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This supplementary material provides proofs of lemmas and theorems, as well as additional simulations and

real data experiments. Definitions and lemmas used in the proofs are introduced in Sections S1 and S2,

respectively. The proofs of the theorems appear in Section S3. Additional simulations are presented in

Section S4, and further real data analysis is provided in Section S5. The use of a sequential updating

technique for transition matrix estimation is discussed in Section S6, and post-change analysis is provided in

Section S7.
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S1 DEFINITIONS

In this appendix, we provide definitions for symbols and terms utilized throughout

the appendices.

Definition 1. For any γ > 0, a random variable X satisfies any of the following

equivalent properties is called a sub-Weibull (γ) random variable:

1. P(|X| > t) ≤ 2 exp {− (t/K1)
γ} for all t ≥ 0,

2. (E|X|p)1/p ≤ K2p
1/γ for all p ≥ 1 ∧ γ,

3. E [exp (|X|/K3)
γ] ≤ 2.

The constants K1, K2 and K3 differ from each other at most by a constant depending

only on γ. The sub-Gaussian random variable is a special case of a sub-Weibull

random variable with γ = 2. The sub-Weibull norm of X is defined as ∥X∥ψγ :=

supp≥1 (E|X|p)1/p p−1/γ.

Definition 1 is a straightforward combination of Lemma 5 and Definition 3 in Wong

et al. (2020).

Definition 2. For any γ > 0, a random vector X ∈ Rp is said to be a sub-Weibull (γ)

random vector if all of its one-dimensional projections are sub-Weibull (γ) random

variables. We define the sub-Weibull (γ) norm of a random vector as

∥X∥ψγ := sup
v∈Sp−1

∥v′X∥ψγ
,
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where Sp−1 is the unit sphere in Rp.

Definition 2 is from Definition 4 in Wong et al. (2020).

Definition 3. Every VAR(h) process can be rewritten into a VAR(1) form that is

X̃t = ÃX̃t−1 + ε̃t, and X̃t is stable if and only if Xt is stable.

Definition 3 is from Lütkepohl (2005). We omit the details here to save space; for

more information, please refer to page 15 in Lütkepohl (2005).

S2 LEMMAS AND PROOFS

In this appendix, we introduce several lemmas that will be employed in the proof

of the Theorems. We introduce the notation Dl := Âl − Al and define dlij as the (i,

j)-th element of Dl. We utilize the symbol N to represent a generic sample size, as

opposed to exclusively using n or ω in the subsequent lemmas. These lemmas will be

applied with N = n or ω during the proof of the Theorems.

Lemma 1. Consider a random realization {X−h+1, . . . , XN} generated from a VAR(h)

process with Assumption 1-4 satisfied. Then, there exist constants ci > 0 such that for

allN ≿ max {ν2
LB, 1} s(2 log p+log h), with probability at least 1−c1 exp

(
−c2N min

{
ν−2
LB, 1

})
,

θ′Γ̂Nθ ≥ αLB∥θ∥22 − τNLB∥θ∥21, for all θ ∈ Rhp2
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where

Γ̂N := Ip ⊗ (X ′
NXN/N) , νLB = c3

µmax(A)

µmin(Ã)
, αLB =

σ2

2µmax(A)
,

τNLB = αLB max
{
ν2
LB, 1

} log h+ 2 log p

N
,

µmin(A) := min
|z|=1

Λmin (A∗(z)A(z)) , µmax(A) := max
|z|=1

Λmax (A∗(z)A(z)) ,

A(z) := Ip −
h∑
l=1

Alz
l and Ã(z) := Ihp − Ãz.

Proof. This lemma results from a straightforward application of Proposition 4.2 in

Basu and Michailidis (2015) to a VAR(h) process.

Lemma 2. Consider a random realization {X−h+1, . . . , XN} generated from a VAR(h)

process with Assumption 1-4 satisfied. Then, there exist constants ci > 0 (different

from Lemma 1) such that for all N ≿ max {ν2
UB, 1} s (2 log p+ log h), with probability

at least 1− c1 exp
(
−c2N min{ν−2

UB, 1}
)
,

θ′Γ̂Nθ ≤ 3αUB∥θ∥22 + τNUB∥θ∥21, for all θ ∈ Rhp2

where

αUB =
σ2

2µmin(A)
, νUB = 54

µmin(A)

µmin(Ã)
and τNUB = c3αUB max

{
ν2
UB, 1

} log h+ 2 log p

N
.

Proof. This proof closely resembles the proof of Proposition 4.2 in Appendix B of Basu

and Michailidis (2015), so we will only highlight the necessary modifications. The

unmentioned portions should adhere to the proof provided in Basu and Michailidis

(2015).
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At the beginning of the proof in Basu and Michailidis (2015), besides Λmin (ΓX̃(0)) ≥

Λmin(Σϵ)
µmax(A)

, we also have Λmax (ΓX̃(0)) ≤
Λmax(Σϵ)
µmin(A)

from Proposition 2.3 and the bounds

in (4.1) in Basu and Michailidis (2015). Before applying Lemma 12, we set η = ν−1
UB

instead of ω−1. Then, applying the Lemma 12 in Loh and Wainwright (2012) with

δ = Λmax (Σϵ) /54µmin(A) and Γ = S − ΓX̃(0) where S = (X ′
NXN/N), we have

θ′Sθ−θ′ΓX̃(0)θ ≤ αUB(∥θ∥22+
1
k
∥θ∥21), so θ′Sθ ≤ 3αUB∥θ∥22+ αUB

k
∥θ∥21 for all θ ∈ Rhp

with probability at least 1− 2 exp
[
−cN min{ν−2

UB, 1}+ 2k log(dp)
]
. Finally, we set k

=
⌈
cN min{ν−2

UB, 1}/4 log(hp)
⌉
and follow the rest of proof in Basu and Michailidis

(2015) to get this Lemma. ⌈x⌉ represents the smallest integer that is greater than or

equal to x.

To maintain symbol consistency, we use “k” to denote the constant “s” in Basu

and Michailidis (2015), and “s” represents the sparsity parameter “k” in Basu and

Michailidis (2015). In this proof, Λmax (Σϵ) and Λmin (Σϵ) degenerate to σ2 because

of the variance structure of errors in our model.

Lemma 3. Under the same setup of Lemma 1, there exist constants ci > 0 such that

for N ≿ log h+ 2 log p, with probability at least 1− c1 exp [−c2(log h+ 2 log p)], we

have ∥∥∥γ̂N − Γ̂Nβ
∗
∥∥∥
∞

≤ Q
(
β∗, σ2

)√ log h+ 2 log p

N

where γ̂N = (I ⊗X ′
N)YN/N and Q(β∗, σ2) = c0[σ

2 + σ2

µmin(A)
+ σ2µmax(A)

µmin(A)
].
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Proof. This lemma results from a straightforward application of Proposition 4.3 in

Basu and Michailidis (2015) to a VAR(h) process.

