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Supplementary Material

The Supplementary Material consists of ten sections (S.1-S.10). Section S.1 provides a more
general form of Theorem 3. Section S.2 introduces some useful notations and lemmas that are
used to prove the theoretical properties in Section 3. Sections S.3-S.7 present the proofs of
Theorems 1, 2, S.1 and 3, 4, and Proposition 1, respectively. Section S.8 provides additional al-
gorithmic details. Section S.9 details the comparison methods. Section S.10 presents additional

simulation results.

S.1 More General Theoretical Results
In this section, we present a more general result regarding the convergence
rates of B and iy.

Theorem S.1. Suppose Assumptions 1-3 and 5 hold. If [log(p)]>/" ' < T,

and A > d,r , we have

: -1 D 2 _ 2
por i p{|BO = Bollr = Opl0pr log(p) /T + 1/ (pv,)),

*Corresponding author.
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and
15y = v, lley, = Op(v/POy1log(p) /T + v, %/ /b + As,).

where

1/2
As, = |(por K + log(p) + py/log(p) /T + 0,207 + g2 D,) /p]

and

pbpr = (log(p) + p/log(p)/T + v, ") /ppr + K7
+ [(p + D,)(ppr Kt + log(p) + py/log(p) /T + v, <) + pf,,TDp)] "
This theorem establishes the convergence rate of our estimators when
the A is sufficiently large. It is important to emphasize that, under As-
sumptions 3 and 5, 6,7 = o(1), which implies that the convergence rate
of ooTinoiQO:I,‘ p|BO — By|[% exceeds the rate O,(log(p)/T) when p is

sufficiently large. Furthermore, Theorem 3 can be viewed as a special case

of Theorem S.1. The proof of Theorem S.1 is provided in Section S.5.

S.2 Some Useful Notations and Lemmas

To simplify the proofs, we first introduce some notations following Bai and

Liao (2016). Define

1
OL(S.) = plog|z |—|—ptr(SZ ppTZ|zw|
i#]
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1
Q2(B,%.) = 5tr(BOTZngO — By Y 'B(B'S'B)Y'BTY N By)

1
= Z;I\(fp =S PB(BTEB) T BT ) 2B I7

and

1 1
Q3(B,%.) =—log |BB" + X + ~tr(S,(BB" +£.)™)
p p

1 1
- Elog |Ze‘ - ]_?tr(sezgl) - QQ(Bv 26’)7

where S, = EET /T, € = (ey,...,er). Then

1 1 1
~L(B,%.,Q,a) =—log |BBT + %.| + —tr(S,(BB" +%,)™")
p p p

pp,T /\
+ — ; ’Ee,ij‘ + p_TLA(B’ Qa Oé)

~Qu(E) + QalB.%) + Qu(B,5) + - La(B. R.a).

Denote Py = X(XTX)"1X T as the projection matrix of X for any full rank
matrix X. Let 27 = max(z,0) and = = —min(z,0) for any € R. Re-
mind that d, 7 = max{log(p)T/p, /log(p)T}. Denote X,, = O,(a,) for ma-
trix X, if || X,||2 = O,(a,). It is easy to verify that O, (a,)O,(b,) = Op(anby)
and O,(a,) + O,(b,) = O,(ay, + by).

To prove the theorems, we next introduce the following ten useful lem-
mas. Lemmas 1(i),(ii), 2, 3, 8, and 9, below are directly modified from
Lemmas A.1, A.2, B.1 in Bai and Liao (2016), Lemma A.1 in Bai and Li

(2012) and Lemma 28 in Ma et al. (2020), respectively. We only present
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the proofs of Lemmas 4-7 and 10.

Lemma 1. Under Assumption 1 and assume that [log(p)]*/ ™' < T

= Op(\/og(p)/T).

= Op(y/log(p)/T)

1 T
T Zt:1 €itCjit — EGitht

T
% Zt:l fitejt

( Z) Sup; j<p

(i) SUP;<, j<p

Lemma 2. Under Assumption 1 and assume that [log(p)]? ™' < T,

log(p log(p
aup Q8.5 = 0,8 [l
(B)EE’an)eaé p

Lemma 3. Denote A = 5.1 — Yoo, and remind Ky = Y |Se4j|. For

(17.7)6'][4

all large enough p and T, there exists a constant cy such that

pQ1(Xe) — pQ1(Ze —PpT > ‘ eij = Beoij| + cal| Al F = 2ppr K

Z] GJL

_<Op<\/ﬁ>m+pﬂ¢—> N

Lemma 4. Under Assumptions 1-3,4(1), and 5, for [log(p)]*™ ! < T and

A > min{v>®, log™* /U4 (p) Y, 7, we have
P By (50! = 3 Bo = 0,(1),

Proof: We prove Lemma 4 following Bai and Liao (2016). Denote A; =
S — Yo, B{S4 = (v1,...,v,), and B{S71 = (us, ..., u,) . According to

Assumption 1, ||$3'||; and |||, are bounded. Then we have sup ||v;||> =
i<p
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O(1) and sup ||u;|]a = O,(1). After simple calculation, we have
i<p

By (S =2 By = —BJ A S By

Z UiV A12]+ Z UiV, Alz]

(t,9)€JL (1,9)€Ju

Notice that sup oy(uw,) < sup||u1||2 sup||v]||2 = O,(1), which is a
1,J<p 1<p Ji<p

uniformly bound. Thus,

By (5. = S0)Bo = 0p(1) Y A1yl +0,(1) D Al

Now we consider the two terms -, o ; [A1;] and 370 oo |Aq ] re-

spectively. For >, ., [A1], according Lemma 3, we have

2,J GJL

1 ~
5PpT Z 1AL < pQ1(Ee) — pQ1(Xeo) — [C4||A||?: = 2pp K7

(27])€JL

_(Op( logp>\/m+ppT\/_> IAlle]

=1, + 1.

For 7,, using (S4.5), we can obtain that Z; < O,(log(p) + py/log(p)/T +

72(1+s))

Up , and this result doesn’t depend on the proof of this lemma. For

T,, it is a univariate quadratic function on ||A||r, which is bounded by

20p7 K1 + (O, <\/log(p)/T> VP + Dy + ppr/Dp)?/ (4ea).
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Thus we have:

S 1Seis — Seoisl = Op(Ta + T/ ppr)

(7/7]) €Jr

= O,((log(p) + py/1og(p)/T + v, > *9) [ pp.r + Kr)

+ OP((p + D)) log(p)/(Tp,LT) + Pp,TDp>‘

Remind that under Assumptions 3 and 5, we have log(p)/p+ +/log(p)/T +

op""" p < ppr < p/Dy and D, < py/T/log(p). Thus

Dy1og(p)/(Tppx) = (Dyy/1log(p)/T)(\/10g(p) /T ppr) = o(p)o(1) = o(p).

Combine with K7 = o(p), we have

Z Ye.ij — Leois| = 0p(p)-

(i,5)€JL

Meanwhile, >, |Ay,;] is bounded by

Z] EJU
DBl Y Ygeny = VP + DollEe = Zaoll
4,3 .3

From (54.6), we also see that

15 = Seoll} = Op(ppr K1 + log(p) + py/log(p) /T + v, 2149 + p2 1. D,).
Thus
(p+ Dp)||Ze — Eeol I3
= O0,((p + Dp)(ppr K + log(p) + py/log(p) /T + v, >+ + p2 1.D,))
= Op(pppr K1 + plog(p) + p*/log(p) /T + pv, 29 + pp2 1.D,))

+ O, (Dyppr K1 + D, log(p) + Dypy/log(p) /T + Dpv_2 (+e) 4 parD2)).
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Now we bound (p + D,)||Se — Seol[2. The term plog(p) + p*+/log(p)/T +
pUp 2049 _ o(p?) is easy to verify. Assumption p,r < p/Kr implies
ppp K7 = o(p?). Assumption p,r < p/D, and Kt = o(p) imply D,p, Kt =
o(p®) and p D2 = o(p®). Assumption of D, implies that D,log(p) +
Dop\/10g(p)/T + Dy, " = o(p?). Assumption p, 1 < \/p/D, implies

that pp? D, = o(p*) . Thus (p + D,)||8e — Seol% = 0,(p?) and derive the

desired result
VPt DPHZe — Xeol|lF = op(p).
Thus we have

Z 1Xe,ij — Leo,ij| = 0p(p).

(7‘7J)€JU

pBy (S =S Bo=p N 0,(1) Y AL+ 0,(1) D [Ar]) = 0,(1).

(ij)€JL (i.)€Ju

Lemma 5. Under Assumptions 1,2 and /,
-1 dp,T
108, = Py 5) Ty Boll = Oyl ma{y |55, 1)),

Proof: We prove Lemma 5 in two Steps. In Step I, we bound H@A —
O.10/|r. Recall that ©,4 = ©4(B,Q,a) = J,BOBTJ, +al] + 1,07, 0,4 =
9,4(3, SAI, a) and © 49 = ©4(Bo, Qo, ap). In Step II, we use the relationship
between ©4 and B to bound (I, = Py 5)JpBol| p-

Step I: By the definition of (E, f]e, Q, a), we have L(E, ie, Q, a) < L(By, /X\]e, Qo, ap).
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That is
~ PN PN A A
QI(E€> + QQ(Ba Ee)—I—Q?)(B) Ze) + _LA(Ba Qa Oé) >~
~ A
+ Q3(Bo, X¢) + p_TLA(BO’ Qo, ap).

