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Supplementary Material for

“Convoluted Support Matrix Machine in High Dimensions”

Bingzhen Chen and Canyi Chen

Hangzhou Dianzi University and University of Michigan

This supplementary material contains all the proof for the main theo-

retical results in the main text.

A. Proof of Theorem 1

Proof of Theorem 1. By the definition of elastic-net convoluted support

matrix machine (CSMM) in (2.2), we have

1

𝑛

∑︁
𝑖

Lℎ [𝑌𝑖{tr(X>
𝑖 Â) + �̂�}] + 𝜆‖Â‖∗ + 𝜆0‖Â‖2𝐹

≤ 1

𝑛

∑︁
𝑖

Lℎ [𝑌𝑖{tr(X>
𝑖 A

∗) + 𝑎∗}] + 𝜆‖A∗‖∗ + 𝜆0‖A∗‖2𝐹 .

Let �̂�
def
= �̂� − 𝑎∗, �̂� def

= Â − A∗, �̂�𝑟𝑐 = ΠN �̂� and �̂�𝑟
def
= �̂� − �̂�𝑟𝑐 . The above

display, together with the fact that ‖A∗ + �̂�‖∗ ≥ ‖A∗ + �̂�𝑟𝑐 ‖∗ − ‖�̂�𝑟 ‖∗ =
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‖A∗‖∗ + ‖�̂�𝑟𝑐 ‖∗ − ‖�̂�𝑟 ‖∗ (Lemma B.1 in Appendix B), implies

1

𝑛

∑︁
𝑖

Lℎ [𝑌𝑖{tr(X>
𝑖 Â) + �̂�}]

−1

𝑛

∑︁
𝑖

Lℎ [𝑌𝑖{tr(X>
𝑖 A

∗) + 𝑎∗}] + 𝜆0(‖Â‖2𝐹 − ‖A∗‖2𝐹)

≤ 𝜆(‖A∗‖∗ − ‖Â‖∗) = 𝜆(‖A∗‖∗ − ‖A∗ + �̂�‖∗)

≤ 𝜆(‖�̂�𝑟 ‖∗ − ‖�̂�𝑟𝑐 ‖∗).

On the other hand, by the convexity of Lℎ (·), we have,

1

𝑛

∑︁
𝑖

Lℎ [𝑌𝑖{tr(X>
𝑖 Â) + �̂�}]

−1

𝑛

∑︁
𝑖

Lℎ [𝑌𝑖{tr(X>
𝑖 A

∗) + 𝑎∗}] + 𝜆0(‖Â‖2𝐹 − ‖A∗‖2𝐹)

≥ 1

𝑛

∑︁
𝑖

L′
ℎ [𝑌𝑖{tr(X

>
𝑖 A

∗) + 𝑎∗}]𝑌𝑖 (�̂� − 𝑎∗)

+
〈
2𝜆0A

∗ + 1

𝑛

∑︁
𝑖

L′
ℎ [𝑌𝑖{tr(X

>
𝑖 A

∗) + 𝑎∗}]𝑌𝑖X𝑖, Â −A∗
〉

≥ −
����1𝑛 ∑︁

𝑖

L′
ℎ [𝑌𝑖{tr(X

>
𝑖 A

∗) + 𝑎∗}]𝑌𝑖
�������̂���

−
2𝜆0A∗ + 1

𝑛

∑︁
𝑖

L′
ℎ [𝑌𝑖{tr(X

>
𝑖 A

∗) + 𝑎∗}]𝑌𝑖X𝑖

(
‖�̂�𝑟𝑐 ‖∗ + ‖�̂�𝑟 ‖∗

)
.
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Define events

E1
def
=

{����1𝑛 ∑︁
𝑖

L′
ℎ [𝑌𝑖{tr(X

>
𝑖 A

∗) + 𝑎∗}]𝑌𝑖
���� ≤ 𝜆/2}

and

E2
def
=

{2𝜆0A∗ + 1

𝑛

∑︁
𝑖

L′
ℎ [𝑌𝑖{tr(X

>
𝑖 A

∗) + 𝑎∗}]𝑌𝑖X𝑖

 ≤ 𝜆/2
}
.

By Lemmas B.3 and B.4, we have

pr(E1 ∩ E2) ≥ 1 − 2 exp(−𝑛𝜆2/8) − 2 · 9𝑝+𝑞 exp
{
−1/𝜂0min

(
𝜆2

64𝑚2
0

,
𝜆

8𝑚0

)
𝑛

}
,

for some absolute constant 𝜂0. Under E1 ∩ E2, we have

−𝜆
2
( |�̂� | + ‖�̂�𝑟𝑐 ‖∗ + ‖�̂�𝑟 ‖∗) ≤ 𝜆(‖�̂�𝑟 ‖∗ − ‖�̂�𝑟𝑐 ‖∗),

which implies

‖�̂�𝑟𝑐 ‖∗ ≤ 3‖�̂�𝑟 ‖∗ + |�̂� |, (A.1)

or (�̂�, �̂�) ∈ A.
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Define 𝐹 (𝑎,A) def
= 1

𝑛

∑
𝑖 Lℎ [𝑌𝑖{tr(X>

𝑖
A) + 𝑎}] for any (𝑎,A) ∈ R × R𝑝×𝑞

and

C(𝑡) def
= {(𝛿,𝚫) ∈ A : |𝛿 |2 + ‖𝚫‖2𝐹 = 𝑡2(𝑝 + 𝑞)𝑟/𝑛},

for any 𝑡 > 0. Let 𝐺 (𝑎,A) = 𝐹 (𝑎,A) − 𝐹 (𝑎∗,A∗) and

𝐻 (𝑡) = sup
(𝑎,A)∈(𝑎∗,A∗)+C(𝑡)

|𝐺 (𝑎,A) − 𝐸{𝐺 (𝑎,A)}|.