Lemma 4. Consider the ℓ1 estimation problem (3.2) discussed in Section 3.1 in the

main paper, under the same setup of Lemma 1, with N ≥ 32max {ν2
LB, 1} s(log h+

2 log p). Then, there exist constants ci > 0 such that, for any

λN ≥ 4Q (β∗, σ2)
√

(log h+ 2 log p)/N , any solution β̂N of (3) satisfies∥∥∥β̂N − β∗
∥∥∥
1
≤ 64sλN/αLB,

∥∥∥β̂N − β∗
∥∥∥
2
≤ 16

√
sλN/αLB

and
(
β̂N − β∗

)′
Γ̂N

(
β̂N − β∗

)
≤ 128sλ2

N/αLB

with probability at least 1−c1 exp [−c2(log h+ 2 log p)]−c3 exp
(
−c4N min

{
ν−2
LB, 1

})
.

Proof. This lemma results from a straightforward application of Proposition 4.1, 4.2,

and 4.3 in Basu and Michailidis (2015) to a VAR(h) process, aided by the union

bound.

Here, we have summarized several equivalent expressions for the terms found in the

aforementioned lemmas. We have∥∥∥γ̂N − Γ̂Nβ
∗
∥∥∥
∞

= max
j,j′∈(1,...,p)
l∈(1,...,h)

1

N

∣∣∣∣∣
N∑
i=1

xi−l,jεi,j′

∣∣∣∣∣ ,∥∥∥β̂N − β∗
∥∥∥
1
=

h∑
l=1

p∑
j=1

p∑
j′=1

∣∣dlj,j′∣∣ and

(
β̂N − β∗

)′
Γ̂N

(
β̂N − β∗

)
=

1

N

N∑
i=1

p∑
j=1

(
h∑
l=1

p∑
j′=1

dljj′xi−l,j′

)2

.
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S3 PROOF OF THEOREMS

In this appendix, we provide the proofs for Theorems 1 and 2 presented in the main

paper.

Proof of Theorem 1:

The proof of Theorem 1 consists of two parts. The first part is the proof of
√
pω(

R̂
(n,ω)
t

p
−

σ̂2
n)

D−→ N (0,Var(ε21,1)), and the second part is the proof of V̂n
p−→ Var(ε21,1). Finally,

applying Slutsky’s Theorem leads to Theorem 1. By some straightforward algebra,

we have

√
pω

(
R̂

(n,ω)
t

p
− σ̂2

n

)
=

√
pω

(
1

pω

t+ω∑
i=t+1

∥εi∥22 − σ2

)
︸ ︷︷ ︸

term 1

−
√

ω

n

√
pn

(
1

pn

n∑
i=1

∥εi∥22 − σ2

)
︸ ︷︷ ︸

term 2

− 1
√
pω

t+ω∑
i=t+1

∥∥∥∥∥
h∑
l=1

(
Âl − Al

)
Xi−l

∥∥∥∥∥
2

2︸ ︷︷ ︸
term 3

− 2
√
pω

t+ω∑
i=t+1

h∑
l=1

X ′
i−l

(
Âl − Al

)′
εi︸ ︷︷ ︸

term 4

+

√
ω

n
√
p

n∑
i=1

∥∥∥∥∥
h∑
l=1

(
Âl − Al

)
Xi−l

∥∥∥∥∥
2

2︸ ︷︷ ︸
term 5

− 2
√
ω

n
√
p

n∑
i=1

h∑
l=1

X ′
i−l

(
Âl − Al

)′
εi︸ ︷︷ ︸

term 6

.

• For term 1 and 2, because errors are iid with variance matrix σ2Ip, we have

√
pω

(
1

pω

t+ω∑
i=t+1

∥εi∥22 − σ2

)
D−→ N

(
0,Var

(
ε21,1
))

as ω −→ ∞, and
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ω

n

√
pn

(
1

pn

n∑
i=1

∥εi∥22 − σ2

)
p−→ 0 as n −→ ∞

by Central Limit Theorem Montgomery and Runger (2010) and Slutsky’s Theo-

rem Van der Vaart (2000) under the condition ω = o(n).

• Under the condition for Theorem 1, by the union bound in probability, with

probability at least 1−c1 exp(−c2ωmin
{
ν−2
UB, 1

}
)−c3 exp

(
−c4nmin

{
ν−2
LB, 1

})
−

c5 exp[−c6(2 log p+ log h)], We have

(
β̂n − β∗

)′
Γ̂ω

(
β̂n − β∗

)
≤ 3αUB

∥∥∥β̂n − β∗
∥∥∥2
2
+ τωUB

∥∥∥β̂n − β∗
∥∥∥2
1

≤
(
3αUB + cαUB max

{
ν2
UB, 1

}
s
log h+ 2 log p

ω

)∥∥∥β̂n − β∗
∥∥∥2
2

≤ c̃
αUB
α2
LB

max
{
ν2
UB, 1

}
Q2
(
β∗, σ2

)
s
log h+ 2 log p

n
max

(
1, s

(log h+ 2 log p)

ω

)
.

The first inequality is by Lemma 2; the second inequality comes from the

fact that
∥∥∥β̂n − β∗

∥∥∥
1
≤ 4

√
s
∥∥∥β̂n − β∗

∥∥∥
2
which is proved in Appendix B: Proof

of Proposition 4.1 in Basu and Michailidis (2015); for the last inequality, we

apply Lemma 4 with λn = 4Q (β∗, σ2)
√

(log h+ 2 log p) /n and the fact that

(a+ b) ≤ 2max(a, b), where c̃ is a finite positive constant. Hence, with ω = o(n)

and
√
n ≿ s(log h+2 log p)√

p
, term 3 converges to zero in probability as n goes to

infinity.
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• For term 4, we have

|term 4| =

∣∣∣∣∣ 2
√
pω

h∑
l=1

p∑
j=1

p∑
j′=1

(
dljj′

t+ω∑
i=t+1

xi−l,jεi,j′

)∣∣∣∣∣
≤ 2

√
ω

p

(
h∑
l=1

p∑
j=1

p∑
j′=1

∣∣dlij′∣∣
)(

max
j,j′∈(1,...,p)
l∈(1,...,h)

1

ω

∣∣∣∣∣
t+ω∑
i=t+1

xi−l,jεi,j′

∣∣∣∣∣
)

≤ c

αLB
Q2
(
β∗, σ2

) s (log h+ 2 log p)
√
np

with probability at least 1−c1 exp[−c2(log h+2 log p)]−c3 exp(−c4nmin
{
ν−2
LB, 1

}
).

Conditions that ω ≿ log h + 2 log p and n ≥ 32max {ν2
LB, 1} s(log h + 2 log p)

are needed. The last inequality comes from the application of Lemma 3 on

maxj,j′∈(1,...,p)
1
ω

∣∣∑t+ω
i=t+1 xi−1,jεi,j′

∣∣ and the application of Lemma 4 on
∑p

j=1

∑p
j′=1 |dij′|

by choosing λn to be the smallest possible value. Then, we applied the union

bound to get the result. Hence, under condition s(log h+2 log p)√
p

= o(
√
n), we have

the absolute value of term 4 converges to zero in probability as n goes to infinity.

