0.03)

(2000, 20)

TopHeat 1.87(0.70) 0.84(0.13) 0.78(0.08) 0.79(0.10)
EASE 2.88(0.27) 0.56(0.05) 0.82(0.05) 0.66(0.04)
TL 2.36(0.19) 0.55(0.04) 0.92(0.02) 0.66(0.04)

Directed-LiNGAM 8.43(1.60) 0.98(0.02) 0.40(0.05) 0.56(0.05)
ICA-LiNGAM 9.41(1.68) 0.95(0.07) 0.37(0.05) 0.52(0.05)
HD-LiNGAM 50.36(0.67) 0.46(0.07) 0.05(0.01) 0.08(0.01)

Rank PC 9.09(0.31) 0.11(0.03) 0.11(0.03) 0.11(0.03)

(5000, 50)

TopHeat 0.86(0.11) 0.94(0.02) 0.75(0.02) 0.82(0.02)
EASE 1.51(0.03) 0.42(0.01) 0.71(0.01) 0.53(0.01)
TL 1.00(0.07) 0.53(0.03) 0.94(0.01) 0.65(0.03)

Directed-LiNGAM 9.31(0.45) 0.99(0.00) 0.19(0.01) 0.31(0.01)
ICA-LiNGAM 11.03(0.48) 0.88(0.03) 0.15(0.01) 0.26(0.01)
HD-LiNGAM 50.05(0.06) 0.49(0.02) 0.02(0.00) 0.04(0.00)

Rank PC 3.75(0.02) 0.06(0.00) 0.06(0.00) 0.06(0.00)

nonlinear

(500, 5)

TopHeat 8.30(1.01) 0.71(0.04) 0.86(0.03) 0.76(0.03)
EASE 9.20(0.98) 0.74(0.04) 0.80(0.03) 0.75(0.03)
TL 20.20(0.20) 0.01(0.01) 0.03(0.02) 0.02(0.01)

Directed-LiNGAM 40.30(2.38) 0.29(0.03) 0.23(0.03) 0.25(0.03)
ICA-LiNGAM 21.20(2.28) 0.60(0.04) 0.54(0.04) 0.56(0.04)
HD-LiNGAM 23.80(0.74) 0.28(0.02) 0.37(0.02) 0.32(0.02)

Rank PC 28.40(1.20) 0.33(0.03) 0.31(0.03) 0.32(0.03)

(2000, 20)

TopHeat 1.92(0.23) 0.84(0.04) 0.78(0.02) 0.79(0.03)
EASE 2.86(0.10) 0.56(0.02) 0.83(0.02) 0.65(0.01)
TL 5.00(0.00) 0.00(0.00) 0.03(0.02) 0.01(0.00)

Directed-LiNGAM 13.61(0.66) 0.41(0.02) 0.19(0.02) 0.25(0.02)
ICA-LiNGAM 9.06(0.72) 0.58(0.03) 0.35(0.03) 0.43(0.03)
HD-LiNGAM 8.03(0.08) 0.17(0.01) 0.18(0.01) 0.18(0.01)

Rank PC 9.09(0.09) 0.11(0.01) 0.11(0.01) 0.11(0.01)

(5000, 50)

TopHeat 0.86(0.11) 0.94(0.02) 0.75(0.02) 0.82(0.02)
EASE 1.43(0.03) 0.46(0.01) 0.73(0.01) 0.56(0.01)
TL 2.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)

Directed-LiNGAM 7.14(0.42) 0.50(0.02) 0.17(0.02) 0.25(0.02)
ICA-LiNGAM 6.71(0.41) 0.55(0.02) 0.20(0.02) 0.28(0.02)
HD-LiNGAM 3.36(0.03) 0.15(0.01) 0.15(0.01) 0.15(0.01)

Rank PC 3.75(0.02) 0.06(0.00) 0.06(0.00) 0.06(0.00)
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Table S4: The averaged performance metrics of various methods, as well as their standard
errors in parentheses, are presented for the ER graph in Example 3 with the Student-t
distribution.