We claim that 𝐻 (𝑡) = 𝑂𝑝{𝑡 (𝑝+𝑞)𝑟/𝑛}. Let 𝜎1, . . . , 𝜎𝑛 be i.i.d. Rademacher

random variable. For some constant 𝑐1 > 0, we have

𝐸{𝐻 (𝑡)}

≤ 2𝐸

{
sup

(𝑎,A)∈(𝑎∗,A∗)+C(𝑡)

����1𝑛 ∑︁
𝑖

𝜎𝑖

(
Lℎ [𝑌𝑖{tr(X>

𝑖 A) + 𝑎}]

−Lℎ [𝑌𝑖{tr(X>
𝑖 A

∗) + 𝑎∗}]
)����}

≤ 4𝐸

{
sup

(𝑎,A)∈(𝑎∗,A∗)+C(𝑡)

����1𝑛 ∑︁
𝑖

𝜎𝑖𝑌𝑖

(
〈X𝑖,A −A∗〉 + 𝑎 − 𝑎∗

)����}
≤ 4

𝑛
𝐸

(∑︁
𝑖

𝜎𝑖𝑌𝑖X𝑖

 + ����∑︁
𝑖

𝜎𝑖𝑌𝑖

����) · 8𝑟1/2𝑡{(𝑝 + 𝑞)𝑟/𝑛}1/2
≤ 4

𝑛
· 4𝑐1{𝑛(𝑝 + 𝑞) log 9}1/2 · 8𝑟1/2𝑡{(𝑝 + 𝑞)𝑟/𝑛}1/2

≤ 300𝑐1𝑡 (𝑝 + 𝑞)𝑟
𝑛

,
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where the first inequality is by the standard symmetrization technique (see,

e.g., Lemma 2.3.1 in van der Vaart and Wellner (2000)), the second one is due

to the contraction inequality (see, Theorem 4.12 in Ledoux and Talagrand

(2011)) the third inequality is owing to Cauchy–Schwarz inequality and the

fact that |𝛿 | + ‖𝚫‖∗ = |𝛿 | + ‖𝚫𝑟𝑐 ‖∗+ ‖𝚫𝑟 ‖∗ ≤ 4‖𝚫𝑟 ‖∗+2|𝛿 | ≤ 4𝑟1/2‖𝚫‖𝐹 +2|𝛿 | ≤

4𝑟1/2𝑡{(𝑝 + 𝑞)𝑟/𝑛}1/2 + 2𝑡{(𝑝 + 𝑞)𝑟/𝑛}1/2 ≤ 8𝑟1/2𝑡{(𝑝 + 𝑞)𝑟/𝑛}1/2, and the

penultimate is by Lemma B.5. This implies that 𝐻 (𝑡) = 𝑂𝑝{𝑡 (𝑝 + 𝑞)𝑟/𝑛}.

For any 𝑇 > 0, define event

G𝑇
def
=

{
𝐻 (𝑡) ≤ 𝑇𝑡 (𝑝 + 𝑞)𝑟

𝑛

}
,

and then we have lim𝑇→∞ lim sup𝑛→∞ pr(G𝑐
𝑇
) = 0.

We next derive a loweer bound for 𝐸{𝐺 (𝑎,A)} for any (𝑎,A) ∈ (𝑎∗,A∗)+

C(𝑡). For sufficiently large 𝑛 and any (𝑎,A) ∈ (𝑎∗,A∗) + C(𝑡), by Taylor’s

expansion and Assumption (A2), there exists 𝑎 ∈ [0, 1] such that

𝐸{𝐺 (𝑎,A)}

= 𝐸{Lℎ [𝑌 {tr(X>A) + 𝑎}] − Lℎ [𝑌 {tr(X>A∗) + 𝑎∗}]}

≥ 1/2𝜅{|𝑎 − 𝑎∗ |2 + ‖A −A∗‖2𝐹}

≥ 1/2𝜅𝑡2 (𝑝 + 𝑞)𝑟
𝑛

. (A.2)
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On the other hand, with our choice for tuning parameters, for any

(𝑎,A) ∈ (𝑎∗,A∗) + C(𝑡) with 𝚫 = A −A∗ and 𝛿 = 𝑎 − 𝑎∗, we have

𝜆(‖A∗‖∗ − ‖A‖∗)

≤ 𝜆‖𝚫‖∗ = 𝜆‖𝚫𝑟𝑐 ‖∗ + 𝜆‖𝚫𝑟 ‖∗

≤ 4𝜆‖𝚫𝑟 ‖∗ + 𝜆 |𝛿 |

≤ 4𝜆𝑟1/2‖𝚫‖𝐹 + 𝜆 |𝛿 |

≤ 4𝜆𝑟1/2𝑡{(𝑝 + 𝑞)𝑟/𝑛}1/2 + 𝜆𝑡{(𝑝 + 𝑞)𝑟/𝑛}1/2

≤ 5𝑐0𝑟𝑡 (𝑝 + 𝑞)/𝑛, (A.3)

and we also have, by the convexity of Frobenius norm,

𝜆0(‖A‖2𝐹 − ‖A∗‖2𝐹)

≥ 2𝜆0〈A∗,A −A∗〉

≥ −2𝜆0‖A∗‖‖A −A∗‖∗

≥ −𝜆
4
‖A −A∗‖∗

≥ −𝜆
4
(4‖𝚫𝑟 ‖∗ + |𝛿 |)

≥ −𝜆𝑟1/2𝑡{𝑟 (𝑝 + 𝑞)/𝑛}1/2 − 𝜆
4
𝑡{𝑟 (𝑝 + 𝑞)/𝑛}1/2

≥ −2𝑐0𝑟𝑡 (𝑝 + 𝑞)/𝑛, (A.4)
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where the second inequality is by von Neumann’s trace inequality. Thus,

combining (A.2), (A.3) and (A.4), under G𝑇 , we have for any (𝑎,A) ∈

(𝑎∗,A∗) + C(𝑡),

𝐹 (𝑎,A) + 𝜆0‖A‖2𝐹 + 𝜆‖A‖∗ − {𝐹 (𝑎∗,A∗) + 𝜆0‖A∗‖2𝐹 + 𝜆‖A∗‖∗}

≥ 𝐺 (𝑎,A) − 7𝑐0𝑟𝑡 (𝑝 + 𝑞)/𝑛

≥ 𝐸{𝐺 (𝑎,A)} − 𝐻 (𝑡) − 7𝑐0𝑟𝑡 (𝑝 + 𝑞)/𝑛

≥ 𝐸{𝐺 (𝑎,A)} − 𝑇𝑡 (𝑝 + 𝑞)𝑟/𝑛 − 7𝑐0𝑟𝑡 (𝑝 + 𝑞)/𝑛

≥ (1/2𝜅𝑡 − 𝑇 − 7𝑐0)𝑡 (𝑝 + 𝑞)𝑟/𝑛.