• For term 5, we have

term 5 ≤ c
1

αLB
Q2
(
β∗, σ2

)√ω

n

s (log h+ 2 log p)
√
np

,

with probability at least 1−c1 exp[−c2(log h+2 log p)]−c3 exp
(
−c4nmin

{
ν−2
LB, 1

})
,

under condition n ≥ max 32 {ν2
LB, 1} s(log h + 2 log p), by directly applying

Lemma 4. Hence, under condition ω = o(n) and
√
n ≿ s(log h+2 log p)√

p
, we have

term 5 converges to zero in probability as n goes to infinity.
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• For term 6, we have

|term 6| ≤ 2

√
ω

p

(
h∑
l=1

p∑
j=1

p∑
j′=1

∣∣dlij′∣∣
)

∗

(
max

j,j′∈(1,...,p)
l∈(1,...,h)

1

n

∣∣∣∣∣
n∑
i=1

xi−l,jεi,j′

∣∣∣∣∣
)

≤ c
1

αLB
Q2
(
β∗, σ2

)√ω

n

s (log h+ 2 log p)
√
np

with probability at least 1−c1 exp[−c2(log h+2 log p)]−c3 exp
(
−c4nmin

{
ν−2
LB, 1

})
,

under condition n ≥ 32max {ν2
LB, 1} s(log h+ 2 log p). Hence, under additional

condition ω = o(n) and
√
n ≿ s(log h+2 log p)√

p
, the absolute value of term 6 converges

to zero in probability as n goes to infinity.

Finally, by applying Slutsky’s Theorem, we conclude the proof of the first part. In

order to prove the main theorem, we still need to prove the second part: V̂n
p−→ Var(ε21,1).

Firstly, note that

σ̂2
n =

1

pn

n∑
i=1

∥∥∥∥∥
h∑
l=1

(
Âl − Al

)
Xi−l

∥∥∥∥∥
2

2︸ ︷︷ ︸
term 1

− 2

pn

n∑
i=1

h∑
l=1

X ′
i−l

(
Âl − Al

)′
εi︸ ︷︷ ︸

term 2

+
1

pn

n∑
i=1

∥εi∥22︸ ︷︷ ︸
term 3

.

• For term 1, under the same condition in the first part of the proof, similar to

the term 5 in the first part, we have term 1 converges to zero in probability as n

goes to infinity by directly applying Lemma 4.

• For term 2, under the same condition in the first part of the proof, similar to

the term 6 in the first part, we have term 2 converges to zero in probability as n

goes to infinity by directly applying Lemmas 3 and 4.

• For term 3, we have 1
pn

∑n
i=1 ∥εi∥

2
2

p−→ E(ε21,1) as n −→ ∞ by applying the weak
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law of large number (Ross (2014)), where E(x) stands for the expectation of x.

Thus, we have σ̂4
n

p−→ E(ε21,1)
2 by applying Slutsky’s Theorem (Van der Vaart

(2000)) and Continuous Mapping Theorem (Billingsley (2013)).

On the other hand, we have

1

pn

n∑
i=1

∥∥∥∥∥
(

h∑
l=1

ÂlXi−l

)
−Xi

∥∥∥∥∥
4

4

=
1

pn

n∑
i=1

p∑
j=1

(
p∑

j′=1

h∑
l=1

dljj′xi−l,j′

)4

︸ ︷︷ ︸
term 1

+
1

pn

n∑
i=1

p∑
j=1

ε4i,j︸ ︷︷ ︸
term 2

+
6

pn

n∑
i=1

p∑
j=1

( p∑
j′=1

h∑
l=1

dljj′xi−l,j′

)2

ε2i,j


︸ ︷︷ ︸

term 3

− 4

pn

n∑
i=1

p∑
j=1

( p∑
j′=1

h∑
l=1

dljj′xi−l,j′

)3

εi,j


︸ ︷︷ ︸

term 4

− 4

pn

n∑
i=1

p∑
j=1

((
p∑

j′=1

h∑
l=1

dljj′xi−l,j′

)
ε3i,j

)
︸ ︷︷ ︸

term 5

.

• For term 1, under the same condition for the first part of the proof, we have

term 1 ≤ 1

pn

 n∑
i=1

p∑
j=1

(
p∑

j′=1

h∑
l=1

dljj′xi−l,j′

)2
2

≤ 1

pn
c2
Q4 (β∗, σ2)

α2
LB

s2 (log h+ 2 log p)2

with probability at least 1−c1 exp[−c2(log h+2 log p)]−c3 exp(−c4nmin
{
ν−2
LB, 1

}
)

by directly applying Lemma 4. Thus, we have term 1 converges to zero in

probability as n goes to inifinity.

• We have term 2 converges to E(ε41,1) in probability as n goes to infinity by

applying the weak law of large number Ross (2014).
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• For term 3, under the same condition for the first part of the proof, we have

term 3 ≤ max
j∈(1,...,p)
i∈(1,...,n)

(
ε2i,j√
pn

)
6

√
pn

n∑
i=1

p∑
j=1

(
p∑

j′=1

h∑
l=1

dljj′xi−l,j′

)2

≤ c
Q2 (β∗, σ2)

αLB

s (log h+ 2 log p)
√
pn

with probability at least

1−2 exp(−c5
√
pn+log(np))−c1 exp[−c2(log h+2 log p)]−c3 exp(−c4nmin

{
ν−2
LB, 1

}
).

The last inequality is from the fact that errors are independent and identically

distributed sub-Gaussian random variables, so we have

P( max
j∈(1,...,p)
i∈(1,...,n)

(
ε2i,j√
pn

) > C) ≤ npP(ε21,1 > C
√
pn) ≤ 2 exp(−c5

√
pn+ log(np))

by Definition 1 in Section S1, where C and c5 are some finite positive constants.

Then, by directly applying Lemma 4 on the rest of the term 3 together with

union bound, we can get the last inequality for term 3. Thus, we have term 3

converges to zero in probability as n goes to infinity.

• Under the same condition for the first part of the proof, we have that the absolute
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value of term 4 is less than or equal to

4

pn

n∑
i=1

p∑
j=1

( p∑
j′=1

h∑
l=1

dljj′xi−l,j′

)2 ∣∣∣∣∣
p∑

j′=1

h∑
l=1

dljj′xi−l,j′εi,j

∣∣∣∣∣


≤

 4

n1−ap1−a

n∑
i=1

p∑
j=1

(
p∑

j′=1

h∑
l=1

dljj′xi−l,j′

)2


∗

(
max

j,j′∈(1,...,p)
i∈(1,...,n),l∈(1,...,h)

∣∣∣∣xi−l,j′εi,jnapa

∣∣∣∣
)(

h∑
l=1

p∑
j=1

p∑
j′=1

∣∣dlj,j′∣∣
)

≤ c
s (log h+ 2 log p)

√
np

√
s (log h+ 2 log p)

n

√
s

n1/2−ap1/2−a

with probability at least 1 − 2 exp(−c̃pana + log(np2h)) − c1 exp[−c2(log h +

2 log p)]− c3 exp(−c4nmin{ν−2
LB, 1}), where c̃ and c are some finite positive con-

stants and a is an arbitrary small positive constant less than 1/2. The last inequal-

ity is by applying the Lemma 4 on the first and last terms. For the middle term,

we have for a positive finite constant c∗, P

(
max j,j′∈(1,...,p)

i∈(1,...,n),l∈(1,...,h)

∣∣∣xi−l,j′εi,j
napa

∣∣∣ > c∗
)

≤∑
i,j,j′,l P (|xi−l,j′εi,j| > panac∗). According to E.1 VAR section in Wong et al.