Model (n, p) Methods HM (%) Recall Precision F1-score

linear

(500, 5)

TopHeat 6.70(0.93) 0.68(0.05) 0.75(0.05) 0.68(0.04)
EASE 5.10(0.68) 0.82(0.04) 0.77(0.04) 0.77(0.04)
TL 5.10(0.84) 0.59(0.06) 0.75(0.06) 0.63(0.06)

Directed-LiNGAM 7.20(0.73) 0.92(0.04) 0.62(0.04) 0.72(0.04)
ICA-LiNGAM 8.60(0.85) 0.87(0.04) 0.59(0.04) 0.68(0.04)
HD-LiNGAM 51.50(1.31) 0.42(0.05) 0.11(0.02) 0.17(0.02)

Rank PC 19.00(1.76) 0.28(0.05) 0.26(0.05) 0.27(0.05)

(2000, 20)

TopHeat 0.69(0.13) 0.86(0.03) 0.90(0.02) 0.86(0.03)
EASE 0.65(0.06) 0.79(0.02) 0.97(0.01) 0.87(0.01)
TL 1.73(0.12) 0.39(0.04) 0.85(0.04) 0.50(0.04)

Directed-LiNGAM 9.23(0.46) 0.99(0.01) 0.24(0.01) 0.38(0.01)
ICA-LiNGAM 10.53(0.45) 0.96(0.02) 0.21(0.01) 0.34(0.01)
HD-LiNGAM 49.85(0.11) 0.53(0.02) 0.03(0.00) 0.05(0.00)

Rank PC 4.51(0.23) 0.30(0.02) 0.24(0.02) 0.26(0.02)

(5000, 50)

TopHeat 0.13(0.01) 0.94(0.01) 0.94(0.01) 0.94(0.01)
EASE 0.64(0.02) 0.39(0.01) 0.94(0.01) 0.55(0.01)
TL 0.71(0.04) 0.38(0.03) 0.85(0.03) 0.50(0.03)

Directed-LiNGAM 9.49(0.37) 0.99(0.00) 0.10(0.00) 0.18(0.01)
ICA-LiNGAM 10.91(0.31) 0.90(0.03) 0.08(0.00) 0.15(0.01)
HD-LiNGAM 50.02(0.03) 0.49(0.02) 0.01(0.00) 0.02(0.00)

Rank PC 1.57(0.07) 0.24(0.01) 0.24(0.01) 0.24(0.01)

nonlinear

(500, 5)

TopHeat 7.30(0.92) 0.61(0.05) 0.69(0.05) 0.62(0.05)
EASE 6.40(0.80) 0.75(0.05) 0.74(0.05) 0.72(0.04)
TL 11.50(0.99) 0.10(0.04) 0.14(0.05) 0.11(0.04)

Directed-LiNGAM 22.40(1.49) 0.22(0.04) 0.18(0.03) 0.20(0.04)
ICA-LiNGAM 16.60(1.57) 0.44(0.05) 0.36(0.05) 0.39(0.05)
HD-LiNGAM 21.50(1.01) 0.25(0.04) 0.21(0.03) 0.22(0.03)

Rank PC 19.00(1.76) 0.28(0.05) 0.26(0.05) 0.27(0.05)

(2000, 20)

TopHeat 0.65(0.11) 0.85(0.03) 0.91(0.02) 0.87(0.03)
EASE 1.06(0.09) 0.64(0.02) 0.97(0.01) 0.76(0.02)
TL 2.66(0.11) 0.03(0.01) 0.14(0.05) 0.05(0.02)

Directed-LiNGAM 5.68(0.25) 0.24(0.02) 0.16(0.01) 0.19(0.02)
ICA-LiNGAM 2.62(0.20) 0.64(0.03) 0.52(0.03) 0.57(0.03)
HD-LiNGAM 5.76(0.11) 0.31(0.02) 0.18(0.01) 0.22(0.01)

Rank PC 4.51(0.23) 0.30(0.02) 0.24(0.02) 0.26(0.02)

(5000, 50)

TopHeat 0.13(0.01) 0.93(0.01) 0.94(0.01) 0.94(0.01)
EASE 0.58(0.03) 0.45(0.01) 0.96(0.01) 0.60(0.01)
TL 1.01(0.03) 0.00(0.00) 0.02(0.02) 0.00(0.00)

Directed-LiNGAM 2.32(0.10) 0.26(0.01) 0.15(0.01) 0.19(0.01)
ICA-LiNGAM 1.39(0.10) 0.60(0.02) 0.42(0.02) 0.49(0.02)
HD-LiNGAM 2.48(0.02) 0.24(0.01) 0.13(0.01) 0.16(0.01)

Rank PC 1.57(0.07) 0.24(0.01) 0.24(0.01) 0.24(0.01)



S11. ADDITIONAL FIGURES AND TABLES

Table S5: The averaged performance metrics of various methods, as well as their standard
errors in parentheses, are presented for a hub graph in Example 1 with the Cauchy
distribution.

