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Abstract: This supplementary material includes theoretical properties for the parametric CQR under mis-specification
in Section @ Section @ compares the proposed two CQR estimators and compares them with the Gaussian QMLE
(GQMLE) and exponential QMLE (EQMLE) for model (@) The details for calculating AREs of Examples E—E are
summarized in Section @ Moreover, the proposed CQRs for DAR and NAR-GARCH type models are illustrated
in Section @ Technical details for Theorems E—H and Corollary @ are provided in Section @ Section @ proves
that Theorems E—@ still hold for both CQR estimators in ARMA-GARCH, ALDAR and ESTAR-GARCH models
under some regular conditions. Section @ establishes the selection consistency with proof for the BIC proposed
in Section @ of the manuscript. In addition, Sections @-@ present additional results for simulation studies and
empirical analysis. To show Theorems E—E and Corollary @, Lemmas m—ﬁ are introduced with proofs. Throughout
the supplement, the notation C is a generic constant that may take different values from line to line, and p € (0, 1)
is a generic constant that may take different values in different locations. —, and —, denote the convergences in

probability and in distribution, respectively, and o,(1) denotes a sequence of random variables converging to zero in

probability. Moreover, the norm of a matrix or column vector is defined as ||Al| = 4/tr(AA’) = , /Zi,j a?j.
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S1 The parametric CQR under mis-specification

Note that Theorems B—@ are established under the situation that the quantile function @, ()
is correctly specified for the innovation 7;; see Assumption @(11) If @Q-(X) is mis-specified,
then the conditional quantile function g;,(%) in (@) is a working model, and the result-
ing parametric CQR estimator {bn in (@) will be asymptotically biased. To establish
the asymptotic properties for 1,Abn under mis-specification, a pseudo-true parameter vector
needs to be defined for 9, based on the working model, and Assumptions El, B(ii) and @(ii)
should be revised accordingly. Specifically, the pseudo-true parameter vector is defined as
pi = (95 YY) = arg MiN ey Zszl Elp:, (yt — gi.1,(1))]. Moreover, by imposing a-mixing
condition on the process {y;} and replacing v, with 1 in Assumptions E(ii) and @(ii), As-

sumptions m, E and @ are replaced by the following conditions under mis-specification.

Assumption S1. {y, : t = 1,2,...} is strictly stationary and a-mizing with the mizing

coefficient a(n) satisfying ¥, [c(n)]*=%° < w0 for some § > 2.

Assumption S2. (i) The parameter space V is compact; (ii) the pseudo-true parameter 1

s an interior point in V.
Assumption S3. (i) g;. (1) is continuous in v € V; (ii) if g, (V) = g:.-(5), then 1 = 1y

Denote 25 = S0, G (403, (., (65)) and M* = B(Z; 27 )+ lin 0! Y0, B(Z; 7).
where ¢, () = 7 — I(z < 0). Define the matrix J* = Zszl EGtr,(¥5)r, (Ye — t.m, (5))]
and let N* = N — J*. Corollary @ below establishes the asymptotic properties of 'l,AZJn under
mis-specification, which implies that 1,Abn is asymptotically biased as 1§ # v, if Q-(A) is
mis-specified. The effect from mis-specification of @,(A) is examined through simulations in

Section @ Simulation results indicate that the parametric CQR estimator 1~9n is insensitive to



S2. Asymptotic efficiency comparison

the mis-specification due to @, (X), while the conditional quantile estimation and forecasting
can be slightly affected. As a result, in practice we can choose a distribution such as the
Tukey-lambda distribution for n;, which not only has explicit quantile function but also can

approximate various distributions; see Section a for details.

Corollary S1 (The parametric CQR under mis-specification). Suppose IT* = N*~1)/* N*~1

is positive definite. For {y;} generated by model (El!), if Assumptions B and B—@ hold, then

we have (i) P, —, Y (i) \/n(3p, —P5) —c N(0,11*) asn — .

S2 Asymptotic efficiency comparison

This subsection compares the proposed two CQR estimators for model (El]), and then com-
pares them with the Gaussian QMLE (GQMLE) and exponential QMLE (EQMLE).

We first compare the semi-parametric CQR estimator 1A9n and parametric CQR estimator
9, for model (El!) Let d (or ¢) be the dimension of ¢ (or A). Denote Ry = (I4,04x ) and
Ry = (14,04x¢), where I, is an m x m identity matrix and 0,,x, iS an m x n zero matrix.
Note that 99 = R1¢p, = Ratp,. Then by Theorems E and @, it follows that \/ﬁ(ﬁn — ) —>¢
N(0, RiZR,) and (9, — ¥y) —z N(0,R.IIR,) as n — oo, where & = L71Q¥! and
II = N"'!MN-'. To compare the efficiency of 9, with that of 9,,, we may compare the

covariance matrices R1=ZR| and RyIIR),. Note that ¥ and N can be rewritten as follows

i (® "90)(175 k4 k q; 1€}, ) Ay By
= k0) = ,
k=1 erd, hy(Yo)exre), Cs Ds
. . . b /
i HOn (M) hi'(90)9ix91x  9::Qu [An By
= Tk 0 . . . ./ = )
k=1 ng;,k hi(90) Q1 Qx Cy Dy

where ¢y, = f1:(90) + brohe(90), i = f1(90) + Qre (Xo)he(D0), Q. = Qro(No), and ey, € RF

is the vector with its kth element being one and the others being zero. Under the situation
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of correct specification that b.o = Q-(Xo) and ¢ ,(¢py) = gi-(¢,) for all 7 € (0,1), we can
verify that 1A9n and 9, are asymptotically equivalent (i.e. R1ZR| = RyIIRY) if the following

Condition (M) or (M) holds:

(=d and Q, (X)) =e€r, k=1,... K, (S2.1)
(Dy, — CsAS'Bs) ™t = H(Dy — CyAY'By) T H, (S2.2)
where H = (Q/Tl (Xo)s- -+, Q/TK (Xo))’. However, this condition imposes very strong restrictions

on the distribution of 7;, and thus 1A9n and ¥, are unlikely to be equivalent for general
situations. Moreover, it is difficult to determine whether RiZR| — RyIIR) is (semi)-positive
or (semi)-negative definite for general specifications of Q,(X). Alternatively, we study the
asymptotic relative efficiency (ARE) of 9, to 9,,, which can be calculated as ARE(&“ 9,) =
(|RoIIRY| /| RiZR, )Y via simulation given the true parameter vectors and density function
f(-) of n:, where | - | is the determinant of a matrix; see Serfling (2009). Simulation results
in Section @ indicate that the parametric CQR estimator 5n is asymptotically more efficient
than the semi-parametric CQR estimator ,5” when the data is more heavy-tailed.