(2020) with the assumption of stability and stationarity (Assumption 3), we know

that xi−l,j′ is sub-Gaussian for all i, l and j′. Then, according to Proposition 2.3

in Vladimirova et al. (2020), we have xi−l,j′εi,j is sub-weibull (γ = 1) for all i, j, j′

and l. Thus, according to Definition 1, we have for some finite positive constant

c̃,
∑

i,j,j′,l P (|xi−l,j′εi,j| > panac∗) ≤ 2 exp (−c̃pana + log(np2h)). Finally, by the

union bound we can get the last inequality. Thus, we have under the same

condition for the proof of first part with additional condition, n1/2−a ≿
√
s

p1/2−a for
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some a ∈ (0, 1/2), the absolute value of term 4 converges to zero in probability

as n goes to infinity.

• Under the same condition for the first part of the proof, the absolute value of

term 5 is less than or equal to

4

(
max

j,j′∈(1,...,p)
i∈(1,...,n),l∈(1,...,h)

∣∣∣∣xi−l,j′ε3i,jnbpb

∣∣∣∣
)

nb

p1−b

(
h∑
l=1

p∑
j=1

p∑
j′=1

∣∣dlj,j′∣∣
)

≤ c
Q (β∗, σ2)

αLB

√
s (log h+ 2 log p)

n1/4p1/4

√
s

p3/4−bn1/4−b

with probability at least 1− 2 exp(−c̃pb/2nb/2 + log(np2h))− c1 exp[−c2(log h+

2 log p)] − c3 exp(−c4nmin{νLB−2, 1}), where c̃ and c are some finite positive

constants and b is an arbitrary small positive constant less than 1/4. Derivations

of term 4 and 5 are similar with the only change that xi−l,j′ε
3
i,j is sub-weibull(γ =

1/2) for all i, j, j′ and l. Thus, we have under the same condition for the proof

of first part with additional condition that n1/4−b ≿
√
s

p3/4−b for some b ∈ (0, 1/4),

the absolute value of term 5 converges to zero in probability as n goes to infinity.

Then, by applying Slutsky’s Theorem and Continuous Mapping Theorem, we conclude

the proof of the second part. Finally, applying Slutsky’s Theorem again yields Theorem

1.
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Proof of Theorem 2:

By some straightforward algebra, we have R̂
(n,ω)
t∗+h is equal to

1

ω

t∗+h+ω∑
i=t∗+h+1

∥∥∥∥∥
(

h∑
l=1

(
Âl − Al

)
Xi−l

)
− εi

∥∥∥∥∥
2

2︸ ︷︷ ︸
T1

+
1

ω

t∗+h+ω∑
i=t∗+h+1

∥∥∥∥∥
h∑
l=1

(Al − A∗
l )Xi−l

∥∥∥∥∥
2

2︸ ︷︷ ︸
T2

− 2

ω

t∗+h+ω∑
i=t∗+h+1

(
εTi

(
h∑
l=1

(Al − A∗
l )Xi−l

))
︸ ︷︷ ︸

T3

+
2

ω

t∗+h+ω∑
i=t∗+h+1

( h∑
l=1

(
Âl − Al

)
Xi−l

)T ( h∑
l=1

(Al − A∗
l )Xi−l

)
︸ ︷︷ ︸

T4

.

Thus, we have that

T̂
(n,ω)
t∗+h =

√
pω

V̂n

(
T1

p
− σ̂2

n

)
︸ ︷︷ ︸

term 1

+

√
pω

V̂n

T2

p︸ ︷︷ ︸
term 2

+

√
pω

V̂n

T3

p︸ ︷︷ ︸
term 3

+

√
pω

V̂n

T4

p︸ ︷︷ ︸
term4

.

• We have term 1 converges to N (0, 1) in distribution as n goes to infinity by the

proof of Theorem 1.

• For term 2, we have√
pω

V̂n

T2

p
=

1√
V̂n

√
ω

p
(β∗ − βnew)

′ Γ̂ω (β
∗ − βnew) ≥

1√
V̂n

√
ω

p
(α′

LB − s (τωLB)
′) ∥β∗ − βnew∥22

=
α′
LB√
V̂n

√
ω

p
∥β∗ − βnew∥22 − c

s(log h+ 2 log p)
√
ωp

1√
V̂n

∥β∗ − βnew∥22

with probability at least 1− c1 exp(−c2ωmin((ν ′
LB)

−2, 1)) by using the sparsity

assumption and Lemma 1.
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On the other hand, by using the sparsity assumption and Lemma 2, we have√
pω

V̂n

T2

p
≤ 3α′

UB√
V̂n

√
ω

p
∥β∗ − βnew∥22 + c′

s(log h+ 2 log p)
√
ωp

1√
V̂n

∥β∗ − βnew∥22 ,

with probability at least 1− c3 exp(−c4ωmin((ν ′
UB)

−2, 1)). Further, c and c′ are

some positive constants; α′
LB, (τ

ω
LB)

′, ν ′
LB, α

′
UB, (τ

ω
UB)

′ and ν ′
UB refer to the cor-

responding components for the new VAR process after the change point. Finally,

by the condition s(log h+ 2 log p) = o(ω), we have
√

pω

V̂n

T2
p
≍
√

ω
p
∥β∗ − βnew∥22.

• For term 3, we have∣∣∣∣√pω

V̂n

T3

p

∣∣∣∣ ≤ 2√
V̂n

√
ω

p
∥β∗ − βnew∥1 ∗

∥∥∥γ̂ω − Γ̂ωβnew

∥∥∥
∞

≤ 2
Q (βnew, σ

2)√
V̂n

√
s(log h+ 2 log p)

p
∥β∗ − βnew∥2

with probability at least 1− c5 exp [−c6(log h+ 2 log p)] by sparsity assumption

and Lemma 3, while c5 and c6 are some positive constant. With condition√
s(log h+2 log p)

ω
= o(∥β∗ − βnew∥2), we have |

√
pω

V̂n

T3
p
| = op(

√
ω
p
∥β∗ − βnew∥22).

• We have that the absolute value of term 4 is less than or equal to

2√
V̂n

√
ω

p
ωηpηmax

i,j′,l

(∣∣∣∣x2
i−l,j′

ωηpη

∣∣∣∣) ∥∥∥β̂n − β∗
∥∥∥
1
∥β∗ − βnew∥1

≤ c√
V̂n

ωηpηs

√
s(log h+ 2 log p)

n

√
ω

p
∥β∗ − βnew∥2

with probability at least 1−c7 exp[−c8(log h+2 log p)]−c9 exp(−c10nmin{ν−2
LB, 1})−

2 exp(−c11p
ηωη + log(ωph)) for some positive constant c and some η ∈ (0, 1

4
). To

get the inequality above, maxi,j′,l

(∣∣∣∣x2i−l,j′

ωηpη

∣∣∣∣) is bounded by a positive constant
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with high probability by using the properties of Sub-Weibull distribution and

the nature of stationary time series. This part is very similar to the second

part of the proof of the Theorem 1. In addition, lemma 4 is applied to bound∥∥∥β̂n − β∗
∥∥∥
1
. With condition ωηpη

√
s3(log h+2 log p)

n
= o(∥β∗ − βnew∥2), we have

|
√

pω

V̂n

T4
p
| = op(

√
ω
p
∥β∗ − βnew∥22).

