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S1 Explanation of General Assumptions

Remark 1. Explanation of general assumptions:

(Ia) This assumption means the treatment assigned to one unit does not

directly affect the outcomes of other units. In the context of survival out-

comes, it implies the presence or absence of treatment for one individual

does not impact the survival time or outcome of other individuals.

(Ib) This assumption means the treatment assigned to a unit has a con-

sistent causal effect on that unit’s outcome. In the context of survival

outcomes, it implies the treatment has a constant impact on each individ-

ual’s survival time or hazard rate, regardless of the treatment assignments

of other individuals. By assuming both the stability of units and consistent
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treatment effects, SUTVA allows us to leverage the presence of multiple

units in estimating causal effects with survival outcomes. This feature en-

ables us to draw valid causal inferences and evaluate the treatment effect on

survival outcomes by comparing the outcomes of treated units with those

of control units, accounting for potential confounding factors.

(II) This assumption plays a crucial role in the identification of causal ef-

fects in this study. Specifically, it ensures the validity of the identifica-

tion formula (equation (2.4)) introduced in Section 2.3. The positivity of

P (M(t) = m|T = t,X = x) > 0 is required to ensure that the inte-

gral is well-defined and that the conditional expectation E[Y (x, t′,Mt(x))]

can be estimated. Additionally, this assumption ensures that every sub-

ject has a positive probability of being assigned to each treatment arm,

which is critical for making valid causal inferences. In the context of

this study, as described in Section 7, the treatment variable T is binary,

indicating the presence of APOE-ε4 alleles (1 = presence). The ADNI

dataset includes 718 subjects, with 367 in the T = 1 group and 351

in the T = 0 group. This relatively balanced distribution ensures that

P (T = t|X = x) > 0 is plausible across all levels of the covariates X.

The mediator M , defined as the difference in the proportion of ventricle

volume in the whole brain between the 12th month and the baseline, is
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a continuous variable that has been standardized prior to analysis. The

standardization ensures that M has a smooth and continuous distribution,

making P (M(t) = m|T = t,X = x) > 0 generally plausible across its

range.

(III) The unconfoundedness assumptions guarantee the identification of

ICEs with survival outcomes, as introduced in Section 2.3. These assump-

tions require that the treatment is independent of the potential outcomes

and potential mediators, given the observed covariates X, and the mediator

is independent of the potential outcomes given the observed treatment T

and pre-treatment covariates X. By assuming treatment independence and

mediator independence, the unconfoundedness assumption aims to ensure

that any observed associations between treatment, mediator, and survival

outcomes can be causally attributed to the causal effect and not to unmea-

sured confounders or reverse causality.

(IV) The assumption of noninformative censoring states that the censoring

time C and the event time Y are conditionally independent given the co-

variates X, treatment T , and mediator M . It is crucial for making valid

causal inferences in survival analysis, ensuring that the censoring process is

not related to the unobserved outcomes, given the treatment, mediator, and

the observed covariates. As a result, we can treat the censored observations
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as missing at random (MAR).

S2 Some Details in Section 3

S2.1 Mediator Layer

Counterfactual block: it consists of a generator and a discriminator.

We first introduce the generator, GM : Rdz × X × {0, 1} × M 7→ M ×

M, which takes several inputs, including the covariates x (where X =

x), the binary treatment variable t (where T = t), the factual media-

tor m (where M = m), and some noise Z. The output is the complete

mediator vector GM(Z,x, t,m) =
(
G

(0)
M (Z,x, t,m), G

(1)
M (Z,x, t,m)

)
, where

GM(Z,X, T,M) =
(
G

(0)
M (Z,X, T,M), G

(1)
M (Z,X, T,M)

)
represents the ran-

dom variable generated by GM. The discriminator, DM : X ×M×M 7→

[0, 1], takes x, (1− t)m+ tG
(0)
M (Z,x, t,m), and tm+ (1− t)G(1)

M (Z,x, t,m)

as inputs. It outputs a scalar value representing the probability that the

last input tm + (1 − t)G(1)
M (Z,x, t,m) corresponds to the factual mediator

rather than the counterfactual mediator. This setup allows us to generate

the complete mediator vector by incorporating the covariates, treatment,

factual mediator, and noise into the generator, and then leveraging the dis-

criminator to distinguish between the factual and counterfactual mediators.

The loss function associated with this setup is
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LM(GM, DM) := E(X,T,M)∼PX,T,M
EZ∼PZ

{
T logDM

(
X, (1− T )M + TG

(0)
M (Z,X, T,M), TM + (1− T )G

(1)
M (Z,X, T,M)

)
+(1− T ) log

[
1−DM

(
X, (1− T )M + TG

(0)
M (Z,X, T,M), TM + (1− T )G

(1)
M (Z,X, T,M)

)]}
,

and the corresponding minimax optimization problem can be formulated

as minGM
maxDM

LM(GM, DM). At the population level, the target condi-

tional generator and discriminator, G∗M and D∗M, are defined as the solu-

tions to the optimization problem:

(G∗M, D
∗
M) = argminGM

argmaxDM
LM(GM, DM). (S2.1)

Similar to GM = (G
(0)
M , G

(1)
M ), we denote G∗M = (G

∗,(0)
M , G

∗,(1)
M ).

Empirical Loss Function of Counterfactual Block: for the dataset

{X = xi, T = ti,M = mi}ni=1, independently and identically distributed

according to PX,T,M , and {Z = zi}ni=1 independently generated from PZ, we

define the sample set SMn := {X = xi, T = ti,M = mi,Z = zi}ni=1. This

sample set is used to train the estimated conditional generator ĜM. We

consider the empirical version of LM(GM, DM):

L̃M(GM, DM) =
1

n

n∑
i=1

{
ti logDM

(
xi, (1− ti)mi + tiG

(0)
M (zi,xi, ti,mi), timi + (1− ti)G

(1)
M (zi,xi, ti,mi)

)
+ (1− ti) log

[
1−DM

(
xi, (1− ti)mi + tiG

(0)
M (zi,xi, ti,mi), timi + (1− ti)G

(1)
M (zi,xi, ti,mi)

)]}
.
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We also introduce a supervised loss to ensure that G
(t)
M(z,x, t,m) =

m: L̃1(GM) := 1
n

∑n
i=1

∣∣G(ti)
M (zi,xi, ti,mi) − mi

∣∣2. Now, we can define the

empirical objective function as follows: for a supervised parameter α1 ≥ 0,

L̂M(GM, DM) := L̃M(GM, DM) + α1L̃1(GM). (S2.2)

We use two feedforward neural networks (FNN) to estimate GM, de-

noted as ĜM, based on (S2.2). See details in Section S2.3.

Inferential Block: we extend the classical CGAN framework in this

block to generate the complete mediator vector solely based on the given

covariates x, without relying on factual mediator and treatment. After

training the above counterfactual mediator block, we obtain the complete

mediator vector
(
(1 − t)m + tG

(0)
M (Z,x, t,m), tm + (1 − t)G(1)

M (Z,x, t,m)
)
.

Then, we transfer this complete mediator vector and the given covariates

x (where X = x) to the inferential mediator block for inference. The

generator, denoted as IM : Rdz × X 7→ M × M, takes the covariates

x (where X = x) and some noise Ẑ as inputs. It produces the com-

plete mediator vector IM(Ẑ,x) =
(
I

(0)
M (Ẑ,x), I

(1)
M (Ẑ,x)

)
, where IM(Ẑ,X) =(

I
(0)
M (Ẑ,X), I

(1)
M (Ẑ,X)

)
represents the random variable generated by IM.

The discriminator, DIM , in this case, takes either
(
x, (1−t)m+tG

(0)
M (Z,x, t,m),

tm+ (1− t)G(1)
M (Z,x, t,m)

)
or
(
x, IM(ẑ,x)

)
as inputs. By utilizing this ar-

chitecture, we can generate the complete mediator vector by integrating

the covariates and noise into the generator. The discriminator helps distin-

guish between the counterfactual and inferred complete mediator vectors.
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We employ the classical CGAN loss:

LIM(IM, DIM) = Eq∼PQ [logDIM(q)] + Ex∼PXEẑ∼P
Ẑ
log
[
1−DIM

(
x, I

(0)
M (ẑ,x), I

(1)
M (ẑ,x)

)]
,

where PQ is the the joint distribution of
(
X, G

∗,(0)
M (Z,X, T = 1,M1(X)),M1(X)

)
.

Subsequently, we aim to solve minIM maxDIM
LIM(IM, DIM). Define

(I∗M, D
∗
IM) := argminIM

argmaxDIM
LIM(IM, DIM) and LIM(IM) := sup

DIM

LIM(IM, DIM),

and denote I∗M = (I
∗,(0)
M , I

∗,(1)
M ). Based on the Lemmas regarding distribu-

tion matching presented in Section S2.2, we can show that I
∗,(0)
M (Ẑ,X) ∼

M0(X) ∼ PM |X,T=0 and I
∗,(1)
M (Ẑ,X) ∼M1(X) ∼ PM |X,T=1.

Empirical Loss Function of Inferential Block: given the sam-

ple set SMn and {Ẑ = ẑi}ni=1 independently generated from PẐ, after ob-

taining ĜM in the previous section, we define another sample set SIMn :=

{(xi, ti,m(0)
i ,m

(1)
i , ẑi)}ni=1, where (m

(0)
i ,m

(1)
i ) = ti

(
Ĝ

(0)
M (zi,xi, T = 1,mi),mi

)
+

(1− ti)
(
mi, Ĝ

(1)
M (zi,xi, T = 0,mi)

)
, to train the estimated conditional gen-

erator ÎM in the inferential block. Consider the following empirical version

of LIM(IM, DIM):

L̃IM(IM, DIM ; ĜM) =
1

n

n∑
i=1

{
logDIM

(
xi,m

(0)
i ,m

(1)
i

)
+ log

[
1−DIM

(
xi, I

(0)
M (ẑi,xi), I

(1)
M (ẑi,xi)

)]}
.

To optimize the performance with respect to equation Ex∼PX

[∣∣E[M1(x) −

M0(x)
]
−E
[
I

(1)
M (Ẑ,x)−I(0)

M (Ẑ,x)
]∣∣2], we introduce a supervised loss: L̃2(IM; ĜM) =

1
n

∑n
i=1

∣∣(m(0)
i −m

(1)
i

)
−
(
I

(0)
M (ẑi,xi)−I(1)

M (ẑi,xi)
)∣∣2. Meanwhile, we introduce

another supervised loss to ensure I
(t)
M (z,x) = m: L̃3(IM) = 1

n

∑n
i=1

∣∣I(ti)
M (ẑi,xi)−

mi

∣∣2. For supervised parameters α2, α3 ≥ 0, we define an empirical objec-
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tive function as follows:

L̂IM(IM, DIM ; ĜM) := L̃IM(IM, DIM ; ĜM) + α2L̃2(IM; ĜM) + α3L̃3(IM).

(S2.3)

Again, we use FNN to estimate IM, denoted as ÎM, based on the em-

pirical objective function (S2.3). See details in Section S2.4.