Now, taking 𝑡 = (4𝑇 + 28𝑐0)/𝜅, we have under G𝑇 ,

inf
(𝑎,A)∈(𝑎∗,A∗)+C(𝑡)

𝐹 (𝑎,A) + 𝜆0‖A‖2𝐹 + 𝜆‖A‖∗ > 𝐹 (𝑎∗,A∗)

+𝜆0‖A∗‖2𝐹 + 𝜆‖A∗‖∗. (A.5)

Recall that under E1 ∩ E2,

(�̂�, Â) ∈ (𝑎∗,A∗) + A.
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We next claim that under E1 ∩ E2 ∩ G𝑇 ,

|�̂� − 𝑎∗ |2 + ‖Â −A∗‖2𝐹 ≤ 𝑡2(𝑝 + 𝑞)𝑟/𝑛.

In fact, if

|�̂� − 𝑎∗ |2 + ‖Â −A∗‖2𝐹 > 𝑡2(𝑝 + 𝑞)𝑟/𝑛,

let

𝜔2
0

def
=

𝑡2(𝑝 + 𝑞)𝑟/𝑛
|�̂� − 𝑎∗ |2 + ‖Â −A∗‖2

𝐹

,

then 𝜔0 ∈ (0, 1). In addition, define

(𝑎′,A′) = 𝜔0(�̂�, Â) + (1 − 𝜔0) (𝑎∗,A∗),

and then we have

|𝑎′ − 𝑎∗ |2 + ‖A′ −A∗‖2𝐹 = 𝑡2(𝑝 + 𝑞)𝑟/𝑛.

Moreover, because (�̂�, Â) − (𝑎∗,A∗) ∈ A under E1 ∩ E2 and A is a cone, we
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get

(𝑎′,A′) − (𝑎∗,A∗) = 𝜔0{(�̂�, Â) − (𝑎∗,A∗)} ∈ A.

This means that under E1 ∩ E2, we have

(𝑎′,A′) ∈ (𝑎∗,A∗) + C(𝑡).

By the convexity of 𝐹 (·) and norm, and (A.5), we have

𝜔0{𝐹 (�̂�, Â) + 𝜆0‖Â‖2𝐹 + 𝜆‖Â‖∗}

+(1 − 𝜔0){𝐹 (𝑎∗,A∗) + 𝜆0‖A∗‖2𝐹 + 𝜆‖A∗‖∗}

≥ 𝐹 (𝑎′,A′) + 𝜆0‖A′‖2𝐹 + 𝜆‖A′‖∗

≥ inf
(𝑎,A)∈(𝑎∗,A∗)+C(𝑡)

𝐹 (𝑎,A) + 𝜆0‖A‖2𝐹 + 𝜆‖A‖∗

> 𝐹 (𝑎∗,A∗) + 𝜆0‖A∗‖2𝐹 + 𝜆‖A∗‖∗,

under E1 ∩ E2 ∩ G𝑇 . The above display means

𝐹 (�̂�, Â) + 𝜆0‖Â‖2𝐹 + 𝜆‖Â‖∗ > 𝐹 (𝑎∗,A∗) + 𝜆0‖A∗‖2𝐹 + 𝜆‖A∗‖∗,

which is a contradiction with the definition of (�̂�, Â). So we proved the claim.
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By union bound, previous results, and the choice of tuning parameters, we

have

pr[{E1 ∩ E2 ∩ G𝑇 }𝑐]

≤ pr(E𝑐1) + pr(E𝑐2) + pr(G𝑐
𝑇 )

≤ 2 exp(−𝑛𝜆2/8) + 2 · 9𝑝+𝑞 exp
{
− 1

𝜂0
min

(
𝜆2

64𝑚2
0

,
𝜆

8𝑚0

)
𝑛

}
+ pr(G𝑐

𝑇 )

≤ 2 exp

{
−𝑐20

(𝑝 + 𝑞)
8

}
+ 2 · 9𝑝+𝑞 exp

{
− 1

𝜂0

𝜆2𝑛

64𝑚2
0

}
+2 · 9𝑝+𝑞 exp

{
− 1

𝜂0

𝜆𝑛

8𝑚0

}
+ pr(G𝑐

𝑇 )]

= 2 exp

{
−𝑐20

(𝑝 + 𝑞)
8

}
+ 2 · 9𝑝+𝑞 exp

{
− 1

𝜂0

𝑐20(𝑝 + 𝑞)
64𝑚2

0

}
+2 · 9𝑝+𝑞 exp

{
− 1

𝜂0

𝑐0{𝑛(𝑝 + 𝑞)}1/2
8𝑚0

}
+ pr(G𝑐

𝑇 )]

Since (𝑝 + 𝑞)/𝑛 = 𝑜(1), as long as 𝑐0 is sufficiently large, we have

lim
𝑇→∞

lim sup
𝑛→∞

pr[{E1 ∩ E2 ∩ G𝑇 }𝑐] = 0.

Combining this result and the previous claim, we have proved Theorem 1. �

B. Some Useful Lemmas

Lemma B.1. For A1 ∈ M and A2 ∈ N , we have ‖A1+A2‖∗ = ‖A1‖∗+‖A2‖∗.
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In addition, for any A ∈ R𝑝×𝑞, rank(A − ΠNA) ≤ 2𝑟.

Proof of Lemma B.1. For any A1 ∈ M and A2 ∈ N , by the definition

of M and N , we have A1 = U𝚲V> and A2 = Ũ�̃�Ṽ> with U>Ũ = 0 and

V>Ṽ = 0. Simple calculation leads to A1 + A2 = (U, Ũ)diag(𝚲, �̃�) (V, Ṽ)>,

which implies ‖A1 +A2‖∗ = ‖A1‖∗ + ‖A2‖∗.

Suppose that

A = (U, Ũ)
(
E F

G H

)
(V, Ṽ)>.