Using the definition of ()5, we can easily derive that Q2(By, ie) = 0 and

QQ(E, f]e) > 0. Combining the results of Lemma 2, we have

5 a0 lo T V1o T
La(B,9,@) — La(Bo, Q,a0) < O, g(f) 4P f(p) ). (S2.1)

Now we consider the term LA(LA?, Q, a) — La(Bo,Qo, ). Let Ay, P €
RP*P where Al,ij = Aijl{i<j} and Pl,ij = PO,ijl{z'<j}7 where we use Po to

denote the true probability matrix of A. Notice that

La(B,Q,a) = —[tr(A104) = > log(1 + exp(©.44))]

1<j

= —[tT((Al — P1)®A) + tT(PlgA) — Zlog(l + exp(@A,ij))]
= —tr((A1 — P1)O4) — Y [Po;j0.,45 — log(1 + exp(O4;))]-

i<j

Using Taylor expansion, we have:

> [PoijOu; — log(1+ exp(©.4,5))]

1<J

Z exp(&ij
A ex<p(]§>"))2 (©a45 — ©a045)° + D _[Oa045Fois — log(1 + exp(©0,))];
i<j ”

1<j
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where &;; is between © 4 ;; and © 40;;. Thus

(E ﬁ ) LA(BOJ QOJ OC())

= —tr((4; — Pl)(@A —0Oa0)) + Z i —Eiif(wé?])y (@A,ij — @AO,@']-)2

exp(§) A

_tr((Al P1)<@A o @AO _'_ Z |§|<max{M1 03} m

= —tr((A1 — P)(©4 — 0.10)) + Y Car(Oaj — O05)*.

i<j

where Cyy = minjg<maxian 553 €xp(§)/(1 4 exp(€))?. Notice that

[tr((Ar — P1)(©4 — ©.0)) < || A1 — P1||2\/fank(@A —©.10)164 — OollF,

and \/rank(@A — O40) < V2r + 2. Using the results of Latala (2005), we

have that ||A; — Pi|[2 = O,(/p). Then

LA(B,,@) — La(Bo, Qo,00) > Y Crr(©.45 — ©0.5)* — Op(3/P)|104 — Onol |-

1<j

Then we have:

LA(E, Q, a) — La(By, o, a0) + Cyr Z(éAzz — Oa04i)?/2

1<p
> Cu|84 = Oual[1/2 = Op(VD) 1O = Ol
Notice that Zigp(@A,ii — Oa04i)* < Oy(p) as ](:)An| and |© 40,;| are uni-

formly bounded, combine with the equation (S2.1), we have

Crv .~ ~ log(p)T V/log(
U016, — Oualls ~ OpVDIBs ~ Ol < 0BT VIO
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Based on quadratic function knowledge, we have

log log

164 — Ol = L),

Step II: Let O; be the matrix such that O] BJ J,ByO; = A, is diagonal,
and O, be the matrix such that Oy BT Jp§02 = A, is diagonal.

According to Assumption 2 and using knowledge in OLS, we have

1 ~N o~

Tpn(lp - JpB(BTJpB) 1BT)JpBOHF

< o (AL, — J,B(BT J,B) " BT)J,Bollr

= 0,(A;?) min ||J,By — J,BX||p (52.2)
XeRrxr

< 0, (A7), By — J,BO2 Ay P05 A0 ||

< || J,BoO1 A, — J,BOLA, 05|,

for any matrix O3 € R"™*". According to Davis-Kahan Theorem (Davis and
Kahan, 1970; Yu et al., 2015), there exist an orthogonal matrix O3 and a

constant M, such that

B o My||J,BQBT J, — J, BB J,||
J,BoOrATY? — 1, BON; 05| < 20 P b 0 P .
||JpBoO1 A pDP U219 sllr < o.(J,BoQ0 By Jp) — 0r11(JpBoQ0 By J,)
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Furthermore, as J,1, = 0,, we have:

184 — Ouoll} = |1,BABT J, — J,Bo By Jy|% + ||1,(@ — a0) " + (@ — ao)1, |3
+ 2tr((J,BQB" J, — J,BoQ0 B4 J,)(1,(@ — ag) " + (@ — ag)1}))
= [|,BQB"J, = J,Bo By Jy|[} + |[1,(@ — ao) " + (@ — )1, [[3
+2tr((BQBT — BoQoBy ) Jy(1,(@ — a) " + (@ — o)1) J,)
= [|,BQB"J, = J,Bo By J,|[% + [[1,(@ — ao) " + (@ — ag)1, [[
> ||J,BOBT T, — J,Bo% By T3
which implies that ||.J,BQBTJ, — J,ByQB] J,||p is bounded by ||©4 —
©a0||r- By Assumption 3, 0,41(J,BoQ0 B, J,) = 0 and o,.(J,BoQ0 By J,) >

02(J,Bo)o(Q0) > c3mpu,. Thus,

- D - 1 log( log(
1 BoOA " = T, B0, 2 0sl | = Oyl max(\/ gA bV g L VD).
p

y (52.2), we have:

PP 1 1
10y~ S BB B BT Bull = Oyt msy ST\ [VIBEIT, 1

= O,p(v, " max{ pT 11).

Lemma 6. Under Assumption 3 and without assuming the lower bound of

o-(2), we have

sup (La(B,Q,a) — La(Bo,Qo, )" = O,(p).

(B»EE 79701) GE(S
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Proof: Using result in Lemma 5, for any (B, 3, 2, a) € Z5, we have:

C
La(B,Q, o) — La(Bo, Q, ) > TMH@A — Ou0l|7 + Op(p)

— HAl — P1||2\/rank(@A — @AO)HGA — @AOHF'

Then we have

sup (La(B,Q, ) — La(By,Q0,00))"
(B,Se,Q,0)€55

< (|[A1 = Pf|2/rank(©4 — ©40))*/(2Cwr) + Op(p) = Op(p).
Lemma 7. For any random function Z,(x,w) : R x Q — R satisfies
Zn(xp,w) =, 0 for any x, < a, or x, > b,, where 0 < b, < a,. Then for
any nonrandom sequence {\,}5>;, we have Z,(\,,w) =, 0.
Proof:

For any A\, and ¢, we have

Pr(|Zy,(An,w)| > €)

< Pr(max(|Z,(min(\,, v/ayby), w)|, | Zn(max(Ay, v/ ayby)
< Pr(|Zo(min( Ay, v anby),w)| > €) + Pr(|Z,(max(\,, v/anby), w)| > €)
— 0,

as min(\,, va,b,) < a, and max(\,, vVa,b,) > b,. Thus Z,(\,,w) —, 0.

Lemma 8. Assume matriz X € R¥* satisfy X" X —1, =0 and X, X T =

®y for diagonal matrices &1 and Po, where o has distinct diagonal ele-

ments. Then X is diagonal with X;; =1 or —1.
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Lemma 9. For any matriz Z, Zy € RP*", we have:

por i 120 = Z:0|[% < (2V2 = 2) 7', (2.2 |20 2 = ZaZy ||

Lemma 10. Assume z, = g(f;,e;) for measurable function g and there
exists a positive C, such that E(z8|F)Y% < C, where C, doesn’t depend
on p,t,T and F, E(z|F) = 0. Under Assumptions 1, 6 and 7, we
have E[(T-Y?* 3.1 2)Y|F] is bounded by a constant that only depend on

! U
C., a4, ds.

Proof: We denote E.p(X) = E(X|F) for random variable X. Notice that

T

E.|F(T_1/2 Z )t =172 Z Ep(zizjz2)

t=1 W5kl

=72 Z Z Ep(zizjzez).

1<t1<to<T min{i,j,k,l }=t1,max{s,j,k, } =t2

Now we consider the term > . ot n_p maxiijrn=t [EF(zizizk2)|. We
denote g1 (1,2, 23, 74) = max{|xe) — x|, |Twu) — x@)|} where x(; is the

ith smallest element in {x1, zo, x3,24}. We have

> | B (2izj2e2)]
min{i,j,k,l}=t1,max{7,j,k,l} =t

[e.9]

= Z Z \E p(ziz5202))-

d=0 min{%,5,k,l}=t1,max{i,5,k,l }=t2,91 (3,5,k,1)=d

For each d, we first bound the |E. p(zz;2p2)

. Without loss of generality,

we assume i < j < k <[ and |i — j| = d. Notice {f;} is independent to
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{e;}, we have:
|E(zizjzk2|F = { fi})]

=B ] 9(ziel

t:iaj7k7l

= [lcov(g(zi,e), [] gar,e))]

t=y,k,l

{zt=fr,t=i,5,k,1}

{xe=Ffe,t=i,5,k,l}

< p(d)(lvar(g(ai, e:))]*[var(g(z;, )9 (e, ex)g (i, e))] )

{xt:ft 7t:i7j7k7l}

< p(d)([Eg* (wi, e0)] /P [Bg* (j, 1)9% (wr, ex) g (a1, )] /)

{zi=1ftt=1,5,k,1}

< p(d) [Eg2('ri’ ei)]l/Q [Eg6(xj7 ej)]l/ﬁ[EQG(xk7 €k>]1/6[E96(xl7 61)]1/6

{ze=fet=i,5,k,1}

< p(A)([E1pg* (fis )] PIE g (5. )] Bplg® (Fr ea)] /° Birlg® (fry )]V

< Clexp(—ayd’s).

Meanwhile we should notice that #{ (7, j, k,{) : min{é, 7, k, [} = ki, max{i, j, k,(} =

ko, g1(i, j, k, 1) = d} < 24(2d + 2)?. Thus we have

| Z Z E-|F(Zz'zjzk:zl)|

d=0 min{3,5,k,l}=k1,max{i,7,k,l}=k2,91 (4,5,k,l)=d

< Z 24(2d + 2)?C* exp(—a4d™).
d=0

This is bounded by a constant only depend on C,,a}, 5. Thus

DY >, Ep(zizz62)],

1<k1,k2<T d=0 min{i,j,k,|}=k1,max{i,j,k,}=k2,g1(i,j,k,1)=d

is bounded by T2 multiplied by a constant, which implies E. (T ~1/? Zthl z)*

is uniformly bounded by a constant.
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S.3 Proof of Theorem 1

Since J,BQB' J, + 1,a" +al] = J,B.Q.B] J, + 1,a] + a,1], we have
J,BQB'J, — J,B.LB J, = 1,(a, —a)" + (o, — )1,

and hence

Jp(J,BQBJ, — BBl 1), = J,(1,(a, — )" + (o, — a)1])J,.

p

Notice that J2 = J, and .J,1, = 0, we have
J,BQB"J, — J,B.Q, B J, = 0,y
and

L(a, —a)’ + (o, — )1, = J,BQAB"J, — J,B.LB] J, = 0.

Notice that diag(1,(c, — )" + (o, — @)1)) = 2(e, — a) = 0,, we have
= .
Now we back to J,BQB'.J, — J,B,QB, J, = 0,x,. It is easy to verify

that o,.(J,BQB"J,) > 02(J,B)o,(Q) # 0. Thus
rank(J,B) = rank(J,BQB" J,) = r.