S2.2 Distribution Matching

First, we consider the loss function

LM(GM, DM) :=

E(X,T,M)∼PX,T,M
EZ∼PZ

{
T logDM

(
X, (1− T )M + TG

(0)
M (Z,X, T,M), TM + (1− T )G

(1)
M (Z,X, T,M)

)
+ (1− T ) log[1−DM

(
X, (1− T )M + TG

(0)
M (Z,X, T,M), TM + (1− T )G

(1)
M (Z,X, T,M)

)
]
}
,

and

(G∗M, D
∗
M) = argminGM

argmaxDM
LM(GM, DM). (S2.4)

Now, we provide the form of the target discriminator D∗M. For any mea-

surable function GM : Rdz × X × {0, 1} × M 7→ M × M, we define

LM(GM) := supDM
LM(GM, DM). Then,

LM(GM) = sup
DM

EX∼PX

{
P (T = 1|X) · EM∼PM|X,T=1

EZ∼PZ

{
logDM(X, G

(0)
M (Z,X, 1,M),M)

}
+ P (T = 0|X) · EM∼PM|X,T=0

EZ∼PZ

{
log[1−DM(X,M,G

(1)
M (Z,X, 0,M))]

}}
=sup
DM

∫
X

∫
M

∫
Rdz

(
logDM(x, G

(0)
M (z,x, 1,m),m) · pM|X,T (M = m|X = x, T = 1) · pT |X(T = 1|X = x)

+ log[1−DM(x,m,G
(1)
M (z,x, 0,m))] · pM|X,T (M = m|X = x, T = 0) · pT |X(T = 0|X = x)

)
· pZ(Z = z) dz dmpX(X = x)dx
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=sup
DM

∫
X

∫
M

∫
Rdz

(
logDM(x, G

(0)
M (z,x, 1,m),m) · pZ,X,T,M (Z = z,X = x, T = 1,M = m)

+ log[1−DM(x,m,G
(1)
M (z,x, 0,m))] · pZ,X,T,M (Z = z,X = x, T = 0,M = m)

)
dz dmdx

=sup
DM

(∫
GM,1(Rdz×X×{1}×M)

logDM(q) · dPZ,X,T,M

(
(Z,X, T,M) ∈ G−1

M,1(q)
)

+

∫
GM,0(Rdz×X×{0}×M)

log[1−DM(w)] · dPZ,X,T,M

(
(Z,X, T,M) ∈ G−1

M,0(w)
))

=sup
DM

(
Eq∼PQ logDM(q) + Ew∼PW log[1−DM(w)]

)
=DJS(pQ, pW)− log 4 = DKL(pQ‖(pQ + pW)/2) + DKL(pW‖(pQ + pW)/2)− log 4, (S2.5)

where pQ and pW are densities of PQ(Q = q) = PZ,X,T,M

(
(Z,X, T,M) ∈

G−1
M,1(q)

)
for any q ∈ GM,1(Rdz × X × {1} × M) and PW(W = w) =

PZ,X,T,M

(
(Z,X, T,M) ∈ G−1

M,0(w)
)

for any w ∈ GM,0(Rdz×X ×{0}×M),

respectively; GM,1 : (z,x, T,m) ∈ Rdz×X×{1}×M 7→ (x, G
(0)
M (z,x, 1,m),m)

∈ X × M × M, and GM,0 : (z,x, T,m) ∈ Rdz × X × {0} × M 7→

(x,m,G
(1)
M (z,x, 0,m)) ∈ X × M × M; G−1

M,i is the inverse mapping of

GM,i for i ∈ {0, 1}; DJS(A,B) denotes the Jensen-Shannon (JS) divergence

between two distributions A and B, and DKL(A‖B) denotes the Kullback-

Leibler (KL) divergence between A and B.

Using the properties of the f -divergence including JS divergence as a

special case (Zhou et al., 2022), we obtain that the optimal discriminator is

D∗M =
pQ

pQ + pW
=

p
X,G

(0)
M

(Z,X,T=1,M1(X)),M1(X)

p
X,G

(0)
M

(Z,X,T=1,M1(X)),M1(X)
+ p

X,M0(X),G
(1)
M

(Z,X,T=0,M0(X))

. (S2.6)

According to Statement 1 of Theorem S.2 in Arjovsky et al. (2017), we can

deduce that DJS(pQ, pW) = 0 if and only if the total variation distance of
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probability measures is zero, i.e., ‖PQ−PW‖TV := supA∈ΣX×M×M
|PQ(A)−

PW(A)| = 1
2
‖pQ − pW‖L1 := 1

2

∫
X×M×M |pQ(q) − pW(q)|dq = 0. Here,

ΣX×M×M represents the set of all measurable subsets, PQ(A) =
∫
q∈A pQ(q)dq,

PW(A) =
∫
q∈A pW(q)dq, and the second equality can be verified using

Proposition 4.2 in Levin and Peres (2017). As a consequence, we obtain

the following lemma on distribution matching:

Lemma 1. A function G∗M : Rdz × X × {0, 1} × M 7→ M × M is a

minimizer of LM(GM), that is, G∗M ∈ argminGM
LM(GM), if and only if

∥∥∥p
X,G

∗,(0)
M (Z,X,T=1,M1(X)),M1(X)

− p
X,M0(X),G

∗,(1)
M (Z,X,T=0,M0(X))

∥∥∥
L1

= 0;

that is,
(
X, G

∗,(0)
M (Z,X, T = 1,M1(X)),M1(X)

)
∼
(
X,M0(X), G

∗,(1)
M (Z,X, T = 0,M0(X))

)
.

Denote the joint distribution in the above lemma by PQ.

Drawing an analogy to the counterfactual block in the mediator layer,

we can derive the expression for the optimal discriminator D∗Y in the out-

come layer. For any measurable function GY : Rdz ×X × {0, 1} ×M×Y ,

the optimal discriminator is given by:

D∗Y =

p
X,M,G

(0)
Y

(Z̃,X,T=1,M,Y1(X,M)),Y1(X,M)

p
X,M,G

(0)
Y

(Z̃,X,T=1,M,Y1(X,M)),Y1(X,M)
+ p

X,M,Y0(X,M),G
(1)
Y

(Z̃,X,T=0,M,Y0(X,M))

. (S2.7)

We have the following lemma regarding distribution matching.

Lemma 2. A function G∗Y : Rdz × X × {0, 1} × M × Y 7→ Y × Y is a

minimizer of LY(GY) := supDY
LY(GY, DY), that is, G∗Y ∈ argminGY

LY(GY), if
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and only if

∥∥p
X,M,G

∗,(0)
Y (Z̃,X,T=1,M,Y1(X,M)),Y1(X,M)

− p
X,M,Y0(X,M),G

∗,(1)
Y (Z̃,X,T=0,M,Y0(X,M))

∥∥
L1 = 0,

or

(
X,M,G

∗,(0)
Y (Z̃,X, T = 1,M, Y1(X,M)), Y1(X,M)

)
∼
(
X,M, Y0(X,M), G

∗,(1)
Y (Z̃,X, T = 0,M, Y0(X,M))

)
.

Denote the joint distribution in the above lemma as PQ̃.

Next, consider the classical CGAN loss:

LIM(IM, DIM) = Eq∼PQ [logDIM(q)] + Ex∼PXEẑ∼P
Ẑ
log
[
1−DIM

(
x, I

(0)
M (ẑ,x), I

(1)
M (ẑ,x)

)]
,

and

(I∗M, D
∗
IM

) := argminIM
argmaxDIM

LIM(IM, DIM) and LIM(IM) := sup
DIM

LIM(IM, DIM).

Based on the standard theory of CGAN (Goodfellow et al., 2014; Mirza and

Osindero, 2014), it can be shown that the optimal discriminator is given by

D∗IM =
pQ

pQ + pX,IM(Ẑ,X)

, (S2.8)

and we can establish the following lemma regarding distribution matching.

Lemma 3. A function I∗M : Rdz×X 7→M×M is a minimizer of LIM(IM),

that is, I∗M ∈ argminIM
LIM(IM) if and only if

∥∥∥pQ − pX,IM(Ẑ,X)

∥∥∥
L1

= 0;

that is,
(
X, G

∗,(0)
M (Z,X, T = 1,M1(X)),M1(X)

)
∼
(
X,M0(X), G

∗,(1)
M (Z,X, T = 0,M0(X))

)
∼

(
X, I

∗,(0)
M (Ẑ,X), I

∗,(1)
M (Ẑ,X)

)
.
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By considering the marginal distributions, we can conclude that I
∗,(0)
M (Ẑ,X)

∼M0(X) ∼ PM |X,T=0 and I
∗,(1)
M (Ẑ,X) ∼M1(X) ∼ PM |X,T=1.

Similarly, by the standard theory of CGAN, we can determine the op-

timal discriminator of inferential block in the outcome layer as follows:

D∗IY =
pQ̃

pQ̃ + pX,M,IY(Ẑ,X)

, (S2.9)

and obtain the following lemma on distribution matching.

Lemma 4. A function I∗Y : Rdz × X ×M 7→ Y × Y is a minimizer of

LIY(IY), that is, I∗Y ∈ argminIY
LIY(IY), if and only if ‖pQ̃−pX,M,IY(Z,X,M)‖L1

= 0; that is,
(
X,M,G

∗,(0)
Y (Z̃,X, T = 1,M, Y1(X,M)), Y1(X,M)

)
∼
(
X,M, Y0(X,M), G

∗,(1)
Y (Z̃,X,

T = 0,M, Y0(X,M))
)
∼
(
X,M, I

∗,(0)
Y (Z,X,M), I

∗,(1)
Y (Z,X,M)

)
.

By considering the marginal distributions, we deduce that I
∗,(0)
Y (Z,X,M) ∼

Y0(X,M) ∼ PY |X,T=0,M and I
∗,(1)
Y (Z,X,M) ∼ Y1(X,M) ∼ PY |X,T=1,M .

S2.3 GM estimation

We use two FNNs (Goodfellow et al., 2016) to estimate GM based on the

empirical objective function (3.11). Denote the conditional generator net-

work as Gθ
M parameterized by θ, and the conditional discriminator net-

work as Dφ
M parameterized by φ. For any function f(x) : X → Rd, denote

‖f‖L∞ = supx∈X ‖f(x)‖, where ‖·‖ is the Euclidean norm.

• The generator network Gθ
M: let G ≡ GH,W,S,B be the set of ReLU
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neural networks Gθ
M : Rdz ×X × {0, 1} ×M 7→M×M parameterized by

θ, depth H, width W , size S, and
∥∥Gθ

M

∥∥
L∞
≤ B. Here, the depth H refers

to the number of hidden layers, so the network has H+ 1 layers in total. A

(H+ 1)-vector (w0, w1, . . . , wH) specifies the width of each layer, where w0

is the dimension of the input data and wH is the dimension of the output.

The width W = max {w1, . . . , wH} is the maximum width of the hidden

layers. The size S =
∑H

i=0 [wi × wi+1] is the total number of parameters in

the network.

• The discriminator network Dφ
M : denote D ≡ DH̃,W̃,S̃,B̃ as the set of

ReLU neural networks Dφ
M : X ×M×M 7→ R, parameterized by φ, depth

H̃, width W̃ , size S̃, and
∥∥∥Dφ

M

∥∥∥
L∞
≤ B̃.

Then, θ and φ are estimated as follows: (θ̂, φ̂) = argminθargmaxφL̂M(Gθ
M, D

φ
M),

and the estimated conditional generator is ĜM = Gθ̂
M, and the estimated

discriminator is D̂M = Dφ̂
M. Note that L̃M(GM, DM) depends onG

(0)
M (·, ·, 1, ·)

and G
(1)
M (·, ·, 0, ·) but not on G

(0)
M (·, ·, 0, ·) or G

(1)
M (·, ·, 1, ·), while L̃1(GM) ex-

hibits the opposite behavior, meaning that it is dependent on G
(0)
M (·, ·, 0, ·)

and G
(1)
M (·, ·, 1, ·) but not on G

(0)
M (·, ·, 1, ·) or G

(1)
M (·, ·, 0, ·). Therefore, ĜM is

also a minimizer of both L̃M(Gθ
M, D̂M) and L̃1(Gθ

M).
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S2.4 IM estimation

Denote the conditional generator network as IψM parameterized by ψ, and

the conditional discriminator network as Dω
IM

parameterized by ω.

• The generator network IψM: let I ≡ IH,W,S,B be the set of ReLU

neural networks IψM : Rdẑ × X 7→ M×M parameterized by ψ, depth H,

width W , size S, and
∥∥∥IψM∥∥∥

L∞
≤ B.

• The discriminator network Dω
IM

: denote DI ≡ DHD,WD,SD,BD as the

set of ReLU neural networks Dω
IM

: X ×M×M 7→ R, parameterized by

ω, depth HD, width WD, size SD, and
∥∥Dω

IM

∥∥
L∞
≤ BD.

Then, ψ and ω are estimated by the following:

(ψ̂, ω̂) = argminψargmaxωL̂IM(IψM, D
ω
IM

; ĜM), (S2.10)

and the estimated conditional generator is ÎM = Iψ̂M and the estimated

discriminator is D̂IM = Dω̂
IM

.

S2.5 GY estimation

We use two FNNs to estimate GY based on the empirical objective function

L̂Y(GY, DY). Let Ỹ := Y
⋃
C. Following the approach in Section 3.1 in the

paper, we denote the conditional generator network as Gζ
Y parameterized

by ζ, and the conditional discriminator network as Dξ
Y parameterized by

ξ.
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• The generator network Gζ
Y: let GY ≡ GHY ,WY ,SY ,BY be the set of ReLU

neural networks Gζ
Y : Rdz × X × {0, 1} ×M× Ỹ 7→ Y × Y parameterized

by ζ, depth HY , width WY , size SY , and
∥∥∥GζY∥∥∥

L∞
≤ BY .