Combining these four terms, we will have the inequality in Theorem 2 with probability

at least 1 - ϵn,p,ω by the union bound. We have L
(n,ω)
t∗+h = op(

√
ω
p
∥β∗ − βnew∥22) and

(L
(n,ω)
t∗+h)

′ = op(
√

ω
p
∥β∗ − βnew∥22), because we have (1) V̂n

p−→ Var(ε21,1) as n −→ ∞ by

the proof of Theorem 1, and (2) additional conditions for Theorem 2. This concludes

the proof of Theorem 2.

S4 NUMERICAL STUDIES

In this section, we evaluate the performance of our algorithm using synthetic data

generated by a VAR process. The primary metrics used for assessing the algorithm’s

effectiveness are the run length and detection delay, which are standard measures

for online change point algorithms. These metrics have also been used in previous

studies, such as Chen et al. (2022); Mei (2010); Xie and Siegmund (2013); Chan

(2017). To compute the run length, we apply our algorithm to a data set without

any change points and record the number of observations monitored before the first
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alarm is raised. On the other hand, to determine the detection delay, we apply our

algorithm to a data set containing a change point and record the distance between

the location of the last observation read by the algorithm and the true location of

the change point after the alarm is correctly triggered.

S4.1 Simulation A: Run Length

The majority of online change point detection algorithms offer parameters that allow

practitioners to control the target average run length (ARL). The target average

run length represents the expected number of observations or time steps required

by the algorithm to raise an alarm when applied to a data sequence without any

actual change points. The ARL is an essential measure to balance the algorithm’s

performance between being sensitive enough to detect changes promptly and avoiding

excessive false alarms. In our algorithm, the target average run length is primarily

influenced by the choice of parameter α. Specifically, setting α to be 1/1000 will

result in a lower bound of 1000 for the ARL of our algorithm. For this simulation

scenario, our focus is on exploring how to regulate the average run length by selecting

an appropriate α, as well as investigating how the dimension of data and the size of

training data affect the run length of our algorithm. In this simulation, we consider

three different choices for the parameter α, namely 1/1000, 1/5000, and 1/10000. We

estimate transition matrices and variances using training data with sizes n equal to
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500, 1000, 1500, and 2000. Additionally, we vary the dimension of the data, setting it

to be 10, 40, 70, and 100. For each combination of α, n, and p, we generate 10/α+ n

data points from a lag-1 VAR process without any change points. After estimating

the transition matrices and variances using n observations, we proceed to apply our

algorithm on the remaining data. The algorithm is run with a pre-specified detection

delay of ω set to 50 and h set to 1. We repeat this process 200 times, recording all the

run lengths for each combination of parameters. The box plots of these run lengths

are presented in Figure 1.

Figure 1: Simulation A: This plot displays the box plots representing the run lengths of our algorithm

for different combinations of training data size n, data dimension p, and α. The values 1000, 5000,

and 10000 correspond to the target ARL, which is controlled by setting α to 1/1000, 1/5000, and

1/10000, respectively.

As depicted in the plot, when the training sample size is adequately large, the run

lengths of our algorithm are consistently lower bounded by 1/α with high probability.

However, when training data is limited, the run lengths may not reach the target
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run length. Therefore, we recommend that practitioners set 1/α to be equal to the

length of the data that needs to be monitored when there is sufficient training data

available. In cases where training data is limited, further decreasing the value of

α might be a viable solution to reduce the probability of false alarms. Another

noteworthy observation from this figure is that as the dimension of the data increases,

the size of the training data set needed to maintain a satisfactory run length also

increases.

S4.2 Simulation B: Detection Delay

Figure 2: Simulation B: This plot displays the box plots representing the detection delays of our

algorithm for different combinations of jump size, data dimension p, and α. The values 1000,

5000, and 10000 correspond to the target ARL, which is controlled by setting α to 1/1000, 1/5000,

and 1/10000, respectively. The horizontal dashed line represents the pre-specified detection delay,

denoted as ω.

Detection delay measures the time lag between the occurrence of a change point and

the moment the algorithm successfully detects it. A shorter detection delay implies
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that the algorithm can quickly identify and adapt to changes, which is critical in

real-time systems where timely reactions are necessary to mitigate potential risks or

capitalize on emerging opportunities. In this simulation, we explore how the detection

delay of our algorithm is influenced by different choices of α, data dimension p, and

the jump size of the change point. Specifically, we set α to three different values:

1/1000, 1/5000, and 1/10000, and vary the data dimension to 10, 40, 70, and 100,

as well as the jump size to 2, 2.5, 3, 3.5, and 4. To focus solely on the detection

delay and eliminate the impact of false alarms, we generate data points from a lag-1

VAR process with a total length of 2200. The change point is located at position

2000, which corresponds to the end of the training period. By doing so, we can

consider the number of observations our algorithm reads before raising an alarm as

the detection delay. We run our algorithm with a pre-specified detection delay set to

50 and recorded the corresponding detection delay. This process was repeated 200

times for each combination of parameters. The resulting detection delays were then

summarized using box plots, as shown in Figure 2.

As depicted in the figure, when the jump size is large, the detection delay of our

algorithm is consistently upper bounded by the pre-specified detection delay with

high probability. This finding aligns with Corollary 2.1, confirming that the detection

delay will be upper bounded by ω + h with high probability when the jump size is

sufficiently large. On the other hand, when we choose a smaller value for α, the
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detection delay of our algorithm increases. Although this effect is only pronounced

when the jump size is small, it is still essential to select an appropriate α to strike a

balance between the detection delay and the probability of false alarms in practical

applications. Another observation from the figure is that as the dimension of the

data increases, a larger jump size is required to achieve a small detection delay. This

observation aligns with our assumption on the jump size, as introduced in Theorem 2.

S4.3 Simulation C: Choice of ω

The pre-specified detection delay can be regarded as a moving window that contains

data points used to compute the test statistic for our algorithm. The selection of its

size, denoted as ω, significantly impacts the performance of our algorithm in terms of

both the probability of false alarms and the detection delay. Thus, in this simulation,

our main objective is to investigate how various choices of ω influence the detection

delay and early stop rate of our algorithm under different combinations of change

point jump size and data dimension. For each combination of p, ω, and jump size, we

generate a data set of 2600 data points using a lag-1 VAR process, with the change

point occurring at time 2300. We then estimate the transition matrices and variances

using the first 2000 data points and begin monitoring from that point onward. During

the monitoring process, if our algorithm raises a false alarm before reaching the true

change point, we consider it an early stop and record this occurrence. On the other
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Figure 3: Simulation C: The plot on the left summarizes the early stop rates, while the plot on the

right presents the detection delays. For each grid in the plots, the dimension of data is set to 10, 40,

70, and 100.

hand, if the algorithm raises an alarm after the true change point, we record the

detection delay. The α is set to 1/1000 in all combinations. This entire process is

repeated 200 times. The early stop rate is calculated by dividing the number of early
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stops by 200 and all detection delays are recorded for each combination. The results

are presented and summarized in Figure 3.

Figure 3 demonstrates that larger values of ω are preferable for effectively controlling

the false alarm rate. This is reflected in the early stop rate shown in the left panel.