Next we compare the semi-parametric CQR estimator 1A9n with the GQMLE and EQMLE
for model (@) Define the GQMLE and EQMLE of model (@) as 1A93 = arg mingee LS (9)
and @f = argmingee LZ(¥), respectively, where LZ(9) = n=t > I¢(9) with [F(9) =
In 7y (9) + 0.5[y; — e (9))?/h3(9), and LE(9) = n= ' 37 1F(9) with [F(9) = Inhy(9) + |y: —
:(9)|/he(9). Under the conditions that n; has a zero mean and unit variance with E(n}) <
o0, together with Assumptions m—a, we have \/ﬁ(ﬁf — 1) =, N(0,Sg) as n — oo, where
Se = Ug'VeUg' with Ug = E[0%S(0,)/(0909)] and Vi = E[0IS(9,)/09015 (9,)/09'].
Meanwhile, under the conditions that 7; has a zero median with E(|n;|) = 1 and E(n?) < o,

together with Assumptions EI—B, we have \/ﬁ('ﬁf —99) —¢ N(0,Sg) as n — oo, where



S3. The ARE of 1A9n to 1~9n, 9,, or 1v9n for Examples E]—H

S = Uz VeUy /4 with Up = £(0) Elhy 2(90)j(80)i (90)]+ 0.5 E[h7 (8 (9} (95)] and
Vie = BIh2(90)in (90)it,(90)] + Eln) E{h(90)[jts (90)i(99) + hu(0)ih(96)]} + [E(n2) —
1 E[h; 2(90)hu(99)R,(90)].  To compare the asymptotic efficiency of the semi-parametric
CQR estimator 1/9,1 with that of the GQMLE and EQMLE, it suffices to compare the asymp-
totic covariance R1ZR} with Sg and Sg, respectively. Note that all the above asymptotic
covariances depend on ;. If 7, follows the standard normal (or Laplace) distribution, then
GQMLE (or EQMLE) reduces to the MLE with the asymptotic covariance Sg = Ug' (or
Sk = {E[h;2(00) (fu(90) [, (90) + by (90 ) 1(9))]} 1) attaining the Cramér-Rao lower bound.
Thus the GQMLE 9, (or EQMLE {9”) is the most efficient among these three estimators
when 7, follows the standard normal (or Laplace) distribution. For general distributions of
M, it is difficult to determine which estimator is asymptotically more efficient. Alternatively,
as for the comparison between both CQRs, we also calculate the ARE of 1A9n to 9, or O,
via simulation. Given the true parameter vectors and density function f(-) of n;, the ARE
is calculated as ARE(9,,9,) = (|S¢|/|RiZR,|)Y¢ and ARE(D,,d,) = (|Ss|/|RiZR,|)",
respectively. Simulation results in Section @ indicate that the semi-parametric CQR is more

efficient than the GQMLE and EQMLE when the data is more heavy-tailed.

S3 The ARE of 1/9,@ to 51@, 9, or 1%}71 for Examples -@

For the ARMA-GARCH, ALDAR and ESTAR-GARCH models in Examples m—a, note that
w = 1 is imposed by Assumptions @, and for identification of the semi-parametric
CQR, whereas such condition is not required for the parametric CQR, GQMLE and EQMLE.
Therefore, these models should be reparameterized such that w = 1, and then the ARE is

calculated using the true parameter vectors of the reparameterized models. For illustration,
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we show how to calculate the ARE of 1?}n to 1~9n, and the ARE of 1A9n to 9, or U, can be
similarly obtained.

The ARE of 9, to 9, is ARE(D,,9,) = (|Ra(po) IR, ()|/|RIZER,|)V? after model
reparameterization, where Ry(t),) is the first derivative of Ry(vp,). Specifically, for the
ARMA-GARCH model (2.9), let 99 = (a10,- .-, 0. Bro, - . - B0, Uh) € RPFE x [0, 00)P+@
with vo = (710, - - -, Y00, V105 - - -, Vpo) and d = p+ ¢ + P + Q). Then R2(1,[)0) has the form of

. I,
R2(¢0) =

0Qx(prqtP) —Wo Vo wo g 0 xe

+q+P 0(p-&-q-',-P)xl O(p+q+P)><Q 0(p+q+P)><€

For the ALDAR model (@), let Yo = (@10, -, Ppo, @) With g = (afy, ..., gy, g, - - - o)
and d = p + 2. Then R,(vp,) has the form of

) I 0, 0, 0,
R2(¢0): P px1 PX2q px£

—2 —1
02q><p —Wy &y Wy [2(1 02q><€

For the ESTAR-GARCH model (@), let ’190 = (Oéog, -« oy Qop, O10, - - -, A1p, Y0, Co, A0, bo)/ and
d = 2p + 6. Then Ry(v,) has the form of

Iopra O@prayx1 Oprayx1 Oprayx1 Oprayxe
Ra(v) = 01 x (2p+4) —wp 2ag 0 wy 01¢

01x(2p+4) 0 1 0 O1x¢

S4 Additional illustrations for CQRs

S4.1 CQRs in DAR type models

This subsection investigates the proposed CQRs in the framework of DAR type models.
Here we focus on the ALDAR model in () for illustration, and the proposed CQRs can be
similarly applied to other DAR type models in Example E

For the ALDAR model in (@), note that the location and scale functions i, (9") and

hy(9") only depend on the finite past observations, and thus initial values are not re-
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quired for estimation. Then the conditional quantile functions for the semi-parametric
and parametric CQRs can be rewritten as @%}Tk(qbn) = q%’lm(qbn) = (") + brhy (M) and

G (™) = g1 (™) = (") + Qr (A (87, respectively, where ¢ — (9 by, ..., byc)' and

II

! A~TII ~
Pl = (19II ,A). As a result, the semi-parametric and parametric CQR estimators ¢,, and 1,

can be calculated by (@) and (@), with ¢ = 1 replaced by ¢t = max(p,q) + 1, and G ., ()
and §; -, (¢) replaced by @%Im (") and ﬁgﬁc(@bn), respectively.
~TI ~TI

It can be proved that the asymptotic properties of ¢, and 1), in Theorems EI‘@ still hold
for the ALDAR model (@), with some regular conditions adjusted accordingly. Specifically,
a sufficient condition for Assumption m is provided in Theorem 2.1 in Tan and Zhu (2022).
Meanwhile, Assumptions — below provide the sufficient conditions for identification and
moment conditions in Assumptions @—H, respectively; see the detailed proofs in Section

of the Supplementary Material.