We will use this result later.
Denote span(X) = {Xa : ais a vector}. Then span(J,BQB'J,) C

span(.J,B). By the fact rank(J,B) = rank(.J,BQB" J,), we have span(.J,BQB' J,) =
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span(J, B). Similarly we have span(J,B) = span(J,BQB"J,) = span(J, B, B, J,) =
span(J,B,). Thus there exists a matrix Xy such that J,BX, = J,B,.
Now we prove that there exists an orthogonal matrix O, such that
B = B,O,. Consider that B = (J,B,1,)(I,,z9)" = (J,B,1,)W and B, =
(JpBs, 1) (I, 2) T = (J,B,1,)(Xy ,2+)" = (J,B,1,)W,. We only need to
prove there exists an orthogonal matrix O, such that W = W,0,. From
lemma 9, we see that we only need to prove WW T = W, W.".
Denote Gy = (J,B,1,). For matrix X € RP**P?, we denote [X]; =

(Xi1, -y Xip,) - We should notice that

P
||JPBQ[JPB]1—'|~—||F = (Z([JPGAJP]M)Q)UQ <4(p S'UP(@A,ij)Q)l/2 < 453]71/2;
17‘7

i=1

and
17, BOL,BIL |2 > 00 (J,B)o ([T, Blillz > 65 05p v, [, Bl |-
Thus
sup [|[J, Bli.[]2 < 45355/255_111;1 = K1 (6)v, .

Now we use the results presented above to prove that we can extract
about O(pvy) of (r + 1) x (r + 1) full rank submatrices from Gy. First, we

have

|Go,i.ll2 < N[JpBlill2 + 1 < (K1(8) + sup vp)v, ' < (K1(6) + Ka)v, !

p 7
peENT
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where Ky = sup,cx+ v, = O(1). Meanwhile, notice that

s s B'J,B 0,y
0r11(Go) = 0,41(Gy Go) = 0,45 ( ) = v/min(ds, 1)p.
01><p b
Denote G = Gy, I¥ = (). We consider an iterative procedure: For

the k-th step, we draw I%) = {igk), ,szi)l} c {1,2,...,p} such that I N
Uf:ol I® = ¢ and G*) = ([G(O)]:g”’ - [G(O)]:(’i)r) is full rank. We denote

G(=%) is the matrix after removing G, ..., G® from G©). We denote I, =

Uf:o I®). Notice that after the k-th step, we have
‘77%+1(G(_k)) = Uf+1(G(_k)TG(_k))

= )‘T+1( Z [G(O)]Z[G(O)]i->

16{1,2 """ p}_]:[k

= (OG0T 6], - SO 60),)
> A (Y IGOTIEO]) - M(IEOTTIGOL)
> A (G@OTGO) = 37 GO

i€l

> min(d, 5, Dp — (r + Dk(K(0) + Ky)*v,?

p

which implies we can repeat this procedure until k& = |min(d,", 1)(r +
)TN EL(6) + K2)7?pu2| > K3(6)pv?, where K3(6) = 27 min(6; ', 1)(r +

1)"H(K1(8) + K5)~2 for some large p. If WWT £ W, W, for all pairs of 0 <

kv, ke < [K3(0)pv2] + 1,ky # ka, we have GMO(WWT — W,W,)GH)T £



YUZHOU ZHAO, XINYAN FAN AND BO ZHANG

O(r+1)x(r+1), Which implies there exists (i, , ix,) € {igkl), . zﬁ,ﬁ:l)} X {ing), - szff}

such that (BBT — B,B,) # 0, and then

iy Lko

> LBy 0y > (max(Ks(6)py) — 1,0))%

i#]
Denote Ndiag(X) € RP*P, where [Ndiag(X)];; = Xijlgiz,y for X € RP*P.
Notice that [|X.|lo — p = || Ndiag(X.)|lo and ||Xes|lo — p = || Ndiag(Zex)||o,
we choose C'(0) = 471 (K3(9) — sup,s,, (p~"v,?))? for large enough py such

that K3(0) — sup,s,, (p~ v, %) > 0. Then for p > po, we have

max{[|E]lo, [e.lo} — p > 27 Ndiag(E, — Sl
— 27! Ndiag(BB" — B.B/ )l

> 271 (K3(6)puy — 1)* > 2C(6)p*vs.

This contradict to max{||Xlo, [[Eecllo} — p < C(6)p*v,. Thus we have
WWT =W, W, and BBT — B,B] = Go(WWT W, WG] = 0,x,. Thus
there exists an orthogonal matrix O, € R™ " such that ||B — B,O,||r =0
and ¥, — X, = —(BB" — B,B]) = 0,x,.

Finally, we consider €2. Remind that JpBQBTJp—JpB*Q*B*TJp = 0pxp-
We have J,B(Q — 0,Q,0])B"J, = 0,y,. As rank(J,B) = r, we have

J,B(Q — 0.0,0] )BT J, = 0,, if and only if Q — 0,Q,0] = 0,,.
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S.4 Proof of Theorem 2

We divide the proof into two Parts. In Part I, we prove the consistency
result when A > min{v?*, log™/*)(p)}d, 7. In Part II, we illustrate the
consistency result when A < d,, 7. Finally, as min{v2*, log =/ (p)}d, r <
d, 1, we directly use Lemma 7 for the desired result.
Part I: In this Part, we use three Steps to prove the desired result. In
Step I, we prove the consistency result of f]e. In Step II, we bounded an
important term R = (B — By) TS, B(BTS 1 B)~! which has been used in
(Bai and Liao, 2016). In Step III, we prove the consistency result.
Step I: The main idea in this Step is to bound the le(ie) — pQ1(Xeo)
and apply Lemma 3 to derive the consistency result of f]e.

Consider that for any v € R" such that al(JpB\ +1,7") < /d1p and
o (J,B+1,77) > \/6; 'p, which implies that (J,B+ 1,77, S0, Q, @) € Zs.

We have
L(B,%.,Q,8) < L(J,B+ 1,77, %, Q, Q).
That is
PQ1(Ee) + pQa(B, 5e) + pQs(B, Ee) + NT ™ La(B,Q, @)

< pQ1(Se0) + pQa(JoB + 1,77, Seo) + pQs(J, B

+ 1,7, Se) + AT LA(J,B+1,7",Q,a).
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It is easy to verify that
La(J,B+1,77,0,d) = La(B,Q,a).
Combined with Lemma 2 that sup g s, o a)ez, |@3(B, Xe)| = Op(log(p) /p +
log(p)/T), we have

(PQ1(Ze) — PQ1(Ze0)) + (pQa(B, ) — pQa(J,B + 1,77, Tup))

< pQs(J,B + 1,77, 5e0) — pQs(B, Se) + AT (La(J,B+1,77,0,4)

(S4.3)
First, we bound the pQQ(Jp§ + 1,7",%e). Denote 79 = Bj1,/p and
B* = Jp§ +1,7".
PQa(JpB + 1,77, o)
= |I(l, = S5 B (BT BY) ' BTY )55 P B[
= min |[£9"By — LB X[}
<|I=?By — £ *B*(BT J,B) ' BT J,By||%
< 01(S)1,Bo = J,B(B"J,B) ™ BT J, By + 1, (75 =7 (BT J,B) " BT, B0l
2¢ |, By — J,B(BTJ,B) ' BT J, By|%
2¢7|1,(v =+ (B"1,B)'BTJ,Bo)|l}.

Sety = (B(—)rjpé(g—rjpg)_l)_l% such that "1P(VJ_7T(§TJPE)_1§TJPBO>"%«“ =
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0. To choose such a v, we need to illustrate that it is well defined. First,
we need to prove that for sufficiently large p and T, By Jp§ (ETJPE)_l

invertible. Notice that
By J,By = B} J,B(B" J,B) ' B J,By+(By J,Bo—B, J,B(B' J,B)'B" J,By).
Now we bound B J,By— B J,B(BTJ,B) ' BT J,By = B] J,(I,~ P, 5)J,Bo.
First, we need to bound ||(I, — PJPE)JPBOH%. Using the result in Lemma
5, we have
11, Py ) Bolly = (0o machy/ 22 1)
< Op(max{vp_1 max{v,, log®/ % 1+5)( N} v, )2
= Op((max{u, "+, 10g"*(p)})?)

= Op(”;2(1+€) +log(p)) = 0p(p).
(S4.4)

Thus, we have the term BJ J,B,— By J,B(BTJ,B)*BT.J,By = BJ J,(I,—
PJp 5)JpBo is semi-positive definite and its max eigenvalue is bounded by
(B JBo— BY J,B(BTJ,B) BT 1,Bo) = |[(L,— P, 5)JyBoll3 = 0,(p) by
the result in (S4.4). Thus
o(BJ J,B(B" J,B) Yo\ (B" J,B) > 0,(B] J,B(B" J,B)"'B" J,By)
> 0,(By JpBo) — 0p(p) = mp — 0,(p)-
Thus o,.(B J, B(BTJ B > \/m/dy + 0,(1), which implies the matrix

By JPE (BT Jpj’§)_1 is invertible. Then, we need to test the upper and lower
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bound of o1 (J,B+1,77) and 0,(J,B+1,7T). Wehave o4(J,B+1,77) <
15,2 + 11 llallvol 1B BB J,B) ) Ml < Vb + /Curpdyfm +
VD (€ can be replaced by any small positive number) by noticing that
plollE = 1190 [ < tr(Jp,BoBg Jp) + tr(Lyv0 w01, ) = 11,80 + Ly [ <
Cyrp. We assume ¢; is large enough. Thus al(Jpé +1,7") < /&1p. For

lower bound, we have

o (J,B+1,7") =\ o, (J,B+ 1,77 (J,B +1,77))

Vol
(TT(ETJPE +pyy ")
> \/O'T(

ETJPE) > \/551p > \/5f1p.

Thus we prove that « is well defined. For the chosen ~, we have
PQ2(J,B + 1,77, Seo) < 267 ||(1, = P, 5)Jp Bol[3 = Op(v, >+ + log(p)).
Combined with (S4.3) and notice that pQg(E, S.) > 0, we have

le@e) — pQ1(Xe0) < Op(log(p) +p % + U;;z(HE))- (54.5)
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Using Lemma 3, we have

cs Al = 2057 Ky

_<O<\/T> m+pﬂ¢_> NE

—2ppT Z ‘ eij — eOij

(1,5)€JL,

_<O<\/T> m+pﬂ¢_> NP

log(p —9(lte
< Op(log(p) +p # + v, 204)),

Thus using the knowledge of quadratic function, we have:

+cal|AllF — 2ppr K

lo
|A||7 = Op(pprKr) + Op(log(p) + p & 4 U*2(1+€))

T p
log
+0p VP + Dy + ppry/D
lo D,lo
— O,(ppr K1 + log(p) + # + v, 204 4 pTg(p) + porDy).

Then by Assumption 3, we have D, log(p)/T = o(p+/log(p)/T) as D, <

T/log(p). Denote

lo c
As, = \/(pmeT +log(p) +p % +u, " 4 p20D,) .