However, selecting ω becomes more intricate when aiming to minimize detection delay,

as it is highly sensitive to the jump size and the data dimensionality. In practice,

this dependence makes it challenging to derive an optimal data-driven approach

for selecting ω when the true changes and jump sizes are unknown. According to

the conditions specified in the theoretical results, ω should scale as c log(hp2) for

some constant c > 0. Carefully reviewing the results in Figure 3, for practical

implementation, ω = 10 log(hp2) is recommended. This choice results in ω values of

46, 74, 85, and 92 for dimensions p = 10, 40, 70, and 100, respectively. These values

effectively maintain a low early stop rate while minimizing detection delay for small

jump sizes (e.g., jump size = 2). As shown in the figure, the impact of ω on detection

delay is more pronounced for smaller jump sizes. Although this choice may not yield

the optimal delay for larger jump sizes, it incurs only a minor increase in detection

delay relative to the optimal ω. However, when the training sample size is small,

adjusting ω has limited effect on enhancing detection quality. Moreover, when the

estimation of transition matrices is imprecise, a larger window size can introduce

more error into the test statistic, which aligns with the condition in Theorem 1, where
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ω = o(n). In practical settings, a training sample size approximately 10–15 times

the window size ω is advisable, which can serve as a reference for selecting ω when

training data is limited.

S4.4 Simulation D: Effectiveness of Refinement

Figure 4: Simulation D: This plot corresponds to box plots of detection delays and refined localization

errors. For each grid in the plots, the dimension of data is set to 10, 40, 70, and 100. The horizontal

dashed line represents the pre-specified detection delay, denoted as ω.

In this simulation, our primary focus is to assess the effectiveness of the proposed
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change point localization refinement process, which was introduced in Section 5.

Before delving into the simulation setup, we first introduce a few terms related to the

refinement process. The first term is the “refine size,” which is defined as the ratio

between the new pre-specified detection delay and the old pre-specified detection

delay. For instance, if the refine size is set to 0.1, and the original ω is 50, then

the value of ω′ used in the refinement process will be 5. The second term is the

“refined localization error,” representing the distance between the refined location of

the estimated change point and the true location of the change point. Formally, if an

alarm is raised at time t̂ (i.e.,
∣∣∣T̂ (n,ω)

t̂

∣∣∣ > Φ(1 − α/2)), and the alarm is not a false

alarm, then the last observation read by our algorithm will be at t̃ = t̂+ ω. In this

case, if the true change point is located at t∗ and the refined location of the estimated

change point is at ˆ̂t, then the detection delay and refined localization error will be

t̃−t∗ and |ˆ̂t−t∗|, respectively. Similar to the previous simulations, we consider various

values for the dimension of data and the jump size of the change point. Additionally,

we introduce the refine size, which takes values of 1/2, 1/5, 1/10, and 1/50. The data

points are generated with a total length of 2600, and the change point is located at

position 2300. We estimate the transition matrices and variances using the first 2000

observations. Subsequently, we apply our algorithm to the remaining data points

with α set to 1/1000 and ω set to 50, both with and without the confirmation step

introduced at the end of Section 5. This entire process is repeated 200 times, during
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which we calculate the early stop rate and record the detection delays and refined

localization errors for all combinations.

Figure 4 presents the summarized box plots for detection delays and refined localization

errors when the refine size is set to 0.1 for all combinations of data dimensions and

jump sizes without the confirmation step. As depicted in the figure, the refinement

process effectively reduces the localization error, specially when the jump size is

relatively large. As illustrated in Figure 5, the confirmation step notably decreases

the possibility of false alarms. Thus, the confirmation step can be considered as an

option to minimize false alarm probabilities. To provide practical guidance on the

choice of refine size based on the window size recommendation ω = 10 log(hp2) in

Section S4.3, we conducted a sensitivity analysis. Specifically, in each experimental

iteration, we simulated scenarios in which alarms were triggered using ω = 10 log(hp2)

observations, with the true change point positioned at the center of this larger window.

The refinement was then applied using refine sizes (0.1, 0.2, 0.3, 0.4, 0.5). This analysis

was conducted across various data dimensions (p = 10, 40, 70, 100) and jump sizes (2,

3, 4), with the goal of identifying the refine size that minimized refined localization

error. After 100 repetitions, the average optimal refine sizes consistently clustered

around 0.1 to 0.2, as shown in Table 1. Based on these results, we recommend using

0.15 for practical applications.
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Jump Size p = 10 p = 40 p = 70 p = 100

2 0.131 0.138 0.149 0.157

3 0.116 0.126 0.137 0.157

4 0.113 0.107 0.119 0.116

Table 1: Average of the optimal refine sizes for different dimensions and jump sizes.

Figure 5: Simulation D: This plot provides a summary of the early stop rates for all combinations of

refine sizes, data dimensions and whether confirmation is used or not. For each grid in the plots,

the dimension of data is set to 10, 40, 70, and 100.
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Figure 6: Simulation D: This plot provides a summary of the refined localization errors for all

combinations of refine sizes and data dimensions. For each grid in the plots, the dimension of data

is set to 10, 40, 70, and 100. The horizontal dashed line represents the pre-specified detection delay,

denoted as ω.

S4.5 Simulation E: Multiple Change Point Detection

In this simulation, we evaluate the performance of our method in terms of F1 score

when dealing with multiple change points in low-dimensional (p = 10) and high-

dimensional (p = 100) setups. For a range of jump sizes, we generate VAR time

series of size 6900 with change points located at positions 2300 and 4600. Specifically,

for the first 2300 data points, we use the transition matrix 0.8 ∗ Ip. The subsequent
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2300 data points are generated using a new transition matrix with a certain jump

size compared to the previous one. Finally, the last 2300 data points are generated

again using the transition matrix 0.8 ∗ Ip. We implement Algorithm 1 sequentially,

as mentioned in Section 6, and consider the refined estimated change points within

2300±10 and 4600±10 as true positives. In each repetition, we calculate the following

metrics: F1Score = 2×TP
2×TP+FP+FN

where TP, FP, and FN represent true positives,

false positives, and false negatives, respectively. We then calculate the averages

among the 100 repetitions for different jump sizes. These metrics are commonly used

in assessing detection algorithms in scenarios with multiple change points such as

in Bai and Safikhani (2023). The results are summarized in Table 2. Under both

low-dimensional and high-dimensional setups, we set n = 2000, ω = 50, α = 0.0001,

and h = 1 for our algorithm. To reduce the number of false alarms, we perform the

confirmation step as introduced in Section 5. As shown in Table 2, our algorithm

exhibits strong capabilities in handling data with multiple change points, especially

when the jump size is large, under both low-dimensional and high-dimensional setups.

S4.6 Simulation with Variance Heterogeneity

This section provides simulation results for the average run length and detection delay

of our algorithm under the same setup as in Simulation A and B, with α = 1/1000.

However, in this simulation, the diagonal entries of the covariance matrix for the
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Table 2: Simulation E: The F1 score for our algorithm is assessed in a multiple change point

scenario. We consider jump sizes (JS) ranging from 2 to 4.5 under both low-dimensional (p = 10)

and high-dimensional (p = 100) setups.