It is straightforward to check that ΠNA = ŨHṼ>. It follows that the rank

of

A − ΠNA = (U, Ũ)
(
E F

G 0

)
(V, Ṽ)>

is at most 2𝑟. �

Lemma B.2. For any matrix E ∈ R𝑝×𝑞,

‖E‖ ≤ 2 max
u 𝑗∈U,v𝑘∈V

u>𝑗 Ev𝑘 ,

where U ⊆ R𝑝 is a finite set containing at most 9𝑝 unit vectors, and V ⊆ R𝑞
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is a finite set containing at most 9𝑞 unit vectors.

Proof of Lemma B.2. This is an immediate result of Corollary 4.2.13 and

Exercise 4.4.3 in Vershynin (2018). �

Lemma B.3. Under the condition of Theorem 1, we have

pr

(����1𝑛 ∑︁
𝑖

L′
ℎ [𝑌𝑖{tr(X

>
𝑖 A

∗) + 𝑎∗}]𝑌𝑖
���� > 𝜆/2) ≤ 2 exp(−𝑛𝜆2/8).

Proof of Lemma B.3. By the definition of (𝑎∗,A∗) and the first order

optimality condition, we have 𝐸 (L′
ℎ
[𝑌𝑖{tr(X>

𝑖
A∗) + 𝑎∗}]𝑌𝑖) = 0. Note that

|L′
ℎ
[𝑌𝑖{tr(X>

𝑖
A∗) + 𝑎∗}] | ≤ 1. Combining these two facts with Hoeffding’s

inequality, we have

pr

(�����1𝑛 ∑︁
𝑖

L′
ℎ [𝑌𝑖{tr(X

>
𝑖 A

∗) + 𝑎∗}]𝑌𝑖

����� > 𝜆/2
)
≤ 2 exp(−𝑛𝜆2/8).

This completes the proof of Lemma B.3. �
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Lemma B.4. Under the condition of Theorem 1, we have

pr

(2𝜆0A∗ + 1

𝑛

∑︁
𝑖

L′
ℎ [𝑌𝑖{tr(X

>
𝑖 A

∗) + 𝑎∗}]𝑌𝑖X𝑖

 > 𝜆/2)
≤ 2 · 9𝑝+𝑞 exp

{
−1/𝜂0min

(
𝜆2

64𝑚2
0

,
𝜆

8𝑚0

)
𝑛

}
.

Proof of Lemma B.4. By the definition of (𝑎∗,A∗) and the first order

optimality condition, we have 𝐸 (L′
ℎ
[𝑌𝑖{tr(X>

𝑖
A∗) + 𝑎∗}]𝑌𝑖X𝑖) = 0. Let

𝜖𝑖
def
= L′

ℎ
[𝑌𝑖{tr(X>

𝑖
A∗) + 𝑎∗}]𝑌𝑖 for notational simplicity. We first note that

𝜖𝑖x𝑖 is also sub-exponential where x𝑖
def
= vec(X𝑖). In fact, by an equivalent

definition of sub-exponentiality (see, e.g., Theorem 2.13 in Wainwright

(2019)), the assumption that x is sub-exponential can be stated as

sup
|a|2=1

pr( |a>x| > 𝑡) ≤ 𝑐1 exp(−𝑐2𝑡),

for all 𝑡 > 0. This, together with |𝜖 | ≤ 1, implies that

sup
|a|2=1

pr( |a>x𝜖 | > 𝑡) ≤ sup
|a|2=1

pr( |a>x| > 𝑡) ≤ 𝑐1 exp(−𝑐2𝑡),

which shows the sub-exponentiality of 𝜖x. Let u 𝑗 and v𝑘 be the covering
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of the unit sphere as in the proof of Lemma B.2 and denote E
def
=

∑
𝑖 X𝑖𝜖𝑖/𝑛

for simplicity of notation. By Corollary 1.4 in Götze et al. (2021) and

Lemma B.2, there exists an absolute constants 𝜂0 and 𝑚0 such that

pr (‖2𝜆0A∗ + E‖ > 𝜆/2)

≤ pr (‖E‖ > 𝜆/4)

≤
∑︁
𝑗 ,𝑘

pr
(
u>𝑗 Ev𝑘 > 𝜆/8

)
=

∑︁
𝑗 ,𝑘

pr
{
(v𝑘 ⊗ u 𝑗 )>vec(E) > 𝜆/8

}
≤ 2 · 9𝑝+𝑞 exp

{
−1/𝜂0min

(
𝜆2

64𝑚2
0

,
𝜆

8𝑚0

)
𝑛

}
.

This completes the proof of Lemma B.4. �

Lemma B.5. Under the condition of Theorem 1, we have

𝐸

(∑︁
𝑖

𝜎𝑖𝑌𝑖X𝑖

 + ����∑︁
𝑖

𝜎𝑖𝑌𝑖

����) ≤ 4𝑐1{𝑛(𝑝 + 𝑞) log 9}1/2,

for some 𝑐1 > 0.

Proof of Lemma B.5. We simply show that 𝐸 (‖∑𝑖 𝜎𝑖𝑌𝑖X𝑖‖) ≤ 2𝑐1{𝑛(𝑝 +

𝑞) log 9}1/2 for some 𝑐1 > 0. By similar arguments, one can show the same

upper bound for 𝐸 ( |∑𝑖 𝜎𝑖𝑌𝑖 |).
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Let 𝜖𝑖
def
= 𝜎𝑖𝑌𝑖 for notational simplicity. We first note that 2𝜖𝑖x𝑖 is also

sub-exponential where x𝑖
def
= vec(X𝑖). In fact, by an equivalent definition

of sub-exponentiality (see, e.g., Theorem 2.13 in Wainwright (2019)), the

assumption that x is sub-exponential can be stated as

sup
|a|2=1

pr( |a>x| > 𝑡) ≤ 𝑐2 exp(−𝑐3𝑡),

for all 𝑡 > 0. This, together with |𝜖 | ≤ 1, implies that

sup
|a|2=1

pr( |2a>x𝜖 | > 𝑡) ≤ sup
|a|2=1

pr( |2a>x| > 𝑡) ≤ 𝑐2 exp(−𝑐3𝑡/2),

which shows the sub-exponentiality of 2𝜖x, in particular (see, e.g., Proposi-

tion 2.7.1 (iv) in Vershynin (2018)), we have for any 𝑝𝑞-vector a, 0 < 𝑡 < 1/𝑐1

and some 𝑐1 > 0,

𝐸 exp(2𝑡a>
∑︁
𝑖

x𝑖𝜖𝑖) ≤ exp(𝑐21𝑡
2 |a|22𝑛).