We have ||Al|p = O,(p"/2Ay,). Notice that ||S, — Seo||r is bounded by
|A||F as 01(Seo) and o(3,) are bounded. Under Assumption 3 and 5, we

have:

e = Seollr/ /B = Op(As,) = 0,(1). (54.6)
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Step II: This Step is similar to Bai and Liao (2016). We denote R =
(B — By)"S:'B(BTS1B)!. To bound the term R, we need to bound
(I, — R)"(I, = R) — I, and B{ X' By — (I, — R)B"S.'B(I, — R)".

First, we bound BJ S By — (I, — R)BTS*B(I, — R)7, we have:

B{Y4'By— (I, — R)B'S:'B(I, — R)T

= B{ Y4By — B{ S 'B(BTS'B)"' BT 1B,

e

~ AN A

The third equality can be obtained by noticing that the matrix B, ie_lBo —
BIS:'B(BTS1B) ' BTS; !By is semi-positive definite and hence its spec-
tral norm is bounded by its trace. The term B (X5 — S-HB, = 0p(p) by
Lemma 4. Thus we only need to bound pQg(LA?, .). Remind (S4.3), we

have

pQQ(éa ie)

lo ~ R
< Op(log(p) +py/ - gT(p)) — (pQ1(2Ze) — pQ1(Ze0)) + pQ2(JB + 1p,yT7 .0).
! +D,)1 B
< Op(10g<p) +p %@ + pp,TKT + (p p) Og(p) + P?,’TDP + v 2(1+€))

T
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The second inequality above can be directly obtained from Lemma 3 that

(PQ1(Ze) — PQ1(Ee0))
2 log(p) .
> cl|Allz — | Op T VP + Dy + ppr/Dy | 1A IlF — 20,7 K.

(p + Dp) log(p)
T

> Oy

+ pZ,TDp) — 2pp,TKT'
Thus we have:
B{S4'By— (I, — R)B'S'B(I, — R)T = 0,(p).
Now we bound the (I, — R)" (I, — R) — I.. To bound this term, we need

the first order condition. For given (Jp§ ,1,), we denote

PN
1,B/p
Then we have:
(W, ., Q,a)
= argmin{(w,ze,Q7a):((Jp1§71p)W,Ee,Q,a)eEg}[LY«JPB’ 1,)W, %)

+ LA((J,B, 1,)W,, @) + Pr(.)].

Denote

Zo1 = {(W, 2, 2,0) 0 672 < 0 ((,B, 1,)W/\/p) < 00((J, B, 1,)W/\/p) < 6,7,
0,2 < 0,((,B.0,)W/\/p) < 0.((J,B,0,)W//p) < 6,%,
max |(Jp§Q§TJp + 1" +al));l < ds,

and max{ |||, (157 |1, [[Zell2, 1222} < 6}
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It is easy to verify that

—~ A~ o~

(Wa Zea (WQWT)[I:r,lzr]a a) - argmin{(wze,gl,a)eaé,l} Ll(VVa 267 le O./)
= argmin{(W’EeVQW)GEM}[Ly((JpB, 1,)W, Z)
+ La(J,B, Q1 0) + Pr(3.)],
where X1, € R™" and (Xp.,1.)ij = X, for matrix X € R (k) x(rtk2)

k1, ko € N. Thus, we have:

dLy /6W‘ = 0Ly ((J,B,1,)W, %) /OW = 004 1)r-

W.Ee,(WOW ) 11,8 W=W S.=5,

By noticing that (Jpé, 1,,)/W = B, we have:

oLy /aw'

inev(wgiw—r)[l:r,l:r] Ney

= (J,B,1,)T(BBT +5.) Y (BB + 3. — 5,)(BBT +£.)"'B = 0,1 1)
(S4.7)

Then we have
BT(BBT + %) Y(BB" + %, - S,)(BBT +%.)"'B = 0,,.
Using the Sherman—Morrison—-Woodbury formula we have

B'(BB' +%.)
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Thus we have
(I, + B"S'B)"'B'SY(BBT 4+ %, — 8,)S.'B(I, + B'S.'B) ™ = 0,,.

Then we multiply both sides of the above equation by I, + BTEA];lE and

H to obtain
HB'S;' (BB + 5. — 8,)5.'BH = 0,,,

where H = (BTS:'B)~!. We first point out that ||H||; = O,(p~!) and
|H||r < V/T||H||2 = Op(p~*), which are easy to verify.
Under identification condition T7'FFT = I, and T—! Z:;F:l fr =0. We

expand the S, to obtain

—~ HB'S-Y(BBT +3%. - 5,)S.'BH

= —HB'SY(BBT + 3. - S.+ée' — ByB] — ByFET /T — EFTB] /TS

~

— HB'S.Y(S. —ee' —S)S'BH + (I, — R) (I, — R)

e

+ (I, —R)TFE'S'BH/T + HB'S:'€F(I, — R)/T — I, = 0,4,

where @ = Y/, ¢,/T. Similar to the argument in Bai and Liao (2016)
in Lemma A.5, we have (I, — R)"(I, — R) — I, = 0,(1). Combine (I, —
R)"(I,—R)—1I, = 0,(1) with B{ S Bo— (I, —R)BTS*B(I,—R)" = 0,(p)
where the eigenvalues of B, ¥ By are distinct. We directly use Lemma 8

to obtain that R = 0,(1), which is similar to (Bai and Liao, 2016).

I1BH
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Step III: Finally we use R to bound the ||B — By||r:

~ ~ 1 A~~~
Q2(B, %) +tr(=RB"S'BR")
p

=p'tr(By S By — By S B(BTE'B) ' BTS 1 By)
+p ' tr((B - By) 7' B(B'E]'B) BTSN (B - By)
=p '[tr(B) S, By — B £, 'B(B'E'B) B By)

+tr(B'S'B— BJS:'B— BTS'By) + tr(By S 'B(BTS ' B) ' BTSBy)]

~

— p " (BTS7'B - BJS7'B - BTS2 By + B{S:'By)

_ tr{%(ﬁ _ BTSN B - By}

Thus, we have

1 e fay 1 -~ ~ ~
z;Umin(Ee_l)HB — Boll3 < W{E(B — By)'S.(B - By)}

)

~ 1 e~ o~
= Q2(B,%.) +tr(~RB'S;'BR")
P

~ 1 i
< @Q2(B, Xe) + ]—?IIRII%HBT& "Bz = 0,(1).

As amin(igl) is bounded away from 0, we have p*1||]§ — Byl|3 = 0,(1).

Hence minppr—opro=1, p_lHB\O — By} < p_lHE — Byl|F = 0,(1).
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1 n
Then we consider —T||BF — ByF||%. Notice that
p

||§ﬁ — BF + BF — ByF||%

1 ~n 1
ﬁllBF— BoF|[f = —

2
< UIB(F = Pl + (B~ BFI:
< BIEIF = FIE: + —|IFIEIB - Bl

We have ||B|[} < r||BI[} < réip = O,(p) and Tl = Ztr(FET) =

tr(l.) = O,(1).

We have already proved that ||B — By||2 = 0p(p). Now we consider

I|F - F||%. using the result in Bai and Liao (2016) that fi—fi=—R"fi+
(BTS'B) BTS¢, — &), we have:
1 1«
FIF = FIf = 31~ B Ao (TS B) B E5 e—o)l
5 T
< = STURTAIB+ I(BTSTB) BTSN e — e)l13) = A+ Ao,

t=1

1T
The term A; < 2||R||%T SUIfill3 = 0,(1). Now we consider the term
i=1
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As , as Jr is a projection matrix:
Ay = 2T Y|(BTS'B) ' BTS Jy | %
< 2T Y[(B'S'B) ' BTEEN
<2 (BTS7'B) M [FIBTEC
< O ((P*T) H(IBTE! = By S ENR + 11Bg B €113)
= Op((P°T) 1) (Aa1 + Ag).
Notice that
EAgy = Etr(By 2 E€ TS By)

=tr(Xy BoBy Yog EEET)

< ||BEET |lo/rank(Z i BoBY SIS BoBy S
< rT[|Seoll2|[ 20 Bo By X |2 = O(pT).

We have Ay = O,(pT"). Then consider that
Ay 2B = BDSEIR +20/B] (521 = SN = Aoy + Apn

Notice that E[E|[} = Zigp,tSTE(ezZt) = O(pT) and ||§ — Byl = o0p(p)
, we have Ay < Op(||§ — Bol|%l|€1IF) = 0,(p*T). Now we turn to Asis.

Notice that

Aoip = Op(|’BoT(i;1 - 20)E|13),

as B (571 — £)€ is a low rank matrix. Thus we only need to bound

e
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|BJ (521 — £2)€] |- Notice that

By (S7' =2 NE = Bl S (Beo — So)SLE.

Remind v; is the ith column of B] i;l and denote w; is the ¢th row vector

of X, We directly use Lemma 1 to obtain that max;<, [T~ Y | €2] =

O,(1++/log(p)/T) = O,(1). Notice that ||X'||; and IS4 |; are uniformly

bounded, we have max;<, ||w;||3 = O,(T). Then we have:
1By 52 = =)Ells

< 18 — Sl il ol Jwjl |5
1,7

< max [ug| |2 max [[wil oY~ 1S — Seoisl + D [Seis — Seai])
i<p i<p 7, T

= Op(p\/T>7

where we can directly obtain that ZJL |§e,¢j — 05|+ ZJU |§e,ij — Y045 =

0,(p) in the proof of Lemma 4. Thus we have ay = 0,(p*T’). Thus

Az =0,((p"T) ™) (Az1 + A) = Op(P°T) ) (0p(p°T) + Op(pT)) = 0y(1).

Hence we have minpor_oro_r, T7Y||OF — F|% < T-Y|F - F|[% = A, +
Ay = 0,(1) and (pT)7Y||BF — ByF|[% = 0,(1).

Part II: Now consider A < d,r, we have:

L<§7 iea §> a) S L(307 Z(—ZO? QO) 050)-
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Thus

. . . A~
Q1(2e) + Q2(B, X)) + Qs(B, %) + ﬁLA(Ba Q,a)

A
< Q1(Xe0) + Q2(Bo, Xeo) + Q3(Bo, Xeo) + p_TLA(BO’ Qo, ap).