Model (n, p) Methods HM (%) Recall Precision F1-score

linear

(500, 5)

TopHeat 4.00(0.70) 0.86(0.03) 0.95(0.02) 0.89(0.02)
EASE 11.80(0.67) 0.58(0.02) 0.82(0.03) 0.66(0.02)
TL 6.30(1.25) 0.68(0.06) 0.72(0.06) 0.70(0.06)

Directed-LiNGAM 5.10(0.71) 0.98(0.01) 0.83(0.02) 0.89(0.01)
ICA-LiNGAM 4.70(0.63) 0.99(0.00) 0.84(0.02) 0.90(0.01)
HD-LiNGAM 30.00(0.00) 1.00(0.00) 0.40(0.00) 0.57(0.00)

Rank PC 33.60(0.62) 0.27(0.01) 0.23(0.01) 0.24(0.01)

(2000, 20)

TopHeat 2.55(0.45) 0.85(0.03) 0.77(0.04) 0.80(0.03)
EASE 4.89(0.06) 0.14(0.01) 0.59(0.03) 0.22(0.01)
TL 2.00(0.31) 0.61(0.06) 0.67(0.07) 0.64(0.06)

Directed-LiNGAM 11.52(0.51) 0.99(0.00) 0.32(0.01) 0.48(0.01)
ICA-LiNGAM 12.70(0.50) 1.00(0.00) 0.29(0.01) 0.45(0.01)
HD-LiNGAM 45.00(0.00) 1.00(0.00) 0.10(0.00) 0.18(0.00)

Rank PC 9.04(0.32) 0.13(0.03) 0.13(0.03) 0.13(0.03)

(5000, 50)

TopHeat 0.74(0.19) 0.93(0.02) 0.83(0.04) 0.87(0.03)
EASE 2.08(0.02) 0.06(0.00) 0.44(0.03) 0.10(0.00)
TL 0.53(0.11) 0.74(0.05) 0.79(0.06) 0.77(0.05)

Directed-LiNGAM 13.15(0.59) 1.00(0.00) 0.14(0.01) 0.25(0.01)
ICA-LiNGAM 14.02(0.50) 1.00(0.00) 0.13(0.01) 0.23(0.01)
HD-LiNGAM 48.00(0.00) 1.00(0.00) 0.04(0.00) 0.08(0.00)

nonlinear

(500, 5)

TopHeat 5.70(0.77) 0.79(0.03) 0.94(0.02) 0.84(0.02)
EASE 12.50(0.75) 0.55(0.03) 0.77(0.04) 0.62(0.03)
TL 20.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)

Directed-LiNGAM 54.90(2.10) 0.13(0.02) 0.09(0.02) 0.10(0.02)
ICA-LiNGAM 15.40(3.07) 0.73(0.05) 0.70(0.05) 0.71(0.05)
HD-LiNGAM 25.00(0.00) 0.25(0.00) 0.33(0.00) 0.29(0.00)

Rank PC 33.60(0.62) 0.27(0.01) 0.23(0.01) 0.24(0.01)

(2000, 20)

TopHeat 2.27(0.38) 0.85(0.03) 0.78(0.04) 0.81(0.03)
EASE 4.80(0.06) 0.14(0.01) 0.61(0.02) 0.23(0.01)
TL 5.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)

Directed-LiNGAM 23.92(0.72) 0.38(0.01) 0.09(0.01) 0.14(0.01)
ICA-LiNGAM 35.63(0.90) 0.12(0.02) 0.02(0.00) 0.04(0.01)
HD-LiNGAM 9.21(0.00) 0.05(0.00) 0.06(0.00) 0.05(0.00)

Rank PC 9.04(0.32) 0.13(0.03) 0.13(0.03) 0.13(0.03)

(5000, 50)

TopHeat 0.71(0.17) 0.93(0.02) 0.83(0.03) 0.87(0.03)
EASE 2.06(0.01) 0.06(0.00) 0.45(0.02) 0.11(0.00)
TL 2.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)

Directed-LiNGAM 21.57(0.23) 0.52(0.01) 0.05(0.00) 0.09(0.00)
ICA-LiNGAM 24.51(0.80) 0.34(0.05) 0.04(0.01) 0.06(0.01)
HD-LiNGAM 3.88(0.00) 0.02(0.00) 0.02(0.00) 0.02(0.00)
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Table S6: The averaged performance metrics of various methods, as well as their standard
errors in parentheses, are presented for a BA graph in Example 2 with the Cauchy
distribution.