Let u 𝑗 and v𝑘 be the covering of the unit sphere as in the proof of Lemma B.2

and denote E
def
= 2

∑
𝑖 𝜖𝑖X𝑖. By Jensen’s inequality and Lemma B.2, we have
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for any 0 < 𝑡 < 1/𝑐1,

exp {𝑡𝐸 (‖E/2‖)}

≤ exp

{
𝑡𝐸

(
max
𝑗 ,𝑘

u>𝑗 Ev𝑘

)}
≤ 𝐸 max

𝑗 ,𝑘
exp

(
𝑡u>𝑗 Ev𝑘

)
= 𝐸 max

𝑗 ,𝑘
exp

{
𝑡 (v𝑘 ⊗ u 𝑗 )>vec(E)

}
≤

∑︁
𝑗 ,𝑘

𝐸 exp
{
𝑡 (v𝑘 ⊗ u 𝑗 )>vec(E)

}
≤ 9𝑝+𝑞 exp(𝑐21𝑡

2𝑛).

It follows that for any 0 < 𝑡 < 1/𝑐1,

𝐸 (‖
∑︁
𝑖

𝜎𝑖𝑌𝑖X𝑖‖) ≤ {(𝑝 + 𝑞) log 9}/𝑡 + 𝑐21𝑡𝑛.

By the condition of Theorem 1, we know

{(𝑝 + 𝑞) log 9}1/2/(𝑐1𝑛1/2) = 𝑜(1),

so for sufficiently large 𝑛,

{(𝑝 + 𝑞) log 9}1/2/(𝑐1𝑛1/2) ≤ 1/𝑐1.
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Thus, by setting 𝑡 = {(𝑝 + 𝑞) log 9}1/2/(𝑐1𝑛1/2), we obtain

𝐸

(∑︁
𝑖

𝜎𝑖𝑌𝑖X𝑖


)
≤ 2𝑐1{𝑛(𝑝 + 𝑞) log 9}1/2.

This completes the proof of Lemma B.5. �

C. Proof of Theorem 2

Proof of Theorem 2. This is an immediate result of Theorem 3.1 in Hong

and Luo (2017). �

D. Detailed Derivations for Algorithm 1

In the sequel, we discuss in detail the minimization problems in updates

(4.5a) and (4.5b) for obtaining A𝑘 and r𝑘 .

We first discuss how to find A𝑘 . The challenge of finding A𝑘 is the

minimization problem in (4.5a) has no closed-form solutions in general with a

non-orthogonal design X, so one needs to take multiple optimizing iterations

to find an approximated minimizer (Zhu, 2017). Such a procedure, however,

can be computationally intensive in large-scale problems. To overcome this

challenge, we suggest employing a simple proximal gradient step to inexactly

minimize (4.5a). In particular, we add a proximal term to the objective
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function in (4.5a) and update A by minimizing

A𝑘 = argmin
A∈R𝑝×𝑞

𝜆0‖A‖2𝐹 + 𝜆‖A‖∗ +
〈
u𝑘−1, y �

{
X>vec(A)

}〉
+ 𝜏
2

��r𝑘−1 − y �
{
X>vec(A) + 𝑎𝑘−11𝑛

}��2
2
+ 1

2

vec(A) − a𝑘−1
2
𝜏S
,

(D.6)

where a𝑘−1 = vec(A𝑘−1), S is a positive semi-definite matrix in R𝑝𝑞×𝑝𝑞, and

‖v‖2
S
= tr

(
v>Sv

)
for v ∈ R𝑝𝑞. By taking S = 𝜂I𝑝𝑞 − 2𝜆0/𝜏I𝑝𝑞 − XX> with

𝜂 ≥ 2𝜆0/𝜏 + Λmax
(
XX>)

, we can write problem (D.6) as follows,

A𝑘 = argmin
A∈R𝑝×𝑞

𝜏𝜂

2
‖A −G𝑘−1‖2𝐹 + 𝜆‖A‖∗,

where G𝑘−1 = reshape
(
X[y � (r𝑘−1 − u𝑘−1/𝜏) − 𝑎𝑘−11𝑛] + Sa𝑘−1, 𝑝, 𝑞

)
/𝜂. Let

G𝑘−1 = Udiag(σ)V> be the singular value decomposition of G𝑘−1, where

σ = (𝜎1, . . . , 𝜎min(𝑝,𝑞))>. Then, we have

A𝑘 = P𝜏 (G𝑘−1, 𝜆/(𝜏𝜂))
def
= Udiag(g)V>,

where g = (𝑔1, . . . , 𝑔min(𝑝,𝑞))> and 𝑔𝑖 = max{𝜎𝑖 − 𝜆/(𝜏𝜂), 0}.

We then discuss seeking r𝑘 in (4.5b). We suggest taking Newton–

Raphson iterations to find r𝑘 in (4.5b) for two reasons. First, the Newton–
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Raphson iterations converge quadratically to the minimizer r𝑘 when the

initial value (e.g. r𝑘−1) is close to the minimizer r𝑘 under suitable con-

ditions. In our numerical studies, one or two iterations suffice to yield

a quite stable solution for obtaining r𝑘 . Second, the Hessian matrix of

L𝜏

(
𝑎𝑘 ,A𝑘 , r, u𝑘−1

)
with respect to r is diagonal and enables fast computa-

tion of the Newton–Raphson iterations. In particular, the gradient and

Hessian of L𝜏

(
𝑎𝑘 ,A𝑘 , r, u𝑘−1

)
respect to r are

∇rL𝜏

(
𝑎𝑘 ,A𝑘 , r, u𝑘−1

)
= ∇r 𝑓 (r) − u𝑘−1 + 𝜏

[
r − y �

(
X>a𝑘 + 𝑎𝑘1𝑛

) ]
,

∇2
rL𝜏

(
𝑎𝑘 ,A𝑘 , r, u𝑘−1

)
= ∇2

r 𝑓 (r) + 𝜏I𝑛,

where ∇r 𝑓 (r) = (L′
ℎ
(𝑟1), . . . ,L′

ℎ
(𝑟𝑛))>/𝑛 and ∇2

r 𝑓 (r) = diag{(L′′
ℎ
(𝑟1), . . . ,L′′

ℎ
(𝑟𝑛))>/𝑛}.

