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This supplementary material contains implementation details of our estimators, some additional
simulation results and the auxiliary lemmas and technical proofs for propositions and theorems

of the paper.

S1 Estimation of Information matrix and Simultane-

ous Confidence Band

In this section, we provide some details on the estimation of information ma-
trix I,, in Theorem 3 and J,, in Theorem 4. In applications, we first estimate
the gradient of loglikelihood (given by equation (2.6) in the manuscript)
with respect to all the coefficient, which involves a solution to the ODE
system. Therefore, we first evaluate Ay, (Y;;0) by calculating the solution
of (2.7) given the parameter estimates 6 and covariates U; at time ¢t = Y;.

Then, we obtain the derivatives of Ay, (Y;; 0) with respect to the parameters



Zhou et al.

by solving another ODE, that is, A/ (Y;,0), Al (Y;, 0), A, (Y, 0) and AL(Y;, 0)

is the solution of the following ODE at time Y;:

dAL (1) <2
# = \I/(t, Xi> ZZ', 9) (Xl + ; CjB? (AUZ (t)) Aa<t)> s

+icj A'())

d/\;t(t) — U(t, X,, Z:,0) ([B;Y(t),...,Bg t} +ZCJ ) ALt )>
PO wir.x, 2.0) UBf(A“ oo By (A 0]+ Z B (Ao (1) A;<t>>

(SL.1)
with initial value A/ (0) = A/(0) = A}(0) = AL(0) = 0, where
qn,1 dn,2 qn,3
U(t, X, Z,0) = exp ( TX + Zaj/ Bl(s)Z(s)ds+ > b;B](t)+ Y ¢;BY (AU(t))> .
j=1 j=1 j=1
Then we plug in the value of A/ (Y;,8), AL(Y:,0), Ay (Y;, 0) to obtain the gra-
dient of logllkehhood Z1,(0). Tt follows that the matrix A = %ln (0) (@ln(é’))T

can be expressed as

oo da \ da Oa \ 9(b,c)
— ol ol \T ol Ol \T ol ol T
A Jn ()T Gu(Ge)T Ga ()
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Suppose the inverse of matrix A takes the form of
A A Ags
A= Ag1 Azp Ags
Az Az Ass
Then, the inverse information matrix for the scalar parameter I '(a) can
be estimated by the first diagnoal block A;; and the matrix J. ! in Theorem

4 can be estimated by the second diagnoal block Ags.

S2 Additional Simulation Result

S2.1 Estimation of nuisance parameter

This section presents the estimation of nuisance parameter under setting 3,
4, 5 of our simulation study. Figure [1| displays the estimates of functional
parameters 3(-),v(-) and g(-) with a sample size of n = 800. The dash
line and dash-dotted line represent the true value and the point-wise mean
estimates, respectively. The dotted line represents 95% point-wise confi-
dence bands. Clearly, the mean of estimates approximates the true value
well in all scenarios. Table [I] presents the empirical coverage probability of
simultaneous confidence band. As shown in Table [I} the empirical cover-
age probability of simultaneous confidence band approaches its theoretical

value 0.95 as sample size increases.
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Figure 1: Estimates of functional parameters based on 1000 replications.
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Table 1: Simulation results for functional parameter 8 under setting 3, 4 and 5, where

CP represents the empirical coverage probability of simultaneous confidence band.

Censoring rate = 15%  Censoring rate = 30%

Setting N  RIMSE CP RIMSE CP
3 200  0.072 0.782 0.080 0.779
400  0.034 0.842 0.035 0.844
600  0.026 0.910 0.030 0.915
800  0.019 0.947 0.022 0.938
4 200  0.115 0.779 0.102 0.788
400  0.045 0.840 0.069 0.848
600  0.035 0.903 0.042 0.907
800  0.030 0.927 0.036 0.925
) 200 0.047 0.798 0.044 0.808
400  0.023 0.880 0.024 0.874
600  0.017 0.904 0.018 0.894
800  0.013 0.940 0.015 0.936

S2.2 Sensitivity to spline basis

In this subsection, we provide some additional simulation results about the
sensitivity to the spline basis. In this simulation, we considered “Setting

57 from the manuscript and let the order of the B-spline basis be either 2
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or 3. We examined the impact of varying the number of interior knots—1,
2, 3, 5, 10, and 20—on the integrated mean square error of the functional
parameter, 3. The results are presented in the following table.

As shown in Table[2], there is no significant difference in the performance
of the estimators when the number of interior knots is similar. However, we
observed that when the number of interior knots is relatively large (e.g., 10
or 20), the estimated functional parameter may become quite unsmooth.
Therefore, we recommend treating the number of basis functions as prede-
termined. In general, we suggest using cubic B-splines of order 3.

Additionally, based on our theoretical results, the optimal rate of con-
vergence is achieved by choosing the number of interior knots to be O(n~1/(2p+1)),

Thus, we recommend using [n~"/(2P*1)7 as the number of interior knots.

Table 2: Integrated mean square error of functional estimators

order/interior knot 1 2 3 5 10 20
n=200 p=2 0.034 0.031 0.035 0.058 0.067 0.067
p=3 0.029 0.032 0.041 0.071 0.066 0.067
n=400 p=2 0.024 0.016 0.015 0.022 0.022 0.025
p=3 0.014 0.015 0.017 0.023 0.024 0.025
n=800 p=2 0.020 0.011 0.007 0.009 0.010 0.011

p=3 0.009 0.007 0.008 0.010 0.011 0.011
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S2.3 Pointwise confidence interval vs simultaneous confidence

band

Simultaneous confidence band is usually wider than the confidence inter-
val. Here we provide some insights about pointwise confidence interval vs
simultaneous confidence band. Figure [2] [3] [4] shows instances of confidence
interval vs confidence band when sample size n = 400,800 and 1600. The
red curve represents the true function, the blue dash line represents confi-
dence interval and the light blue dash line represents confidence band.

As shown in Figure 2 [3| [4], although the true functional parameter may
occasionally fall outside the pointwise confidence interval, it is covered by
the confidence band. Meanwhile, the widths of both the confidence interval
and the confidence band decrease as sample size n increases. The decay rate
of the width of confidence band is slightly slower than y/n, which aligns with

our theoretical O(n™"1).
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Figure 2: Confidence interval vs confidence band for n = 400
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Figure 3: Confidence interval vs confidence band for n = 800

S2.4 Comparison of computation cost with MPLE based method

We have also conducted additional simulations to compare the computa-

tion efficiency. We consider the functional Cox model (Qu et all 2016)
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Figure 4: Confidence interval vs confidence band for n = 1600

setting and recorded the computation time of the two estimators under dif-
ferent sample sizes vary from 400, 800, 1200, 1600, 2000, 3000. The results
are shown in figure [f] As the figure indicates, the computation time our
methods increases significantly slower than MPLE-based method as sample

size grows.
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Figure 5: Log computation time of two methods under different sample sizes
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S3 Further discussion about real data example

To demonstrate the advantage of our model, we compared its concordance
index (C-index) with that of other alternative models. The C-index is a
measure of model fitting for survival models, defined as the proportion of
all usable subject pairs where the predictions and outcomes are concordant.
It is calculated as follows:
m\ . .
(5) Tun<myad<i (53.2)
i#j

where 1(-) is the indicator function and m is the number of uncensored
event time and Ti,Ti,i = 1,...,m are corresponding event time and ex-
pected event time. This concordance index allows us to justify the superior
performance of our proposed method compared to other alternative meth-
ods including functional Cox model and functional accelerated failure time
model (Qu et al.| [2016; Liu et al., [2024). We considered the following three
models: (i) Model 1, which includes only three scalar-type covariates—age,
gender, and Charlson morbidity index; (ii) Model 2, which adds an indi-
vidual’s SOFA score on the first day as an additional covariate; and (iii)
Model 3, which incorporates the same three scalar-type covariates plus the
SOFA score from the first five days as a functional covariate. The results

are presented in Table [3] These results indicate that the model including
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functional covariate significantly improves prediction accuracy, and our pro-
posed model outperforms both the functional Cox Model and the functional

Accelerated Failure Time Model.

Table 3: Comparison of C-index across different statistical models. ”/” represents not

available.
Model \ Covariate Model 1 Model 2 Model 3
Cox Proportional Hazard model 0.57 0.63 /
Functional Cox model / / 0.71
Accelerated Failure Time model 0.60 0.63 /
Functional Accelerated Failure Time model / / 0.73
Functional ODE model 0.59 0.62 0.75

Model 1 includes only three scalar-type covariates—age, gender, and Charlson morbidity index.
Model 2 adds an individual’s SOFA score on day 1 as an additional covariate.

Model 3 further incorporates the SOFA score from the first five days as a functional covariate.
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S4 Proof of lemmas

We begin with some notations. Let F,([a,b]) as the class of functions f on
[a,b] with bounded derivatives fU),j = 1,...,k and the k—th derivative

satisfies the m-Holder continuity condition:
[FP(s) = FR 0] < Mls = 1™, Vs, € [a,b].

Let 7 = F ([0,1)),T7 := {y € F*([0,7]) : 7(0) = 0} and G» =

F72([0, )

Lemma 1 (Existence and uniqueness). Under Conditions (A1)-(A5), For
any * € R, 2z € L*([0,1]),a € B,3 € FPr,y € TP g € GP3, the initial

problem

N0 = exp (a4 [ 56)5()ds +2(0) + 900
K (54.3)

A,(0)=0
has ezxactly one bounded and continuous solution A, (t) on [0,7]. The first
and second partial derivatives of A, (t) with respect to a € B and Fréchet

derivatives with respect to p € FP,y € I'P?2, g € GP are also bounded and

continuous on [0, 7].