Model (n, p) Methods HM (%) Recall Precision F1-score

linear

(500, 5)

TopHeat 7.10(0.94) 0.75(0.03) 0.90(0.03) 0.80(0.03)
EASE 10.00(0.81) 0.71(0.03) 0.79(0.02) 0.73(0.02)
TL 7.30(1.14) 0.64(0.06) 0.78(0.06) 0.68(0.06)

Directed-LiNGAM 5.20(0.62) 0.97(0.01) 0.82(0.02) 0.89(0.01)
ICA-LiNGAM 6.10(0.80) 0.97(0.02) 0.80(0.02) 0.87(0.02)
HD-LiNGAM 51.20(1.58) 0.47(0.04) 0.19(0.02) 0.27(0.02)

Rank PC 29.00(1.18) 0.31(0.03) 0.29(0.03) 0.30(0.03)

(2000, 20)

TopHeat 1.97(0.22) 0.85(0.04) 0.77(0.02) 0.79(0.03)
EASE 2.87(0.10) 0.57(0.02) 0.81(0.01) 0.66(0.01)
TL 2.32(0.21) 0.56(0.04) 0.88(0.04) 0.66(0.04)

Directed-LiNGAM 11.92(0.53) 0.99(0.00) 0.31(0.01) 0.47(0.01)
ICA-LiNGAM 14.14(0.68) 0.93(0.03) 0.27(0.01) 0.41(0.02)
HD-LiNGAM 50.36(0.23) 0.46(0.02) 0.05(0.00) 0.08(0.00)

Rank PC 9.01(0.10) 0.11(0.01) 0.11(0.01) 0.11(0.01)

(5000, 50)

TopHeat 1.02(0.10) 0.92(0.03) 0.69(0.02) 0.78(0.02)
EASE 1.54(0.03) 0.42(0.01) 0.70(0.01) 0.52(0.01)
TL 0.79(0.07) 0.63(0.03) 0.91(0.03) 0.73(0.03)

Directed-LiNGAM 14.60(0.58) 0.99(0.00) 0.13(0.00) 0.22(0.01)
ICA-LiNGAM 16.04(0.48) 0.89(0.02) 0.10(0.00) 0.19(0.01)
HD-LiNGAM 50.05(0.06) 0.49(0.02) 0.02(0.00) 0.04(0.00)

Rank PC 3.76(0.02) 0.06(0.00) 0.06(0.00) 0.06(0.00)

nonlinear

(500, 5)

TopHeat 8.20(0.98) 0.69(0.03) 0.89(0.03) 0.76(0.03)
EASE 7.90(0.89) 0.76(0.03) 0.86(0.03) 0.78(0.03)
TL 20.00(0.00) 0.00(0.00) 0.01(0.01) 0.01(0.01)

Directed-LiNGAM 39.50(2.66) 0.32(0.04) 0.25(0.03) 0.28(0.03)
ICA-LiNGAM 21.50(2.16) 0.59(0.04) 0.53(0.04) 0.55(0.04)
HD-LiNGAM 21.40(0.85) 0.34(0.02) 0.45(0.03) 0.39(0.02)

Rank PC 29.00(1.18) 0.31(0.03) 0.29(0.03) 0.30(0.03)

(2000, 20)

TopHeat 1.91(0.22) 0.85(0.04) 0.79(0.02) 0.79(0.03)
EASE 2.86(0.11) 0.57(0.02) 0.81(0.02) 0.66(0.02)
TL 5.00(0.00) 0.00(0.00) 0.01(0.01) 0.00(0.00)

Directed-LiNGAM 13.32(0.66) 0.43(0.02) 0.20(0.02) 0.27(0.02)
ICA-LiNGAM 9.45(0.81) 0.58(0.03) 0.36(0.03) 0.43(0.03)
HD-LiNGAM 7.85(0.12) 0.19(0.01) 0.20(0.01) 0.19(0.01)

Rank PC 9.01(0.10) 0.11(0.01) 0.11(0.01) 0.11(0.01)

(5000, 50)

TopHeat 1.02(0.10) 0.92(0.03) 0.70(0.02) 0.78(0.02)
EASE 1.43(0.03) 0.47(0.01) 0.73(0.01) 0.56(0.01)
TL 2.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)

Directed-LiNGAM 7.12(0.42) 0.51(0.02) 0.17(0.02) 0.25(0.02)
ICA-LiNGAM 6.64(0.43) 0.55(0.02) 0.21(0.02) 0.29(0.03)
HD-LiNGAM 3.35(0.03) 0.15(0.01) 0.16(0.01) 0.15(0.01)

Rank PC 3.76(0.02) 0.06(0.00) 0.06(0.00) 0.06(0.00)
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Table S7: The averaged performance metrics of various methods, as well as their standard
errors in parentheses, are presented for the ER graph in Example 3 with the Cauchy
distribution.