JS = 2.0 JS = 2.5 JS = 3.0 JS = 3.5 JS = 4.0 JS = 4.5

p = 10 0.73 0.88 0.97 0.98 0.99 0.99

p = 100 0.06 0.26 0.45 0.66 0.88 1.00

noise is randomly generated from a uniform distribution ranging from 0.5 to 1.5 to

assess our algorithm’s performance with variance heterogeneity. The test statistic is

calculated as described in Remark 1. Satisfactory performance is achieved for both

average run length and detection delay in this scenario, as shown in Figure7.

Figure 7: Simulation with variance heterogeneity: The covariance matrix’s diagonal elements for

errors are randomly selected from a uniform distribution ranging from 0.5 to 1.5. The rest of the

settings align with those of Simulation A and B, with the value of α set to 1/1000.
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S4.7 Numerical Comparison in High-Dimensional Settings

This section supplements Section 7 by extending the numerical comparison to high-

dimensional settings with p = 100. In addition to this modification, we increased

the training sample size from 500 to 2000 and adjusted the jump sizes from 2 and

3 to 3 and 4 to accommodate the higher dimensionality. The results, shown in

Figure 8, demonstrate that our proposed algorithm performs comparably to the

case when p = 10. Notably, the algorithm remains competitive with alternative

methods when the data is generated without a VAR structure and continues to

outperform all competing methods when the data is generated with a VAR structure.

Additionally, we observed that the TSL method (Qiu and Xie, 2022) required an

excessive amount of memory (over 8,388,608 GB) to allocate the necessary vectors in

the larger dimensional setting. As a result, we were unable to obtain results for the

TSL method in this scenario, and it is therefore not included in the comparison.

S4.8 Robustness to Time-Varying Transition Matrices

To illustrate the robustness of the proposed algorithm to small time-varying effects,

we conducted a set of simulations with a transition matrix that varies slightly over

time. These simulations, summarized in Figure 9, involved introducing time-varying

behavior in three specific entries of the transition matrix. In the left panel of the

figure, the entry in row 2, column 2 oscillates between 0.5± 0.3 with a period of 500.
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Figure 8: Summary of detection frequencies for all algorithms. The black dashed vertical line

indicates the location of the true change point. An ideal algorithm would demonstrate a detection

frequency of zero before the line and achieve one immediately after the line.

The other two time-varying entries oscillate similarly but start from different initial

values. These oscillations persist throughout the simulation, even after change points.

We varied the amplitude of oscillation across different runs, testing values of 0, 0.1,

0.2, and 0.3, where 0 represents no time-varying effect. Two sets of simulations were

conducted to examine the algorithm’s performance under these conditions. The first

set of simulations, shown in the middle panel, evaluated how changes in amplitude

affect the run length. With settings similar to those in S4.1—using α = 1/1000,

n = 500, p = 10, and ω = 50—the results show that, for small oscillation amplitudes,

the algorithm maintains control over the target ARL, keeping it above 1/α. However,
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as the amplitude increases, the run length decreases, indicating that larger time-

varying effects are more likely to be misidentified as true changes, leading to a higher

false alarm rate. The second set of simulations, shown in the right panel, analyzed

the effect of oscillation amplitude on detection delay. Under settings similar to those

in S4.2 (with α = 1/1000, n = 500, p = 10, and a jump size of 2), the results indicate

that the detection delay remains relatively stable, even as oscillation amplitude

increases. This demonstrates that the detection delay is less sensitive to moderate

time-varying effects. In summary, while the full extension of this method to handle

time-varying transition matrices lies beyond the scope of this study, these simulations

show that the proposed algorithm is robust to small time-varying effects. Future

research will further explore this aspect. For now, the focus of this work remains on

the piecewise constant setting.

S4.9 Robustness to Complex Transition Matrix Structures

The proposed algorithm is capable of handling more complex transition matrices,

provided there is a sufficiently large training sample size to enable accurate estimation.

To illustrate its robustness, we conducted additional simulations using a low-rank

plus sparse structure for the transition matrix, following the setup described in Bai

et al. (2020). In this simulation, the transition matrix includes a low-rank component

with a rank of 2, resulting in a structure that is no longer sparse. The simulation
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Figure 9: Simulation with Time-Varying Transition Matrices. (Left) Illustration of how specific

entries in the transition matrix vary over time. The entry at row 2, column 2 oscillates between 0.5

± 0.3 with a period of 500. (Middle) Effect of oscillation amplitude on the run length. The dashed

line indicates the target ARL of 1/α, with run lengths expected to exceed this threshold. (Right)

Effect of oscillation amplitude on the detection delay.

parameters were set to p = 25, α = 1/1000, and ω = 50, and Figure 10 summarizes

the results. As shown in Figure 10, the false alarm rate remains well-controlled when

the sample size is sufficiently large. However, more observations are required to ensure

that the average run length (ARL) meets the target threshold of 1/α = 1000 when

handling complex transition matrices. Notably, the detection delay appears to be

more sensitive to the magnitude of the jump than to the structure of the transition

matrix itself. The settings for these simulations align with those used in Sections

S4.1 and S4.2, where we analyze the run length and detection delay under different

scenarios. While these results demonstrate the algorithm’s capability to handle

more intricate transition matrix structures, we do not pursue a rigorous theoretical
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analysis of this aspect here. Instead, we aim to provide an empirical illustration of

the algorithm’s robustness, leaving a deeper theoretical investigation for future work.

Figure 10: Performance of the Proposed Algorithm in Terms of Run Length and Detection Delay

with Sparse vs. Sparse + Low-Rank Transition Matrices.

S5 ADDITIONAL RESULTS FOR REAL DATA ANALYSIS

This section provides additional details for the S&P 500 real data experiment and

presents results from the real data experiment conducted on EEG data.

S5.1 Additional Details for S&P 500 Data

To establish a reference for the anomaly period, the return volatility is used, a

standard measure of return dispersion (also used as a reference in Keshavarz et al.

(2020)). Let xt,j represent the daily log return for stock j at time t, and let std(x)
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denote the standard deviation of x. The return volatility of stock j at time t is

estimated using the formula zt,j = std(xt,j, . . . , xt+ω−1,j). The average zt,j across

all 186 stocks is then computed, and this average return volatility is rescaled for

visualization. The rescaled value is shown as the black line in Figure 11. A high

average return volatility generally indicates an increased likelihood of a change point.

Figure 11 also shows the locations of alarms (red vertical lines) and the estimated

onsets (black vertical lines) of alarm clusters.