Proof of Lemma

Let f(t,A) = exp (ofz + [, B(s)z(s)ds + ~v(t) + g(A(t))), then followed by
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mean-value theorem, for any (¢, A1), (¢, Az) € [0, 7] x [0, u], we have

|f(t7A1> - f(taA2)|
< exp(a v+ [ B6)=(6)ds +(0) + o(A >) (A A — Al

LIA, — Asl,

IN

where A is a point between A; and Ay, L < oo. This implies that f(t, A)
satisfies the Lipschitz condition with respect to A in [0, 7] x [0, p]. According
to Theorem 10.VI in [Walter| (1998)), there is exactly one solution to the

initial value problem (S4.3). The solution A(t, x, z, 0) satisfies

At,z,z,0) = / exp (a x +/ B(u)z(u)du + v(s) + g(Au(s,x,z,Q))> ds.
0

(S4.4)

For simplicity of notation, we denote A(t,x, z,60) by A(t). Then the follow-

ing initial value problems have unique, bounded and continuous solutions.

A (1)

50 AW+ g (A AL(D). A1) =0, (519
DML — gie awp( [ B + o AR, Ky 00509
TR a0 + S, Ol

A (0)[0] =0, (S4.7)
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dA,(t)[w]
dt
dA” (1)
dt

Now we prove that the solution of (S4.5)), A/ (¢

Ft M) (w(A(1) + g/ (AB) A (1) [w]), Ag (0)[w] = 0, (54.8)
Ft, A0){ (@ + g' (A1) AL(1) (@ + g/ (A1) AL1)"

9" (AD)ALOALDT + g (AD)AL (D} AL(0) =0, (54.9)
P AN+ o AN | B6I(s)ds + (M)A
g (AOALONS ) + o (AL}

Agﬂ(o)[h] =0, (54.10)
FtAD){( + g (ADALD) (W) + g (MDA, D)]o])

9" (AD)ALOA (O] + o (AWDAL (D]},

Ao, (0)[v] =0, (S4.11)

= St A@){(@+ g (A1) AL[0) (w(A®)) + g/ (A1) AG()[w])

+9" (AB)AL () Ay (1) [v] +

AL, (0)[w] = 0.

g/ (AB)AG, () [w] }

(S4.12)

), is the derivative of A(t)
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with respect to a. Using equation (S4.4) and (54.5)), we have

LAt 2,2t 6,8.7,9) — A(tx, 2,00 B, 9) — AL()T6]

lim su
o0 10|

= limsupw’/exp<a+(5 x—l—/ﬂ w)du + (s )+g(A(s,x,z,0¢+5,ﬂ,%g)))

6—0

— exp (a :c+/ B(u)z(u)du + (s )+g(A(s,x,z,a,ﬁ,7,g)))
— exp (a x +/ Bw)Z(u)ds + (s )+9(A(S))> (z +9'(A(S))A;(S))d5‘

IA

lim sup —
6—0

exp<a+5 SL’+/ 6 du+7< )+g<A(S7‘T7Z7a+6757779))>

— exp (a x+/ B(u)z(u)du + (s )+g(A(s,m,z,a,ﬁ,7,g))>
—exp (ot [ B Z(0)ds +05) + 906 ) (o + g AGAL)a]ds

K 1
/ lim sup —
0 6—0 |5|

~exp (o x+/ﬁ du ++(9) + 9(A(s) )

IN

exp (<a #0)%+ [ Buu)duta(s) + o(Als.n, . + wm,g)))

—exp (a T+ / B(u)Z(u)ds + v(s) + g(A(s))) (x + g'(A(s))A;(s))é‘ds

= [ (a7 + / B)=(u)du-+(5) + 9A(5) ) -5/ (A(5)

x{llmsup |A(s z, 2,0+ 08,8,7,9) — A(s) — A (s)76]}ds.

9]

It then follows from Gronwall’s Lemma (Walter, [1998) that

lim sup

|5||A(s z,z,a+6,8,7,9) — A(s) — A, (s)T5] <0, (S4.13)
0—0

which indicates that the solution of (S4.5)) is the derivative of A(t) with

respect to a. The other first and second order derivatives of A(t) with
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respect to [3,7,g can be proved to be the solution of (S4.6)-(54.9) using

similar argument as before. The details is omitted.

Lemma 2 (Spline Approximation). Under Conditions (A5) and (A6), for
any By € FPr v € I'P? and gy € GP*, there exist functions o, € FE*, Yon €

I'P2 and go, € GE* such that
HBOn - ﬁ()”oo = O(niylpl>>

170n — Y0l = O(n™"272),

HgOn - gOHOO = O(n_ysp3>7

where vy, vy and vy are defined in Assumption (A6).

Proof of Lemma [2]

This Lemma is a direct result according to Corollary 6.21 in Schumaker

(2007).

Lemma 3 (Bracketing number). Let 0y, = (o, Bon, Yons Con(*, @0, Bons Yon)),

denote

Fn =A{UO, W) = 1(0p,, W),0 € ©,}.

Then, under Conditions (A1)-(A6), the e-bracketing number associated with

| - [loc morm of F, satisfies

N[ }(&fm H ’ HOO) S (1/€)clqnl+62%2+03%3+d
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for some positive constants cy,ca,c3 > 0, where ¢n,, qn,, qny and d appeared

in Assumption (A3) and (AG).

Proof of Lemma 3]
Following the calculation of [Shen and Wong| (1994)) on page 597, for any

e > 0, there exists sets of e-brackets

{18E, BYL1IBY = BE oo < e,i=1,2,...,[(1/e)* 5]},
VALY =l <&, =12, [(1/e)25n2]},
{lar 91 198 — 9flle < ek =1,2,... [(1/e)F 3]}

such that for any g € FP' v e I'P2 g € GP3,

Bi(t) < B(t) < B (1), te€01],

W () < () <97 (1), telo,T],

g (t) < B() < g (1), telopy
holds for some i, j, k. This leads to fol }(6(8) — BE(s))Z(s)| ds < cse for
some constant cs. Moreover, under condition (A1), B C R? is compact. B
can be covered by [c4(1/€)?] balls with radius e. Hence, there exists {q :
1=1,2,...[cs(1/e)?]}, for any a € B, there exists [ € {1,2,...[cs(1/e)4]}
such that | X7 (a—aq;)| < cge for some constant cg. For any n = («, 3), define
i = (cu, BF). Next we verify that [A(t, U, o, 8,7, 9)—A(t, U, ou, BF,7F, 95| <

Ce for all t € [0,7]. For notation simplicity, denote A(t,U,«, 3,7v,9) =
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Ag(t), A(t, U, ou, BE AF, gE) = A (t), then Ag(t) and A, (¢) satisfies
) j k J J

/texp( TX+/B w)du + (s )) ds — /Ow) exp(—g(s))ds.
[ew (afx+ [atwzmto)as = [ ooi-gtonas

which leads to

Ap(t)
/ exp(—go(s))ds

Aijra(t)

eXp(TX—l—/ﬂ u)du + (s ))ds

—/0 exp <alTX+/ﬁf(u)Z(u)du+yf(s)) ds

Ag(t)
- / exp(—g(s)) — exp(—gk(s))ds|.

Under conditions (A1)-(A6), the right hand side is upper bounded by
TMi(c5+ cg + 1)e + pMae, and the left hand side is no less than e¢|Aqq(t) —
Ap(t)|,where ¢ = mingcgrs 1ci0(—g(t)). Therefore, [A(t,U,a,B,7,9) —
A(t, U, oq, BF, ), i) < cre for some constant c7.

Next, we construct a set of e-bracket for F,,. Given 0 € ©,,, denote

m(@, W) = 1(0,W)—1(0n, W)

- a(a TX+/5 (s +9(Y) + (A 0:0) )
— — 1(0pp, W).

Define
mbu) = A (o X = cus+ [ BH)Z(0)ds — coe o HY) + obckan))

_Aijkl<Y) — C7€ — l<00n7 W),
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mZkZ(W) = A <alTX + cge + /ﬂf(s)Z(s)ds + cse + 'yJU(Y) + g,g(cglk))
_Aijkl<Y) + CrE€ — l(@gn, W),
where ¢, ¢y, are the minimum and maximum point of g and g within
the interval [A;;u(Y) — cre, Aiji(Y') + c7e]. Noted that
|m%kl(W) - m{;kl(W”
= |AQ2(cs +co)e + 7] (V) =7 (V) + g1 () — gk () + 2cq¢]
< 2(cs + 5 +er)e+ H’Y]U - ’YjLHoo + gg(cglk) - gif(cz(‘]ﬂk)
‘f'gif(czyjlk) - glf(CiLﬂk)
< 2(es + oo+ er)e+ 1 =7 oo + g = & lloo + 198 ool — chine

S e

The last inequality follows from that |cf5, — ¢ < 2c7e and [|gy [l is

bounded by a constant under condition (A4). Therefore,
{[mz‘ijl(W)’m%kl(W)] pai {2, [(1/e) g € {12, [(1/e) ]}
e (L2 /PR € (L2 Te1/e) )

is a set of e-bracket of the class F,, and the e-bracketing number associated

with || - ||c norm of F,, satisfies

N T [ loe) < (1)1 (12285 (1) R0 (1) (1) H sttt
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Lemma 4. For 1 < j < d, denote the following classes of functions
Foi(m) = {0, W)lhi; — hy) - 6 € O, hy € F2.d(8,60) < . Ih; — hyllow <
n}, Foim) = {0, W)[hs; — hy] + 6 € On, by € T7,d(0,00) < n,|[h3; —
hilloo <} and F, (n) = {e(0,W)[h; = hy) + 0 € O, h; € M, d(0,60) <

n; ”71;;] - thoo < 7}}, where

ﬁ;j('u Oé,ﬁ,’)/) = h§j<A('7a7ﬁ>77g)) + g/<A(7 &,5,7,9))1\;(‘,&,5,%9)

and hi;, by, hy; are given in Theorem 2. Then under Conditions (A1)-(A6),
we have

c1qn1+ca2qna+c3gqn3+d

Nij(e, Fym Il o) S

Y

Nyi(e, Fosms - llso) S

) n,Jj )

Nij(e, Fry) - lloe) S

n

€

7\ €19n1tc2dn2+c3qn3 +d

€

( n ) C1qn1+c2qn2+c3qnz+d
€

for some positive constants ¢y, co and cs.