Assumption @” (Identification). (1) w = 1 and K = 2 for semi-parametric CQR; (ii) K > 4

and A < 1 for parametric CQR.

Assumption B” (Moments). (i) p < p; <P for1 <i<p 0<w<w<w0<acx
<k

ST

af,a; <aforl<i<q b<b,<bforl <K and A < X<\, where ©, P, w, W, a, @,

1

b,b, A and X are some constants; (ii) E(|y|*) < .

S4.2 CQRs in NAR-GARCH models

This subsection studies the proposed CQRs in the framework of NAR-GARCH models. We
focus on the 3-regime exponential STAR-GARCH model in (@) for illustration, and the
proposed CQRs can be similarly applied to other NAR-GARCH models in Example B

For the ESTAR-GARCH model in (@), the scale function h,(9"™") depends on observa-



Chaoxu Lei and Qiangian Zhu

tions in the infinite past, and thus initial values are needed to calculate the feasible conditional
quantile functions. We set ys, = ¢, = 0 and hy, = 1 for s < 0 as initial values, and denote
the feasible conditional quantile functions as g, (") and Jin (4" for the semi-parametric
and parametric CQRs, where ¢! = (19111,, bi,...,bg) and 9™ = (19111,, A)'. It will be proved
that the effect of initial values on the estimation is asymptotically negligible.

AT ~TII
For model (@), the semi-parametric and parametric CQR estimators ¢,, and ), are

n

defined by (@) and (@), with @; ., (¢) and G, () replaced by E]}}le(qﬁm) and E%ITI]C (¢IH),
respectively. Denote their true parameter vectors by ¢g ' = (19(1311/, bio, . .., bxo) and ¥yt =
(19511,, Mo)’, where 95" = (agy, oy, ... s Qs O, O, -+ 5 O, Y0, Co, Wo, G, bp)'. We will prove
that the asymptotic properties of (Abin and QZLH in Theorems EI—@ still hold for the ESTAR-
GARCH model in (@), with some regular conditions adjusted accordingly. Specifically, a
sufficient condition for Assumption m is provided in Theorem 3 of Chan et al| (2015) for
ESTAR(1)-GARCH(1, 1) model. Assumptions — below give the sufficient conditions for

identification and moment conditions in Assumptions @—B, respectively; see the detailed proofs

in Section of the Supplementary Material.

Assumption @’” (Identification). (i) w =1 for semi-parametric CQR; (7)) K =4 and X\ <1

for parametric CQR.

N

= )

Assumption B’” (Moments). (i) a<ao;<a@fori=0,1and0<j<p 0<w<w<w

A

a<@ 0<B<b<B,b<b,<bforl<k<Kand\<\<)\, wherea, @, w, @,

0<a

N

a, a, 3, B, b, b, A and X are some constants; (i) E(y?) < .

Remark S1 (Advantages of CQR over QR). This paper considers the CQR instead of QR
for conditional quantile estimation, owing to two advantages of CQR over QR: (a) CQR has

efficiency gain than QR by combining data information at multiple quantile levels, whereas the
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efficiency of QR at a tail quantile level can be arbitrarily low; see also Zou and Yuan (2008).
(b) CQR with a reasonable choice of K can avoid the identification issue in estimation for
model (@) Particularly, Assumptions M, and indicate that K > 4 is needed for
identification of the ARMA-GARCH, ALDAR and ESTAR-GARCH models estimated by the
parametric CQR, while K > 2 is required for the ALDAR model estimated by the semi-
parametric CQR. These findings suggest that the QR (i.e. CQR with K = 1) can be faced
with identification issue in estimation for location-scale time series models. As a result,
the CQR can not only improve estimation efficiency of QR, but also solve the identification

problem of QR for many specifications of model (@)

S5 Proofs of Theorems -@ and Corollary

In this section, we show the proofs of Theorems m—@ and Corollary @ Since the proofs of
Theorems H—@ are similar to the proofs of Theorems EI—E, we only verify Theorems EI—E and

Corollary EI in this section.

S5.1 Proof of Theorem @

To verify Theorem El, we need the following lemma.

Lemma 1. Define L,(¢) = n ' 30 (), where l(¢) = o pr (yr — Gur (@), Let

Lo(¢) = n7t S0 T(9), where T(¢) = S5 oy (e — Gom (@) 1f Assumptions [1), |1 (i)
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and@ (i) hold, then

W B |sup @)l <

Ped

(2) E [li(¢p)] has a unique minimum at ¢y;

(3) sup|Lu() = La(¢)| = 0,(1).

ped
Proof. Recall that ¢ ., (¢) = () + bphe(9) and @, (¢) is the approximation of ¢ -, (),
where ¢ = (¥,b') with b = (by,bs,...,bg). For Lemma EI (1), since {y;} is ergodic and
stationary by Assumption EI, E [supgeq |67, (¢)|] < o0 by Assumption B (i), and by the fact

that |p-(y)| < |y|, it holds that

Bsup (@) < 3] 8 (sup om0~ a0 (01

ped k=1 ped
K
< Z FE <sup |y — qt,Tk(¢)|)
1 Ped

<E(ly|)+ E <sup |Qt,rk(¢)|>

Ped

< 0.

We then consider Lemma El (2). For z # 0, it holds that

1

pr(@ — y) — pole) =~y (&) +y j [z < ys) — I(x < 0)]ds

=~y (2)+ (@ —y)[J0>2>y) -0 <z <y)], (55.3)

where ¢, (x) = 7 — I(x < 0); see Knight (1998). Let &, = vt — qtr (@) and vy, (P) =

G, (@) — Grr, (o). By (), it follows that

l() — li(eb)
= = Ut (P)Vn (&) + [Etm = Ve (D10 > &y > 017, (D)) — 1(0 < &y, < Ut (D))]-
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This together with E[v¢,, (&5, )| Fi—1] = 0, implies that

El(p)] — E[l(¢)]
= Z gt T Ut,Tk(¢)] [](0 > ftﬂ'k > Ut (¢)) - I(O < ft,ﬂc < Ut,Tk(¢))]} = 0.
k=1

Since f(-) is continuous at the neighborhood of ¢; -, (¢,) by Assumption B then the above
quality holds if and only if v;,, (¢p) = 0 with probability one for ¢ € Z. This together with
Assumption @ (ii), implies that ¢ = ¢, and Lemma EI (2) is verified.