Using Lemma 6, we have:

4 A - log(p)  [log(p)
Sup _L B,Q,O{ __L B aQ , O << max 5 .
T e =N
Thus

LB, .0) + op(@ + IOgT(p))

: A - log(p) ,  [log(p)
< sup (SRLa(B,0,0) = oLa(Bo, Q. 0))” + O " |
(BZe,Q,Oc)EE,;(pT al ) pT 4(Bo, (2o, a0)) P( D T )

log(p) N log(p) )

QuEe) = Qi(Z) + Qa(B.2) < Op(—) =

(log(p)

This means that the effect of L4 can be absorbed into O, +

log(p)

). Meanwhile, notice that HéTﬁgl(géT + 35— Sy)igléH =0
is still true. Thus we can totally imitate the proof in Bai and Liao (2016)
to obtain the same convergence result. We don’t repeat this procedure. We
should point out that when o,(€2) = 0, this convergence result still holds
for A < d, 1, as the result in Lemma 6 holds.

By the Lemma 7, notice that min{v2®, log™/"*)(p)}d,r < d,7. We

directly obtain the consistency results for these estimators for any nonran-
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dom positive A < 400 which may vary as p, T changing.

S.5 Proof of Theorem 3 and Theorem S.1

We denote B, = (Jpg, 1,) and By = S22 B,. Consider MiNpoT—0To=1, ||§O—
By||r, which has the convergence rate same to minpor—_oro—s, ||§;1/2§O —

~

die Y 230\ |F. The latter can be controlled by the following sum of two parts:

IZ:Y2BO — P, 5 V2Bl |r + || P, 202 By — Y2 By

We divide the proof into three Steps. In Step I, we use Lemma 5 to bound
the second term. In Step II, we use the first order condition to bound the

first term. In Step III, we use minppt—_pTo=1, BO — Byl| to bound the

Xy — 2yol|lny,- Then we detail the proof:

Step I: We bound the term HPBQEQINBO — igl/ZBOHF. Using Lemma 5,
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we have:

1P 2280 = £ Bolle = min |[£72By — /21X |
< O (5 1/2)111)311 |Bo — B1X||r
< 6,(/(L, — Pp,)Bollr
= 0,”*||(I, = Pg,)J,Bol |
=611, = Py,5 = Pu,-r, yi1,) o Bollr

= 0,%|(L, = P, 5)J,Bollr = Oy(u; ).
(S5.8)

Now we explain some equality in (S5.8). Notice that Pg, 1, =1, , we have
(I, — Pg,)Bo = (I, — Pg,)J,Bo + (I, — Ps,)(1,1, /p)Bo = (I, — Pg,)J,By.
Thus 8,'%||(I, — Pp,)Bo||r = 6,"*||(I,— Pg,)J,Bol| . Meanwhile notice that
(I, = P; )1, =1, and P, JpB\ = 0,x,, which can be easily conducted by
1, = 0,, we have 6,/[|(I, — P, 5 — P,p o) ToBolle = 8,2 |I(L, —
PJPE)JpBOHF

Step II: We consider the term ||§J;1/2§O — PBzie_l/QBd |- To bound this

term, we need toboundHE L2ppTsi;l? PBQZ 1/QBOBTE 1/2P32HF such
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that we can directly use Lemma 9. We have:

150 BBTS Y — P, S V2 BBy 550 P ||k — || P, || v
—2||Pp, S VAT By FETS V2 Py, ||k — || P, Sy V2T EJrE TSV Py, ||
— ||£72BBTECY? — Py, STV 2 ByBl S Py, ||p — Ry — Ry — R
<||IZ;Y2BBTE Y2 4 PR, B VS, — S,) 202 Py |

First, we bound ||§;1/2§§T§]e_1/2 + PBzie_l/Q(ie — Sy)fle_l/QPBzHF. To

bound this term, we need the first order condition:

(J,B,1,) (BBT +£.) Y(BBT + 5. — S,)(BBT + £.)'B = 0,41
Using the Sherman-Morrison-Woodbury formula we have (Jp§ : lp)T(igl +
S7'B(I, + BTS'B) BTSN (BBT 4+ 5. — S,)S;'B(I, + BTS'B) ! =
O(r+1)xr- Notice that

~

BTS;YBBT 4+ %, - 5,)%

after a simple calculation, we have:

~

(J,B,1,) "S- YBBT + 5, — 5,)S'B = 041
That is
BiSTVA(BBT + 5. — 5,)5 B = 041y ur

Remind that f]e_l/Qé = f]e_l/ZBlW = BQ/W, we have

o~

BJ Py, (ByWW T B] + S5, — 8,)57Y%) P, BaW = 041
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Denote U = (B] By)/2W and C = (B] B,)"Y2B] £ /%(8,—%.)S /> By(B] B,)~V/2,
we obtain that
UUU — CU = 04 1)xr- (S5.9)
To build the connection between BBT and UUT. We first verify that
(By By)Y?2X (B, By)'/? share the same r+1 eigenvalues with Bo X B, for any
symmetric matrix X € RCODXCHD - Assume By = QpupNps (1) Vir+1)x (r+1)

is SVD decomposition. Then
(By Bo)'?X (B, Bo)Y? = VI(ATA)V2V XV T(ATA)Y?Y,

and

(ATAV2V XV T(ATA)Y? O(r41)x(pr—1
B,XBJ] = QTAVXVTAQ = Q" ezl )

O(Tr+1)><(p7r71) Op—r—1)x(p-r-1)

Notice that V and @) are orthogonal. It is easy to verify they share same
7+ 1 eigenvalues and the rest eigenvalues of B, X B, are all 0.

A*

1,rxr

Assume U = Q] Vi xr is SVD decomposition. Notice that

(r+1)xr
A} # 0 as rank(U) = r. Using result in (S5.9), We have QiA}*> — CQf =
O(r+1)xr, Which implies A{QM is the k;th eigenvalue of C' and Q’L_i is the eigen-
vector. Thus UUT = Q*A*?Q*" = Y7, 04, (C)ug, (C)uy, (C) where u;(C) is

the i-th eigenvector and k&, ..., k, are distinct value from {1,2,... r+ 1}.

Now we show that max;{k;} = r. By Lemma 1, we have:

1€ /Tl < NIEET/T — Seollr + [[Zeollr = Op(v/p + py/log(p) /T).
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We should notice that o,(UUT) = ¢,(BBT) > 6;'p . Now we consider
0,21(C). We have 0,,1(C) = 0,21(Ps, 5 72(S, — S)8:?Pg,) < 1+
ar+1(PBQ§;1/QSy§;1/2PBQ), which can be directly obtained by the fact C' =
(BJ By)Y2(B] By) ' B] S '2(S,—5.) 50 /2 By(B] By)"Y(BJ By)Y/2 and Py, 5 (S, —
S)5: 2P, = By(BJ B,) !B SV (S, — S5’ By(B] B,)"'B] . Now

we consider JTH(PBQ§];1/2Sy§]§1/2PBz). Notice that

Sy = (BoF + &)Jr(BoF + &)"T.

Thus

0r11(Pp,SyPp,) = 02,1 (P, S Y (BoF + ) Jp/VT)
< 02, (Pp, S A(BoF + &) NT)o? (Jr)
— 02, (Pp, S V2(BoF + ) JVT)
< 03Py, S2E VT
< ||Pp, = PEETE 2 Py, ||/ T
= Oy(Vp + p\/log(p) /T).
The forth inequality can be directly obtained by Weyl’s inequality. Thus for

log(p) < T, we have o,(UU") > 0,,1(C). And thus we have UU" — C =

741 (C)tr1 (Chu) 11 (O).
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We have:

IS;YV2BBTE Y2 PR, S VA(E, — S,)5, V2 Ps, ||

r+1
=\ oS PBETS M + Py, (S - 8,)50 P Py,)

-\

r+1

N \ Y GHUUT = C) = [[UU" = C||p < ||Pp,; PEETS Py, |[p/T + 1.

The second equality is obtained by the fact that S 1/QBB’TE 1/2—|—13322 1/2(2 -
S,)5 2Py, = By(WW T —(B] By) ' By 5. *(8.—5,)S: /2By (B] B,) ") B]
share the same first 7 + 1 eigenvalues with UUT — C' = (BJ Bo)V2(WW T —
(B) B2) By 5 2(8. — 8,)5 /? Bo(B] By)™1)(B] Ba)'/2.

Then we have:
Ap = ||S;Y2BBTSY? — Py, ST 2ByBy S22 Py ||

= O0p(R1 + Ry + Ry + ||[S;V2BBTSY2 4 P, V2(S, — S,) 512 Pg, || )

= O,(||Pp, S PT EETS V2 Py, ||k + || P, Sr V2 BoFE TS Y2 Py, || + 1)

= Oy(Hy +Ha + 1).
(S5.10)

To obtain the desired result, we need to give a more accurate rate of H;
and Hy. We first consider Pp,. It is easy to verify that opa(B2) < p/?
and oy, (B2) =< p/2. Thus

(X)) 0

Pp,S71% = By(B] By) ' BI S = 0,(1/v/p) | (J,BX1,1,)78;
0 1
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where X; = OQA;WO?,A}/QOI and notations Ay, Ay, O, Oy and O3 from

the proof of Lemma 5. Thus o,.(X1) > o,(AY?)o,(A;Y?) > (m/6y)2,

which implies X; ' = O,(1). Then we have

P, 5012 = Op(1/ V) (BB X1 = JpBo, 0,)57 " + Op(1/v/B)(p B, 1,) T (5 = 5g)

+ Op(l/\/l_j>(°7p307 1p)TE;(]1 =M+ My + Ms.
(S5.11)

Thus, we can easily write
Hy = ||(M1 + My + M3)55T(M1 + My + Mg)T/THF
<|IS7Y2 |l My + Moo |EET /T |p + [IMEET (M1 + My + M3)T /T||p

< (IZ71le + [|Ms]|2) (1Mo + [ Mol ]2)[|EET/T | + || Ms€ /T2,

and
Hy < ||Z72(o|| BoFET (M) + My + M3) T /T)|r
< [E72 o (|| Mu]s + [|Mal )| BoFET /T |5 + |IS712 2| | BoFET M] /T |

< 122 la((IMallz + Ml )| BoFET /T 7 + || Bollr || F| | Ms€] | 7/ T).
To bound H; and Hs, we need to bound [|Ml|z, |[Malls, ||Ms]l2 and

[MsE/VT]|p.