Lemma 5. For 1 < j <d, define the following class of functions

Frgm) = e, 0,W) =1, (00, W) : d(6,60), |¢'(A -, 0)) — go(Ao(-))ll2 < m},

Foim) = {1300,W) = U5(60, W)[hi,] = d(6.60). llg' (A 8)) — go(Ao())l2 < 1},
Fogn) = {0, W) = L,(00, W)[h3,] - d(6,00), lg'(A(-, 0)) = go(Ao(-))l2 < n},
Frg(m) = {10, W) = (60, W)[h3;] = d(0.60), g (A 0)) = go(Ao()) |2 < 1},

where B;j(UO‘;ﬂaf}/) = h§]<A(7 9)) + g’(A(,O))A;(,H)[hjS)J] and hj

15

* *
h2j7 h3j
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are defined in Theorem 2. Then under Conditions (A1)-(A6), we have

*Q 77 C1Qqn Cco2Qn C3Qns
N[ }(6, fn,j(”)a || . HOO) < (_) 1qn1+c2qn2+c3q 5+d’

€
k 77 C1Qqn c2qn Cc3qn
N FLm) - lle) S (Dyramrermtarnatd

3k 77 C1Qn c2qn c3qn
Nij(e Fagm)s - loo) S () omresmmeresnatd,

(Q)q qn1+c2qna+c3qn3+d
€

N

for some positive constants ¢y, co and cs.

Proof of Lemma [4] and [5l
The proof of Lemma [ and Lemma [5] are similar to the bracketing number

calculation in Lemma [3] the details are omitted.

Lemma 6 (Bounded operator). Let ¥ (t,z, z, a, 3,7, 9) = osz+f01 B(s)z(s)ds+
Y(t) + g(As2(t)). Denote the derivatives of ¥(t,z, z, «, 5,7, g) with respect

to 8,7,9 at the true parameter (ao, Bo, Y0, 90) by Vog, Yoys Yoy, Tespectively.

For any
Yos()1h] € Eg = {dog()[h] : Yog(t, w)[h],t € [0,7],u € U = XX Ly([0,1]), h € F™},

the Ly-norm of Vgs(-)[h] is defined as

1/2

1405 () []ll2 = M /OT(%/}(M)[h])QdAo(t,U)dFU(U)

The Ly-norm of vy, (-)[v], ¥o,(-)[w] are similarly defined. Then, under

Conditions (A1)-(A5)4s(-) = b — os(-)[R], ¥o, () = v — o, (-)[v] and



22 Zhou et al.

Yoy () = w — Py, (-)[w] are bounded linear operators and are bounded from

below, 1.e.

1905 C)[RIll2 2 N[kll2, for any h € FP,
16, ()[ll2 2 llvll2, - for any v € TP,

16, ()[wlllz 2 [lwll2,  for any w € GP.

Proof of Lemma
By solving the initial problems in Lemma [l and some direct calculations,

we have

sttt = gh(haltu)Ags(e i)+ [ 2(s)hs)ds
= {attott. ) exp (afir+ [ =)ok + nloft ) )
x /0 texp(%(s))dsﬂ} /K 2()u(s)ds,
Ut )] = gh(Ao(t u) N, ()] + o()
— sitaltw)esp (afie+ [ =(6)(s)ds + lholt o)
< [ explonts)eto)ds + (0,
Uhy(tlu] = gh(Ao(t u)) Ayt 0) + w(Aoft,w)
= gh(Ao(t, u)) exp(go(Ao(t, u)) / M s) expl—gn(s))ds

+w(Ao(t,u)).



S4. PROOF OF LEMMAS23

We first prove that ¢, (-)[v] is bounded. Noted that

it (O = / / (6, () o] PdtdFyy(u) < 2T, + 1),

(S4.14)

where

ho= [ [ [ty (af+ [ (6 + godalt )
< [ explonts)e(o)is] “aote waFi(w),

]2:// (t)dAo(t, u)dFy(u).

Since the boundedness of ag, (o, , 2z implies exp(adz + [ 2(s)Bo(s)ds +
go(Ao(t,u)) < oo. Tt follows that I, < ||v||3. By Cauchy-Schwarz inequality,
we have

2

(/Otexp(%(s))v(s)ds) < /Otexp(Q%(g))ds./Otv2(8)d8

< rexp(max 290(s)]

Thus, based on the boundedness of g, o, 7, 2, go, gy, we have I; < ||v]|3.

Therefore, [|¢g,(-)[v][l2 < [Jv]|3. Similarily, we have

196 () [w]ll3

[ @ttt i)
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T Ao (t,u) 2
2 /u / (gamo(t,u))exp(gomo(t,u>>> / w<s>exp<—go<s>>ds)

dho(t, u)dFy (u) + 2 /M /0 " W2 (Ao (L, 1)) dAo (4, w)dFy (1)

//AO(T,U) (g(/)(t) exp(go(t))/otw(s) exp(—go(s))ds>2dtdFU(u)
+2//A0m (t)dtd Fy (u)

[ [0 espizato) [ est-2mtens [ wsasiviri)

w2 [ [Muroiar).

Combine with the boundedness of go and g;, |9, (-)[w]|l2 S |lwl|2 follows.

IA

IN

IN

Next we show that /g, () is bounded from below. Using the fact that
Yo, (D) [v] = v(t) + g5(Ao(2)) Mg, (1) [v], we have
o(0) = Uy O = 4ot [ i (5ol

Therefore, |15, (t)[v1] =g, (£)[v2] |2 = O indicates [, [ (vi(t)—va(t))*dtdFy (u) =
0. Hence, v, (+) is a bijective operator. This indicates vy, (-) is a bounded
operator and is bounded from below. The boundedness of 15 and ¥y, can

be proved similarly, the details are omitted.

S5 Proof of Proposition 1

We first consider model (3) in the manuscript. If there exists at least

one coordinate of X is continuous with a nonzero coefficient «, then fol-
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low the same argument as Horowitz| (1996), we have (¢(-),«,f,¢) and

(p(), &, B, &), specify the same distribution of 7" if and only if ¢ = ¢ + ¢,
a = qa, B = ¢ and € = c¢1e + ¢, for some constant ¢; and ¢. Then
[ h(u)du = exp((t)) = e“exp(eip(t)) = € <fg h(u)du)Q. Denote the
survival function of exp(&) and exp(e) by G(t) and G(t) respectively. Then

we have

G(t)=P (65 > t) =P (65 > (te*6)1/01) -G ((tefc)l/cl) ’

It follows that G~(¢) = e (G~1(t))"". Using the fact that [, M E1(s)ds =

G~(t) and fo_lnt g '(s)ds = G71(t), we have

Take co = €, then Proposition 1 follows.
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S6 Proof of Theorem 2

The score vector for «y, the score operator for coefficient function [, the

score operator for v and go are given by

Loy

lght =

l"‘/o hy =

igo hy =

where M (t

X [ (sh(Ro®) exp (soo(o) £+ 1) dr(e) = X [ e)aniy

(/01 hi(s)Z(s)d ) / (gé(f\o(t))exp (go(Ao(t))>t+ 1) dM(¢)
( /0 1 ha(s)Z (S)ds) / e1(t)dM (t)
[ (shotpess (sooe) [ e se s + o200 o)

: /@(t, V) [ha|dM ()

_ N Ro(t) 5
/ <96(A0(t))exp (go(/\o(t))> /o exp(—go(s))ha(s)ds + h3(Ao(t))> dM(t)

/@@mwww

) =AI(R<t) fo (R > s)dAg(s) is a counting process mar-

tingale associated with the counting process {I{ R<t}; b > 0}. Define

Tﬁo = {hle]j’l:]P’

T

T

Y0

go

A (/01 hl(s)Z(s)ds)2] < oo} :

= {h €™ P[A (=R, V)[ha])’] < o0},

= {hs € G" P [A(es(R)[h])*] < o0}

The efficient score function for oy is

l:;o = jao - H(jaoypl + PZ + P3>7 (8615)
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where Py = {igh: h € Ty}, P = {l,,h: h € Ty}, Py = {l,,h: h € Ty, }.
Finding (I, |P1 + P2 + P3) is equivalent to finding the vector function