• The discriminator network Dξ
Y : denote DY ≡ DH̃Y ,W̃Y ,S̃Y ,B̃Y as the

set of ReLU neural networks Dξ
Y : X ×M×Y ×Y 7→ R, parameterized by

ξ, depth H̃Y , width W̃Y , size S̃Y , and
∥∥∥Dξ

Y

∥∥∥
L∞
≤ B̃Y .

Then, ζ and ξ are estimated by the following:

(ζ̂, ξ̂) = argminζargmaxξL̂Y(Gζ
Y, D

ξ
Y), (S2.11)

and the estimated conditional generator and discriminator are ĜY = Gζ̂
Y

and D̂Y = Dξ̂
Y, respectively.

S2.6 IY estimation

We again use FNNs to estimate IY based on the empirical objective function

L̂IY(IY, DIY ; ĜY).

Denote the conditional generator network as IϕY parameterized by ϕ,

and the conditional discriminator network as Dλ
IY

parameterized by λ.

• The generator network IϕY: denote IY ≡ IHY ,WY ,SY ,BY as the set of

ReLU neural networks IϕY : X ×M 7→ Y × Y , parameterized by ϕ, depth

HY , width WY , size SY , and ‖IϕY‖L∞ ≤ BY .

• The discriminator network Dλ
IY

: denote DIY ≡ DHDY ,WDY
,SDY ,BDY

as
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the set of ReLU neural networks Dλ
IY

: X ×M×Y×Y 7→ R, parameterized

by λ, depth HDY , width WDY , size SDY , and
∥∥Dλ

IY

∥∥
L∞
≤ BDY . Then, ϕ

and λ are estimated by the following:

(ϕ̂, λ̂) = argminϕargmaxλL̂IY(IϕY, D
λ
IY

; ĜY), (S2.12)

and the estimated conditional generator and discriminator are ÎY = Iϕ̂Y and

D̂IY = Dλ̂
IY

, respectively.

S3 Regularity Conditions

(A.1) G∗M(z,x, 1,m) and G∗M(z,x, 0,m) are continuous in (z,x,m) ∈

Rdz×X×M with ‖G∗M(·, ·, 1, ·)‖L∞(Rdz×X×M) ≤ C0 and ‖G∗M(·, ·, 0, ·)‖L∞(Rdz×X×M) ≤

C0 for some constant 0 < C0 < ∞.

(A.2) For any GM ∈ G ≡ GH,W,S,B,

pQ
(pQ + pW)

=
p
X,G

(0)
M (Z,X,T=1,M1(X)),M1(X)

p
X,G

(0)
M (Z,X,T=1,M1(X)),M1(X)

+ p
X,M0(X),G

(1)
M (Z,X,T=0,M0(X))

:

X ×M×M→ R is continuous and 0 < C1 ≤ pQ/(pQ + pW) ≤ C2 < 1 for

some constants 0 < C1 ≤ C2 <∞.

(B.1) As sample size n goes to infinity, the network parameters of G satisfy

HW →∞ and
BSH log(S) log n

n
→ 0. (S3.13)
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(B.2) As sample size n goes to infinity, the network parameters of D satisfy

H̃W̃ → ∞ and
B̃S̃H̃ log(S̃) log n

n
→ 0. (S3.14)

(A.3) I∗M(z,x) is continuous in (z,x) ∈ Rdz×X with ‖I∗M(·, ·)‖L∞(Rdz×X ) ≤

C7 for some constant 0 < C7 < ∞.

(A.4) For any IM ∈ I ≡ IH,W,S,B,
p
X,Ĝ

(0)
M

(Z,X,T=1,M1(X)),M1(X)

p
X,Ĝ

(0)
M

(Z,X,T=1,M1(X)),M1(X)
+p

X,I
(0)
M

(Ẑ,X),I
(1)
M

(Ẑ,X)

and
p
X,M0(X),Ĝ

(1)
M

(Z,X,T=0,M0(X))

p
X,M0(X),Ĝ

(1)
M

(Z,X,T=0,M0(X))
+p

X,I
(0)
M

(Ẑ,X),I
(1)
M

(Ẑ,X)

are continuous in X×M×M,

and they are bounded below by C8 and are bounded above by C9 for some

constants 0 < C8 ≤ C9 <∞.

(B.3) As sample size n goes to infinity, the network parameters of I satisfies

HW →∞ and
BSH log(S) log n

n
→ 0. (S3.15)

(B.4) As sample size n goes to infinity, the network parameters of DI

satisfies

HDWD →∞ and
BDSDHD log(SD) log n

n
→ 0. (S3.16)

(C.1) G∗Y(z̃,x, 1,m, y) and G∗Y(z̃,x, 0,m, y) are continuous in (z̃,x,m, y) ∈

Rdz ×X ×M×Y with ‖G∗Y(·, ·, 1, ·, ·)‖L∞(Rdz×X×M×Y) ≤ CY 0 and

‖G∗Y(·, ·, 0, ·, ·)‖L∞(Rdz×X×M×Y) ≤ CY 0 for some constant 0 < CY 0 <∞.

(C.2) For any GY ∈ GY ≡ GHY ,WY ,SY ,BY ,

p
X,M,G

(0)
Y

(Z̃,X,T=1,M,Y1(X,M)),Y1(X,M)

p
X,M,G

(0)
Y

(Z̃,X,T=1,M,Y1(X,M)),Y1(X,M)
+p

X,M,Y0(X,M),G
(1)
Y

(Z̃,X,T=0,M,Y0(X,M))

: X×M×Y×
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Y → R is continuous and it is not less than CY 1 and not larger than CY 2

for some constants 0 < CY 1 ≤ CY 2 <∞.

(D.1) As sample size n1 goes to infinity, the network parameters of GY

satisfy

HYWY →∞ and
BY SYHY log(SY ) log n1

n1

→ 0. (S3.17)

(D.2) As sample size n1 goes to infinity, the network parameters of DY

satisfy

H̃Y W̃Y →∞ and
B̃Y S̃Y H̃Y log(S̃Y ) log n1

n1

→ 0. (S3.18)

And suppose that, for any given ĜY ∈ GY ,

(C.3) I∗Y(z,x,m) is continuous in (z,x,m) ∈ Rdz×X×M with ‖I∗Y(·, ·, ·)‖L∞(Rdz×X×M) ≤

CY 3 for some constant 0 < CY 3 < ∞.

(C.4) For any IY ∈ IY ≡ IHY ,WY ,SY ,BY ,

p
X,M,G

(0)
Y

(Z̃,X,T=1,M,Y1(X,M)),Y1(X,M)

p
X,M,G

(0)
Y

(Z̃,X,T=1,M,Y1(X,M)),Y1(X,M)
+p

X,M,I
(0)
Y

(Z,X,M),I
(1)
Y

(Z,X,M)

and

p
X,M,Y0(X,M),G

(1)
Y

(Z̃,X,T=0,M,Y0(X,M))

p
X,M,Y0(X,M),G

(1)
Y

(Z̃,X,T=0,M,Y0(X,M))
+p

X,M,I
(0)
Y

(Z,X,M),I
(1)
Y

(Z,X,M)

are continuous in

X ×M × Y × Y , and they are bounded below by CY 4 and are bounded

above by CY 5 for some constants 0 < CY 4 ≤ CY 5 <∞.

(D.3) As sample size n1 goes to infinity, the network parameters of IY

satisfy

HYWY →∞ and
BY SYHY log(SY ) log n1

n1

→ 0. (S3.19)
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(D.4) As sample size n goes to infinity, the network parameters of DIY

satisfy

HDYWDY →∞ and
BDY SDYHDY log(SDY ) log n1

n1

→ 0. (S3.20)

S4 Proofs of Theoretical Results in Section 4

Mediator Layer: we shall first show the convergence of the total variation

norm∥∥∥∥pX,Ĝ(0)
M

(Z,X,T=1,M1(X)),M1(X)
− p

X,M0(X),Ĝ
(1)
M

(Z,X,T=0,M0(X))

∥∥∥∥
L1

(S4.21)

=

∫
X×M×M

|p
X,Ĝ

(0)
M

(Z,X,T=1,M1(X)),M1(X)
(x,m0,m1)− p

X,M0(X),Ĝ
(1)
M

(Z,X,T=0,M0(X))
(x,m0,m1)|dxdm0dm1

as sample size n tends to infinity, under some assumptions, which are

similar to those of Zhou et al. (2022).

Theorem S.1. Under the assumptions (A.1), (A.2), (B.1), and (B.2), then

ESMn ‖pX,Ĝ(0)
M (Z,X,T=1,M1(X)),M1(X)

−p
X,M0(X),Ĝ

(1)
M (Z,X,T=0,M0(X))

‖2
L1 → 0, as n→∞.

Let l0 be the number of samples in the sample set SIMn where ti = 0,

and l1 be the number of samples in the sample set SIMn where ti = 1. It is

evident that l0 + l1 = n. As n→∞, at least one of the following statements

holds true: (i) l1 → ∞; (ii) l0 → ∞. By employing a similar but simpler

argument compared to the proof of Theorem S.1, we can establish:

Theorem S.2. Under the assumptions (A.3), (A.4), (B.3), and (B.4), then
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(i) ESIM
n
‖p

X,Ĝ
(0)
M

(Z,X,T=1,M1(X)),M1(X)
− p

X,Î
(0)
M

(Ẑ,X),Î
(1)
M

(Ẑ,X)
‖L1 → 0, as l1 →∞,

(ii) ESIM
n
‖p

X,M0(X),Ĝ
(1)
M

(Z,X,T=0,M0(X))
− p

X,Î
(0)
M

(Ẑ,X),Î
(1)
M

(Ẑ,X)
‖L1 → 0, as l0 →∞.

By combining Theorems S.1 and S.2, we can derive the following theo-

rem:

Theorem S.3. Under the assumptions (A.1)–(A.4) and (B.1)–(B.4), then

ESM
n ∪{ẑi}ni=1

‖p
X,Ĝ

(0)
M

(Z,X,T=1,M1(X)),M1(X)
− p

X,Î
(0)
M

(Ẑ,X),Î
(1)
M

(Ẑ,X)
‖L1 → 0, as n→∞,

ESM
n ∪{ẑi}ni=1

‖p
X,M0(X),Ĝ

(1)
M

(Z,X,T=0,M0(X))
− p

X,Î
(0)
M

(Ẑ,X),Î
(1)
M

(Ẑ,X)
‖L1 → 0, as n→∞.

Finally, we can derive Theorem 1.

Outcome Layer: Since we assume that the censoring rate αr is fixed

and strictly less than 1, the size of the non-censoring dataset S
(1)
n1 tends to

infinity as the size of the dataset Sn approaches infinity. Consequently, when

n is sufficiently large and thus n1 is also sufficiently large, we can exclusively

utilize the non-censoring dataset S
(1)
n1 to train the outcome layer.

Theorem S.4. Under the assumptions (C.1)–(C.4) and (D.1)–(D.4), the

following statements hold true, as n1 →∞,

ESYn ∪{zi}ni=1
‖p

X,M,Ĝ
(0)
Y (Z̃,X,T=1,M,Y1(X,M)),Y1(X,M)

− p
X,M,Î

(0)
Y (Z,X,M),Î

(1)
Y (Z,X,M)

‖L1 → 0,

ESYn ∪{zi}ni=1
‖p

X,M,Y0(X,M),Ĝ
(1)
Y (Z̃,X,T=0,M,Y0(X,M))

− p
X,M,Î

(0)
Y (Z,X,M),Î

(1)
Y (Z,X,M)

‖L1 → 0.