Thus, from a starting point r𝑘,0 = r𝑘−1, for 𝑗 = 1, 2, . . ., the Newton–Raphson

iterations for solving (4.5b) take the form of,

r𝑘, 𝑗 = r𝑘, 𝑗−1 − (∇2
r 𝑓 (r𝑘, 𝑗−1) + 𝜏I𝑛)−1

{
∇r 𝑓 (r𝑘, 𝑗−1) − u𝑘−1

+𝜏
[
r𝑘, 𝑗−1 − y �

(
X>a𝑘 + 𝑎𝑘1𝑛

) ]}
.

For two specific kernels considered in this paper, the Gaussian kernel L𝐺
ℎ
(𝑣)

and the Epanechnikov kernel L𝐸
ℎ
(𝑣), the first- and second-order derivatives
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are

L𝐺
ℎ

′(𝑣) = −Φ{(1 − 𝑣)/ℎ},

L𝐺
ℎ

′′(𝑣) = (2𝜋ℎ2)−1/2 exp
{
−(1 − 𝑣)2/(2ℎ2)

}
and

L𝐸
ℎ

′(𝑣) = −𝐼 (𝑣 ≤ 1 − ℎ) − (1 − 𝑣 + ℎ)2{2ℎ − (1 − 𝑣)}
/

(4ℎ3)𝐼 (1 − ℎ < 𝑣 ≤ 1 + ℎ),

L𝐸
ℎ

′′(𝑣) = 3{ℎ2 − (1 − 𝑣)2}/(4ℎ3)𝐼 (1 − ℎ < 𝑣 ≤ 1 + ℎ),

respectively. It is easy to show that 0 < L𝐺
ℎ

′′(𝑣) ≤ 1/{(2𝜋)1/2ℎ} and

0 ≤ L𝐸
ℎ

′′(𝑣) ≤ 3/(4ℎ). It follows that L𝜏

(
𝑎𝑘 ,A𝑘 , r, u𝑘−1

)
is 𝜏-strongly

convex, and ∇rL𝜏

(
𝑎𝑘 ,A𝑘 , r, u𝑘−1

)
is Lipschitz continuous with the Lipschitz

constants 𝑐ℎ being 1/{(2𝜋)1/2ℎ} and 3/(4ℎ), respectively. Thus, the Newton–

Raphson iterates converge to r𝑘 quadratically (Nesterov and Nemirovskii,

1994) when r𝑘−1 is close to r𝑘 .

We give two remarks. First, given the fast quadratic convergence, we

suggest just taking one step Newton–Raphson iteration. This is similar to

the Metropolis-within-Gibbs in Bayesian statistics. Second, we can majorize
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the Hessian matrix with (𝑐ℎ + 𝜏)I𝑛 to further reduce the computational cost.

Such a majorization procedure corresponds to a proximal gradient step.

E. Impletation Details of Algorithm 1

E.1 Stopping rule

First is the stopping rule. Following the recommendation by Boyd (2010), we

adopt the following stopping criterion for the proximal ADMM Algorithm 1,

|𝑅𝑝
𝑘
|2 =

��r𝑘 − y �
(
X>a𝑘 + 𝑎𝑘1𝑛

) ��
2
< 𝜖𝑝,

|𝑅𝑑𝑘 |2 = 𝜏
��X[y � (r𝑘 − r𝑘−1) − (𝑎𝑘 − 𝑎𝑘−1)1𝑛] + S(a𝑘 − a𝑘−1)

��
2
< 𝜖𝑑 ,

(E.7)

where 𝑅
𝑝

𝑘
is the primal residual, 𝑅𝑑

𝑘
is the dual residual, and 𝜖𝑝 > 0 and

𝜖𝑑 > 0 are feasibility tolerances. As discussed in Boyd (2010), we can choose

these tolerances using absolute and relative criteria as follows

𝜖𝑝 = {(𝑛 + 𝑝)𝑞}1/2 𝜖abs + 𝜖 relmax
{
|r𝑘 |2,

��y �
(
X>a𝑘

) ��
2
, 𝑛1/2 |𝑎𝑘 |

}
,

𝜖𝑑 = {𝑝𝑞}1/2 𝜖abs + 𝜏𝜖 relmax
{��X(y � r𝑘 )

��
2
,
��X(y � r𝑘−1)

��
2
,

|𝑎𝑘 | · |X1𝑛 |2, |𝑎𝑘−1 | · |X1𝑛 |2, |Sa𝑘 |2, |Sa𝑘−1 |2
}
,
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where 𝜖abs > 0 and 𝜖 rel > 0 are chosen as 10−4. In our simulations, we also

stop the iterations in Algorithm 1 once the number of iterations exceeds

some maximum number of iterations, e.g., 1000.

E.2 The choice of the penalty parameter 𝜏

Second is the choice of the Lagrangian penalty parameter 𝜏. The penalty

parameter 𝜏 is also the step size in updating the dual variable u. Tuning 𝜏

faces a trade-off. On the one hand, 𝜏 needs to be small enough to satisfy

𝜏 < 𝑐/𝜎2
1 (X) to ensure the linear convergence rate according to the proof

of Theorem 2, where 𝑐 > 0 is a constant. According to Yin et al. (1988)

and Allen and Perry (2024), when 𝑛 � 𝑝𝑞, one can get that 𝜎2
1 (X) � 𝑛 and

hence 𝜏 = 𝑂 (1/𝑛) almost surely. On the other hand, smaller 𝜏 will impose

less penalty on primal feasibility and inflate the constant within the linear

convergence rate. In the optimization community, a widely used technique

is the use of adaptive step size to guarantee the decrease of the sum of the

primal and dual optimality gap (He et al., 2000; Wang and Liao, 2001; Boyd,

2010). In particular, we use the following scheme to adjust the value of 𝜏 at
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iteration 𝑘 + 1

𝜏𝑘+1 =



𝛼incr𝜏𝑘 , |𝑅𝑝
𝑘
|2 > 𝜇 |𝑅𝑑𝑘 |2,

𝜏𝑘
/
𝛼decr, |𝑅𝑑𝑘 |2 > 𝜇 |𝑅

𝑝

𝑘
|2,

𝜏𝑘 , otherwise,

where 𝜇 > 1, 𝛼incr > 1 and 𝛼decr > 1 are constants. The above scheme

ensures the primal and dual residual norms |𝑅𝑝
𝑘
|2
/
|𝑅𝑑
𝑘
|2 and |𝑅𝑑

𝑘
|2
/
|𝑅𝑝
𝑘
|2

vary within a factor of 𝜇 of one another as they both converge to zero. In

our implementation, we take the typical choice 𝜇 = 10 and 𝛼incr = 𝛼decr = 2

(Boyd, 2010).