For Lemma m (3), since 3,7 SUPyeq |Gt (@) — Gty ()| < 00 by Assumption a (i), it holds

that
1 K
Sup ’Ln<¢> " Z Z Sup ’ka — 4 Tk<¢)) — P (yt - q~t,7‘k(¢))|
$e n t=1k=1 $€®
9 n K
<_ZZSUP|QtTk ) @:,Tk(¢)| = Op(1>‘
i k= #e®
Hence, Lemma EI (3) is verified. O

Proof of Theorem H Since l;(¢p) — E[l;(¢)] is a measurable function of y; in Euclidean space
for each ¢ € ®, which is also a continuous function of ¢ € ® for each y;. Then by Theorem
3.1 of Ling and McAleer (2003), together with Lemma El (i) and the strict stationarity and

ergodicity of {y;} by Assumption m, we have

sup |L.(¢) ~ E[l(@)] = 0,(1)

This together with Lemma m (iii), implies that

sup [ La(6) — EL()] = op(1) (85.4)

We next verify the uniform consistency. For any ¢ > 0, with probability tending to 1

uniformly in € > ¢ and by ¢ = arg mingeo L, (@), it holds that

Lo(®,) < Lo(py) + €/3, (S5.5)
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and by (), it holds that

Ell(¢,)] < Lu(9,)) + /3, (85.6)

Lo(¢y) < Elli(¢o)] + /3. (55.7)
Combining (), () and (), with probability tending to 1, we have
B[L($,)] < Ell(0o)] + e (85.8)

Let Bs(¢py) be an open neighborhood of ¢, with radius 6 > 0, then B¢ = ®/Bs(¢,) is
compact and infgepe E[l;(¢)] exists. Denote € = infyepe B[l ()] — E[l:(¢y)]. Since ¢, =
arg mingee E[l:(¢)] is unique by Lemma El (ii), we have € > 0. Select ¢ > 0 for any € > 0
which satisfies Pr(e > ¢) > 1—e. Then combining with (), it follows that with probability

greater than 1 — ¢,

E[lt(?bn)] < Elli(¢o)] + <¢3§1Bf Elli(@)] — E[li(éy)] < dglg Ell(#)]-

Therefore, we have @, € Bs(¢,) and |, — ¢, < & with probability greater than 1 —¢. By
the arbitrariness of ¢, it holds that HqAbn — ¢| < ¢ with probability tending to 1. The proof

is accomplished. O

S5.2 Proof of Theorem E

To show Theorem P, we introduce Lemmas E—@ below. Specifically, Lemma E verifies the

stochastic differentiability condition defined by Pollard (1985), and the bracketing method in
Pollard (1985) is used for its proof. Lemmas B and @ are used to obtain the \/n-consistency

and asymptotic normality of g?)n, and the proof of Lemma a needs Lemma E

Lemma 2. If Assumptions B—B hold, then for any sequence of random variables w, such that
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w, = o0p(1), it holds that

T () = 0p (V| + nfJun[?),

where i (w) = W Y01 34 o (00){ X, () = B [Xo, ()| Fia]} with

Xir,(u) = f (v < qer (Do) + Arr(w)s) — Iy < Gum (o)) ds

0

and Ay, (u) = Qt,rk(¢o +u) - dt,7, ()-

Proof. Define X = {u : ¢y + u € @}, where ¢, = (9, b,)’ with by = (b,,,...,b,,.) is the true

parameter and @ is the parameter space. For u € N, note that

K d n
min(u) < Vnlul Y ) \/Lﬁ 2 Mt (X (w) = B[ X (w)| Fioa ]}

k=1j=1
where d is the dimension of ¢, myr, ; = Oq - (¢Py)/0¢p; with ¢; is jth element with ¢. For
1 < j <dand 7 e [0,1], define g, = max;{my,;,0} or g, = max;{—my,;,0}. Let

fer(uw) = 91+ X¢ - (u) and define

Dy ( Z{f” E [ for(w)|Fio1]}-

To establish Lemma S.1, it suffices to show that, for any n > 0,

sup Dir ()] = 0p(1). (S55.9)

ulzn 1+ Valul
We follow Lemma 4 of Pollard ([1985) to verify () Let § = {fi(u) : ||ul]| < n} be a
collection of functions indexed by w. First, we verify that § satisfies the bracketing condition
defined on page 304 of Pollard ([1985). Let B,.({) be an open neighborhood of ¢ with radius
r > 0, and define a constant C} to be selected later. For any fixed e > 0 and 0 < § < n
there exists a sequence of small cubes {B.s/c, (u;)}1; to cover B;(0), where K, is an integer

less than Coe~ and Cj is depending on neither € nor 6. Denote Vi(8) = Bes/c, (u;) () Bs(0).
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Let Uy(9) = V41(6) and U;(0) = V;(5) — U’ L V;(0) for i = 2, then {U;(6)} is a partition of

Bs(0). For each u; € U;(9) with 1 < i < K., define the following bracketing functions

=g [ 1 (0% 000 (80) + Bnwls & i (001 ) ~ 100 % ()|

0

Since I(-) is non-decreasing and g, = 0, for any u € U;(6), we have

fir(wi) < fir(uw) < f7 (wi). (S5.10)

Furthermore, by Taylor expansion, it holds that

il s (o) o (90)| - (55.11)

E [f;;,-(ui) - ft,:-(ui)|'/?t*1] S0

1
hu ()
Denote o;,, = 2sup, f(z)|¢.(do)|?/hi(F). By Assumption a, we have sup, f(z) < oo.

Choose Cy = E(ot.). Then by iterative-expectation and Assumption B (ii), it follows that

B fi(w) = fir ()] = B{E[f,(wi) = fi ()| Fioa ]} < €.