By employing a similar argument to the proof of Theorem 1 and utiliz-

ing results of Theorem S.4, we can derive Theorem 2.
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S4.1 Proof of Theorem S.1

Proof. To handle the discrete variable t ∈ {0, 1} in a continuous manner,

we introduce the following continuous function that smoothly connects the

two states t = 0 and t = 1:

ϕ : (t,m, m̃) ∈ [0, 1]×M2 ×M2 7→ ϕ(t,m, m̃) =



m, t ∈ [0, 1/4]

(2t− 1/2)m̃+ (3/2− 2t)m, t ∈ [1/4, 3/4]

m̃, t ∈ [3/4, 1]

∈M2,

(S4.22)

and then define the extended generator (to t ∈ [0, 1]) as follows:

G̃∗M : (z,x, t,m) ∈ Rdz ×X × [0, 1]×M 7→ ϕ
(
t,G∗M(z,x, 0,m),G∗M(z,x, 1,m)

)
∈M2.

(S4.23)

Then, G̃∗M is continuous with
∥∥∥G̃∗

M

∥∥∥
L∞(Rdz×X×[0,1]×M)

≤ C0.

By a truncation argument, we only need to consider on domains Ω1 =

[−B,B]dx+dz × [0, 1]× [−B,B] and Ω2 = [−B,B]dx+2 with B = log n.

We note that

DJS(pX,Ĝ(0)
M

(Z,X,T=1,M1(X)),M1(X)
, p

X,M0(X),Ĝ
(1)
M

(Z,X,T=0,M0(X))
)

= DKL
(
p
X,Ĝ

(0)
M

(Z,X,T=1,M1(X)),M1(X)

∥∥∥∥pX,Ĝ(0)
M

(Z,X,T=1,M1(X)),M1(X)
+ p

X,M0(X),Ĝ
(1)
M

(Z,X,T=0,M0(X))

2

)
+ DKL

(
p
X,M0(X),Ĝ

(1)
M

(Z,X,T=0,M0(X))

∥∥∥∥pX,Ĝ(0)
M

(Z,X,T=1,M1(X)),M1(X)
+ p

X,M0(X),Ĝ
(1)
M

(Z,X,T=0,M0(X))

2

)
≥ 1

2

∥∥∥p
X,Ĝ

(0)
M

(Z,X,T=1,M1(X)),M1(X)
−
p
X,Ĝ

(0)
M

(Z,X,T=1,M1(X)),M1(X)
+ p

X,M0(X),Ĝ
(1)
M

(Z,X,T=0,M0(X))

2

∥∥∥2
L1

+
1

2

∥∥∥p
X,M0(X),Ĝ

(1)
M

(Z,X,T=0,M0(X))
−
p
X,Ĝ

(0)
M

(Z,X,T=1,M1(X)),M1(X)
+ p

X,M0(X),Ĝ
(1)
M

(Z,X,T=0,M0(X))

2

∥∥∥2
L1

=
1

4
‖p

X,Ĝ
(0)
M

(Z,X,T=1,M1(X)),M1(X)
− p

X,M0(X),Ĝ
(1)
M

(Z,X,T=0,M0(X))
‖2L1

, (S4.24)
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where the inequality in the fourth line follows Pinskers inequalities (Tsy-

bakov, 2008). Therefore,

‖p
X,Ĝ

(0)
M (Z,X,T=1,M1(X)),M1(X)

− p
X,M0(X),Ĝ

(1)
M (Z,X,T=0,M0(X))

‖2
L1

≤ 4DJS(p
X,Ĝ

(0)
M (Z,X,T=1,M1(X)),M1(X)

, p
X,M0(X),Ĝ

(1)
M (Z,X,T=0,M0(X))

)

= 4(LM(ĜM) + log 4)

= 4(LM(ĜM)− LM(G∗M)), (S4.25)

where the equality in the last line follows the fact that LM(G∗M) = − log 4

from Lemma 1 and Equation (S2.5). So it suffices to show that the last line

in (S4.25) converges to zero in expectation.

We follow the progress of proof in Zhou et al. (2022) and write

0 ≤ LM(ĜM)− LM(G∗M) = sup
DM

LM(ĜM, DM)− sup
DM

LM(G∗M, DM)

= sup
DM

LM(ĜM, DM)− sup
DM∈D

LM(ĜM, DM)

+ sup
DM∈D

LM(ĜM, DM)− sup
DM∈D

L̃M(ĜM, DM)

+ sup
DM∈D

L̃M(ĜM, DM)− sup
DM∈D

L̃M(GM, DM)

+ sup
DM∈D

L̃M(GM, DM)− sup
DM∈D

LM(GM, DM)

+ sup
DM∈D

LM(GM, DM)− sup
DM

LM(GM, DM)

+ sup
DM

LM(GM, DM)− sup
DM

LM(G∗M, DM)
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≤ sup
DM

LM(ĜM, DM)− sup
DM∈D

LM(ĜM, DM)

+ sup
DM∈D

LM(ĜM, DM)− sup
DM∈D

L̃M(ĜM, DM)

+ sup
DM∈D

L̃M(GM, DM)− sup
DM∈D

LM(GM, DM)

+ sup
DM

LM(GM, DM)− sup
DM

LM(G∗M, DM),

≤ sup
DM

LM(ĜM, DM)− sup
DM∈D

LM(ĜM, DM)

+ 2 sup
DM∈D,GM∈G

|LM(GM, DM)− L̃M(GM, DM)|

+ sup
DM

LM(GM, DM)− sup
DM

LM(G∗M, DM),

where GM is any element that belongs to G. We then take infimum with

respect to GM ∈ G on both sides of the above inequality and get

LM(ĜM)− LM(G∗M) ≤ sup
DM

LM(ĜM, DM)− sup
DM∈D

LM(ĜM, DM)︸ ︷︷ ︸
∆1

+ 2 sup
DM∈D,GM∈G

|LM(GM, DM)− L̃M(GM, DM)|︸ ︷︷ ︸
∆2

+ inf
GM∈G

[LM(GM)− LM(G∗M)]︸ ︷︷ ︸
∆3

= ∆1 + ∆2 + ∆3, (S4.26)

where ∆1 and ∆3 are the approximation errors of D and G for their optimal

counterparts, respectively, and ∆2 is the statistical error and thus can be
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further controlled by the empirical process theorem.

Lemma 5. (Theorem 4.2 in Shen et al. (2019), Lemma B.5 in Zhou et al.

(2022)) Let f be a uniformly continuous function defined on Ω ⊂ [−R,R]d.

For arbitrary L ∈ N+ and N ∈ N+, there exists a function ReLU network

fφ with width 3d+3 max{dbN1/dc, N + 1} and depth 12L+ 14 + 2d such that

‖f − fφ‖L∞(Ω) ≤ 19
√
dωΩ

f (2RN−2/dL−2/d), (S4.27)

where b·c is the floor function and ωΩ
f (t) is the modulus of continuity of f

satisfying ωΩ
f (t)→ 0 as t→ 0+.

Lemma 6. (Lemma B.4 in Zhou et al. (2022)) If ξi, i = 1, . . .m, are m

finite linear combinations of Rademacher variables εj, j = 1, . . . J . Then

Eεj ,j=1,...J max
1≤i≤m

|ξi| ≤ C4(logm)1/2 max
1≤i≤m

(
Eξ2

i

)1/2

for some constant C4 > 0.

Lemma 7. Under the assumptions (A.1), (A.2), (B.1) and (B.2), the

following statement is valid:

∆3 ≡ inf
GM∈G

[LM(GM)− LM(G∗M)] = o(1), as n→∞.

Proof. By Assumption (A.1), G̃∗M is continuous on Ω1 = [−B,B]dx+dz ×

[0, 1]× [−B,B] with B = log n, and
∥∥∥G̃∗

M

∥∥∥
L∞(Ω1)

≤ C0. Setting L = log n,
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N = n
dx+dz+2

2(dx+dz+4)/ log n, Ω = Ω1 and R = B, in Lemma 5, we get an ReLU

network G
θ

M ∈ G with

depth H = 12 log n+ 14 + 2(dx + dz + 2),

width W = 3dx+dz+5 max{(dx + dz + 2)(n
dx+dz+2

2(dx+dz+4)/ log n)1/(dx+dz+2), n
dx+dz+2

2(dx+dz+4)/ log n+ 1},

size S = n
dx+dz
dx+dz+4/(log4 n) and B = 2C0 (S4.28)

such that

‖G̃∗M −G
θ

M‖L∞(Ω1) ≤ 19
√
dx + dz + 2ωΩ1

f (2(log n)n−1/(dx+dz+4)). (S4.29)

Thus, there exist at least one t0 ∈ [0, 1/4] and one t1 ∈ [3/4, 1] such that

‖G̃∗M(·, ·, t0, ·)−G
θ

M(·, ·, t0, ·)‖L∞([−B,B]dx+dz+1) ≤ 19
√
dx + dz + 2ωΩ1

f (2(log n)n−1/(dx+dz+4)),

‖G̃∗M(·, ·, t1, ·)−G
θ

M(·, ·, t1, ·)‖L∞([−B,B]dx+dz+1) ≤ 19
√
dx + dz + 2ωΩ1

f (2(log n)n−1/(dx+dz+4)),

that is,

‖G∗M(Z,X, T = 0,M0(X))−G
θ

M(·, ·, t0, ·)‖L∞([−B,B]dx+dz+1) → 0, as n→∞,

‖G∗M(Z,X, T = 1,M1(X))−G
θ

M(·, ·, t1, ·)‖L∞([−B,B]dx+dz+1) → 0, as n→∞.

(S4.30)

Let

DM(η) =
p
X,G

θ,(0)
M (Z,X,t1,M1(X)),M1(X)

(η)

p
X,G

θ,(0)
M (Z,X,t1,M1(X)),M1(X)

(η) + p
X,M0(X),G

θ,(1)
M (Z,X,t0,M0(X))

(η)
,

(S4.31)
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D∗M(η) =
p
X,G

∗,(0)
M (Z,X,T=1,M1(X)),M1(X)

(η)

p
X,G

∗,(0)
M (Z,X,T=1,M1(X)),M1(X)

(η) + p
X,M0(X),G

∗,(1)
M (Z,X,T=0,M0(X))

(η)
,

(S4.32)

where η ∈ X ×M×M. Then, from the display on (S4.30) and continuity,

we have

‖D∗M −DM‖L∞([−B,B]dx+dz+1) → 0 as n→∞, (S4.33)

and therefore, we obtain

LM(G
θ

M) = sup
DM

LM(G
θ

M, DM) = LM(G
θ

M, DM)

converge to

LM(G∗M) = sup
DM

LM(G∗M, DM) = LM(G∗M, D
∗
M)

as n→∞.

Lemma 8. Under the assumptions (A.1), (A.2), (B.1) and (B.2), the

following statement is valid:

∆2 ≤ O(n−
2

4+dx+dz + n−
2

4+dx ). (S4.34)

Proof. To bound the statistical error ∆2, we follow the empirical process

argument in lemma B.2 in Zhou et al. (2022). By Assumption (A.2), for
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any GM ∈ G,

DM(·) =
p
X,G

(0)
M (Z,X,T=1,M1(X)),M1(X)

(·)
p
X,G

(0)
M (Z,X,T=1,M1(X)),M1(X)

(·) + p
X,M0(X),G

(1)
M (Z,X,T=0,M0(X))

(·)
: X ×M×M→ R

(S4.35)

is continuous and 0 < C1 ≤ infη∈Ω2 DM(η) ≤ supη∈Ω2
DM(η) ≤ C2 < 1.

Setting L = log n, N = n
dx+2

2(2+dx+2)/ log n, Ω = Ω2 and R = B, in Lemma 5,

we get an ReLU network D
φ

M ∈ D with

depthH̃ = 12 log n+ 14 + 2(dx + 2),

width W̃ = 3dx+5 max{(dx + 2)(n
dx+2

2(2+dx+2)/ log n)1/(dx+2), n
dx+2

2(2+dx+2)/ log n+ 1},

size S̃ = n
dx
dx+4/(log4 n) and B̃ = 2C2 (S4.36)

such that

‖DM −D
φ

M‖L∞(Ω2) ≤ 19
√
dx + 2ωΩ2

f (2(log n)n−1/(dx+4)). (S4.37)

Let (X, T,M) ∼ PX,T,M and (xi, ti,mi), i = 1, ..., n are i.i.d copies of

(X, T,M). Let Z ∼ PZ and Z |= (X, T,M), zj, j = 1, ..., n are i.i.d copies

of Z. Then, si = (xi, ti,mi, zi) are i.i.d copies of S = (X, T,M,Z) ∼
PX,T,MPZ. Denote

b(GM, DM;S) =T logDM(X, (1− T )M + tG
(0)
M (Z,X, T,M), TM + (1− T )G

(1)
M (Z,X, T,M))

+ (1− T ) log[1−DM(X, (1− T )M + TG
(0)
M (Z,X, T,M), TM + (1− T )G

(1)
M (Z,X, T,M))].