E.3 Computational complexity analysis

Third is the computational complexity. There are two types of computational

costs involved. One arises from calculating the matrix-vector products,

while the other is from the singular value decomposition to obtain A𝑘 .

The computational complexity for calculating the matrix-vector products

is 𝑂 (𝑛𝑝𝑞). The computational complexity of performing singular value

decomposition depends on the optimization algorithm used. In general, its

computational complexity is upper bounded by 𝑂{𝑝𝑞min(𝑝, 𝑞)}. One can

further reduce the cost by applying advanced algorithms that only involve

matrix-vector products such as power iteration (Larsen, 2004), Lanczos
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bidiagonalization (Baglama and Reichel, 2005; Cai and Osher, 2013) and

shift-and-inverse iteration (Allen-Zhu and Li, 2016). Accordingly, the overall

computational complexity for one iteration is 𝑂 (𝑛𝑝𝑞). Thanks to the

superior linear convergence rate of Algorithm 1, to achieve the desired

prefixed precision 𝜖 > 0, the number of iterations required is 𝑂{log(1/𝜖)}.

In summary, the entire computational complexity of Algorithm 1 is of order

𝑂{𝑛𝑝𝑞 log(1/𝜖)} for matrix inputs and reduces to 𝑂{𝑛𝑝 log(1/𝜖)} for vector

inputs with 𝑞 = 1.

We can compare our Algorithm 1 with the classical DWD method, which

also uses a smooth and convex loss function. The classical DWD method

focuses on vector inputs with 𝑞 = 1 in our setting. By Marron et al. (2007)

and Egashira et al. (2021), DWD is often formulated as a second-order cone

programming (SOCP) problem with 𝑛 + 𝑝 second-order cone constraints.

Solving SOCP is usually computationally extensive due to the complicated

second-order cone constraints. To the best of our knowledge, the state-of-

the-art optimization algorithm for solving SOCP holds a computational

complexity of order 𝑂{(𝑛 + 𝑝)𝜔 log(1/𝜖)} up to some polynomic terms of

log{(𝑛 + 𝑝)/𝜖} to achieve a desired precision 𝜖 (Nesterov and Nemirovskij,

2001; Wei and Ye, 2023). Here, 𝜔 is the exponent of matrix multiplication,

and the current value is about 2.37. In this regard, our proposed Algorithm
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1 is computationally more efficient than DWD.

F. Extension to Tensor Data

Notations. We begin by introducing standard notations and operations

commonly employed in tensor data analysis, following Kolda and Bader

(2009). For positive integers 𝑀 ≥ 2 and 𝑝1, . . . , 𝑝𝑀 , an 𝑀-dimensional array

A ∈ R𝑝1×𝑝2×···×𝑝𝑀 is referred to as an 𝑀-way tensor. The vectorization of a

tensor A, denoted as vec(A), is a ∏𝑀
𝑚=1 𝑝𝑚-dimensional vector where the 𝑗th

element corresponds to A𝑖1,...,𝑖𝑀 , with 𝑗 = 1 + ∑𝑀
𝑚=1(𝑖𝑚 − 1)∏𝑚−1

𝑚′=1 𝑝𝑚′. The

inner product of two tensors of identical dimensions is defined as 〈X,A〉 =

{vec(X)}>vec(A). The outer product of 𝑀 vectors α1 ∈ R𝑝1 , . . . ,α𝑀 ∈ R𝑝𝑀

is expressed as α1 ◦ . . . ◦α𝑀 , which forms a 𝑝1 × . . . × 𝑝𝑀 tensor with the

( 𝑗1, . . . , 𝑗𝑀)th element equal to
∏𝑀
𝑚=1 𝛼𝑚 𝑗𝑚 .

Methodology for Tensor Data. The convolution-type smoothing tech-

nique we propose is applicable to more general and practical tensor inputs,

often encountered in fields such as image processing, social network analysis,

and digital marketing. Consider a dataset {(𝑌𝑖,X𝑖)}𝑛𝑖=1, where 𝑌𝑖 ∈ {−1, 1}

represents a binary label and X𝑖 ∈ R𝑝1×𝑝2×···×𝑝𝑀 is an 𝑀-way tensor-valued

predictor. A natural approach is to identify a hyperplane that separates the
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two classes of data points by solving the following optimization problem:

min
𝑎∈R1,A∈R𝑝1×𝑝2×···×𝑝𝑀

1

𝑛

𝑛∑︁
𝑖=1

Lℎ{𝑌𝑖 (〈X𝑖,A〉 + 𝑎)} + 𝜆0
𝑝1,...,𝑝𝑀∑︁

𝑖1=1,...,𝑖𝑀=1

A2
𝑖1,...,𝑖𝑀

,

where Lℎ denotes our newly introduced smoothed hinge loss function. The

primary challenge here is that A contains
∏
𝑚 𝑝𝑚 parameters, which could

grow speedily. To effectively reduce the dimensionality of the classifier, we

recommend employing canonical decomposition or parallel factors (CAN-

DECOMP/PARAFAC, or CP) decomposition (Kolda and Bader, 2009) on

the tensor coefficient A:

A =
𝐾∑︁
𝑘=1

α(1𝑘) ◦α(2𝑘) ◦ · · · ◦α(𝑀𝑘) ,

where α(𝑚𝑘) ∈ R𝑝𝑚 for each 𝑚 and 𝑘, and 𝐾 is the rank of the CP de-

composition. For simplicity, we represent the above CP decomposition

as

A = ÈA1,A2, . . . ,A𝑀É,

where A𝑚 = (α(𝑚1) , . . . ,α(𝑚𝐾)) ∈ R𝑝𝑚×𝐾 for each 𝑚 = 1, . . . , 𝑀. With the

CP decomposition, the parameter count in A is significantly reduced from∏
𝑚 𝑝𝑚 to 𝐾

∑
𝑚 𝑝𝑚. To ensure the identifiability of α(𝑚𝑘) in the presence
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of scaling and permutation ambiguities (Zhou et al., 2013), the parameter

space is typically restricted to

SA = {ÈA1,A2, . . . ,A𝑀É : 𝛼(𝑚𝑘)
1 = 1, 𝑚 = 1, . . . , 𝑀 − 1, 𝑘 = 1, . . . , 𝐾,

𝛼
(𝑀1)
1 ≥ 𝛼(𝑀2)

1 ≥ . . . ≥ 𝛼(𝑀𝐾)
1 }.