(hi,h3, h}) such that
EK%—%M—%@—%@ﬁw§:ommnhemm
EK%—%M—%@—%mﬁM@:ommnhemm

E“%—%m—%m—%mﬁwﬁ:ommnhe@ﬁ%ﬂ»

Then T1(Iy, |P1 + Py + P3) = g, h% + i, h} + [, h;. This implies that

(hi, h3, h;) = arg min E [

=d =d =d
(h1,hs,hg) €T x T xTy,

. . . . 2
%—%m—%m—%mM,
(86.17)

which is equivalent to minimizing

e[| (s Aot exp (st m+1) (X = [ a)z00)05)
—gh(Ao(R)) exp (go(]\o(R))> /OR hy (L (se™V))ds +hy(L ™' (Re™"))

s Rat) o (o)) [ (- hatsyis + (Aot ]
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Since the space Tg, x T, x T,, is closed, so that the solution is well defined

and the efficient score is

f = [ (e (o) e +1) (x = [ wits)aucoras)

~gb(Bo(t)) exp (go(Ro(t))) / hy(L " (se™"))ds + hy (L (se™"))

B Ro(t) 5
—~gb(Ro(t)) exp (90(A0(1))) / exp(—go(s))hj (s)ds + h§<Ao<t>>}dM<t>,

and the information matrix is I(og) = P {l;‘?z}

S7 Proof of Theorem 3

For any 0, = (a1, 81,71, (1), 02 = (aa, Ba, V2, (2), define a pseudometric d(-, -)

as

2

00,0, = E [<a1 — ) X+ [ 2061 - B)(5)ds

+||71 - 72||§ + ||C1(', aq, 51,71) - C2('7 Qa, 52,72)”3 .

We first prove that d(,6) = O,(n~¢). Following the proof of theorem 1
in Shen and Wong(1994), the proof proceeds by verifying their conditions
(C1)-(C3).

First we verify condition (C1). Denote

A= (a—ao)" X+ / (B—50)(3)Z(5)ds +1(Y) 70 (Y) g (A(Y. U, 8))—go (oY U)) .
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Direct calculation yields

Plo(6y,Y) — PI(0.Y) = P (A {exp(A) — 1 — A}).

Using Taylor expansion, we have

Noted that

P{AA%)

Vv

Plo(0o, W) = PO, W) = SP{AA?} 40 (P {AA%}).

1
0

PA [<a — a0 X+ [ (5= 50)(5)Z(6)ds +2(Y) = 20(Y)

+9 (MY, U,0)) — g (MY, U, 0)) + g (Ao(Y, U, 0)) = go (Ao(Y U))
P{A [(g/(Ao(Y’ U)MoY U) + X)" (o — ao)

g (MY, D)) Ay (V. TV — ol + / 2()(B — fo)(s)ds

g (Ao(Y, U) A (V. D)y — 0] + 1Y) — 70(Y)

+96(Ao (Y, U))AG, (Y, U)g — gol + g(Ao(Y,U)) — go(Ao(Y, 1))
To(lla — aolls) + o8 — Bolle) + ol — olls) + o(lg go\m] }
P{A [(gé(AO(Y, U) Ay, (Y, U) 4+ X) (o — )

g (MY, U)) My (V. )  — ol + / 2()(8 = fo)(s)ds

g (Ao(Y, U) N (V. D)y — 0] + 1Y) — 70(Y)

+9()(A0(Ya U)>A69(Y7 U)lg — gol + g(Ao(Y,U)) — go(Ao(Y, U))} }

+o(d*(6o,9)), (S7.18)
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where the first equality is obtained by Taylor expasion, the second equality

holds under condition (A1)-(A5) and the fact that Aj,, Af

0> \o, are bounded

operators.

Recall that L(t) = [ exp(yo(s))ds,V = aOTX—l—fOl Bo(s)Z(s)ds, R = eV L(Y),
Ut u,,8,7,9) = aTX + [1 B(s)Z(s)ds + 7(t) + g(A(t, u, a, 8,7, 9)) and
Y0 (Y,U) is the partial derivative of ¢ with respect to a and ,(Y,U),
Vo, (Y, U), g, (Y, U) are the Fréchet derivatives of ¢ with respect to 3,7, g
at the true parameter (ag,8o,%0,90). By solving the initial problem in

Lemma 1.1, we have

U (¥, U) =gh(AolY, U)) Ao (Y, 1) + X
~(shstvioness (afx + [ puts)z(s)as)
< exp(an(Aa(Y, ULY) +1)

= (sb(Ro(R)) explan(Ao(R))R +1) X

=:61(R)X, (57.19)
where £ (+) is a deterministic function of R. Similarly, we also have

Yo (Y, U)[B — Bo]
— (ool explon(Ra(RDE + 1) [ 2(5)(5 -~ 0)(s)ds

—e(R) / Z(5)(8 — Bo)(s)ds, (87.20)
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and

U (V,U)y — 0]

iAoty (X + [ 50250 + aha(v.0))
< [ el =)0 +2) = (1)

~ab(Aol R exp(ao(Rol) [ = 20) (17 (e~ s

+ (v =) (L (Re™))

::52(R7 v) [7 - 70]7 (S721>

where g5(+) is a deterministic function of R,V and the second equality is

derived by variable transformation s = eV L(t).

Vo, (Y, U)[g — go]
AO(Y,U)
= gAY, ) exp(g(Ao(Y. 1)) / (9 — go)(s) exp(—go(s))ds
g — ) (MY, D))

Ao(R)
= QS(AO(R))GXP(QO(AO(R)))/O (9 — 90)(s) exp(—go(s))ds

+(g = 90)(Ao(R))

= e3(R)[g — g, (57.22)
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where e3(-) is a deterministic function of R. Plugging (S7.19)), (S7.20),

(S7.21) and (S7.22)) into (S7.18) yields

P{AA?)
2P{A[a(m)XT(@ - o)+ a1 [ 2615 - s + 2oV

eal®lo = al] | o (6,60

_p {A @ {x7 =+ [ 2605 - s }
+ 2P{A [51(}%) {XT(a —ap) + /Z(s)(ﬁ — 50)(s)ds}]
R V) = 0] + 2Rl — o]

+P {A [e2(R, V) [y — 0] +e3(R)[g — go]]2} +o (d2(9, 90))

ZP{A {51(3) {XT(a— ap) +/Z(8)(5—ﬁo)(5)d5}r}

Pafam {7 (@ an+ [ 20905 - onas |

-2

x [ea(R, V) = 0] + e3(R)lg — goll }‘

+ P{A[e2( R, V) [y — 0] +e3(R)[g — go]]*} + 0 (d*(0,60)) . (S7.23)

Noted that P{Af(R,U)} = P{[," f (L(t)e",U) dAo(t,U)} = P{[f) f(t,U)dAq(t)}

holds for any measurable function f, together with Cauchy inequality we
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have

P{A [51(}%) {XT(a — ap) + / Z(s)(B — ﬁo)(s)dsH

< 2RV = 0] + ea(R)lg — g0 }

:<p{ [ {5 —a+ [ 266 - meas)

x [e2(t, V)[y — 0] + e3(t)[g — go]] dAo(t) })

=<P{ /OR&( )P {XT(Q ao) + / Z(s)(B = fo)(s)ds|R, V}

x [ea(t, V)[y — 0] + e3(t)[g — go]] dAo(t) )

:P{ /f(a(t))?(P[X (@ =) [ 26)(5 - el V] ) th)}

x P {Eg(t, V)[y = o] + 3(8)[g — go])Qd[\O(t)} .

Since Condition (A7) implies that

(P X700 [ 2635 - serasim, vD

< (I-m)P

(¥ -a0) [ 2636~ o })Rv
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holds for some 7, € (0,1), hence,

P{A {51(3) {XT(a — ap) + / Z(s)(B — Bg)(s)dsH

X [e2(R, V)[y — v0] + e3(R)[g — go]] }'

< (=mp{ [V h =l + a0 - ) kot
<P { [[wre |(x7a a0 [ 266 s)os) r.v d&(t)}

= (1-n)P { / @y (X% — ) [ 2(:)(6 - 50)(S)d8)2d/~\0(75)}

R
<P { [ et V) =l + 20 - gowd&o(t)}

g I R EER

xP{A (e2(R,V)[y — %]+53(R)[9—90])2}

Using the elementary inequality 2ab < a? + b, we obtain

P{AA%} > Ay + Ay,

where
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For A;, we have

A, =P { /0 i (51(eVL(t)) (XT(a ~ap) + / Z(s)(8 — 50)(s)ds))2 dAO(t)}
P { [ Bt = 0101 (2 2oy (X7 - a0 + [ 266105 - 5o><s>ds))2dAo<t>}
[ s (1 - )

x exp (V + v (t) + go(Ao(t, U))) }

where the last inequality holds under Condition (A4). Take the variable

transformation v = e¥ L(¢) and denote ¢ = r)r(nnz exp(aOTX—i-/ Bo(s)z(s)ds),
reX,ze

then

Ay /OGVL(T) (e1(w) X T (o — ag))2 exp (g()(]\()(U))> dt}

Y,
S
>

AV

S

o
7~ N\ ——

X" (o —ag) + /Z(s)(ﬁ — 50)(3)(15)2
ecL(r) )
/O (€1<U))2€Xp (go(/\o(u))> dt.

Since exp (go(/io(u))> is strictly positive and &1 (¢) satisfies fg exp (go(f\o(s))> e1(s)ds =

texp <g0(/~\0(t))>, thus £, (¢) cannot be a constant zero. Hence,

/0 e (e1(u)) exp (gO(AO(u))) dt
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is bounded away from 0 below and 4; 2 P (X7 (a — ag) + [ Z(s)(8 — 60)(s)d5)2.