(S4.38)

Then, LM(GM, DM) = ES[b(GM, DM; S)] and L̃M(GM, DM) = 1
n

∑n
i=1 b(GM, DM; si)].

Let εi, i = 1, ..., n be i.i.d Rademacher random samples that are independent
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of si, i = 1, ..., n. Denote the Rademacher complexity of D × G (Bartlett

and Mendelson, 2002) by

C(D × G) =
1

n
E{si,εi}ni=1

[
sup

GM∈G,DM∈D

∣∣∣ n∑
i=1

εib (GM, DM; si)
∣∣∣] . (S4.39)

Let C (D × G, en,1, δ)) be the covering number of D×G with respect to the

empirical distance

en,1((GM, DM), (G̃M, D̃M)) :=
1

n
Eεi

[
n∑
i=1

∣∣∣εi (b (GM, DM; si)− b
(
G̃M, D̃M; si

))∣∣∣] .
(S4.40)

Also define

en,∞((GM, DM), (G̃M, D̃M)) := Eεi
[

sup
1≤i≤n

∣∣∣εi (b (GM, DM; si)− b
(
G̃M, D̃M; si

))∣∣∣] .
(S4.41)

First, by the standard symmetrization technique and the law of iterated

expectations, we have

sup
DM∈D,GM∈G

|LM(GM, DM)− L̃M(GM, DM)| = 2C(D × G)

= 2Es1,...,sn {Eεi,i=1,...,n [C(G × D) | (s, . . . , sn)]} . (S4.42)

For δ > 0, let Dδ ×Gδ be such a covering set at scale δ of D×G. Then, by

the triangle inequality and Lemma 6, we have

Es1,...,sn {Eεi,i=1,...,n [C(G × D) | (s1, . . . , sn)]}
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≤ δ +
1

n
Es1,...,sn

{
Eεi,i=1,...,n

[
sup

(GM,DM)∈Dδ×Gδ

∣∣ n∑
i=1

εib (GM, DM; si)
∣∣ | (s1, . . . , sn)

]}

≤ δ + C4
1

n
Es1,...,sn

{[
logC (D × G, en,1, δ)

]1/2
max

(GM,DM)∈Dδ×Gδ

[ n∑
i=1

b2 (GM, DM; si)
]1/2}

.

(S4.43)

Since ‖b(GM, DM; S)‖L∞ ≤ C3 := max{| logC1|, | log(1− C2)|}, we have[
n∑
i=1

b2 (GM, DM; si)

]1/2

≤
√
nC3.

Therefore,

1

n
Es1,...,sn

(logC (D × G, en,1, δ))1/2 max
(GM,DM)∈Dδ×Gδ

[
n∑
i=1

b2 (GM, DM; si)

]1/2


≤ 1

n
Es1,...,sn

[
(logC (D × G, en,1, δ))1/2√nC3

]
≤ C3√

n
[logC (D, en,1, δ) + logC (G, en,1, δ)]1/2 . (S4.44)

Now since C (G, en,1, δ) ≤ C (G, en,∞, δ) (similar result for D ) and

logC (G, en,∞, δ)) ≤ PdimG log
2eBn
δ PimG

,

where PdimG is the Pseudo dimension of GH,W,S,B, which satisfies Bartlett

et al. (2019)

C5HS logS ≤ PimG ≤ C6HS logS,

for some positive constants C5 and C6. Then, we have

1√
n

[logC (D, en,1, δ) + logC (G, en,1, δ)]1/2
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.
1√
n

[
HS logS log

Bn
δHS logS

+ H̃S̃ log S̃ log
B̃n

δH̃S̃ log S̃

]1/2

. (S4.45)

As a result, (S4.34) follows from (S4.28), (S4.36) and (S4.42)–(S4.45) with

the selection of the network parameters of DH̃,W̃,S̃,B̃,GH,W,S,B and with δ =

1
n
.

Lemma 9. Under the assumptions (A.1), (A.2), (B.1) and (B.2), the

following statement is valid:

ESMn [∆1] ≡ ESMn [sup
DM

LM(ĜM, DM)− sup
DM∈D

LM(ĜM, DM)]→ 0 as n→∞.

(S4.46)

Proof. Conditioning on the data SMn , supDM
LM(ĜM, DM) is attained at

DĜM
M (η) =

p
X,Ĝ

(0)
M (Z,X,T=1,M1(X)),M1(X)

(η)

p
X,Ĝ

(0)
M (Z,X,T=1,M1(X)),M1(X)

(η) + p
X,M0(X),Ĝ

(1)
M (Z,X,T=0,M0(X))

(η)
.

By Assumption (A.2), DĜM
M (η) : X × M × M → R is continuous on

Ω2 = [−B,B]dx+2 with B = log n, and ‖DĜM
M ‖L∞(Ω2) ≤ C2. Setting L =

log n, N = n
dx+2

2(2+dx+2)/ log n, Ω = Ω2 and R = B, in Lemma 5, we get

an ReLU network D̂φ
M ∈ D with depth H̃ = 12 log n + 14 + 2(dx + 2),

W̃ = 3dx+5 max{(dx + 2)(n
dx+2

2(2+dx+2)/ log n)1/(dx+2), n
dx+2

2(2+dx+2)/ log n+ 1}, and

size S̃ = n
dx
dx+4/(log4 n), B̃ = 2C2 such that

‖DĜM
M − D̂φ

M‖L∞(Ω2) ≤ 19
√
dx + 2ωΩ2

f (2(log n)n−1/(dx+4)), (S4.47)
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this is ‖DĜM
M − D̂φ

M‖L∞(Ω2) → 0, as n→∞. Then

0 < sup
DM

LM(ĜM, DM)− sup
DM∈D

LM(ĜM, DM) ≤ L1(ĜM, D
ĜM
M )− L1(ĜM, D̂

φ
M)→ 0,

by continuity.

Thus, combined with the results of the above three lemmas, we can

derive the result of Theorem S.1:

ESMn ‖pX,Ĝ(0)
M (Z,X,T=1,M1(X)),M1(X)

− p
X,M0(X),Ĝ

(1)
M (Z,X,T=0,M0(X))

‖2
L1

≤ ESMn 4(LM(ĜM)− LM(G∗M))

≤ 4ESMn ∆1 + ∆2 + ∆3 → 0, as n→∞.

S4.2 Proof of Theorem S.3

Proof. Without loss of generality, we assume that l1 → ∞ as n → ∞.

Otherwise, if l0 → ∞ as n → ∞, we can employ a similar argument as

follows. For an arbitrary ε > 0, by Theorem S.1, there exists N0 > 0 such

that, for any n ≥ N0,

ESMn ‖pX,Ĝ(0)
M (Z,X,T=1,M1(X)),M1(X)

− p
X,M0(X),Ĝ

(1)
M (Z,X,T=0,M0(X))

‖L1 ≤ 1

2
ε.

(S4.48)
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Let ĜM,N0 be the estimated conditional generator corresponding to the

sample set SMN0
∪ {ẑi}N0

i=1. Then,

ESMN0
‖p

X,Ĝ
(0)
M,N0

(Z,X,T=1,M1(X)),M1(X)
− p

X,M0(X),Ĝ
(1)
M,N0

(Z,X,T=0,M0(X))
‖L1 <

1

2
ε.

(S4.49)

Next, for any n ≥ N0, we can define the sample set SIMn := {(xi, ti,m(0)
i ,m

(1)
i , ẑi)}ni=1,

where (m
(0)
i ,m

(1)
i ) = ti·(Ĝ(0)

M,N0
(zi,xi, T = 1,mi),mi)+(1−ti)·(mi, Ĝ

(1)
M,N0

(zi,xi, T =

0,mi)), and thus, by Theorem S.2, there exists N1 > N0 such that, for any

n ≥ N1,

ESIMn ‖pX,Ĝ(0)
M,N0

(Z,X,T=1,M1(X)),M1(X)
− p

X,Î
(0)
M (Ẑ,X),Î

(1)
M (Ẑ,X)

‖L1 <
1

2
ε, (S4.50)

which implies

ESMn ‖pX,Ĝ(0)
M,N0

(Z,X,T=1,M1(X)),M1(X)
− p

X,Î
(0)
M (Ẑ,X),Î

(1)
M (Ẑ,X)

‖L1 <
1

2
ε. (S4.51)

In addition, by (S4.49) and (S4.50),

ESMn ‖pX,M0(X),Ĝ
(1)
M,N0

(Z,X,T=0,M0(X))
− p

X,Î
(0)
M (Ẑ,X),Î

(1)
M (Ẑ,X)

‖L1 < ε. (S4.52)

Therefore, by (S4.51), (S4.52) and the arbitrary nature of ε, we have the

results of Theorem S.3.

S4.3 Proof of Theorem 1

Proof. By using the first result of Theorem S.3, we have

ESM
n ∪{ẑi}ni=1

‖pX,M1(X) − pX,Î(1)
M

(Ẑ,X)
‖L1
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=ESM
n ∪{ẑi}ni=1

∫
X×M

∣∣∣pX,M1(X)(x,m)− p
X,Î

(1)
M

(Ẑ,X)
(x,m)

∣∣∣dmdx
=ESM

n ∪{ẑi}ni=1

∫
X×M

∣∣∣ ∫
M
p
X,Ĝ

(0)
M

(Z,X,T=1,M1(X)),M1(X)
(x, m̃,m)dm̃−

∫
M
p
X,Î

(0)
M

(Ẑ,X),Î
(1)
M

(Ẑ,X)
(x, m̃,m)dm̃

∣∣∣dmdx
≤ESM

n ∪{ẑi}ni=1

∫
X×M×M

∣∣∣p
X,Ĝ

(0)
M

(Z,X,T=1,M1(X)),M1(X)
(x, m̃,m)− p

X,Î
(0)
M

(Ẑ,X),Î
(1)
M

(Ẑ,X)
(x, m̃,m)

∣∣∣dm̃dmdx
=ESM

n ∪{ẑi}ni=1
‖p

X,Ĝ
(0)
M

(Z,X,T=1,M1(X)),M1(X)
− p

X,Î
(0)
M

(Ẑ,X),Î
(1)
M

(Ẑ,X)
‖L1 → 0.

By applying a similar augmentation technique as above and utilizing the

second result of Theorem S.3, we can demonstrate the validity of the second

result of this Theorem.

S5 Implementation of CGAN-ICMA-SO

We describe the implementation of CGAN-ICMA-SO. We use ReLU as the

activation function to train the generator Gθ
M, I

ψ
M,G

ζ
Y, I

ϕ
Y and the discrim-

inator Dφ
M, D

ω
IM
, Dξ

Y, D
λ
IY

. We train the discriminator and the generator

iteratively by updating θ,ψ, ζ,ϕ,φ,ω, ξ and λ as follows:

(a) Fix θ, update the discriminator Dφ
M by ascending the stochastic gra-

dient of the loss (S2.2) with respect to φ.

(b) Fix φ, update the generator Gθ
M by descending the stochastic gradient

of the loss (S2.2) with respect to θ.

(c) Fix ζ, update the discriminator Dξ
Y by ascending the stochastic gra-

dient of the loss (3.10) with respect to ξ.
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(d) Fix ξ, update the generator Gζ
Y by descending the stochastic gradient

of the loss (3.10) with respect to ζ.

(e) Fix ψ, update the discriminator Dω
IM

by ascending the stochastic gra-

dient of the loss (S2.3) with respect to ω.

(f) Fix ω, update the generator IψM by descending the stochastic gradient

of the loss (S2.3) with respect to ψ.

(g) Fix ϕ, update the discriminator Dλ
IY

by ascending the stochastic gra-

dient of the loss (3.11) with respect to λ.

(h) Fix λ, update the generator IϕY by descending the stochastic gradient

of the loss (3.11) with respect to ϕ.

The training process is described below.