This together with (), implies that the family § satisfies the bracketing condition.
Pick §; = 27%n. Define B(k) = Bjs,(0), and A(k) to be the annulus B(k)\B(k + 1). Fix
e > 0, for each 1 < i < K,, by bracketing condition, there exists a partition {U;(0x)}, of

B(k). For e Ui(6;), by (85.11)) with § = &, it holds that
Dy (u Z ftr u;) — ftr(ul)|~7:t 1]} + E [fm—(uz) ft}(ui)“}—z‘/fl]
< D/ (wi) + Vnedy—= Z Ot (95.12)
t

where D/ (u;) = \/iﬁ S {fit(u;) — E [ fif(u;)|Fi-1]}. Define the event

n

Z w) < 2}.

L=

For u € A(k), i.e. 0py1 < [Ju]| < O, we have 1 + y/nj|u|| > v/ndxr1 = v/ndg/2. Thus, by
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() and the Chebyshev’s inequality, we have

D,
Pr < sup O > 6€,En> < Pr ( max sup Dy, (u) > 3y/nedy, En>

ueA(k) 1+ \f |u L<I<Ke wel; (64)nA(k)

< K. max Pr(D{f (u;) > +/nedy)

1<i<Ke
E D+ u; 2
< K. max I t’;(Z ) ]. (S5.13)
1<i<K. ne2oj,

Then by iterative-expectation, Taylor expansion and the Cauchy-Schwarz inequality, together
with [|u;| < 0, for u; € U;(dy), we have

E{fi7 (i)} = E{E{[f (w) | Fon })

I e e R

. *\ |3
<Césup f(z)E (S“p %>

¢*ed

}

<2E{g;,

=1, (0k),
where ¢* is between ¢, and ¢, + u,;. This, together with E (h; " () supg |- (@)|*) <
oo by Assumption E (ii), sup, f(z) < oo by Assumption B and the fact that f (u;) —

E [ f;(ui)|}}_1] is a martingale difference sequence, implies that

E{[D (u)]*} = = Y B{f (w) — E[ff(w) | Fo 1

M: FM:

{[ftJ,rTWz‘)]z} < () < 0 (S5.14)

<

S| 3I’—‘

I
—_

t

Combining with () and (), we have

D, , K, (6
Pr| sup A’u) > 6¢, B, | < #,
weA(r) 1+ v/nful ne?oy

Similar to the proof of the upper tail case, we can obtain the same bound for the lower tail

case. Therefore, it holds that

Dy, 2K 0
Pr | sup | (vl > 6e, F, | < 57T+(2k) (S5.15)
ueA(k) 1+ 1+ vl neoy
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Since 7, (6;) — 0 as k — o0, we can choose k. such that 2K .7, (6;)/(€’n*) < € for k > k..
Let k, be an integer satisfies n=%2 < 27F» < 2n~%2. Split {u : ||u| < n} into two sets

B := B(k, + 1) and B¢ := B(0) — B(k, + 1) = {J, A(k). Then by (85.13), we have

[Dir(u)] ) Dy (u)|
Pr( sup Pr | sup > 6e, B, | + Pr(E;
(ueBC 1+ fIIUH Z weA(wy L+ v/nfu| (%)

k -1
f QKE o(60)
- Z 2R (O0) o, Z 2% 1 Pr(ES)
k ke
1
< O(=) + 4e + Pr(E). (S5.16)
n

Since 1 + /nllul]| > 1 for w € B and /ndy,+1 < 1, similar to the proof of () and
(), we have

KE’/Tn (5kn+1>
-5

D,
Pr (sup () > 3e, En> < Pr < max D (u;) > e,En) <

b T+ /] B .

We can get the same bound for the lower tail. Therefore, we have

| Dy (w)] ) ( | D7 (w)] )
Pr (sup > 3¢ | < Pr|sup————>3¢FE, | + Pr(E;)
wer 1+ +/nfu| ue 1+ /nful

< 2K€7Tn(5k-n+1)

~

+ Pr(E°). (85.17)

2
Note that m,(dg,+1) — 0 as n — oo. Furthermore, by the ergodic theorem, Pr(E,) — 1 and

thus Pr(ES) — 0 as n — . Finally, () follows by () and () The proof of

this lemma is accomplished. [

Lemma 3. If Assumptions B—B hold, then for any sequence of random variables w, such that

w, = oy(1), it holds that
1 [Ln(¢g + un) — Lu(o)] = —vnuy T + Vi Siv/na, + 0, (Vi [un | + nlu|?),

’U)h€7’€ Ln(¢) = n_l Z?:l 25:1 ka (yt - Qt,rk (¢>>; Tn = n_1/2 lezl Zé(:l Qt,rk (¢0)¢Tk (yt
Qtka(qu))? and Yy = Z/2 = Zlf:l f(ka)E [ht_1<190)(jt,7'k<¢0)q1/€,7—k(¢0)] /2'
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Proof. Denote u = ¢ — ¢,, where ¢ = (¢, b') and ¢, = (I, b,)". Recall that L,(¢) =
nil Z?zl Zszl ka <yt - Qt,'rk(¢))' Let XtT SO gtT = At,T(u)s) - I(gt,r < O)] dS Wlth

Arr(w) = qir(Pg + u) — o (Py) and &, = v — ¢ (o). By the Knight identity (), it

holds that

K
N [on (Etm, — Dt () = 1, (€0,

||
M=

n[Ln(¢py +u) —

t=1k=1
= Kin(u) + Kop(u), (S5.18)
where u e N = {u e R?: u + ¢, € ¢},
n K n K
Ky (u 2 Z Apr (W)t (&r), and Fop(u) = Y >0 Ay p (0) Xor, (w).

~
Il

1k=1

By Taylor expansion, we have A, (u) = w'¢ (@) + ©'G - (¢p")u/2, where ¢* is between

¢ + v and ¢,. Then,

n K K n
Kln - Z Z Qt,ry, ¢O wrk gt ’Tk - Z Z t’T‘k ¢Tk ft Tk)
= —\/ﬁu/Tn - \/ﬁu/Rln(¢*)\/ﬁu7 (8519)

where

K n
ZZ t‘l‘k ¢7k gtrk)

Since E [supgreq |Gt (@°)]] < 0 by Assumption H (iii) and the fact that |¢,, (&) < 1, we

§I'—‘

1 L&
T, = TE;Z_: oo (bo) (€0r) and Run(dh

have

B [sup i (6" <sm>@ <,

P ed

Then by iterative-expectation and the fact E [¢,, (&5, )|Fi—1] = 0, it holds that

E G5, (") r, (§07)] = 0
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Therefore, by Theorem 3.1 in Ling and McAleer (2003), we have

sup | Rin(¢7)| = 0p(1).
P ed
This together with (), implies that
Kin(un) = —v/nu, T, + Op(n‘|un|’2)'

Denote X; . (u) = Xi;-(u) + Xor (), where

1
Xlt,’r(u) = J;) [I(gt,r < At,’r(u)s) - I(§t77 < ’Ux/th(U)S)] dS,

and

1

X o (1) = L [1(60s < wgun(u)s) — [(&, < 0)] ds.