For A,, we have

4y = P{A[(RV) +es(R)lg - 00)]°)
= P{A(e(R,V)[y — 7))} + P {Ales(R)[g — 90])*}

+2P {Aex (R, V)[y — voles(R)[g — gol}

v

P{A(e(R,V)[y = 70))*} + P {A(es(R)[g — 90))*}

—2|P{Ae& (R, V)[y — voles(R)[g — gol}]

v

P{A(&(R,V)[y —))?} + P {Ales(R)[g — g0])*}

o P{AY (P {A(ea(B, V)Y —70))2) 2 (P {A(es(R)[g — go])*})

Vv

As + Ay,

where A3 = P{A(e2(R,V)[y —%])*}, Ar = P{A(es(R)[g — go])*}. The
fourth inequality holds under Condition (A8), and the last inequality is

obtained by 2ab < a® + b?. Then, under Condition (A1)-(A6),

a = L [ w600 —aste. )}
> P [T PO 2 0000 6 0l — a0}
> ap{ [ 00—l Panate )

2 v =l
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where the last equality is obtained by Lemma 1.6 and the fact that v—~ €

'’z and
ac = L [ w00l s}
> P{ [ PO 2 ), (Y. 00l - al Pdra(e. 1)
> ap{ [ @00l - alPddale.0)}
> g — ol
Therefore,

Ply(6, W) — PI(0, V)

- %P{AAQ} + o(P{A%})
> P(X%a—m»+/zwxﬂ—%x$w)-HW—vﬂaHM—%@
Z d(ev 60)2a

which implies

inf  Ply(6o, W) — PL(O, W) = €.

d(0,00)>¢,0€0,,

Thus the condition (C1) in theorem 1 of |[Shen and Wong| (1994)) holds with
a = 1 in their notation.

Next we examine the condition (C2) of |Shen and Wong| (1994). By direct
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calculation,
(1(6; W) — 16 W)’
— {Afla—a™X + [(8=A)(6)Z(5)ds + (r = 0)(Y) + gAY U,6))
—g0(Mo(Y,U))] — /Y [exp ("X + /5 (s)ds +~(t) + g(A(Y, U, 0)))
—exp(al X + /50 $)ds +o(t) + go(Ao(Y, U)))} dt}Q.
Therefore,
P(L(0; W) = 1(0p; W))?
S (X700 + [ 20305 50)(5)d8>2 + PLAGEY) —20(Y)?}
+PIA(G(AY. U,0)) - go(AolY, U)))2)
Py / exp(al X + / B(s) Z(s)ds + () + g(A(Y, U, 0))
_exp(al X + / Bo(s) Z(s)ds +70(t) + go(Ao(Y, U))))?dt}.
For the second term P{A(¥(Y) — 70(Y))2}, we have
PLAG(Y) = 30(Y)?)
- P / )2dAo(0)}
< [ Plewtix+ / ()2 (s)ds + 30() + g(Ao(Y, UD) (7 = ) (1)) a1}
S vy =l

where the last inequality holds since exp(ad X + [ 8o(s)Z(s)ds + yo(t) +

g(Ao(Y,U))) is bounded above under conditions (A1)-(A5). For the third
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term P{A(g(A(Y,U,0)) — go(Ao(Y,U)))?}, we have

PLAGG(AY,U,0)) — go(Ao(Y; U)))?}
= L[ an.0.0) - rav0)ar(0
< P{ [ GAe.0.0) - andaly, )P aro(o)}
= [IC(, . B,7) = Col+, a0, Bo, Y0) -

For the last term, mean value theorem yields

PL[ et + [ 36120605 +9(0) + a0 0)
—oxp(af X + [ ls)2(5)ds-+20(0) + (Aol U)) |
= Pl [ o) (- ax + [ - )20+ (0 (0

F(AY,U.0)  m(Aa(Y. 1) .

where (¢, U) is some point between ol X+ [ Bo(s)Z(s)ds+70(t)+go(Ao(Y, U))
and o X + [ B(s)Z(s)ds + y(t) + g(A(Y,U.0)). Thus, under Conditions
(A5) and (A6), ¢(t,U) is bounded (or growing with n slowly enough so it
can be treated as bounded based on the same argument of Shen and Wong
on page 591). It follows that the last term is bounded by a constant multi-

ple of P (X7 (a — ag) + [ Z(s)(8 — Bo)(s)ds)* + |y — ol 2+ IC(, . B,7) —

Co(', o, Bo, ’Yo)“-
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Consequently,

PO:W) — 10 W) < P (X% —ao)+ [ 20906 - Bo)(S)dS)
+lv = oll3 + 1€, 0, B,7) = Col-, a0, Bo, Y0) |l

< d*(0,6,),
which implies that

sup  Var (I(6; W) —1(6p; W))
d(00,0)<e.0€0,

sup P (I(0; W) —1(6p;W))?
d(60,0)<e,0€0,

2.

IN

N

Thus, condition (C2) of [Shen and Wong| (1994)) holds with 5 = 1 in their

notation.

Finally we check condition (C3) of [Shen and Wong| (1994). The result

of lemma 1.3 shows that

H(e, Fu | - loc) = log N(e, Fu, [| - [|oc)

1
< (11 + 22 + C3qn3 + d) log(g)

1
S (0" +n"?) log(g)

N

1
nmax{ul,ug,yg} log(g)

Thus, condition (C3) of Shen and Wong (1994) holds with ro = 3 max{vy, vo, v3},
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r = 07 in their notation. It follows that the constant 7 in Theorem 1 of

Shen and Wongj (1994) is 17maX{2”1’”2’”3} — lggléf’ggn". Using the same argument

as in the proof of Condition (C2), we have K (6o,,0o) < O(d*(0on, 6)). By
Lemma 1.2, d(g,, 0p) = O(n~min{pvipzvapsvs}) - therefore, By theorem 1 of

Shen and Wong] (1994)), we have

A~ _ l-max{vq,vo,v3}
2

d(0,,00) = Op(max{n

- min{p1v1,p2v2,p3v3} })

_ Op (n— min{p1v1,pav2,p3vs, Hnm{{;il%m}

) =: Op(n™).

~

It follows that [[4—7|l2 = Op(n=°), [I{(-, &, B,4)—Co (-, @0, Bo, Vo) |2 = Op(n™°)
and

P { (XT(a ) + / 2(s)(8 — 50)<s)ds)2} —0,(n").  (S7.24)

From the proof of Theorem 2, we have

P {Agf(R) (XT(a —a0)+ / 2(5)(8 — 50)(s)ds)2}

2
- P

AGMMX—/ﬂmmwm—@mwmm—amm@ m—%i

+P|A (51(R) / Z(s)hi(s)ds 4+ e2(R,V)[h3] + e5(R) [h;]) (v — ayp)

+/Z®X6—%M@®],

where (hj, h}, h}) are defined in (13). When I(«yp) is non-singular, (S7.24)

leads to |a — ap| = Op(n~°). This in turn implies ||5 — Bol|lc = Op(n™°).
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S8 Proof of Theorem 4

We prove the theorem by verifying assumptions (A1)-(A6) of Theorem 3
in Tang et al. (2022). By Theorem 3 we know that assumption (A1) holds

with

1 — max{vy, vy, 1/3}}

§= min{p1V17p2V27p3V3a 5

Assumption (A2) holds since the score functions have zero mean. For

assumption (A3), following the line of proving Theorem 2, there exists

(hi, h3, h}) such that

E { (z’ao —ighl —i,h;— z'goh;j) iﬁoh} —0 forall heTg,

0 forall heT,,

E { (z’ao —lght — [ b} — igoh§> z'%h}

E { (Zao —lghl —i,h;— z'goh;) z'goh} —0 forall heT,.(S8.25)
Take hy = hj(Ao()) + gh(Ao())Ad,(-)[h3], then for any h € Ty,

P {l5(00) 1] = Uis(60) 05, ) = L (6) 103, B] — Ui (60)[3, 1]}
= P { <Za0 - l'ﬂohi - jWoh; - igoh;») l.ﬁoh} =0,
for any h € Ty,

P {1 60)[h] = U, (60) 05, ) — £ (60) g, k] — I¢ (6) [, ]}

= P { (lao - Zﬁohi - l70h§ - igohg) ZWoh} =0,
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for any h € Ty,

P {10, (00)[1) = U3 (Bo)[It, h] = L, (6o)[is. h] = 1, (60) I, 1) |

= P { <Za0 - l'ﬁohi - iVoh; - igohg) jVoh} = 0.
The matrix A in assumption (A3) is given by

A = P{(I(00, W) = (6o, W) — U(00, W) — I(60, W))** }

= ](O'/O)a

which is nonsingular under the assumption of Theorem 4. Hence, assump-
tion (A3) holds.