Algorithm 1 Training CGAN-ICMA-SO

Input: (a) Samples {X = xi, T = ti,M = mi, Ỹ = ỹi, δ = δi}ni=1 =

{X = xi, T = ti,M = mi, Y = yi, δ = δi = 1}n1
i=1 ∪ {X = xi, T = ti,M =

mi, C = ci, δ = δi = 0}ni=n1+1; (b) Samples {Z = zi}ni=1 from PZ; (c)

Samples {Z̃ = z̃i}ni=1 from PZ̃; (d) Samples {Ẑ = ẑi}ni=1 from PẐ; (e)

Samples {Z = zi}ni=1 from PZ

Output: Conditional generator ĜM, ĜY, ÎM, ÎY, and discriminator D̂M,

D̂Y, D̂IM , D̂IY
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Optimizer: Adam (Kingma and Ba, 2014)

First Step:

while not converged do

• Compute Gθ
M(zi,xi, ti,mi) = (G

θ,(0)
M (zi,xi, ti,mi), G

θ,(1)
M (zi,xi, ti,mi)),

i = 1, . . . , n and Gζ
Y(z̃i,xi, ti,mi, ỹi) = (G

ζ,(0)
Y (z̃i,xi, ti,mi, ỹi), G

ζ,(1)
Y (z̃i,

xi, ti,mi, ỹi)), i = 1, . . . , n, where {Gζ
Y(z̃i,xi, ti,mi, ỹi), i = 1, . . . , n} =

{Gζ
Y(z̃i,xi, ti,mi, yi), i = 1, . . . , n1}∪{Gζ

Y(z̃i,xi, ti,mi, ci), i = n1+

1, . . . , n}. Let St = {xi, ti,mi, ỹi,G
θ
M(zi,xi, ti,mi),G

ζ
Y(z̃i,xi, ti,mi, ỹi),

δi, i = 1, . . . , n} = St1∪St2, where St1 = {xi, ti,mi, yi,G
θ
M(zi,xi, ti,mi),

Gζ
Y(z̃i,xi, ti,mi, yi), δi = 1, i = 1, . . . , n1}, and St2 = {xi, ti,mi, ci,G

θ
M(zi,

xi, ti,mi),G
ζ
Y(z̃i,xi, ti,mi, ci), δi = 0, i = n1 + 1, . . . , n}.

• Randomly select B samples from St, where B1 samples from St1,

B2 samples from St2, and B = B1 + B2. Denote the subscripts of

the selected samples by {bi : i = 1, . . . , B}, {bi : i = 1, . . . , B1},

and {bi : i = B1 + 1, . . . , B}.

• Update Dφ
M and Dξ

Y by ascending their stochastic gradients:

5φ

{
1

B

B∑
i=1

{
tbi logDφM

(
xbi , (1− tbi )mbi + tbiG

θ,(0)
M (zbi ,xbi , tbi ,mbi ), tbimbi + (1− tbi )G

θ,(1)
M (zbi ,xbi , tbi ,mbi )

)

+ (1− tbi ) log
[
1−DφM

(
xbi , (1− tbi )mbi + tbiG

θ,(0)
M (zbi ,xbi , tbi ,mbi ), tbimbi + (1− tbi )G

θ,(1)
M (zbi ,xbi , tbi ,mbi )

)]}}

5ξ

{
1

B1

B1∑
i=1

{
tbi logDξY

(
xbi ,mbi , (1− tbi )ybi + tbiG

ζ,(0)
Y (z̃bi ,xbi , tbi ,mbi , ybi ), tbiybi + (1− tbi )G

ζ,(1)
Y (z̃bi ,xbi , tbi ,mbi , ybi )

)

+ (1− tbi ) log
[
1−DξY

(
xbi ,mbi , (1− tbi )ybi + tbiG

ζ,(0)
Y (z̃bi ,xbi , tbi ,mbi , ybi ), tbiybi + (1− tbi )G

ζ,(1)
Y (z̃bi ,xbi , tbi ,mbi , ybi )

)]}}
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• Update Gθ
M and Gζ

Y by descending their stochastic gradients:

5θ

{
1

B

B∑
i=1

{
tbi logDφM

(
xbi , (1− tbi )mbi + tbiG

θ,(0)
M (zbi ,xbi , tbi ,mbi ), tbimbi + (1− tbi )G

θ,(1)
M (zbi ,xbi , tbi ,mbi )

)
+ (1− tbi ) log

[
1−DφM

(
xbi , (1− tbi )mbi + tbiG

θ,(0)
M (zbi ,xbi , tbi ,mbi ), tbimbi + (1− tbi )G

θ,(1)
M (zbi ,xbi , tbi ,mbi )

)]
+ α1

∣∣∣∣Gθ,(tbi )M (zbi ,xbi , tbi ,mbi )−mbi

∣∣∣∣2}
}
,

5ζ

{
1

B1

B1∑
i=1

{
tbi logDξY

(
xbi ,mbi , (1− tbi )ybi + tbiG

ζ,(0)
Y (z̃bi ,xbi , tbi ,mbi , ybi ), tbiybi + (1− tbi )G

ζ,(1)
Y (z̃bi ,xbi , tbi ,mbi , ybi )

)
+ (1− tbi ) log

[
1−DξY

(
xbi ,mbi , (1− tbi )ybi + tbiG

ζ,(0)
Y (z̃bi ,xbi , tbi ,mbi , ybi ), tbiybi + (1− tbi )G

ζ,(1)
Y (z̃bi ,xbi , tbi ,mbi , ybi )

)]}

+ α4
1

B1

B1∑
i=1

∣∣∣∣Gζ,(tbi )Y (z̃bi ,xbi , tbi ,mbi , ybi )− ybi

∣∣∣∣+ α4
1

B2

B∑
i=B1+1

max

{
0, cbi −G

ζ,(tbi
)

Y (z̃bi ,xbi , tbi ,mbi , cbi )

}

end while

Second Step (after Gθ
M and Gζ

Y have been fully trained):

while not converged do

• Compute Ĝ
(0)
M (zi,xi, T = 1,mi), Ĝ

(1)
M (zi,xi, T = 0,mi), Ĝ

(0)
Y (z̃i,xi, T =

1,mi, ỹi), Ĝ
(1)
Y (z̃i,xi, T = 0,mi, ỹi), I

ψ
M(ẑi,xi) = (I

ψ,(0)
M (ẑi,xi), I

ψ,(1)
M (ẑi,xi)),

and IϕY(zi,xi,mi) = (I
ϕ,(0)
Y (zi,xi,mi), I

ϕ,(1)
Y (zi,xi,mi)). Let (m

(0)
i ,m

(1)
i ) =

ti · (Ĝ
(0)
M (zi,xi, T = 1,mi),mi) + (1 − ti) · (mi, Ĝ

(1)
M (zi,xi, T =

0,mi)), (y
(0)
i , y

(1)
i ) = ti · (Ĝ(0)

Y (z̃i,xi, T = 1,mi, yi), yi) + (1 − ti) ·

(yi, Ĝ
(1)
Y (z̃i,xi, T = 0,mi, yi)), and SIt = {xi, ti,mi, ỹi, δi, Ĝ

(0)
M (zi,xi, T =

1,mi), Ĝ
(1)
M (zi,xi, T = 0,mi), Ĝ

(0)
Y (z̃i,xi, T = 1,mi, ỹi), Ĝ

(1)
Y (z̃i,xi, T =

0,mi, ỹi), I
ψ
M(ẑi,xi), I

ϕ
Y(zi,xi,mi), i = 1, . . . , n} = SIt1∪SIt2, where

SIt1 = {xi, ti,mi, yi, δi = 1, Ĝ
(0)
M (zi,xi, T = 1,mi), Ĝ

(1)
M (zi,xi, T =

0,mi), Ĝ
(0)
Y (z̃i,xi, T = 1,mi, yi), Ĝ

(1)
Y (z̃i,xi, T = 0,mi, yi), I

ψ
M(ẑi,xi),
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IϕY(zi,xi,mi), i = 1, . . . , n1}, and SIt2 = {xi, ti,mi, ci, δi = 0, Ĝ
(0)
M (zi,xi, T =

1,mi), Ĝ
(1)
M (zi,xi, T = 0,mi), Ĝ

(0)
Y (z̃i,xi, T = 1,mi, ci), Ĝ

(1)
Y (z̃i,xi, T =

0,mi, ci), I
ψ
M(ẑi,xi), I

ϕ
Y(zi,xi,mi), i = n1 + 1, . . . , n}.

• Randomly select B samples from SIt, where B1 samples from SIt1,

B2 samples from SIt2, and B = B1 + B2. Denote the subscripts

of the selected samples by {bi : i = 1, . . . , B}, {bi : i = 1, . . . , B1},

and {bi : i = B1 + 1, . . . , B}.

• Update Dω
IM

and Dλ
IY

by ascending their stochastic gradients:

5ω

{
1

B

B∑
i=1

{
logDωIM

(
xbi ,m

(0)
bi
,m

(1)
bi

)
+ log

[
1−DωIM

(
xbi , I

ψ,(0)
M (zbi ,xbi ), I

ψ,(1)
M (zbi ,xbi )

)]}}

5λ

{
1

B1

B1∑
i=1

{
logDλIY

(
xbi ,mbi , y

(0)
bi
, y

(1)
bi

)
+ log

[
1−DλIY

(
xbi ,mbi , I

ϕ,(0)
Y (zbi ,xbi ,mbi ), I

ϕ,(1)
Y (zbi ,xbi ,mbi )

)]}}

• Update IψM and IϕY by descending its stochastic gradient:

5ψ

{
1

B

B∑
i=1

{
logDωIM

(
xbi ,m

(0)
bi
,m

(1)
bi

)
+ log

[
1−DωIM

(
xbi , I

ψ,(0)
M (zbi ,xbi ), I

ψ,(1)
M (zbi ,xbi )

)]

+ α2

∣∣∣∣(m(0)
bi
−m(1)

bi

)
−
(
I
ψ,(0)
M (zbi ,xbi )− Iψ,(1)M (zbi ,xbi )

)∣∣∣∣+ α3

∣∣∣∣Iψ,(tbi )M (zbi ,xbi )−mbi

∣∣∣∣2}
}

5ϕ

{
1

B1

B1∑
i=1

{
logDλIY

(
xbi ,mbi , y

(0)
bi
, y

(1)
bi

)
+ log

[
1−DλIY

(
xbi ,mbi , I

ϕ,(0)
Y (zbi ,xbi ,mbi ), I

ϕ,(1)
Y (zbi ,xbi ,mbi )

)]}

+ α5
1

B1

B1∑
i=1

∣∣∣∣(y(0)bi − y(1)bi )− (Iϕ,(0)Y (zbi ,xbi ,mbi )− Iϕ,(1)Y (zbi ,xbi ,mbi )
)∣∣∣∣

+ α6
1

B1

B1∑
i=1

∣∣∣Iϕ,(tbi )Y (zbi ,xbi ,mbi )− ybi
∣∣∣+ α6

1

B2

B∑
i=B1+1

max
{

0, cbi − I
ϕ,(tbi

)

Y (zbi ,xbi ,mbi )
}}

end while
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S6 Competing Methods

This section briefly introduces five competing methods: LR+AFT, LR+2AFT,

ILR+IAFT, RF+RSF, and BART.

S6.1 Linear regression + AFT interaction model (LR+AFT)

As our proposed method consists of a mediator layer and an outcome layer,

the competing approaches should also contain the two components.

LR+AFT adopts linear regression (LR) in the mediator layer and an

AFT interaction model in the outcome layer. The LR is implemented using

the LinearRegression function available in the sklearn.linear model module

of Python. We now introduce the AFT interaction model (Lo, 2002; Tabib

and Larocque, 2020). It is a generalization of the methodology presented

in Tabib and Larocque (2020), which builds upon the work of Lo (2002).

Lo (2002) employed a logistic regression model to estimate individualized

treatment effects without mediators, focusing on binary responses. They

included all covariates, the binary treatment variable, and interactions be-

tween the treatment variable and covariates. Tabib and Larocque (2020)

adapted this method using an AFT model instead of logistic regression.

We generalize their idea to incorporate mediators into the AFT model as
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follows:

log Y (x, t,Mt(x)) = β0 + x′β1 + tβ2 +Mt(x)β3 + x′tβ4 + ε. (S6.53)

We use the function survreg in the survival package (Therneau et al., 2015)

of R and fit models with the exponential and lognormal distributions in this

study.