Figure 11: Experiment results on S&P 500 data: The black line represents the rescaled average

return volatility, while the red lines correspond to alarm locations for (top) VAR cpDetect Online,

(middle) ocp, and (bottom) gstream.
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S5.2 Real Data Experiment on EEG Data

For the EEG data, this experiment aims to detect and raise an alarm indicating

an impending seizure, occurring around t = 85, as confirmed by neurologists and

validated by offline change point detection methods in Section 8 of Safikhani and

Shojaie (2022). The data was collected from 18 EEG channels over a 227.68-second

duration. To focus on seizure onset, data after t = 150 seconds were removed. The

final dataset comprises 1500 data points over 150 seconds, with a dimension of

p = 18. The first 300 data points were designated as historical data, with parameters

ω = 30 and α = 1/2000 used in our method. The hyperparameters for the baseline

algorithms were selected as described in Section 7. All methods were applied to the

entire dataset without halting upon alarm, and the alarm locations are documented

in Figure 12. As shown in the top panel of Figure 12, the alarms raised by the

proposed algorithm form two clusters, indicating periods where the patient’s brain

activity deviates from baseline, potentially signaling seizure activity. The estimated

start times (solid vertical black lines) of these clusters are at t = 56.3 (lasting 1.4

seconds) and t = 81.5 (lasting until the end of the data). The proposed algorithm

requires 19 and 25 additional observations (detection delay) before issuing these

alarms. Both estimates occur before the confirmed seizure onset at t = 85, suggesting

that early shifts in brain electrical activity may be detectable in advance, consistent

with findings in Ombao et al. (2005). Similarly, in another study (Safikhani and
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Figure 12: Experiment results on EEG data: The red lines indicate alarm locations for (top)

VAR cpDetect Online, (middle) ocp, and (bottom) gstream.

Shojaie, 2022), an offline CPD algorithm based on a VAR model estimated a change

point at t = 83, also slightly before the seizure began, further supporting the idea that

changes in brain activity may be detectable prior to the seizure’s onset. The middle

panel shows that the ocp method detected two change points at t = 78.3 and t = 81.0,

both preceding the seizure onset, with the latter closely aligning with our algorithm’s

estimate. The bottom panel indicates that the gstream method raised alarms forming

four clusters, with start points at t = 30.1 (lasting 1.1 seconds), t = 50.9 (lasting

13.3 seconds), t = 67.6 (lasting 5.3 seconds), and t = 82.5 (lasting until the end).
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The final cluster occurs slightly before t = 85, agreeing with our algorithm’s results;

however, the gstream method triggers numerous alarms before the seizure, limiting

its practical utility for early warning. The average execution times were 1.77 seconds

for our method, 9.50 seconds for ocp, and 27.14 seconds for gstream.

S6 SEQUENTIAL UPDATING FOR TRANSITION MA-

TRICES

In this section, we examine the performance of a sequential updating approach

(Messner and Pinson, 2019) for estimating transition matrices in high-dimensional VAR

models. Sequential updating allows for efficient integration of new data, improving

the estimation of transition matrices for the proposed algorithm when no alarm has

been raised during monitoring. We discuss the benefits and limitations of sequential

updating in various scenarios and present simulation results to illustrate its impact

on estimation accuracy.

S6.1 Advantages and Limitations

Sequential updating provides a practical method to update the transition matrix

estimates as new observations arrive. Instead of re-estimating the transition matrices

from scratch using both old and new data, which incurs high time and space complexity,

this approach applies a cyclic coordinate descent algorithm at each time step. By using
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the previous step’s coefficient estimates as starting values, it avoids the computational

burden associated with full re-estimation. When the forgetting factor is set to ν = 1,

this approach efficiently updates the transition matrices without requiring all historical

data. The detailed procedure can be found in Messner and Pinson (2019), particularly

in Equations (10)–(14).

Incorporating sequential updating into the proposed algorithm is particularly advan-

tageous when the training data is very limited. In such cases, it allows the transition

matrix estimates to improve as additional observations are gathered, provided no

alarm is raised. This can help the algorithm reduce false alarm rates and increase

power, as the accuracy of the transition matrix estimates improves with more data.

However, as the size of the initial training data grows, the relative benefits of sequential

updating decrease.

One limitation of sequential updating is that it can introduce estimation error at

the beginning of the process, which may increase the likelihood of false alarms. This

issue is particularly critical in real-time applications where accuracy is essential. As

a result, while sequential updating is valuable in cases with limited training data, its

direct application may not be suitable for all scenarios, especially when minimizing

false alarm rates is crucial.
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S6.2 Simulation Study

To illustrate the effects of sequential updating, we conducted simulations using data

generated from a VAR process with transition matrix A and dimension p = 10.

For each repetition, the initial estimate of the transition matrix was obtained using

the regularization method (Basu and Michailidis, 2015) on training data of varying

lengths, followed by sequential updates as new observations were collected.

Figure 13 shows the estimation error ∥A− Â∥2 with and without sequential updating.

In this figure, the solid black line represents the average estimation error using

sequential updating, with black dotted lines indicating the 2.5th and 97.5th percentiles.

The blue dotted line represents the average estimation error when only the initial

training data is used, with the shaded area showing the 2.5th and 97.5th percentile

range.

The results show that sequential updating initially increases the estimation error,

which may temporarily raise the false alarm probability. As the training sample size

grows, however, the advantage of sequential updating diminishes, and the overall

estimation error converges with that of the non-updated estimates.

The simulation results suggest that sequential updating is advantageous in situations

with limited training data, providing an efficient way to incorporate new data and

improve estimation accuracy. However, as the amount of data increases, the benefits
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of sequential updating wane, and its initial estimation error may contribute to a

higher false alarm risk. Therefore, while sequential updating is effective in specific

scenarios, we advise caution in applying it directly in cases where minimizing false

alarms is a priority. Integrating sequential updating with the proposed algorithm

presents an interesting but challenging direction for future research.

(a) Training data length = 100 (b) Training data length = 200

(c) Training data length = 300 (d) Training data length = 400

Figure 13: Comparison of estimation errors between the sequential update method and estimates

based only on training data
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S7 POST-CHANGE ANALYSIS

Identifying which variables undergo shifts after a change point, especially in high-

dimensional contexts, is important yet challenging due to the limited number of

post-change samples. When the post-change sample size is small, estimating the new

model parameters reliably becomes difficult, complicating efforts to pinpoint which

variables have shifted. Even with an accurately detected change point, a limited

number of post-change observations can greatly reduce the reliability of diagnostic

analysis. A straightforward approach might be to estimate the transition matrices

before and after the change using Lasso, then compare these estimates. However, the

bias inherent in Lasso makes it infeasible to directly infer which components of the

transition matrices have changed. To address this, we recommend applying an online

debiasing technique (Deshpande et al., 2023) both before and after the change point.

This method debiases the Lasso estimates and allows for constructing confidence

intervals (CIs) for the entries of the VAR transition matrices. By constructing CIs

for the differences between the debiased estimates of the transition matrices before

and after the change, we can identify which entries are likely to have changed. If the

CI for a given entry excludes zero, we can infer a significant shift in that entry. To

validate this approach, we conducted simulations with two groups of observations with

p = 10 variables—one representing data before the change (with transition matrix

A) and the other representing data after the change (with transition matrix A∗).
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The pre-change sample size was fixed at n0 = 500, allowing for accurate estimation,

while the post-change sample size n1 varied among 100, 200, and 300. The two

transition matrices differed at six specific entries: (1,1), (2,2), (10,10), (3,7), (6,4),

and (8,4). For each entry in the difference matrix D = A− A∗, we constructed CIs

using debiased Lasso estimates and calculated their coverage rates of zero over 100

repetitions. As shown in Figure 14, entries with no changes maintain a zero coverage

rate around 0.95, while entries with changes rarely include zero as the post-change

sample size increases, accurately identifying the shifts. Although identifying these

changes benefits from a moderate number of post-change samples, the CPD algorithm

can continue collecting observations to improve diagnostic accuracy.

Figure 14: Coverage rates of zero for confidence intervals of the entries in A−A∗
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