To verify assumption (A4), we need to show that P, {liY (6,, W)} = 0,(n71/?),

P, {z'ﬁ(én, W)[hﬂ} = 0,(n"12) | P, {zg(én, W)[h;]} = 0,(n"/2) and

P, {l’c(én,W)[fl;]} = 0,(n"?). Since &, satisfies P, {l;(én,W)} =0=
0,(n"1/?), the first equality naturally holds. Next we show P, {li3 (0,, W) [hfj]} =
0p(n~"/2) for each j € {1,2,...,d}. By Lemma [2] there exists hy;, € F2,
such that |[h}; — hijnllc = O(n™>"). Based on the fact that 6,, maximizes

the loglikelihood on the sieve space, we have P, {l/’g(én,W)[hljyn]} = 0.
Additionally, Pl5(6y, W)[hi,] = 0 holds automatically, hence, it suffices to

study Pnlg(én, W)[h1; — hijn], which can be further decomposed as

Pnl,/fj’(ém W) [hij - hlj,n] = By, + BZn7
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where
Buu = (Ba— PYI0 WIS, — higal)
Bay = P{U(0n, W)}, — hugal} — P{U(0O0, W[}, — hujn]}-
We first show that By, = 0,(n~'/?). By Lemmald] the e-bracketing number

associated with ||-|| norm for the class f,fd- () is bounded by (n/g)c1an1+e2n2Fesdnatd

thus the bracketing integral satisfies

I FL 0 LaP) = [\ 15 log N e, FL ). La(P))de

n
< [ V1N e 0 e
0

S (a1gm + cagna + CSqn3)1/2

7.
Pick 7, = O(?’Li min{21/1,pzvz,psug,(lfmax{ul,1/2,1/3})/2})’ then ||h>{] _ hlj,n”oo —
O(n—Zul) < My and d(en’ 90) _ Op(n—c) < N, hence, l%(én, W)[hTJ - hljm] €

ﬁ .
fn,j(”n)' Using the boundedness of Z, ¢ and A’;, we have for any 0 € ©,,

P{I5(0, W)[hi; — hijn]}?
1
_ P{A ( /0 (1, = hai)(5)Z(s)ds + g (A(Y, U, 0)) A (Y, U, 6)[hi, — hlmJ)
2
XU, ]

S A3 = huyallZs

and Supg g g,) < |30, W)[h]; — hij,]| is bounded by some

Snn:”hﬁ 7h1j,n“oo

constant M < oco. Thus, the prerequisites of Lemma 3.4.2 of [Van der Vaart
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and Wellner (1996)) are satisfied. By Lemma 3.4.2 of Van der Vaart and

\Wellner| (1996),

Ji1(n, F2 (), La(P))
ElGullzs 4 S T My Fl 5 (0a), La(P)) <1+ .

n2v/n

(CIin + CoGn2 + C3Qn3)1/277n + (61in + CoGn2 + C3qn3)\/ﬁ

A

N

0] n% )O(n_ min{2u; ,pzvz7p31/3,(1—maX{V17V2,V3})/2})

_'_O(nmax{ul,ug,ug}fl/Q)

= OP<1)a

where G,, = /n(P,,—P) and the last equality holds because max{vy, vo, v3} <

1/2 and Vpax < 4Vmin- Then by Markov’s inequality, we have

Biy = (Po = B){I5(00, W)IhT; — hujul} = 0p(n"%).

Next we consider B,,. Denote h = hi; — hijn. By adding and subtracting

some terms, we have

||CA7/-L“8(a @na B'rm ’?na gn)[ﬁ] - C(/),B(a Q, /307 Y0, gO)[B] ||2
= |3(AC, Gy By Ay 30)) N5 Gy By A G0)[B] = (Ao () As () (A |2

< S+ J+ I3+ Ji+ s,



where
Ji = NG (AC, Gy Bay Ay G0)) A5 (-5 s B, s ) 7]

— (Ao (D) A5, G, B Ans ) (B
Ty = 1lgo(Ao(D)A5 (-, Gy B, Ams ) [B] = 96 (Ao () NG+, @0, By Ay ) (7] 2,
Ty = 1lgo(Ro(-))N5(: a0, By Ay ) [B] = go(Ro(-) N5 (-5 a0, B0, Fins Gu) (1] 2,
Ji = 1lgo(Ro(-))A5(:, a0, Bos Ans Gu) ] = go(Ao()) A5 (-, @0, Bo, Yo, Gu) 1] l2,
Js = llgb(Ro(-))A5(, a0, Bo 0, Gn) [B] = gh(Ra(-) Ags () [A] 2.

We first consider J;. Based on the boundedness of g,, g, we have

1AG (-, Gy Bas s Ga) [Pllloe S (1Al and it follows that

i < NG (AC, Qs By s G0)) — g6 (MoC) 12 - I1AS (s Brs Ay ) (][l o

_ Op(n* min{plm,p2l/27(p3*1)1/37(17max{1/1,1/2,1/3})/2}) ) O(niZl’l)

- 0O (n— min{(p1+2)v1,peve+2v1,(p3—1)va+2v1,(1—max{vi,v2,v3}) /2421 })
p 3

where the third equality holds based on the same argument of
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Nan| (2011)) on page 3058. Next we consider J. By mean value theorem,
T = lgo(Bo(-))(Mas(:, @ns Buy s Gn)[A) (60 = a0)5

S AL (s s By Ay Gn) [P ]l 6 — o]
S Allso - llém — aol]

= O,(n~t),
where @, is a point between «y and &, and the third inequality can be
derived by solving the initial problem in Lemma [I| and similar argument
as in Lemma @ based on the boundedness of ﬁn, s Gns Gy G- As for J3, Jy

and Js, similar argument leads to J3 = O,(n="1), J; = O,(n~ ") and

Js = Op(n=ct?1). Thus, we have

1€ 50 Gy By Ans G [B] = G (- 0, Bo, 0, 9o) (]2

< 0 (nfmin{(p1+2)1/1,p21/2+21/1,(pgfl)ug+21/1,(17max{ul,1/2,1/3})/2+21/1})
~ p :

Now we turn to Bsy,. Direct calculation yields that
Bgn - (P{A (é;,ﬁ(yl U7 &na /BTIJ &n)[ﬁ] - C(IJB(}/J U7 Qo, BO? 70)[FL]>
Y N
—/ exp ( X+ /Bn s)ds + An(t) + g(A(t, U, Qn)))
0
X (/ h(s)Z(s)ds + éé(t, U, én)[h]) dt
X I'x s)d Ao(t, U
# [ e (a4 [ 01260 + 200 + a0 )

X (/ h(s)Z(s)ds + (oy(t, U, QO)W) dt})Q
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< P{A <A7/1,6(Y7 Ua OAémBn?’AYn)[B] - C(/)B<Y> U7 a0560a70>[h]>2
T A A O )
+ /0 I(Y > ) exp <2¢(t, U, &, 3,4, g)) (g’g(t, U, 0,)[R] — Cy(t, U, 90)[h]) dt

+/ ‘[(Y 2 t) [GXP(@/’(@ U7d757’3/7§)) — €Xp (¢(t7 U7 aOvﬂOafyngO))]Q
0

. (/ h(s)Z(s)ds + (os(t, U, 90)[ﬁ]>2 dt}

S 1G5 @ns By Ay Ga) IR] = G (-5 a0, Bos Y0, 90) [R5 + (6, 6o) - || al1%

_ O( 72min{(p1+2)1/1,p21/2+21/1,(pgfl)u3+2u1,(17max{ul,1/2,1/3})/2+21/1})
p\1 )

where the third inequality is obtained by the boundedness of ¢ and mean
value theorem. Thus, we have By, = o0,(n"%/2?) under the restrictions
of Theorem 4. By combining Bj, = o0,(n %) and By, = o,(n"/?),
we have P, l(0,, W)[hi; — hijn] = o0,(n~?) for j = 1,2,...,d, which
leads to P,, {z'ﬁ(ém W) [h’{]} = 0,(n"/2). Similarly, P, {z;(én, W)[h;]} can
be proved to be o,(n"Y/2). To verify P, {l’c(én,W)[fl;]} = 0,(n~Y?) for
hy = hi(A()) + g,(A())AL()[h3). By Lemmal2] for each j € {1,2,...d},
there exists hs;, € G2 such that ||hsj, — hijlle = O(n72%#) and let hsj, =

hajn(A()) + Q;(/A\())/A\’g()[h;;]n] Then, P, {l’c(én, W)[ﬁ%]} can be decom-

posed as

]P)nllc(én? W) [ﬁgg - iLSj,n] = Bz, + B4n7
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where
By = (Py = P){It(0n, W)[h3; — hasnl},
By, = P{U(0n, W)y — hynl} — P{IL(60, W)ThS; — hajn]}-
We first verify Bs, = 0,(n~"/?). By Lemma [} we have
log Ny 1(e, F5 ;(n), Lo(P)) < log Ny j(e, Fr i (), [l - lloo)
S (C1Gm + c2qn2 + c3gna) log(n/e).