Once the model is fitted, we can follow a three-step process to estimate

ICEs. First, we predict the potential mediators by performing LR while

setting the treatment variable to zero or one. This step allows us to obtain

estimates of the potential mediator values. Second, we use these predicted

potential mediators to forecast survival times based on an AFT interaction

model. This step helps us generate predictions for the potential event times.

Finally, we use these predicted potential event times to estimate ICEs.

S6.2 Linear regression + 2AFT interaction model (LR+2AFT)

LR+2AFT also incorporates LR in the mediator layer, utilizing the Lin-

earRegression function from the sklearn.linear model module in Python.

However, it generalizes the approach of Tabib and Larocque (2020) by fit-

ting two separate AFT models (2AFT) as follows:

log Y (x, 0,Mt(x)) = β0 + x′β1 +Mt(x)β2 + ε, (S6.54)

log Y (x, 1,Mt(x)) = β3 + x′β4 +Mt(x)β5 + ε. (S6.55)
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Similarly, we use the function survreg in the survival package (Therneau

et al., 2015) of R and fit models with the exponential and lognormal dis-

tributions. Once the model is fitted, we can first predict the potential

mediators through LR, then use these potential mediators to predict the

potential event times through the 2AFT model, and finally estimate ICEs.

S6.3 Interaction Linear regression + Another Interaction AFT

model (ILR+IAFT)

ILR+IAFT incorporates interaction LR in the mediator layer using the

LinearRegression function from the sklearn.linear model module in Python.

The formula for the mediator layer is as follows:

Mt(x) = βM0 + x′βM1 + tβM2 + x′tβM3 + ε. (S6.56)

In the outcome layer, we use another interaction AFT model, which can be

fitted using the survreg function in the survival package (Therneau et al.,

2015) of R. The formula for the outcome layer is as follows:

log Y (x, t,Mt(x)) = β0 + x′β1 + tβ2 +Mt(x)β3 + x′tβ4 + x′Mt(x)β5 + tMt(x)β6 + ε. (S6.57)

Subsequently, once the model is fitted, we first fit the ILR model to predict

the potential mediators and then use the predicted mediators to fit the

IAFT model to predict potential event times. Finally, we can estimate

ICEs.
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S6.4 Random forest (RF) + Random survival forest (RSF) (RF+RSF)

This method uses RF for regression in the mediator layer and RSF in the

outcome layer. We use the RandomForestRegressor function provided by

the sklearn.ensemble module in Python in the mediator layer. For the out-

come layer, the function survival forest in the R package grf https://github.com/grf-

labs/grf is used. Once the model is fitted, an alternative approach is to pre-

dict the potential mediators through RF for regression. However, it is worth

noting that the survival forest function does not directly predict potential

event times for new data. Instead, it provides the conditional survival func-

tion. Nonetheless, we can still estimate ICEs using the following methods.

Denote by St(·,x,Mt′(x)) the conditional survival function of the event time

for a subject, for each t, t′ ∈ {0, 1}, St(y,x,Mt′(x)) = P (Y > y|t,x,Mt′(x)),

then we have

ξ(t;x) = E[Y (x, t,M1(x))]− E[Y (x, t,M0(x))] =

∫ ∞
0

[St(y,x,M1(x))− St(y,x,M0(x))]dy,

ζ(t;x) = E[Y (x, 1,Mt(x))]− E[Y (x, 0,Mt(x))] =

∫ ∞
0

[S1(y,x,Mt(x))− S0(y,x,Mt(x))]dt,

τ(x) = E[Y (x, 1,M1(x))]− E[Y (x, 0,M0(x))] =

∫ ∞
0

[S1(y,x,M1(x))− S0(y,x,M0(x))]dt.

(S6.58)

Thus, we can estimate ICEs by approximating a definite integral of the

predicted conditional survival function.

S6.5 Bayesian additive regression trees (BART)

BART is described in Sparapani et al. (2021), which is implemented using

the functions wbart and abart in the R package BART in the mediator and

https://github.com/grf-labs/grf
https://github.com/grf-labs/grf
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outcome layers, respectively.

Once the model is fitted, an alternative approach is to predict the po-

tential mediators using the wbart function. However, it is important to

note that the abart function does not directly predict potential event times

for new data. Instead, it provides the logarithm of the predicted potential

event times. We need to apply the exponential function to the logarithmic

predictions to obtain the predicted potential event times. By doing so, we

can proceed to estimate ICEs.

S7 Performance Metrics

In the absence of mediators, if both factual and counterfactual outcomes are

observed, but the underlying distribution is unknown, Yoon et al. (2018)

introduced an empirical precision in the estimation of heterogeneous effect

(PEHE) as follows:

ε̂PEHE =
1

n

n∑
i=1

([yi(1)− yi(0)]− [ŷi(1)− ŷi(0)])2, (S7.59)

where yi(1) and yi(0) are potential outcomes of treated and controlled,

respectively, and ŷi(1) and ŷi(0) are their estimates. We generalize (S7.59)

to define three metrics about the ICEs defined in Section 2.3 in the paper

with potential survival time.
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We note the observed dataset is S = {X = xi, T = ti,M = mi, Ỹ =

ỹi, δ = δi}ni=1, where n is the number of observations. Let Sr = {xri, tri,mri, ỹri, δri}nri=1

denote the observed training dataset and Se = {xei, tei,mei, ỹei, δei}nei=1 de-

note the observed testing dataset, where nr and ne are the numbers of

training and testing samples, respectively, with nr + ne = n.

For prediction, we first generate n̂e samples {ẑeh, h = 1, . . . , n̂e} from

Ẑ ∼ PẐ and ne samples {zej, j = 1, . . . , ne} from Z ∼ PZ, and calculate con-

ditional samples {Î(t)
M (ẑeh,xei), h = 1, . . . , n̂e} and {Î(t)

Y (zej,xei, Î
(t)
M (ẑeh,xei)),

h = 1, . . . , n̂e j = 1, . . . , ne} for each t, t ∈ {0, 1}. We take n̂e = ne = 100.

Then, we can estimate ξ(t; xei), ζ(t; xei), and τ(xei) based on (2.7), (2.8),

and (2.9) in the paper, denote as ξ̂(t; xei), ζ̂(t; xei), and τ̂(xei). Then, the

metrics on the testing dataset are defined by

ε̂PEHETE
=

1

ne

ne∑
i=1

{
τ(xei)− τ̂(xei)

}2
,

ε̂PEHENDE
=

1

ne

ne∑
i=1

{
ξ(t; xei)− ξ̂(t; xei)

}2
,

ε̂PEHENIE
=

1

ne

ne∑
i=1

{
ζ(t; xei)− ζ̂(t; xei)

}2
.

For simplicity, we consider the decomposition with ξ(1; xei) and ζ(0; xei),

but the alternative decomposition with ξ(0; xei) and ζ(1; xei) can also be

used with similar procedures. A small value of ε̂PEHE means an accurate

estimate.
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S8 Hyperparameters of CGAN-ICMA-SO

Table S1 presents the setting of the hyperparameters in the network for the

simulation studies and the application.

Table S1: Hyperparameters of CGAN-ICMA-SO

Blocks Setting of the hyper-parameters in the network

Initialization
Weight matrix: Xavier Initialization.

Bias vector: Zero initialization.

Batch size (B) 256

Depth of layers 3

Hidden state dimension (all blocks) 10

α1, . . . , α6 1

Optimization Adam Moment Optimization

S9 Simulation Implementation and Results

We generate 1,000 samples and use 900 instances for training and 100 cases

for testing (the training rate is 0.9). We compare our approach with the five

competing methods by repeating them 100 times and reporting the average

value of the square root of metrics and the corresponding standard devia-

tion (std). Table S2 presents comparison results when CR = 50%, with the

last column indicating the time spent in each replication. Our method per-
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forms best with the smallest values for the averaged
√
ε̂PEHETE

,
√
ε̂PEHENDE

,

and
√
ε̂PEHENIE

, suggesting that our approach estimates ICEs with survival

outcomes more accurately than the others, although it takes longer.

Table S2: Performance of five methods for estimating ICEs (CR = 50%)

Methods
Mean(std) based on 100 replications√

ε̂PEHETE

√
ε̂PEHENDE

√
ε̂PEHENIE

time(s)

CGAN-ICMA-SO 6.519(2.543) 2.134(1.192) 6.040(2.559) 107.87

LR+AFT(exponential) 97.943(47.070) 72.037(36.917) 27.357(11.279) 0.78

LR+AFT(lognormal) 9.490(2.920) 3.934(1.020) 8.449(3.099) 0.66

LR+2AFT(exponential) 99.917(49.080) 72.562(37.588) 28.779(12.763) 0.35

LR+2AFT(lognormal) 9.509(3.054) 3.839(0.992) 8.437(3.151) 0.39

ILR+IAFT(exponential) 390.969(651.824) 131.966(193.621) 297.544(482.996) 0.63

ILR+IAFT(lognormal) 7.301(2.760) 2.927(0.755) 6.428(2.748) 0.52

RF+RSF 11.249(3.004) 5.605(0.495) 8.824(3.300) 1.71

BART 126.938(69.397) 102.821(55.811) 52.084(33.726) 8.14

Note: The reported time includes training and prediction. CPU time was used for CGAN-ICMA-SO,

and GPU parallelization can potentially reduce the time.

Notably, our goal is to compare our proposed method with existing

approaches to evaluate its empirical performance. However, since no meth-

ods are specifically designed to address the problem at hand, we conducted

simulations and proposed the above alternative approaches for comparison.

It is crucial to highlight that the alternative methods used for comparison

fail to achieve identification of the ICEs. This limitation stems from the

fact that in our method, as demonstrated by Equation (2.4) in the paper,
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we employ a sampling-based approach by drawing multiple values from the

estimated probability distribution of the potential mediator, PM(x,t), to es-

timate potential outcomes. On the contrary, the competing methods rely

on separate regressions for the mediator and outcome layers, incorporating

the predicted expected value of the mediator into the outcome regression

model for prediction, failing to satisfy the requirements for identification.

By adopting the sampling-based approach, our method provides a compre-

hensive understanding of the causal mediation effects. It allows for a more

nuanced analysis, capturing the potential variations and uncertainties in

the estimation process. Despite the longer computational time required, we

find the trade-off acceptable due to the substantial improvement in accu-

racy. Moreover, the increased accuracy of our model contributes to a more

reliable assessment of the causal mediation effects, which is paramount in

understanding the underlying mechanisms and making informed decisions.

We then examine the robustness of the proposed and competing meth-

ods to model parameters using the setting in the paper. Tables S3 and S4

show the performance of CGAN-ICMA-SO when changing CR to 30%, but

other settings remain the same and changing the batch size from 256 to

128, α1, . . . , α6 from 1 to 1.5, layer depth from 3 to 2, and the hidden state

dimension from 10 to 8 but CR remains 50%. The last column reports the
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time spent in each replication. CGAN-ICMA-SO still outperforms the five

other methods in almost all situations.

Table S3: Performance of six methods for estimating ICEs (CR = 30%)

Methods
Mean(std) based on 100 replications√

ε̂PEHETE

√
ε̂PEHENDE

√
ε̂PEHENIE

time(s)

CGAN-ICMA-SO 6.201(2.676) 1.982(1.338) 5.748(2.592) 107.91

LR+AFT(exponential) 15.562(3.705) 10.230(3.190) 8.994(2.722) 0.49

LR+AFT(lognormal) 8.733(3.136) 2.766(0.684) 8.448(3.182) 0.49

LR+2AFT(exponential) 15.626(3.785) 10.253(3.197) 9.029(2.742) 0.58

LR+2AFT(lognormal) 8.866(3.187) 2.782(0.712) 8.455(3.199) 0.87

ILR+IAFT(exponential) 18.894(6.763) 9.256(2.552) 13.733(5.908) 0.70

ILR+IAFT(lognormal) 7.054(2.799) 2.422(0.625) 6.441(2.797) 0.55

RF+RSF 11.194(2.791) 6.930(0.832) 8.695(3.295) 2.15

BART 11.124(3.068) 8.422(1.807) 6.031(2.715) 12.23

We also increase the sample size n from 1000 to 2000 while keeping the

other settings unchanged and decrease the training rate from 0.9 to 0.8 while

maintaining the other parameters the same. Table S5 shows the results.

Again, CGAN-ICMA-SO is superior to others regardless of the situations

considered. Moreover, the performance of most methods improves when

the sample size or training rate increases.