For Ky, (u), by Taylor expansion, it holds that
KQn(’U,) = Rgn(U) + Rgn('u,) + R4n('u,) + R5n(u),

where

Ron(w) = u' Y > dtn ($0) (X, (1) = B [ X ()| Fia ]},

k=1t=1
K n

Ryn(w) = w' Y drr (o) E [Xitr, (w)| Foa],
k=1t=1
K n

Ryn(u) = u’ Z Z Qt,rk(ﬁbo)E [th,Tk (w)|Fi1],
k=1t=1

For Ry, (u), by Lemma S.1, it holds that

Ron(un) = 0p(v/nlwn] + njul?).

For Rs,(u), note that

AV, (U)S ’U/Qt,rk (d’o)s

FE [lek(u)|}"t,1] = J; lF(ka + W) — F(ka + W) ds.

(5.20)

(S5.21)

(S5.22)

(S5.23)

(S5.24)
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Then by iterative-expectation, Taylor expansion and the Cauchy-Schwarz inequality, together
with sup, f(z) < oo by Assumption E, E [h ' (90) sup geg |17, (@)|?] < o0 by Assumption B
(i), and E [h; ' (90) supges |Ge,. (¢)|?] < o0 by Assumption B (iii), for any n > 0, it holds

that
Ry () « | LEC)
E<p nlu? ) e ) 21 [l (001355

cord {e oy SN el S

-0 as n—0.

Therefore, by Markov’s theorem, for any €,d > 0, there exists 19 = n9(¢) such that

Pr ( sup [fsn(w)] > 5) << (S5.25)

lul<no 1w

for all n > 1. Since u,, = 0,(1), it follows that

Pr(|u,| > no) < (S5.26)

as n is large enough. From () and (), we have

pr (M . 5> _pr (M > 6, Jun < no) i Pr (M > 6, | > no)

nu,[? nw,|? nu,[?

<Pr< sup [Fign (un)] >5> + Pr(|u,| > no) <€
|

DO ™

<o T2l|w?

as n is large enough. Therefore,
R, (un) = op(nfu,|?). (S5.27)

For Ry, (u), note that

1

’u’IQt,Tk (¢0)S

E[Xour, (w)|Fi1] = J )~ Flby) | ds. (35.28)

[F(bm +
0
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Then by Taylor expansion and Assumption B, it follows that

u’ (jtﬁk (¢0)

B Dot (W) Fit] = 10 G %
/Qt,Tk(d)O) ! U/Qt,Tk(gbO) *
+u ht(’ﬂo) J;) lf(b-,—,C + WS ) - f(b7k> SdS,

where s* is between 0 and s. Therefore, it holds that
Rin(u) = v/nu/'Sv/nu + v/nu'm3, (w)/nu, (S5.29)
where Xy, = (2n>_1 Zf:l f(b Tk)zt  h ("90>Qt . (90) Tk(¢0) and

S ()i (@) | 1 [f(bfk ¥ “Z<—éf")”> - f<bf,c>] ds.

].K n

By Taylor expansion, together with E [h{ 1(90) SUD peo quk((ﬁ)ﬂ?’] < o0 by Assumption B (ii)

and sup, | f (x)‘ < oo by Assumption a, for any n > 0, it holds that

K n ’q
. ) 5 o UQt,Tk(¢O)
(iugnllm( )”) ‘;; (iufn ht('ﬁo)q k(¢0)thk(¢0) he(90)
K
Hqtm( Il
";EL@ hi (%) ]_)0 w o=l

Similar to (85.25) and (85.26), we can show that Tyn(w,) = 0p(1). This together with ()

and Xy = Xy, + 0,(1) by ergodic theorem, implies that
Ryn(u,) = v/nul, Xiv/nu, + o,(nflu,|?), (S5.30)

where 1 = 37, f(br)E [hy " (90)du.n ()47, (¢0)] /2.
Finally, we consider Rs,(u). Since I(x < a) —I(x <b)=I1b<zx<a)—I(b>2x=>a)

and Ay, (u) = ©'qi ., (@) with ¢* between ¢, and ¢, + u. Then by Taylor expansion, we
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have
1 A N

sup | Xt ()] SJ sup |1 <ka < < b + ht’ ,;’Eu) 3) ds
ul<n 0 Jul<n +(90)

1

AtT ('l,l,)
+J sup [(b72'r}>b7+ ke s || ds
0 Jul<n CT T hy(90)

|Gt (@7
<I|b, <n <b; +nsup ——"
( k Ur k n¢*£1> ht(/ﬂo)

g7, (")
+I1|b, =>n>0b, —nsu k )
< & Ur k 77¢*£D ht('ﬂo)

Then by iterative-expectation and the Cauchy-Schwarz inequality, together with sup,

f@)| <
oo by Assumption B, E[hi(90) sup geq [d1,m, (#)]?)] < o0 by Assumptlona (ii), and E[h; ' (90)

SUPgeq |G, (@)]%] < o0 by Assumption B (iii), for any n > 0, it follows that

| Rs, (w 1 =
E 1ZonA /1 - E E 12 - E Xi (uw)] | Fe
(iugn ?”LHU,”2 2n Sup HQt k )H \Sup ’ " k( )|| tl

k=1t=1 lull<n

PTed

Z[_{: { [¢*e¢ %ﬂ?HQ] }1/2 {E [iue% %] }1/2

—0 as n—0.