Model (n, p) Methods HM (%) Recall Precision F1-score

linear

(500, 5)

TopHeat 7.50(0.89) 0.60(0.06) 0.69(0.05) 0.60(0.05)
EASE 6.00(0.88) 0.74(0.05) 0.73(0.05) 0.72(0.05)
TL 5.20(0.89) 0.57(0.06) 0.71(0.06) 0.61(0.06)

Directed-LiNGAM 10.10(1.03) 0.92(0.04) 0.55(0.04) 0.67(0.04)
ICA-LiNGAM 12.60(0.93) 0.94(0.03) 0.50(0.03) 0.63(0.03)
HD-LiNGAM 51.50(1.31) 0.42(0.05) 0.11(0.02) 0.17(0.02)

Rank PC 19.00(1.74) 0.29(0.05) 0.28(0.05) 0.29(0.05)

(2000, 20)

TopHeat 0.56(0.09) 0.92(0.01) 0.90(0.02) 0.91(0.01)
EASE 0.53(0.06) 0.83(0.02) 0.98(0.01) 0.89(0.01)
TL 1.80(0.13) 0.40(0.04) 0.78(0.04) 0.50(0.04)

Directed-LiNGAM 13.57(0.51) 1.00(0.00) 0.17(0.01) 0.29(0.01)
ICA-LiNGAM 15.93(0.48) 0.96(0.01) 0.15(0.01) 0.25(0.01)
HD-LiNGAM 49.85(0.11) 0.53(0.02) 0.03(0.00) 0.05(0.00)

Rank PC 4.44(0.21) 0.29(0.02) 0.24(0.02) 0.26(0.02)

(5000, 50)

TopHeat 0.13(0.01) 0.95(0.01) 0.94(0.01) 0.94(0.01)
EASE 0.63(0.02) 0.40(0.01) 0.95(0.01) 0.56(0.01)
TL 0.64(0.04) 0.43(0.03) 0.85(0.02) 0.55(0.03)

Directed-LiNGAM 14.63(0.52) 0.99(0.00) 0.07(0.00) 0.13(0.00)
ICA-LiNGAM 16.07(0.44) 0.90(0.02) 0.06(0.00) 0.11(0.01)
HD-LiNGAM 50.02(0.03) 0.49(0.02) 0.01(0.00) 0.02(0.00)

Rank PC 1.59(0.07) 0.23(0.01) 0.23(0.01) 0.23(0.01)

nonlinear

(500, 5)

TopHeat 6.80(0.84) 0.61(0.05) 0.73(0.05) 0.63(0.05)
EASE 7.00(0.73) 0.69(0.05) 0.69(0.04) 0.66(0.04)
TL 12.10(0.95) 0.05(0.02) 0.08(0.04) 0.06(0.03)

Directed-LiNGAM 22.90(1.52) 0.24(0.04) 0.19(0.03) 0.21(0.04)
ICA-LiNGAM 16.80(1.69) 0.46(0.05) 0.36(0.04) 0.40(0.05)
HD-LiNGAM 21.50(1.13) 0.26(0.04) 0.21(0.03) 0.22(0.03)

Rank PC 19.00(1.74) 0.29(0.05) 0.28(0.05) 0.29(0.05)

(2000, 20)

TopHeat 0.49(0.07) 0.90(0.01) 0.94(0.01) 0.92(0.01)
EASE 0.97(0.08) 0.67(0.02) 0.97(0.01) 0.78(0.02)
TL 2.68(0.11) 0.02(0.01) 0.10(0.04) 0.03(0.01)

Directed-LiNGAM 5.54(0.24) 0.27(0.02) 0.17(0.01) 0.21(0.02)
ICA-LiNGAM 2.95(0.25) 0.62(0.03) 0.49(0.03) 0.55(0.03)
HD-LiNGAM 5.82(0.11) 0.30(0.02) 0.17(0.01) 0.22(0.01)

Rank PC 4.44(0.21) 0.29(0.02) 0.24(0.02) 0.26(0.02)

(5000, 50)

TopHeat 0.12(0.01) 0.95(0.01) 0.94(0.01) 0.94(0.01)
EASE 0.58(0.02) 0.46(0.01) 0.96(0.01) 0.61(0.01)
TL 1.02(0.03) 0.00(0.00) 0.00(0.00) 0.00(0.00)

Directed-LiNGAM 2.31(0.10) 0.26(0.01) 0.15(0.01) 0.19(0.01)
ICA-LiNGAM 1.29(0.08) 0.60(0.02) 0.43(0.02) 0.50(0.02)
HD-LiNGAM 2.49(0.03) 0.24(0.01) 0.12(0.01) 0.16(0.01)

Rank PC 1.58(0.07) 0.24(0.01) 0.24(0.01) 0.24(0.01)
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