Using Lemma 5, when A > d,, r, we have
71 (M) < 0,(1/y/D)or (AP Ty BoO1 AT ? = 1, BOs A, 2 O] = O, (0, //B)-

As we assume the 2-norms of row vectors of By are uniformly bounded

by a constant, it is easy to verify the norms of (J,By, 1,)’s row vectors are
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also uniformly bounded by a constant. Thus

01(Mz) < Op(p_l/z)\/H(JpBo, 1,)T (S = £)2(JpBo, 1) |2

We have:

(JpBOa 1p)T(i_

[

=20 (JBos 1) = (JpBo, 1) "E (Beo— ) (E

1

Denote (J,Bo,1,) TSt = (hy,...,hy) and (J,By,1,) (271 — 51

(Iy, ..., 1,). Notice that [|S70 — S|y < [|IS2Y]y + |1 is bounded by

a constant. We have sup,,||hi|]2 = O(1) and sup,., [|li|[2 = O,(1). By

Lemma 4, we have ), [Ay ;] = Op(pby,r). Thus

1(JpBo, 1) " (£ = £0)2(JpBo, Lp)ll2 < D 1811l oyl 2
2%
< sup ||l |2 sup ||hyll2 > A1
i<p J<p i
= Op(pOp,1)-
Thus we have ||[Ma|ls = Op(1/0p1)-

Finally, we consider the || M3E/vV/T||r. We have:

[M3E/VT || < 72 IME VT2 = Op(p™11(JBo, 1,) TS €/ VT | ).

=X (SyBo. 1)
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Now, we bound ||(.J,Bo, 1,) "3 E/VT||r. We should notice that

E||(J,Bo, 1,) S € VT

= E(tr((J,B0,1,) ' X0 T7'EE 55 (J, 5o, 1))

= tr((J,Bo, 1,) S T E(EET)E (J,Bo, 1,)]

— tr(35 (J,Bo, 1,)(J,Bo, 1,) TS Seo)

< [Seoll2Vr + 1[S00 (JpBos 1,) (S, Bo, 1,) 'S0 v

< [[Zeoll2v'r + LIX0 511025 Bo, 1) [ = O(p)-

Thus

1(7,B0.1,) 'S0 €/VT||r = Op(V/P),
and hence

M€ /VT || = Oy(1).

Now we back to H; and Hs. It is easy to verify that ||[Ms|ls = O,(1).

Then we have:

Hi < (JIZ772])s + (M) (M) |2 + ||IMo] )| TTEET || + [|MaE VT2
< Op(v, /D + V) IT'EET || + Oy(1)

= O0y((v, /P + V/Op1) (0 10g(0) /T + /D)) + Op(1),
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and

Ho < |[S772]a([|Mall2 + [[Mal2) [T BoFET ||
+ (1= 22| Bol |77 | | M3 /T ||
< Op(0," /P + VO IT ' BoFE || p + Oy (y/p)
= O0p((v, /D + V/Opr)p\/108(p) /T) + Op(\/D).

It is easy to verify v, '/\/p < /6 < 1. Thus

Ap=0p(Hi+Ha+1) = Op(p\/ Op.rlog(p)/T + /D).

Now we bound the term minpor_pTo—;, Hf]e_l/?EO - PBQ§JS_1/2BOH. We

directly use Lemma 9 to obtain that

. ‘ 125 a1/ )
min > BO — P2 B
p 00T=0TO=1. || e B ~e 0||F

= 0,(A%/(pA(E;V2BBTE;Y%))) = O,(0,7log(p) /T + 1/p).

Combined with (S5.8), we have

1 . n 2 _ -2
P orin  (1BO = Bolle = Op(6prlog(p)/T +v,7/p).
Step III: Now we consider the term [|Sy — Syl |Syo-
1Sy = Svollsy, <IIBBT = BoBy llsy, + [|Ze = Seol sy, -

Notice that

1Ze—Zeollny, = 27211800 2 (Ee—Ze0) B0 llF < 02 0man(Z78) || Ze—Zeo
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and Opmax(Sy0) < 00t (BoBy + X.) < ¢! As proved in Theorem 2, when
A> dyr, 1S = Seo |5y, 18 bounded by O,(As, ). Now we consider the term

IBBT = BoBy sy,
IBB" = BoBy ||y, < I(BO = Bo)(BO = Bo)' ||y, +2[|(BO — Bo) By |Ix,

for any orthogonal matrix O. We choose O which minimize ||BO — Bo||p.
The term
1(BO — Bo)(BO — Bo) sy, < p~ 201 (S3)II(BO — Bo)(BO — By) ||
< 0,(p"|(BO — By)l|)
= Op(v/Ppr 10g(p)/T + v, /\/p).
Now we consider ||(BO — By)By |5, We have
(1550 *(BO = Bo) By Sy |l = p™tr(S34(BO — Bo) B Sy Bo(BO — By) 7).
Using the Sherman-Morrison-Woodbury formula we have
Sid =S = St Bo (I + B{ S By) ' B{ S
And thus
BISyhBy = B{S By (I + By S Bo) ™ (I + By £ By — B{ £ Bo)

— (I, + By S4By — 1) (I + B{ S By)

— I, — (I, + B{S'B,) "
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Combined with (I, + BJ S By) ™ = O,(1). We have ||BJSyiBollr =
O,(1). Then, we have
p 15y 2 (BO = Bo) By Sy [
= ptr(Sya(BO — Bo) By Sy Bo(BO — By)T)
< Vrp ! |Svillal[(BO = Bo)BJ Sy Bo(BO = Bo) ||
< Vrp |86l BO — Bol[7|By Sy Boll e
= Op(Bp10g(p)/T + v, /p).

Thus we have

||iy = Eyollsye = Op(y/Opr10g(p) /T + /POy 1 log(p) /T + ?Jp_Q/\/]_? + Ay,).

Finally we absorb /6, rlog(p)/T into Ay, for desired result. Theorem
3 is a special case of this result, which can be proved by directly substi-
tuting log(p) < T' < p*°, max{Kr,v,'} = O(1), and D, =< p into the

convergence rate of Theorem S.1.

S.6 Proof of Theorem 4

The proof of Theorem 4 is totally similar to the proof of Theorem 3.
We will give the rate of the term Apg in (S5.10) when S, is diagonal,
which is controlled by Hy = ||Pp,Se *T1EETS, Py, ||r and Hy =

]|PBQ§;1/2T_1BOF5T§;1/2PBQHF. We first consider the term Ppg,. It is
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easy to verify that opay(B2) < p*/? and o (Bs) =< p*/2. Thus

(X)) 0

Pp,S;"% = By(B; Ba) "' By .1 = 0,(1//p) (J,BX1,1,)"E1,

0 1

where we remind that X; = 02A51/203A}/201T. Thus o,.(X;) > ar(Ai/Q)aT(A;ﬂ) >
(m/d2)Y2, which implies X; ' = O,(1). We assume ¥, is diagonal in The-

orem 4. Then we have

P, 55012 = Op(1/VD) (1 BXy = J, By, 0)5" + Op(1/v/B) (S B0, 1,) T (571 = 5g))

+0,(1/y/p)(JyBo,1,) 'S4} = Dy + Dy + Ds.
(S6.12)

Then, we have
Hy = ||(D1 + Dy + D3)EET (D1 + Do+ Ds) ' /T |

< (IZ1le + [1Dsl2) (ID1lls + I Dal[IEET /TIIr + | Ds€ VT [

and

Ha < |7V |[T BoFET (D1 + Do + Dy) ||
<122 2[2(1Dall2 + Dol ||| BoFET /T | + |2 ||| BoFE DS /T
<122 2(12((1Dall2 + [[Del)IBoFET /Tl e + | Bol | ¢ || ||| [ DsE] | 1/ T).

To bound H; and Hs, we need to bound ||Dy||a, || 2|2, || Dsl|2 and || DsE /vVT ||

Using Lemma 5, when A > d, 7, we have

71(D1) < Op(1/ /D)1 (A )| T BoO1 AL /2 =1, BOs A, 2 05| = O, (v, //p)-
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As we assume the 2-norms of row vectors of By are uniformly bounded
by a constant, it is easy to verify the norms of (J,By, 1,)’s row vectors are

also uniformly bounded by a constant. Thus

01(D2) < Op(pfl/Q)\/tT((JpBo, 1,)T (51 = (Ze0)™)2(J,Bo 1))
p (S6.13)

~

< O,(p7), | OM) D ((Seit)™ = (Seois) ™).

=1

p —~ ~
We need to bound p=! Y ((3eii) ' —(Zeoii) 1)?. Denote pQ1(Xe) = log |Xe |+

i=1
tr(S.2;1), we have:

L(B,%.,Q,8) < L(J,B+ 1,77, e, Q,4a),
and then

(001 (80) 001 (5e0) +(025(B, S p@u(y BH1,y T Bu0)) < Oyllog(p) by 252,

where the v from Proof of Theorem 2. Similar to argument in Proof of

Theorem 2, for A > d, r we have:

PQ1(Ee) = pQ1(Se0) +1Qa(B, 5e) < O, (log(p) +p @ﬂp—?). (S6.14)

We imitate the proof in Bai and Liao (2016). Denote f(t) = —log|X ; +
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o] + tr(Se(St + tAs)), where Ay = 71 — £ is diagonal. We have:
1/(0)] = [tr(As(Se — (Sg + tA2) 7))ol

= [tr((Se — Xe0)A2)| < T?QPX |Se.ii — Xeo il Z |Ag il

< 0p(V10g(p)/T) Y |18l < Op(v/plog(p)/T)[| ]|,

7

and
F1(t) = tr((Z5) + tA2) T Ag(S5y +1A2) 7' Ay)
= vec(Dy) (2 4+ tA2) Tt @ (S + tAy) Hvec(Ay).
AS Amax(Z0) + 1A9) = Anax (1 = 1) S0 +571) < 8y +¢7 ! for ¢ € [0,1], we
have A\pin (S + tAs)™) > (64 +¢;')~t . Thus there exists a constant d
such that
F(1) 2 Auin(Beg +182) 7 @ (S + tAa) 1) [vec(Ay)]]3

— )2

min

(B + tA2)™Hllvec(As)|[3 > dlAol[,

for t € [0,1]. Thus

PQ1(3e)—pQ1(Ee0) = F(1)—£(0) = f/(0)+£"(€) = —Op(+/plog(p)/T)|| Aol p+d||As 3,
(S6.15)

where ¢ € (0,1). From (S6.14), we have pQ1(S.) — pQ1(Seo) < O,(log(p) +

lo ~ ~
gT(p) + v, %) by pQ2(B, X.) > 0. Thus
P
P = p D (Bei) T =S)? = Ad, == O,(log(p) /p++/1og(p)/T+v, % /p)
F €,11 e0,ii Y,dg - P p :
i=1

(S6.16)
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By (S6.13), we have

Dy = Op(As ay).