< nsgpf 2 E L eq) % Sup (r7e ((]5*)’]

Similar to (5525) and (E5.2a), we can show that

Rsn(un) = op(nfun[?). (55.31)

From (B5.23|), (b5.27|), (b53d) and (), we have

Kon(u,) = vnul, Xiv/nu, + o,(vVn|w,|| + nju,|?). (S5.32)
In view of (E5.1§), (E5.2 I) and (E5.3i), we accomplish the proof of this lemma. O

Lemma 4. If Assumptions B—B hold, then for any sequence of random variables w, such that
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w, = o0p(1), it holds that
n | L@ + a) = Ln(@0)| = 0 [La(g + wa) = La(0)] = 0p(v/nluta + nluea ),

where Ly (@) = 0™t 5 Yy prc (4t — B (@) and Lo(@) = 7t 30 S0 o (e — Gt (8))-

Proof. Recall that &, =y — Qt,‘rk<¢0)7 AV, (u) = qt,ry, (g +u) — qt,Tk(¢O) and X ,, (u) =
§0 [L(y < umy (@) + Avry (w)8) — Iy < qur, (B9))] ds. Define &, = y—Gr.n (Do), Aoy (w) =
1

B (B +0) i () and Ky () = §o [T < G (D0) + D (w)s) = I3 < i (00)) ] .

Then by (55.9), it holds

n [Zn(qbo +uy,) — Zn(¢o)] —n[Ln(@g + un) — Ln(ey)]

=), i (=B @) Em) + B () Ko ()| = [ ()57, (E1) + Dy () X ()]}

H
Il
-
e
Il
—

11+

Apanlut) + Az () + Angn(w) + Apan(u) | (85.33)

Apin(w) = 3 [ A, (W) = B ()| o, G,
Aian(w) = 3 [9nl€m) = U (Em) | Bt (),

Agan(w) = 3 [ By () = Ay () | Ko (w), - and

Apan(w) = 3 [ K, () = Xy () | Ay ().

For Agin(uw), since |, (&7,)] < 1, 257 suDyeq [ Ger, (@) — Gir, ()] < o0 by Assumption B

(ii), then by Taylor expansion, it holds

A _ L v B (@) =B )]
sup i ] 3 gup (Sl = Sen ()
NPT S o

n

25U [t (@7) = G (67 = 0p(1),

<L
\/ﬁt:]_(ﬁ ed
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where ¢* is between ¢, and ¢, + u. Therefore, for u, = 0,(1), we have

Aanun) = op(v/nlua])- (85.34)

For }Im”(u), by Taylor expansion and Cauchy-Schwarz inequality, together with the strict
stationarity and ergodicity of {y;} by Assumption m, E [sup pred Hqt,fk((p*)”] < o0 by Assump-
tion B (i), it holds that

|Ak’2n ¢
S \ S Tk Tk Tk Tk 3Tk
p ] < 9% i (@)1, 6 — )

<

max S}l}?p Hqt Tk H Z |w7k ft Tk 1/}7'19 (ft,‘l‘k)|
€

%\H

1)2 [or, (G1m) — U (€ )] (85.35)
Since I(z <a)—I(x <b)=I0<z—b<a—b)—I(0>z—b>a—0b)and ¢, () —
Vr(&n) = T < G (P0) = 1Y < @i, (o)), we have
B [0 (€)= U Gor 1 Fict | SETIO < 90— @i (60) < 1ime (80)) = i () )| Fi]

+ B0 >y = qir (b0) > =117 (Do) = Gt (B0) )| Fi1]
G (®0)) = G1n (Do)

<F(bs, +

he()
o F(ka . |Qt,m(¢o})bz<:90€§t,m(¢o)|)
<2 Sgp f(a:) ’@,Tk (¢0}2(:90(§t,7—k (¢0)‘ .

This together with sup, f(z) < oo by Assumptlona Yot hi H(90) subgeq i, () —air, (@)] <
oo by Assumption B (i), and Corollary 2.3 in Hall and Heyde (2014), we have

7 S |8 (60)) — Gen (¢0))]
SUPW ; "90) < 0p<1)'

ueN

Therefore, for u,, = 0,(1), we have

Ay () = 0,(V] ). (85.36)
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For As.(u), since |)?t77k (u)| < 2, then similar to the proof of Ek,ln(u), for w, = 0,(1),

we have

Ay (1) = 0,(V/] ). (85.37)

We finally consider gkAn(u). Denote

1 ~
%, = L [[@t < Gom (00) + Avr (w)s) — Iy < qur () + At,m(u>8)] ds,

and

d, = J (Y < Grmi (@0)) — L(Ye < @i ()] ds.

0
By using I(z <a)—I(x <b)=10<z—-b<a—-b—I1(0=>2—b>a—>) and Taylor

expansion, it holds that

E(|&|| Fi1)

1 ~
<E | [1 (10~ (60 = B )] < 1 (60) = 1 (80 + Birala) = Auy (s s

0
|G, (P0) — Gt (D) |, (@) = e (7))
he(95) ¥ el sup 1 (99) ] ’

<C'sup f(x) [

and

1

B (id)7a) < B|

< 2sup f(z)

T (5 = i (B0)] < G (D0) — dime (60)]) ds]

|(7t,7'k (¢0) — Gty (¢0) |
hi(9) '

Then by iterative-expansion,Cauchy-Schwarz and Taylor expansion, together with )N(wk (u)—
Xir(w) =06 — d, sup,, f(x) < oo by Assumption a, E [supgreq |Ge,m, (@7)]] < o0 by Assump-

tion ff (i), 3372, 17 (90) SUD pey [Gory () — Gy ()] < o0 by Assumption [ (i), 377, b (8y)
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SUD e |Gr (@) — dir (@)] < o0 by Assumption B (ii), and and Corollary 2.3 in Hall and

Heydg (2014), we have

oy ] B (1) [ R (1) — Yo ()
b Vilul + ol SEWE el Ve alul
2 sup G, (@) 4 Tk(¢(;3 (193;Tk(¢0)’
* Ej,T (¢’ _q.,‘r ¢
+ 3% sup i ) B 20 ()

t=19

|Qt Tk — qt,m, ¢0 |qt Tk Qt Tk(¢0)|
{Z ht 9 2 ht (9) }

0)
=0,(1).
Therefore, for w,, = 0,(1), we have
Aran(tn) = 0p (V|| + ). (55.38)
Combining ()-(), we accomplish the proof of this lemma. O

Proof of Theorem @ Recall that L,(¢) = n = 31 S pr (% — Gur (@) For uwe R = {u :
¢ + u € O}, define H,(u) = n [Zn(qbo +u) — Zn(¢0)] Denote @, = ¢, — ¢,. By the
consistency of aﬁn, it holds that w, = 0,(1). Note that w,, is the minimizer of ﬁ[n(u), since

~

¢,, minimizes Zn(q’)) This together with Lemmas EI—B, implies that

~

H,(Gi) = —v/na, T, + /i, S1v/ndhy, + 0p(v/nl|th| + n|/tn,|?) (S5.39)
—v/n| | [|Tn] + 0p(1)] + 1t |? [Auin + 0p(1)],

where A, is the smallest eigenvalue of ¥ = ¥/2 with ¥ defined before Theorem m, and T, =

n2 3 S e (90) 0, (U — Gun (@0))- Denote Zy = 33T o (0)¢rm, (e — dim (1)),

then T, = n~Y2Y" | Z,. If Assumptions m—a hold, by the Central Limit Theorem, we have

T, -, N(0,Q) as n— o,
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where () = 25:1 25:1 Fkk/E [q’tﬁk(¢0)qgﬁk,(¢0)] with Fkk’ = miD(Tk, Tk/)(l — maX<Tk, Tk/)).