The corresponding bracketing integral satisfies

Ji1(n, Fr (), La(P)) = /077 V1 log Ny (e, FS 5 (n). La(P))de

S (C1Gm + cagna + 03%3)1/27]- (58.26)

Pick N = O(nfmin{plle,p2u2,21/3,(17max{l/1,1/2,1/3})/2})’ then ||h3j,n _ h;,]Hoo —

O(n=3) < np,, d(0n,00) < n,. By Lemma 3.4.2 of [Van der Vaart and

Wellner| (1996), we have
EP”Gangj(%) S (1 + 2Gn2) 1 + (C1gm1 + Cagua)n

. O<n(max{1/1,u2,1/3})/2) . O(n* min{plyl,p2V2,21/3,(17max{1/1,1/2,1/3})/2})

+O(nmax{u1,ug,ug}—l/2)

= o(1).

where the last equality holds under the restrictions of Theorem 4. Thus,

by Markov’s inequality, we have Bs, = o0,(n"'/2). Next, we show By, =
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op(n_l/ 2). Denote h = fz;’;j — ilgj’n, then according to mean value theorem,

E(t7 U, dn? BTW :y’ﬂ) - h(t7 u, oo, 607 70)
= (Gn — 0) R (t, 1y Gy By An) + By (L, 0, Gy By An) [Br — Bo)

R (t, 14, Gy By ) [ — o)

Based on the boundedness of Ay, G, 3., 7/ AL (-, ]\,B(')’ /~\;(-), we have

1R, @ns By i) oo
= ||(hsjn — ) (AC)) + G (AC)AG Az — 135 oo
S Mhsin = hajlleo,
17 (- Gy B ) o
= [[(hajn — 13;) (A Aa () + G (AC)AG () haj — D3]

+n(AC)AG ) g — B3Il

S hajm = Bglloe + [1(hajm — h3;) lloo,
1725+ s By 3) [Bro — Bolll2

= |(hajm — 1) (ACDAGC) + G (AC)AG5 () [hajn — B3 B — Bl
+n(AC)AG (s — 1N, () B — Folllz

S (g = Wajlloo + 1 (hsjn — 15;) lloc) 1B = Bolla
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1AL, Gy By ) [ = 0l l2
= | (hajm — h3) (ACHALC) + G (AC)AG, (D [sjn — B3 Fn — 0]
+n(AC)AG ) [hagn — B3N, ()T = 0]l2
(1asm = Bi3jlloe + 1(hajm = h3;) o) 1n — Yoll2-
Hence, A(t, u, én, B, 3n) — Bt u, 00, 80,70) S (lhsjn — h3;llee + [|(Pajn —
13 |loo)d(6n, 6o). It follows that
B < P{(zg(ém W) — (60, W ) }
- P{A (Y. U, G, B 30) = (Y. U, a0, Bo,30))
)

—/ 1V = #)exp (0(4.0.0,)) B U G, 30t
0

. 2
+/ I(Y > t)exp (¢(t,U,0)) h(t, U, ag,ﬁg,%)dt}
0

S P{A (il(}/a U, @mém%) - B(Y, U, 040750770))
~ [ (X0t 0.6,) = exp (000.U.00)) F(8 Ui, B )l
- /OT exp (¢(t, U, 0p)) (ﬁ(t, U, én, B, ) — h(t, U, Ofoﬁo,%)) dt}2
S (Ihsj = Hijlloo + 1z — h5;)'lloc)*d® (6, 60)-
Using Corollary 6.21 in Schumaker (2007), we have |[[(h3;, — h3;) |l =
O(n™), hence, By,, = 0,(n~'/?) under the restrictions of Theorem 4. Com-
bining Bz, = 0,(n"Y/%) and By, = 0,(n~'/?), we have P, {Z’C(én, W)[ﬁ;;]]} =

0p,(n"1?) for each j € {1,...,d}, which indicates P, {l’g(én,W)[fl;]} =
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0,(n~1/%). Thus, Assumption (A4) holds.

Now we verify assumption (A5). First, by Lemma [5 the e-bracketing
numbers associated with ||-||o. norm for the classes of functions ;% (), f;g(n),
FZ}(U)7FZE(W are all bounded by (n/e)c1mFeznztesanstd - which implies
that the corresponding e-bracketing integrals are all bounded by (¢1¢,1 +
Cona + C3n3) /1), that is, Jp(n, Frs (), [|- loo) S (€1qm +cagna+cag03)"*n,

T F ) - lloe) S (1 + catna + 3qus) 0, T (0, Foli(m), || lloo) S
(c1¢m + 22 + C3Qn3)1/277 and J| ](77»]:;3(77)’ |- lloo) S (c1Gn1 + cogna +
C3qn3)"/*n. Then for lo, (0, W) =1, (60, W), by applying Cauchy-Schwarz in-

equality together with subtracting and adding g;,(Ag (Y))A’aj (Y, U,0), fOY(X +

¢ (AL U,0)N, (2, U, 0))dAo(t,U), we have

{00, (0.17) — I, (0, W)Y’
= {A (800008, (,.0.6) - iAol UG, (V:0)

. / Iy s (Xj + g (AL U0)A, (£, 9)) dA(t, U, 0)

2

#1020 (06 + a0, (1.0)) dole. 0

Ci+Cy+C5+Cy,

N
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where

Ci = A(SAV VN, (V.U.6) - gh(AalY. DN, (V.U0))
Ca = A (gh(AolY. DDA (Y,U0) = g5 (AalY. D), (V. 1)
Gy = / (exp(u(t, U, 0)) — exp(b(t, U, 00))) (X, + g/ (A(t, U 0) A, (¢, U, 9))}2dt,

Cy, = / 9 (Mo(t, U, 0)) Ay, (8, U, 0) — go(No(t, U)) Ay, (¢, U))Qexp(Z@/)(t, U, 0o))dt.

[e=]

Apparently, PC; < n?. For Cy, by the boundedness of g, A/aje and mean

value theorem, we have

PC, < P(A' (Y.U,0) — Ap, (Y. U)>2
_p (Ag% (Y, U,8)[0 — 90]>2

S d(0.60) S0,

where 6 is a point between 6 and 6,. For Cs, by the boundedness of ¢, X, ¢/

and A, and mean value theorem, we have

PC, < P / " exp(@D) ({1, U, 8) — (1, U, 6))%dt
0

S A (0,600) S,
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and for C'y, we have

PC, < / ' (o (A4, U.0) AL (1,0.6) — gh(Molt, U 6)AL (1,0)) i

J

2

[ (shhalt. D (1U.0) = g5 (Mot D) (1.0t

S d(0,00) + lg'(AG,0) — go(Ao())ll2 S ™

Therefore, we have P{l,, (0, W)~ (60, W)}* < n°. Using the similar argu-
ment, we can show that P{l5(60, W)[h};]—=15(60, W)[h3,]}?, P{I, (0, W)[h3;]—
I (00, W) [R3;1}2, P{IL(0,W)[h3;] — 1-(6p, W)[hi;]}? are all bounded by 77
We also have |1, (0, W) =1, (60, W)|lsc, ll(0, W)[R5;] — Uy(00, W) [R3,] | o
12,0, W) [h3,1 =L, (60, W) [, )l oo and |11 (6, W) [, 1 (B0, W) [R5l are all
bounded. Now we choose 1, = O(n~min{pivipeve,(ps—lvs,(1-max{vyva,vs})/2})
By the maximal inequality in Lemma 3.4.2 of Van der Vaart and Wellner

(1996) and the restrictions of Theorem 4, it follows that

Ep||Gy| i

Fo 29 () S (1 + oz + C3n3) P + (C1gm1 + CoGna + C3Gns)n”
n,j
_ O(nmax{ul,ug,l/g})nn + O(nmax{yl,ug,yg}—l/2>

= o(1).

Similarly, we have Ep||G,| = o(1), Ep||GnH]_.*vj(n) = o(1) and

*Bj
]:n,j (11n)

Ep||G,| = o(1). Thus for £ = ¢ and Cn~¢ = O(n°), by Markov’s

*C
]:n,]? (77n)
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inequality, we have

sup G {l5, (0, W) =1L, (00, W)} = 0,(1),
d(6,00)<Cn—¢,0€0,
sup G {5, (0, W)[h7,] — U5, (00, W)RT,1H = 0,(1),
d(0,00)<Cn—¢,0€0,
sup G {5, (0, W)[hs,] — 10, (00, W)[h3;]} = o0p(1),
d(0,00)<Cn—¢,0€0,
sup G {le, (0, W) [hs,) — I (60, W)[R; 1} = o,(1).

d(6,00)<Cn—¢,0€0,,

This completes the verification of assumption (A5).

Finally, assumption (A6) can be verified using Taylor expansion. Since
the proof of three equations are essentially identical, we only present the
proof of the first equation. In a neighborhood of 6y : {0 : d(6,0,) <

Cn=¢,0 € ©,} with £ = —c¢, the Taylor expansion for I, (6, W) yields

L0 W) = 100, W) + 11,0, W)(a — ag) + U5(0,W)[B — Bo]

o (0, W)y = 0] + 1 (6, W) ¢ = Gol,

where 0 is a point between 6 and 6. So

P (0, W)} = Pl (00, W)} — P{l5a (60, W) (a — o) } = Plgg(00, W)IB — Bol}
—P{la, (00, W)y — 01} — P{lac (60, W)[C — Gol}
= P{(la(6. W) = 100 (60, W) (@ — a)} + P{(Ln5(0. W) — 1i5(60. W))[5 — fo]}

+P{(Lo, (0, W) = 10, (B0, W)y — 0]} + P{Tc (6, W) = e (60, W))[C — Gol}-
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Direct caluclation yileds

| P{(lea (8, W) = U0 (60, W)}

Al

w00+ G0+ 0 (ex00.9) — exploitn, W)

IA

G, (1.0) exp((8. W) — exp(w (6, W))) dt}

- {/ X+ Galt U)X+ Galt.UDT = (X + (e UNX + (1 U))| dAo<t>}

= D1+ Dy+ Ds.

By applying mean value theorem and the Cauchy-Schwarz inequality, we

can show that

Dy - p{ / (@ =)™ X 4 [ (5= Ba)(s)Z(s)ds+ (5= 20)(t) + € - )t U))
G0, ) exp (G, Ui
S lla—aolla + 118 = Bolle + 115 = v0ll2 + 1€ = Goll2 < d(6o, 0)

< O(n™).
For D5, based on the boundedness of X and 5(’1, we can similarly show that
D S ||é — aolls + 115 = Bolle + 17 = ollz + 1€ = Golla = O(n ™).