Finally, we can totally imitate the Proof of Theorem 3 to obtain that
ID:E/VT||r = O,(1).
It is easy to verify that ||Ds||s = Op(1). Then we have:
Hi < (1222 + [IDsll2) (D1l + (D2 2|7 EE T || + D5/ VT3
< Op(v, ' [P + D g [ITTIEET || + O, (1)

= O0,((v, ' /P + Dr.ag) (pV108(p) /T + v/p)) + Op(1),

and

Ho < ||Z772(1(([D1 )2 + |1 D2l |)| T BoFET || + || Bol| ¢ || Fl| || D€ ¢/ T)
< OP(U];l/\/]_9 + AE,dg)HTilBOFgTHF + Op(\/@

= Oy((0; )/ + Dsag)/108(0)/T) + O/,

Now we simplify (v,!/\/B + Ax.ag)(pr/10g(p) /T + \/P), we have:
(v, /v/P + As.a) (p/1og(p) /T + /D)
= O([(log(p)/p)""* + (log(p)/T)"* + v, /p'"?] [p(log(p)/T)"* + \/p])
= O(p'*log(p)/T"* + p(log(p)/T)** + p'/*(log(p) /T)"*v;, ")
+ O(log(p)'? + p'/*(log(p)/T)/* + v, ")
= O(p'*log(p)/T""* + p(log(p)/T)** + p'/*v, " + p'/?)

= O(p"?log(p)/T"* + p(log(p)/T)*/* + p'/*v; ).
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Then, use the same method in proof of Theorem 3, we have:

i -1/2)55-1/230) _ p, $3—1/2
ooTinol?o:Irp X 77BO = Pp,%. /" Bol|r

= p 120, AB/\/A JPBBTES M)
= pilOp(,Hl + Ho + 1)

O, (log(p)//pT + (log(p)/T)*/* + v, ' /\/D).

Using a similar method, we obtain the result same as (S5.8) . Thus we have

. ETIPN log”(p) log(p)\** | 1
HNBO — Byl|2 =0 —
oor2ovo-1,F I ol bl pT * T * pv2)

S.7 Proof of Proposition 1

The main idea to prove the desired result is using Theorem 3 in Bai and Li
(2012). This result suggests that when A = 0, we may have §ML — By =
EFT/T + 0,(1/p/T). In this proof, we need to use theorems and lemmas
in Bai and Li (2012). Thus we divide the proof into three Steps. Step
[ is introduced to prove assumptions in Bai and Li (2012) are satisfied.
In Step II, we prove that given F, By — By = EFT)T + 0,(\/p/T) is
true. In Step III, we prove the desired result base on the fact EML — By =
EFT/T + 0,(1/p/T). In Bai and Li (2012), factors f; are assumed to be
fixed. Thus we need to consider the convergence result given factors F'. In

the following content, without specified the O, and o, are all conditioning
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on {fi}{_,. We use Prp and E,r to denote the conditional probability and
expectation of {f;}L .
Step I: In this step, we prove that given bounded {f;}X ;, Assumptions A-
E in Bai and Li (2012) are satisfied under Assumptions 1-3, 4(1’), 6 and 7 in
this article such that we can directly use lemmas and theorems in Bai and
Li (2012). Assumptions A, B, C.1-3 and D and E are obviously satisfied.
The bound of 8-th order moment in C.1 can be obtained by the uniform
exponential tail. We denote E,p(ef) = E(ef,) < C% as {e;}; and { i},
are independent. Thus for all n < 8, (Eley|")Y/" < C..

To show that C'.4 is satisfied, notice that . p[ese;s] = Eleie;s]. Under

Assumption 6, we have:

|Eeneis)| < p(ls =tV E(lel?) B(leis]?) < CZ exp(—djls — ).

Denote pg = C? exp(—aj|s — t[), we have:

T [e]
T3S pa <2 poa < i 207 exp(—ayd’™).
t=1 s=1 d=0 d=0

This sum is convergence. Thus 7} Zthl Zstl pst is bounded by a constant
that only depends on C., a4, r5.

To verify Lemma C.5 in (Bai and Li, 2012), we set g(f;,e;) = eqe;r —
E(ese;) and apply Lemma 10. The moment condition in Lemma 10 can

be easily verified by a uniform exponential tail. Thus we prove that A-E in
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(Bai and Li, 2012) are all satisfied.
Step II: In this step, we will prove By, — By = EFT )T +o0,(/p/T). First,
we transform the JL/0B to obtain the formula of B v — Bo. We have:
E&Li;}wL(EMLEJLL + i\:e,ML — 8y) = Orxp.
Thus we have
Bl S b Bur By — Bo)" + By S04 (Bur — Bo) By
+ B\]—\ZLie_,]l\/[L(ie,ML - 2eO) - /BS]—\F/[Lﬁe_,]l\/[LBOFgT/T - B\LLﬁ;&Lé'FTBOT/T
— By Soh(EET)T — Su0) + Bl 30488 = 0,y
Remind H = (E&Li;}wLEML)_l, we have
(Bur — Bo)" = —HB};; 5. 3(Bur — Bo) By
~ HB} 504 Cenrr — Seo) + HBY 203 BoFET /T + HB 30 EFTBY /T
+ HBJ; 878, (EET )T — Su) — HBJ, 874, 66"
=h+D+Ts+Ts+Ts+ Ts.
(S7.17)

Now we show that Ji, 7o, Ja, J5 and Jg are all op(\/p/_T). We directly
use lemmas in (Bai and Li, 2012). The proof of Theorem 3 in Bai and Li
(2012) implies that HBJ; 3}, (Bar — Bo) = Op((pT) ™2 +p~ ' + T71).

Thus

T = _HEJT/[Li;]lWL(B\ML_BO)BOT = Op(TP4p™ P4 2T ™) = 0,(\/p/T).
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For J5, notice that p > T, it is easy to verify J, = OP(HHEZ—\ZLE;}ML(E&ML_
Seo)ll2) < Op[H 2l Bare |21 3 ol e arr—Zeoll2) = Op(p™"/%) = 0,(v/p/T),
85 || S,z = Seolls < [|Zenrnlla + [[Seoll2 = Op(1).

Using Lemma C.1 in (Bai and Li, 2012), we have HE&LEI;}WLSFT/T =

O,((pT)~Y2 + T~1). Thus
Ji=HBj S 0 €F By [T = Oy(T 2 4+ p'°T7) = 0,(v/p/T).
Now we bound J5. We first consider HHE&Lie_’}WL(SST/T — Yeo)||p- Tt is
bounded by
1HBg S (EET/T = Seo)ll + |1 H (Barz, — Bo) 851,67 /T = Seo)l |

| HBy (57, — Sr)EET T — Zeo)llr = K1 + Ko + K,

where X} € RP*P and 33 = Ye,ijli=;. For K1, we have:

Ky < [|H||pl| By S (EET T — Yol

p T

ZIIZZ c0.i) " Mboslewes — Elewes))/T| |3

= =1 t=1

Under Assumptlon 7 (3) we have

p p

E(Z Z Z €0, n b()z €it€jt — E(eitejt)] | ’g)

|
j=1 i=1 t=1
p

pTZ EH pT —1/2 Z Z e u sz e’Lte]t E(eitejt)”’g) S KPZT

i=1 t=1

And thus

p T
DD Do (o) hosfeuese = Blewes)/ 113 = Op(pT ),
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Ky = 0,(T~Y/2).

For term Ky, we have ICy < Op(p*1)||§ML — B0||F||(5€T/T — Ye0)||F-

The Assumption C.5 in Bai and Li (2012) implies that

Mq

E|EET)T - Sullt =D B(

i=1 j=1

(eireji — Eleies))/T)?]

~~
Il

1

T
<p?T7! max E[(T7'/? Z(eitejt — E(eue;r))?]
’ t=1

< p*T~ nfiz;mx(E[(T_l/2 Z(eitejt - E(eitejt)))4])1/2
= O(p*/T),

which implies that ||[EET /T — Seol|r = O,(p/V'T). Notice that p~||Basp, —
Bol|% = O,(T~! + p~2) directly by Theorem 2 in (Bai and Li, 2012), we
have:

= Op(vp/T + 1/ (pT)).

For term K3, we have

K5 < NHIE By (Xcarn — SOIBNEET /T = Seo)ll

p

:Op(p”Z(i;}m,ﬁ—( i) VINEET T = Seo)llE)

= O((p™* +p ' T IEET /T — Eeo)l[})-

The second row is directly from

p
1B (Sohi =S DB < tr(By (Soh—50 ) Bo) = 0,(1) Y (S0 b si—(Beoas) )2,
=1
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as the row vectors of By are uniformly bounded. Then the bound of

p! b (Ze ]1\4,; i (Le0.4)1)? is given as

p
P (S — Ceo) ™ = 07 IS — S
i=1

= p IS b Benrr — ST
< p IS s B S — BRI 13
=0,(T" ' +p2).

Remind ||EET /T —Sw||r = O,(p/VT), we have K3 = O,(\/p/T++/1/(pT)).

Thus we have

Ts = Op(K1 + K2 + K3) = 0,(v/p/T).

Finally we consider

Js = HB S0 e’ = O,(p | lell3) = Op(v/B/T) = 0,(\/p/T).
The third equality can be obtained by noticing that

E(|lell3) ZE
P T

T
= T2 E(
= eite'is
i=1 t=1 s=1
P T

<2T72) 3N " Copl]s — t]) = O(p/T).

i=1 t=1 s=1

Thus, we have

By —Bo = (HBy 54, BoFETT) +0,(v/p/T) = EF T /T +0,(v/p/T),
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as HEJLLE‘;&L(BO — Byy) = 0,(1) and EFT/T = O,(/p/T) by Lemma
B.2 in Bai and Li (2012) and ||(H B2, 4 Bo) Iz = [|(L — 0,(1)) ]2 =
O,(1). We should notice that J;.6 and (HB\JLLie_,Jl\/[L(BO — Byn)FET)T)T
are all low-rank matrices, which implies that the rate of their Frobenius
norms is same to the rate of their 2-norms. Thus we have

' BuiO — B = min Bar — BoO
OOTE};QO:ITH ML ol OoT:OTO:bH mr — BoOllr

= i By — By) — By(O — I
oorin(}?ozh”( mr — Bo) — Bo( )| r

Z l’IliH H(EML — B()) — BOXHF
XGRTXT

=|(Z, = P, )(EF /T + 0,(v/p/T))l| p

> |EFTIIr = [|Pe,EF/Tlr — 0p(v/D/T).