Regularized Estimation. In typical neuroimaging studies, the sample size

is often limited. Even with a low-rank tensor SVM model, the number of

parameters frequently exceeds the sample size. Consequently, the scenario

where 𝑝𝑚 > 𝑛 is commonplace in neuroimaging analysis. To address this

challenge, imposing structural assumptions and regularization is crucial

for stabilizing the classification task. Different penalties cater to various

structures and objectives. Here, we focus on the widely adopted sparsity

structure and its associated penalties. Leveraging the dimension reduction

afforded by CP decomposition, we consider the following optimization

problem:

min
𝑎∈R1,A∈R𝑝1×𝑝2×···×𝑝𝑀

1

𝑛

𝑛∑︁
𝑖=1

Lℎ{𝑌𝑖 (〈X𝑖, ÈA1,A2, . . . ,A𝑀É〉 + 𝑎)}

+
𝑀∑︁
𝑚=1

𝐾∑︁
𝑘=1

𝑝𝑚∑︁
𝑖=1

P𝜏 ( |𝛼(𝑚𝑘)
𝑖

|, 𝜆0),
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where P𝜄( |𝛼 |, 𝜆0) represents a scalar penalty function, 𝜆0 is the penalty tuning

parameter, and 𝜄 is an index for the penalty family. Notable penalties include

the power family (Frank and Friedman, 1993), where P𝜄( |𝛼 |, 𝜆0) = 𝜆0 |𝛼 |𝜄

with 𝜄 ∈ (0, 2], notably including lasso (Tibshirani, 1996) (𝜄 = 1) and

ridge (𝜄 = 2); elastic net (Zou and Hastie, 2005), defined as P𝜄( |𝛼 |, 𝜆0) =

𝜆0{(1 − 𝜄) |𝛼 | + 𝜄𝛼2}, with 𝜄 ∈ [0, 1]; and SCAD (Fan and Li, 2001), where

𝜕/𝜕 |𝛼 |P𝜄( |𝛼 |, 𝜆0) = 𝜆0 [𝐼 ( |𝛼 | ≤ 𝜆0) + (𝜄𝜆0 − |𝛼 |)+/{(𝜄 − 1)𝜆0}𝐼 ( |𝛼 | > 𝜆0)] for

𝜄 > 2, among others. While it is conceptually feasible to disregard the

tensor structure and directly apply the penalty to the full coefficient array

A ∈ R𝑝1×𝑝2×···×𝑝𝑀 –effectively treating vec(X𝑖)–this approach may lead to an

explosion in dimensionality, particularly in brain imaging applications with

tensor structures. For instance, the dimensionality could reach 643 = 262, 144

or even 2563 = 16, 777, 216 variables, which could severely degrade both

statistical and computational performance. One can directly extend our

proximal ADMM Algorithm 1 for handling these penalties with convexity

and integrate Algorithm 1 with a local linear approximation for handling

nonconvex penalties.

We emphasize that the CP decomposition is only one of several methods

for modeling the low-rank structure of tensors, chosen here for illustrative

purposes. Other choices include the Tucker decomposition.
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G. Additional Numerical Experiments

We study the impact of different kernels and penalties on our proposed

CSMM. We fix 𝑝 = 50, 𝑞 = 30 and the sample size 𝑛 = 300. We consider

LRCSMM-G, LRCSMM-E, EnetCSMM-G, and EnetCSMM-E in this study.

Table G.1 collects the results. From Table G.1, we can see that the CSMM

with Gaussian kernel performs slightly better than CSMMwith Epanechnikov

kernel. Thus, we only consider CSMM with Gaussian kernel in the following

numerical studies.

To visualize the fast linear convergence of our pADMM algorithm for

solving the penalized CSMM, we present a visualization of the objective

values in Figure G.1. These values are obtained by applying pADMM to the

penalized CSMM with the validated tuning parameters in Example 1 with

𝑑 = −1. Figure G.1 clearly demonstrates the rapid decrease in the objective

value throughout the optimization process.
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Table G.1: The prediction error (in percentages) and runtime (in seconds) of low-rank
convoluted SMM with Gaussian and Epanechnikov kernels, and elastic-net convoluted
SMM with Gaussian and Epanechnikov kernels. Under each simulation setting, the
method with the lowest prediction error is marked by a black box. All the results are
averaged over 50 independent runs.

LRCSMM-G LRCSMM-E EnetCSMM-G EnetCSMM-E

𝑑 err (%) time err (%) time err (%) time err (%) time

Example 1

−0.5 15.67 0.11 18.33 0.36 15.67 0.11 21.34 0.15

−1 7.67 0.1 7.00 0.23 7.00 0.14 7.67 0.11

−1.5 2.33 0.14 4.67 0.19 2.33 0.14 5.67 0.14

Example 2

−0.5 31.00 0.09 37.00 0.18 31.33 0.09 36.00 0.16

−1 19.33 0.09 23.00 0.25 19.33 0.09 20.33 0.16

−1.5 14.33 0.13 18 .00 0.14 14.67 0.12 18.00 0.15
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(a) Low-rank CSMM with Gaussian kernel (b) Elastic-net CSMM with Gaussian kernel

Figure G.1: Convergence plot for solving penalized CSMM with validated tuning
parameters using Algorithm 1 under the simulation setting in Example 1 with 𝑑 = −1
based on 50 independent runs.
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