For Ds, using a similar argument that we used before for verifying assump-

tion (A5), we can show that

Dy S 1G5al:) = Ca(Oll2 = O~ i wrments -t omastir s 21
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Therefore,

| P{(12,(0, W) — 1 (00, W) (e — o) }

= O(n™°)-0(n~ min{prl7p2V27(p3_1)V37(1_maX{V11V27V3})/2})

= o(n~Y?).
Similarly, we can show that

P(I25(0, W) = 125(60, W))[B — Bol|

_ O(nfc) . O<n7min{plyl,p2u2,(p371)1/3,(17max{1/1,Vg,zzg})/Q}) — 0<n71/2)7

Pl (6, W) — I, (60, W) [y = 0]l

= O(n ) -0(n" min{p1u17p2u27(p3—1)V37(1—maX{V17V2,V3})/2}) — o(n_1/2),
and

P{( gc(éa W) =13 (60, W))[C — Col}

= O(n -0 min{prl7p2V27(p3_1)V37(1_maX{V1=V27V3})/2}) — o(n_l/Q).

Thus, we have

P00, W)} = P{IG (00, W)} = P{lga (00, W)(er — ao)}

—P{1},5(60, W)[B — Bol} — P{lz, (00, W)y — 0]} — P{lc (00, W)[C — Col}

_ O(n—c—min{plul,pgug,(pg,—l)ug,(l—max{ul,1/2,1/3})/2}) _ O<n—a§)7

where o = 1 4 (min{p 1, pav, (p3 — 1)vs, (1 — max{vy, vy, 153})/2}) /c > 1
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and a& > 1/2.

Therefore, we have verified all six assumptions. By Theorem 3 of Tang

(2021), we have
\/ﬁ(&n - Oéo) = A_l\/ﬁpnl*(a(b 607 Yo, C07 W) + Op(]-) — N(07 A_lB(A_l)T)v

where 1*(ag, Bo, Y0, o, W) is the efficient score function for oy and A =
P{1* (v, Bo, Y0, Co, W)®?} = I(cv), which is shown when verifying assump-

tion (A3). Thus, A= B = I(ag) and A7'B(A )" = (), and

Vn(a, —ag) — N(0, 1 ().

This completes the proof.

S9 Proof of Theorem 5

T
We first introduce some notations. Let B? = <Bf . Bqﬁn 1) be a B-spline

. . . mdn,1 mdn,1 .
* q 1 * ’ * )
basis for estimating By and vi € B!, v; € T. ", v; € T " satisfies

E { <i50 [BE] = log Vi — V5 — igOV§> igov} =0 forall veB,
E { (Zﬁo B — I, vi — 1, V5 — igovg) l.WO’U} =0 forall veT,,

E { (1'50 BY] — [y v — L,V — z'gov;) l'gov} =0 forall veT,89.27)



59. PROOF OF THEOREM 559

Similar as the line of proving Theorem 2, vi, v}, v} can be found by mini-

mizing
E[AH (sb(Ro(R)) exp (go(Ro(R))) R+ 1) ( / Bi(5)Z()ds - le)

22%)

~a(Ro(R) exp (sn(Aa( ) [ Va7 (s s+ vl ()

so(RatR) exp (a(Ra(m)) [ " (o)) + valAa( )

Let lg(m = I3, [BP] ~loy Vi~ Vi—lgviand J, = ]E[l;fi?] We first investigate

the eigenvalue of J,. For any vector v € R,

vl T
= E [A‘ (gé([\o(R)) exp (go(Ag(R))> R+ 1> </01 vIBP(5)Z(s)ds — UTVTX>
_g(’)(f\g(R)) exp (gO(INXO(R))> /OR vIvE(L 7 (se7V))ds + v vi (L7 (Re™"))

5 5 Ao(R) - 2
9o(Ao(R)) exp (go(Ao(R))> /O exp(—go(s))v’ vi(s)ds + UTVE(Ao(R))‘ }
E { /0 1 UTBQ(S)Z(s)ds}2
=T { /0 1 /0 1 B§<3)E[Z(S)Z(t)]Bg(t)Tdsdt}v

/0 (B (s))%ds = |o|20(n™).

A

A
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On the other hand, follow a similar argument in proving Theorem 3, we

have

1 2
vl Jv 2 E {/ vIBE(5)Z(s)ds — UTVIX}
0

_E { /O CUTBE()(Z(s) — K(s))ds}2

+E { /0 1 vIBP(s)K (s)ds — vTv;X}

Y

11
/ / vIBE (s)K (s,t)BS (1) vdsdt.
0 Jo

Based on the fact that the covariance kernel K (s,t) is symmetric and semi-
positive definite, we may denote H(K) as the reproducing kernel Hilbert

space induced by kernel function K. Let
H(P) = {f e W,[0.1] : f(0) = f(1) =0},
where W;[0, 1] is the Sobolev space defined as
W;00,1] = {f € C*([0,1]) : f absolutely continuous , f' € £[0,1]} .

Noted that H(P) is also a reproducing kernel Hilbert space with kernel
function G(s,t) = min{s,t}. According to Corollary 1 in Ritter et al.

(1995), we have H(P) C H(K) C W;[0,1]. Therefore, for any f € H(K),

[f ()] = ICF K Gy Doy | < TS, ) lawero [ ey S VE (s59) [ f [
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with || f||% = fol fol f(s)K(s,t)f(t)dtds and the last inequality follows from

Corollary 2 in Ritter et al.| (1995). It follows that

1 1
| P 1l [ K s
0 0

Since vIBF(s) € H(P) C H(K), we have

/0 /0 TBE(s) K (s, B2 (1) T vdsdt > /0 ("B (s))%ds = [020(n*).

Therefore, the largest and smallest eigenvalue of .J,,, denoted by Apax(Jy)

and Ayin(J,,) respectively, satisfies
Aan”™ < Apin(Jn) < Amax(Jn) < can™”? (59.29)

for some positive constant ¢; and ¢o. Next we derive the asymptotic confi-

dence band for ;. Denote
F(Qa W) = llﬁ(97 W)[Bn} - l;(@, W)[Vﬂ - lfy(e’ W)[V;] - lé‘(Q? W)[{%L

with vi = vi(Ao(+)) + go(Ao(+))Ab,()[v3]. Follow a similar argument as

proving Theorem 4, we have

ViR, {T (60, W)} = —/nP {T(60, W)} [Bn — Bo] + Ry (S9.30)

o

where the remainder term satisfies |R,|s = op(nz ~™ierezt) with ¢ =

: —2c+vs and ¢ = 2= — min{pivy, pava, (p3 — 1)vs, 522} Tt follows
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that

Vi(BI(s))" T, 1B, (T (60, W)}

V (Bi(s)T T BA(s)

_ VP {T(00, W)} (B, — Bl L B TR,
VBB \/(Bis)TIBIs)

Combining (59.29) and 51— < v; < —1/2 + 2¢ — v3, we have uniformly

2p1+2

.(S9.31)

over s € (0,1),
B(s)) J; R,
V (Ba(s)7 T, 1Bi(s)

Recall that Lemma 1.2 indicates there exists [y, € F¥' such that ||So, —

== Op(l).

Bollse = O(n~"1P1), we assume Sy, = bLB? and Bn = b'BP. Therefore,
0+'n n-—mn

VAP {T(00, W)} (5 = fl
=V/nP {T (00, W)} [B — Boa] + VP {T (60, W)} [Bon — fo]
=vnJn(by = bo) + Qn
with [|Q,]la = O(n? ~"1P1), where the last equality is obtained by (S9.27).

Multiplying (B#(s))7.J1 on both sides, we have
Vi (Bals) = on(s)) = —V/n(BL()) T B (T (60, W)} (B ] +on ")

holds uniformly over s € (0,1). Together with (S9.31)) indicates

Vi (Buls) = B())  m(BE(s))TIIB, {T (60, W)}

sup - = op(1).
€0 | /(B3 (5))7 7, 1BA(s) V(Ba($)7 7, 1Bi(s)

(S9.32)
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Define U, = —= 31, Ju /°T(00, Wi) = v/nJy /P, {T' (09, W)}. Noted that
for any ¢ € {1,...,n}, Jn_l/zF(Go, W;) is a g, dimensional random vector

with zero mean and identity covariance. Moreover,
E |J,Y2T(60, W;)|* = O(n®").

From Yurinskii’s coupling (Yurinskii, |1978) for sums of random vectors,

there exists V,, ~ N(0, I), such that
P (|U, — Vi| > 3/1logn) = O ((logn)*n®>~/?)

which indicates U, R V... Denote

T =1/
Go(s) = Bl TV gy

V (Ba(s))7 7, 1Bi(s)

It follows from (|S9.32)) that

Vit (Buls) = Bo(s))

sup — G| = op(1).

se(0.1) \/(Bg(s))Tjn—lBﬁ(s)

Noted that G, is a Gaussian process on [0,1] with E[G,(s)] = 0 and

Var[G,(s)] = 1 and covariance

(Bi(s))" J; ' BA()
V(BI(s)T T, Bi(s)y/ (BA()T T, BA(E)

Gn(s,t) = E[Gn(s)Gnu(t)] =

Vs, t € [0, 1], which completes the proof.
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