Notice that ||Pg,EF " /T||r < ||P,&/VT||r||F/VT||r and combine with
E||Ps,E/VT||3 = Etr(Pg,T'6ET Pg,) = tr(Pp,Ye) = O(1), we have
|Pp,E/VT||r = O,(1) and then we have || Pg,EF /T ||r = O,(1) = 0,(/p/T).

Thus

i B0 = Bolle > |EFT /T » — T).
omi%l?oz[,” ML ollrp > [|EF /T||p — 0,(\/p/T)

Step III: Denote Xy = p~'||EFT/VT||%. Recall that m, is defined in
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Assumption 6, we consider ( € R

i R 2
Pr"F(ooTr:négozlr T/p[IBmLO — Bol|g > mi()

: ) 2
> Prp(Xs > 1.1my () — Pr.|p(OOTr:nOerlozIr T/p||BumrO — Bol|z — X2 < —0.1m4()

:Cl +CQ

Then, we will illustrate that £,p(X3) > m, almost surely and use the
Paley-Zygmund inequality to give the lower bound of C;. Thus we need the

first and second order moment of X5. We have:

Bip(Xa) = (0T) " B (Q_ I frewl[2)

p

= (pT)_lE,|F(Z Z Z tr(ftfs—reiteis))

i=1 t=1 s=1
p

1ZZZtT fif.cov(e, eis))

i=1 t=1 s=1
Zmla

and
P r

E|F( QE\F ZZ Zf]tezt/\/_

i=1 j=1 t=1
r

<pEr(d]) 12)(2 Z(Z Fieu/ VD))

i=1 j=1

Denote g(fi,e:) = fjieir. Notice that E,r(g(fi, e)) = 0 and notice that
Prp(|fieir] > s) < exp(—(s/(a:K))™) almost surely as || f;||2 is uniformly
bounded by K, we have E.p(2f) < [ 65" exp(—(s/(a1K))™)ds is bounded

by a constant doesn’t depend on i, j,p,t, T and F'. Directly use Lemma 10,
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we have E~\F[((ZZ:1 fiteir)/VT)4 is uniformly bounded by a constant C,,

that doesn’t depend on 4, 7, p, T and F. We have:
E‘F(X22> S T2Oel.

Thus for ¢ < 1/1.1, we have C; > Prp(Xy > LICEp(Xy)) > (1 —
L1C)EZp(X) /Ep(X3) > (1 — 1.1¢)*m3/ (r*Cer).

Now we bound Cy. We denote C = /T/pminpor—_o7o—1, ||§MLO —
By||r. By the fact C — X3 > 0,(1) and 0 < C = O,(TY2(p~t + T~1/?)) =
O,(1), we have C? — Xy = (C + v/X3)(C — vV/X3) > 0,(1). Thus Cy converge
to 0. Thus we have:

S : 111D . 2 5 -1
P oo o P 1Pan© = Bl = 1)

> S : -1 P . 2 5, -l
_Eﬂplgggpr'w(omgggo:lrp 1Br1.O = Bofl = T ms0)]

> (1 - 11¢)*m?/(r*C.y).
For example, we can choose ( = 0.5, then k; = 0.bm; and ky =

0.2025m?2 /(r?Cy;) for the desired result.

S.8 Additional Algorithmic Details

We use cross-validation to select the tuning parameters A and p,, 7, following
Bai and Liao (2016). The index set {1,2,...,T} is divided into K subsets

of approximately equal size, denoted as {7y }r<r, with minor adjustments
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if T/K ¢ Z. For each fold k, let Y _7. denote the submatrix of Y obtained
by excluding the columns indexed by 7, and Y7, denote the submatrix
of Y containing only the columns indexed by 7. Obtain the estimator,
B\k’(,\,pp’ﬂ and f]e’k’(A’pp’T) using Y _7,, with fixed A and p,r. The average

loss function is given by

\g);

£>‘7PP7T = K_l Z LKTk (Bk7()‘7pP,T)7

k<K

e7k7()‘7pp,T))7

where Ly, (Ek( App.r) 18 Proportional to the negative log-likelihood of Y7,

The optimal values of A and p,r are chosen by minimizing Ly, ;-

S.9 Details of Comparison Methods

In this subsection, we briefly introduce the PCA, POET, PML, TSM, PC-L,
and ML-nL methods used for comparison.
(a) PCA method (Bai, 2003): The PCA method provides the esti-

mators of the factor model by solving the following optimization problem:

(EPCA, ﬁPCA) = argnlin(B,F):FTF/T:IT Y — BFH%

Furthermore, the covariance matrix estimator of the idiosyncratic error
component is given by gECA =Ty — BPcA ﬁPCA) Y — BPcA ﬁPCA)T'

Finally, the covariance matrix estimator of the series Y is given by 250‘4 =

§PCA(§PCA)T + /Z\]PCA'
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(b) POET method (Fan et al., 2013): The POET estimator of

factor loadings matrix and factors are given by BPOET = BPCA [POET _

FPCA_ The estimator of Yeo is defined by iggET = S(iggA, 7;i1i+j), where
S(a,b) = sign(a)(|a| — b)*, and 7;; is the threshold. The threshold term
iy = C(1/\/p++/10g(p)[T)0;]", where ;= T 5, (e et =S54
and €004 = Y, — (bPCA)T fFCA. Then the covariance matrix estimator of
the series Y is given by E\D{;OET = B\POET(B\POET)T + ifOET.

(¢c) PML method (Bai and Liao, 2016): The PML estimator of the

factor loadings By and the covariance matrix .y are given by
(EPML, ifML) = argmin gy, ) Ly (B,%.) + Pr(%.),

where Ly (B,3.) = log(det(BBT + %.)) + tr(S,(BBT + X.)™), Pr(X.) =
> izj Po.7|Ze,ijl and p, 7 is the tuning parameter. The details of the algo-
rithms for solving the above optimization problem can be found in Bai and

Liao (2016). The covariance matrix estimator of the series Y is given by

SPML — BPML(BPMINT 4 $PML and the estimator of factor is given by

FPML _ ((@PML)T(EPML)—IB\PML)—I(EPML)T(EPML)—IY
(d) TSM method: We analyze A using the project gradient descent

algorithm to obtain the O, as an estimator of Ou = JI,BOQOBOT Jp+ag 1; +

~T

1,09 (Zhang et al., 2020).Then, we find [ such that Jp(:)AJp = f[q r,

1762

where §1,d> are the numbers of positive and negative eigenvalues of © 4,
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respectively. The TSM estimator of By and Xy are given by
(BTSM $TSMy argmin g v, ) Ly (B, X )+Pr(X.), with J,B = fVT/, for some W.

The estimator of Sy and F are SLSM — BTSM(BTSM)T | $TSM 44
EFTSM _ ((ETSM)T(E@TSM)—IETSM)—l(ETSM)T(%ZSM)—l}/’ respectively.

(e) PC-L method: The PC-L method provides the estimators of the

factor model by solving the following optimization problem:
(BPCE PP = argmin g py.ppT /7=1, (pT) Y =BF||3+p o’ tr(BT (D—A)B),

where D is a diagonal matrix with D; = > 7_, Ay, and o* is the tuning
parameter. The covariance matrix estimator of the idiosyncratic error com-

ponent is given by ifC*L =Ty — B\PCfLﬁPCfL)(y _ B\PCfLﬁPCfL)Tj

SPC-L _
Xy =

and the covariance matrix estimator of the series Y is given by
§PC-L(§PC-L>T + SPC-L
(f) ML-nL method: The ML-nL. method provides the estimators of

the factor model based on the normalized Laplacian, Specifically,
(B\ML—nL’ géwL—nL) = argmin gy ) Ly (B, Ze)+>\nLtr(BT([p—lel/zAD;m)B)+PT(EE),

where A,z is the tuning parameter, D, is a diagonal matrix with D;; =
max{D;;, 1}. The estimator of the Xy is given by §¥L—”L — BML-nL(BML-nLyT

i]é” L=nL "and the estimator of factor is given by

FML-nL _ ((éMLfnL)T(ié\/[LfnL)fl§ML7nL)71(EMLfnL)T<§é\/[L7nL)71Y-‘
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(g) covar-based method: We introduce how we use this method in

real data analysis. We consider the following model:

Y, = X8+ Bof: + e,

where X, € RP*K and X.;; = 1 if and only if j = 1 or i-th stock belong to
(7 — 1)-th group for j > 1, K is the number of industries, By is the factor
loading matrix, f; is the unobservable factor vector, and e; is the idiosyn-
cratic error vector with mean zero and covariance matrix >,.. The estimator
3 is defined as (X]X)X.Y17/T. Then we apply PCA to Y — X.j3 to ob-
tain Beov—based and [ieov—based  The estimator of Yo Is given by f}g’oi?*based =

T—l(Y _ XCB _ Ecov—basedﬁcov—based)(y _ XCB _ Ecov—basedﬁcov—based)TIi:j_

Then the covariance matrix estimator of the series Y is given by S¢2v—besed

Neov—based ( Rcov—based\ T Scov—based
B (B )T+ e .

S.10 Additional Simulation Results

S.10.1 The simulation results of Example II1

We provide the results of Example III in the simulation setting in Table

S.1.
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Table S.1: Simulation results of Example III. Each cell shows the meanx10 (standard

error x10).

T  Case MEz MEy, MEy, MEp

300 PML 0.82(0.07)  2.04(0.08) 0.94(0.06) 2.09(0.09)
Case (a) 0.61(0.05) 1.80(0.07) 0.94(0.06) 2.08(0.09)
Case (b) 0.67(0.05) 1.87(0.07) 0.94(0.06) 2.09(0.09)
Case (c) 0.75(0.06) 1.97(0.07) 0.94(0.06) 2.08(0.09)
500 PML 0.51(0.04) 1.56(0.06) 0.76(0.05) 2.07(0.07)
Case (a) 0.44(0.04) 1.47(0.05) 0.76(0.05) 2.07(0.07)
Case (b) 0.45(0.04) 1.49(0.05) 0.76(0.05) 2.07(0.07)

Case ()  0.47(0.04) 1.52(0.05) 0.76(0.05) 2.07(0.08)

S.10.2 Factor number selection

In this subsection, we report the accuracy of r selection. The values of Y; are
generated as described in Section 4.1 with (p, T') € {50, 100, 150} x {50, 100}
and {100, 150,200} x {300,500}. The results for r selection are presented
in Table S.2. Each simulation is replicated 100 times. We can correctly

select r in all cases.

Table S.2: Correct Selection Rate of r for Different Values of p and T'.

T=50 T =100 T =300 T =500

p=50 1 1 p =100 1 1
p =100 1 1 p =150 1 1

p =150 1 1 p =200 1 1
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