Next, we consider another setting to demonstrate our method’s superi-
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Table S4: Performance of six methods for estimating ICEs (CR = 50%)

Methods
Mean(std) based on 100 replications√

ε̂PEHETE

√
ε̂PEHENDE

√
ε̂PEHENIE time(s)

CGAN-ICMA-SO (Table 1) 6.519(2.543) 2.134(1.192) 6.040(2.559) 107.87

CGAN-ICMA-SO (batch size=128) 6.939(2.923) 2.358(1.189) 6.316(2.951) 102.14

CGAN-ICMA-SO (α1, . . . , α6=1.5) 6.785(2.372) 2.550(1.317) 6.090(2.487) 106.51

CGAN-ICMA-SO (layer depth 2) 6.878(2.786) 2.837(1.160) 6.043(2.853) 100.69

CGAN-ICMA-SO (hsd = 8) 6.918(2.549) 2.867(1.264) 5.997(2.703) 102.95

LR+AFT(exponential) 97.943(47.070) 72.037(36.917) 27.357(11.279) 0.78

LR+AFT(lognormal) 9.490(2.920) 3.934(1.020) 8.449(3.099) 0.66

LR+2AFT(exponential) 99.917(49.080) 72.562(37.588) 28.779(12.763) 0.35

LR+2AFT(lognormal) 9.509(3.054) 3.839(0.992) 8.437(3.151) 0.39

ILR+IAFT(exponential) 390.969(651.824) 131.966(193.621) 297.544(482.996) 0.63

ILR+IAFT(lognormal) 7.301(2.760) 2.927(0.755) 6.428(2.748) 0.52

RF+RSF 11.249(3.004) 5.605(0.495) 8.824(3.300) 1.71

BART 126.938(69.397) 102.821(55.811) 52.084(33.726) 8.14

Note: “hsd” — hidden state dimension.

ority to a greater extent. The model is defined as follows:

M(x, t) = 0.2 + 0.5|x2|+ 1.5x2
5 + 0.1x6 + t(x3 + x4)2 + ε1,

Y (x, t,mt(x)) = 0.1 + 0.2 exp (x10) + 2|x5|+ t(x8 + x9)2 + 0.5m2
t (x) + ε2,

Ỹ (x, t,mt(x)) = min(Y (x, t,mt(x)), C), δ = I{Y (x, t,mt(x)) < C},

where the notation and distribution setup is the same as in the paper.

Again, we generate 1,000 samples and use 900 instances for training and

100 cases for testing. Table S6 presents the comparison results when CR =
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Table S5: Performance of six methods for estimating ICEs (CR = 50%)

Methods
Mean(std) based on 100 replications√

ε̂PEHETE

√
ε̂PEHENDE

√
ε̂PEHENIE

n = 2000, training rate = 0.9

CGAN-ICMA-SO 5.419(2.200) 1.782(1.103) 4.916(2.148)

LR+AFT(exponential) 93.117(31.533) 67.869(24.160) 26.631(7.925)

LR+AFT(lognormal) 9.214(2.078) 3.949(0.795) 8.165(2.361)

LR+2AFT(exponential) 95.214(31.060) 68.363(23.885) 28.192(8.173)

LR+2AFT(lognormal) 9.235(2.212) 3.862(0.794) 8.149(2.410)

ILR+IAFT(exponential) 631.037(2725.948) 139.560(273.889) 524.544(2452.434)

ILR+IAFT(lognormal) 7.124(2.077) 3.005(0.556) 6.256(2.177)

RF+RSF 10.690(2.283) 5.503(0.367) 8.377(2.554)

BART 320.647(230.179) 238.454(182.446) 165.136(117.392)

n = 1000, training rate = 0.8

CGAN-ICMA-SO 7.076(2.217) 2.363(1.428) 6.561(2.131)

LR+AFT(exponential) 102.948(43.433) 75.581(32.944) 28.809(11.972)

LR+AFT(lognormal) 9.583(2.048) 4.069(0.849) 8.528(2.270)

LR+2AFT(exponential) 105.300(45.811) 76.274(33.821) 30.435(13.533)

LR+2AFT(lognormal) 9.609(2.124) 3.972(0.828) 8.517(2.312)

ILR+IAFT(exponential) 588.769(1293.877) 165.603(242.278) 503.405(1215.426)

ILR+IAFT(lognormal) 7.437(2.009) 3.007(0.618) 6.571(2.079)

RF+RSF 11.328(2.352) 5.723(0.359) 8.908(2.462)

BART 109.825(52.659) 90.640(43.212) 43.289(24.245)

50%. Our method significantly outperforms others regarding the averaged√
ε̂PEHETE

,
√
ε̂PEHENDE

, and
√
ε̂PEHENIE

, suggesting that our approach esti-

mates all three metrics with survival outcomes more accurately than the
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others.

Table S6: Performance of six methods for estimating ICEs in other setting (CR = 50%)

Methods
Mean(std) based on 100 replications√

ε̂PEHETE

√
ε̂PEHENDE

√
ε̂PEHENIE

time(s)

CGAN-ICMA-SO 5.122(1.765) 2.691(1.217) 4.232(1.493) 149.88

LR+AFT(exponential) 428.666(373.617) 244.553(224.063) 191.517(152.674) 0.74

LR+AFT(lognormal) 15.045(5.788) 12.181(5.900) 7.167(1.532) 0.83

LR+2AFT(exponential) 445.754(413.446) 253.348(241.264) 200.369(174.837) 0.70

LR+2AFT(lognormal) 15.057(5.973) 12.672(6.557) 6.844(1.282) 0.93

ILR+IAFT(exponential) 9.351×103(2.034×104) 2.686×103(6.315×103) 7.315×103(1.578×104) 0.60

LR+IAFT(lognormal) 10.679(3.121) 8.588(2.828) 4.570(0.945) 0.57

RF+RSF 10.236(1.408) 6.153(0.552) 6.316(1.387) 2.25

BART 1.266×103(1.490×103) 1.097×103(1.253×103) 349.601(472.022) 11.47
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S10 Additional Results in ADNI Study

S10.1 Results using five other methods

We use the five other methods to estimate E[M(xei, 1)]− E[M(xei, 0)] and

three ICEs defined in the article. The results shown in the following fig-

ures are discouraging. We noticed that the other five methods all per-

formed poorly. For the predicted values of E[M(xei, 1)] − E[M(xei, 0)],

the values estimated by LR+AFT (exponential), LR+AFT (lognormal),

LR+2AFT (exponential), and LR+2AFT (lognormal) are completely in-

variant in each fold, and the values estimated by ILR+IAFT (exponential),

ILR+IAFT (lognormal), RF+RSF, and BART randomly fluctuated from

positive to negative with some zero values. For the predicted values of three

ICEs, the five methods all produce a significant amount of positive values

which are unreasonable, and LR+AFT (exponential), LR+AFT (lognor-

mal), LR+2AFT (exponential), LR+2AFT (lognormal), ILR+IAFT (ex-

ponential), and ILR+IAFT (exponential) produce some outliers.
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LR+AFT (exponential):
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Figure S1: The estimated values of E[M(xei, 1)] − E[M(xei, 0)] and three ICEs with

respect to the patient index.



S10. ADDITIONAL RESULTS IN ADNI STUDY53

LR+AFT (lognormal):
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Figure S2: Estimated values of E[M(xei, 1)]−E[M(xei, 0)] and three ICEs with respect

to the patient index.
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LR+2AFT (exponential):
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Figure S3: Estimated values of E[M(xei, 1)]−E[M(xei, 0)] and three ICEs with respect

to the patient index.
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LR+2AFT (lognormal):
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Figure S4: Estimated values of E[M(xei, 1)]−E[M(xei, 0)] and three ICEs with respect

to the patient index.
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ILR+IAFT (exponential):
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Figure S5: Estimated values of E[M(xei, 1)]−E[M(xei, 0)] and three ICEs with respect

to the patient index.
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ILR+IAFT (lognormal):

0 100 200 300 400 500 600 700

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Estimated E[M(x_{ei},1)]−E[M(x_{ei},0)]

Number

E
st

im
at

ed
 E

[M
(x

_{
ei

},
1)

]−
E

[M
(x

_{
ei

},
0)

]

 h = 0

0 100 200 300 400 500 600 700

−
40

0
−

20
0

0
20

0
40

0

Individual TE

Number

In
di

vi
du

al
 T

E

 h = 0

Number

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

In
di

vi
du

al
 T

E

0 100 200 300 400 500 600 700

−
40

0
−

20
0

0
20

0
40

0

Individual NDE

Number

In
di

vi
du

al
 N

D
E

 h = 0

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

In
di

vi
du

al
 N

D
E

0 100 200 300 400 500 600 700

−
20

0
−

10
0

0
10

0
20

0

Individual NIE

Number

In
di

vi
du

al
 N

IE

 h = 0

Number

0
50

00
10

00
0

15
00

0
20

00
0

In
di

vi
du

al
 N

IE

Figure S6: Estimated values of E[M(xei, 1)]−E[M(xei, 0)] and three ICEs with respect

to the patient index.
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RF+RSF:
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Figure S7: Estimated values of E[M(xei, 1)]−E[M(xei, 0)] and three ICEs with respect

to the patient index.
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BART:
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Figure S8: Estimated values of E[M(xei, 1)]−E[M(xei, 0)] and three ICEs with respect

to the patient index.
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S10.2 Best linear prediction of GACEs

We model GACEs using the multivariate OLS regression with six covariates.

Although it may be misspecified, the model gives the best linear predictor of

GACEs with six covariates and provides an accessible summary of the effect

heterogeneities. Table S7 shows the results, which agree with those obtained

in the paper. For example, in the white group, the group average TE is

significant and negative, suggesting that the APOE-ε4–AD association is

stronger in the white group. Similarly, the coefficients of gender, Hispanic

or Latino, married, education level, and age yield the same conclusions as

above.

S10.3 Average causal effects

We can obtain the average causal effects based on the three kinds of esti-

mated ICEs. The results are: average TE = 1
n

∑n
i=1 τ̂(xei) = −8.332, aver-

age NDE = 1
n

∑n
i=1 ζ̂(0; xei) = −3.205, and average NIE = 1

n

∑n
i=1 ξ̂(1; xei)

= −5.127 (n = 718). All three values are negative, supporting the above

conclusion that the presence of APOE-ε4 alleles can cause the onset of AD

not only directly but also indirectly by expanding the ventricle. Moreover,

the average NDE is less than the average NIE, confirming the above con-

clusion that the existence of APOE-ε4 alleles contributes to the onset of
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AD mainly through the mediated mechanism.

Table S7: Coefficients and heteroscedasticity robust standard errors (in parentheses) of

best linear prediction of GACEs. * p < 0.05; ** p < 0.01

τc,g(x) ζc,g(0;x) ξc,g(1;x)

Constant −15.336** (0.506) −7.233** (0.349) −8.105** (0.311)

Age 0.146** (0.006) 0.079** (0.004) 0.067** (0.004)

Male −1.152** (0.087) −0.934** (0.056) −0.218** (0.052)

Education level −0.129** (0.018) −0.041** (0.011) −0.088** (0.010)

Hispanic or Latino 0.003 (0.414) −1.767** (0.316) 1.766**(0.228)

White −0.547** (0.171) −0.057 (0.130) −0.490** (0.085)

Married −0.514** (0.094) −0.554** (0.065) 0.040 (0.057)
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S11 Derivation of Equation (2.4)

Under Assumptions (III) in Section 2.3, identification of the relevant po-

tential outcome in Equation (2.4) is derived as follows:

E[Y (x, t′,Mt(x))] = E[Y (t′,M(t))|X = x]

=

∫
E[Y (t′,m)|M(t) = m,X = x]dPM(t)|X=x(m)

=

∫
E[Y (t′,m)|T = t,M(t) = m,X = x]dPM(t)|X=x(m)

=

∫
E[Y (t′,m)|T = t,X = x]dPM(t)|X=x(m)

=

∫
E[Y (t′,m)|T = t′,X = x]dPM(t)|X=x(m)

=

∫
E[Y (t′,m)|T = t′,M(t′) = m,X = x]dPM(t)|X=x(m)

=

∫
E[Y |T = t′,M = m,X = x]dPM(t)|X=x(m).

(S11.60)
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