Since H,(@,) < 0, then we have
Vil < s + 0p(D] 7 (1Tl + 0,(1)] = Oy(1). (55.40)

This together with the consistency of a&n, verifies the \/n-consistency of (?bn, ie. \/ﬁ(g%n -

¢o) = O,(1). Let /nu! = X;'T, /2 = ©71T,,, then we have
vnul —, N(0,Z) as n— o,

where = = 71QX "1 As a result, it is sufficient to show that \/na, — +/nu}, = o0,(1). By

(65.3d) and (85.40), we have

H, (i) = =/, T, + /0, S/nti, + 0,(1)

= —2\/nt, Xv/nul + y/nt, S y/nt, + oy(1),

and

Hy(u)) = —/nu’ T, + v/nu’ Siy/nu), + o0,(1)

= —vnul Siv/nul, + 0,(1).

It follows that

~

H, (1) — Ho(uh) = (v, — vouh) 'Sy (vVidi, — vouh) + 0,(1)

> Ain V1T, — v/l + 0,(1). (S5.41)

Since H,(t,) — Hy(u?) <0 a.s., then () implies that |v/nu, —+/nul| = 0,(1). We

verify the asymptotic normality of gAbn, and the proof is accomplished. [
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S5.3 Proof of Corollary @

For the consistency in Corollary @ (i), the proof is the same as that for Theorem m and we
omit the detailed proof. Similar to the proof of Theorem @, we introduce Lemmas H—H below
to show the asymptotic normality in Corollary @ (ii). Since the proofs of Lemmas B and H

are the same as those of Lemmas E and @, we only verify Lemma E

Lemma 5. If Assumptions E and B—@ hold, then for any sequence of random variables w,,

such that w, = 0,(1), it holds that
Tin(Un) = op(Vnlun| + nfua|?),
where wf, (w) = w' S S0 Gun (WX, (w) — B[ X, (w)|Fia ]} with
X 0) = [ 100 % g 88) + A (05) — 10 < 0 (9]

0

and AZ’Tk (’U,) = Gty (1103 + u) — Gt,7y, (¢8)

Lemma 6. If Assumptions E and B—@ hold, then for any sequence of random variables w,,

such that w, = 0,(1), it holds that
n Ly (W5 + wa) — Ly (45)] = —vnw, T + Vg, (N — J7)vnan + op (V| +nfu|?),

where Ly(¢) = n‘lzlll Zszl Pr (Yt = G (¥)), T, = n='? Z?:I 25:1 G, (P0) U, (Y —
G (W), N1 = 20y F( Qe (X)) Ehy (80) 1., (1)1 7, (W8)]/2 and T = 3351 Elijem, ()8, (ye—
91, (¥5))]/2.

Lemma 7. If Assumptions B and B—@ hold, then for any sequence of random variables w,,

such that w, = 0,(1), it holds that
n|La (5 + wa) = La(w) | = n L5855 + wa) = LEW)] = op(illun | + nlu, ),

where z:(¢) =n"! 217;1 ZkK=1 Pri (Yt —Gez, (W) and Ly () = n! Z?:l Zklil P (Yt —Ge.7, ().
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Proof of Lemma B Denote u = ¥ —1b;, where 1 = (¢, X') and ¢y = (95, Ay')'. Recall that
Li() = n 30 Sy e (Ue—ghm, (). Let Xj (u) = § [1(&, < Af,(u)s) — (&, < 0)]ds
with Af, () = o (15 +u) — g1, (95) and &, = v — o (43). By the Knight identity (55.3),
it holds that

K

n[LE(h +u) — HwozZme@f-@m»wa@m

3

K7, (u) + K5, (u), (S5.42)

where u € X = {u € R : u + 1§ € U} with d being the dimension of 4,

n K n K
_Z Z t‘rk wTk ft‘r ) and K;n Z Z tTk tTk ’LL)
t=1k=1 t=1k=1

By Taylor expansion, we have A} _(u) = /¢y, (b5) + w'er(¢")u/2, where 9" is between

¥y + u and 1. Then,

n K K n
Kfn(u) = *U/Z Z 9t "7[;0 1/]77@ gtm B Z Z tTk wTk gtm)

where

1 n K .
T 2 2. 8un (B3 (€,) and Ry, (p
t=1k=1

3I'—‘

K n
ZZW P (&)

Since E [sup,/,req, |Gt (7)[] < o0 by Assumption B (iii) and the fact that |-, (§, )] < 1, we

have

E | sup [§e, (4" ir, (&5, | < 0.
Piel

Moreover, since g -, (%) is continuous with respect to ¥ € W, then by ergodic theorem for

strictly stationary and a-mixing process under Assumption @, together with @, = ¥§+u, =
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i+ 0,(1) and ¥’ between 1% + u, and 9, it holds that
Ry, (47) = Jf + 0,(1),
where J} = Zszl E[Gtr, (%5 (yt — g1.m,, (25))] /2. This together with (), implies that
Ky (un) = —vnw Ty — /nwg Jiv/ng, + op(nfug|?). (55.44)
Then similar to ()—() in the proof of Lemma a, we can prove that
K3, (un) = v, Niv/na, + 0p(vwn| + nw|?), (55.45)

where Ny = Y5 F(Qre(AD)E [h (98)1.m (85)d0, (167)] /2. Tn view of (85.49)-(85.45), we

accomplish the proof of Lemma B [

Proof of Corollary @ Recall that L¥*(ep) = n! S S 0n (W — Gem (). For uw e R =
{ueRY: u+p} e ¥}, define H*(u) =n [E:;(«,b; +u) — E;‘;(@bé)] Denote u,, = 1,Abn — ;.
By the consistency of @Alﬁn, it holds that u,, = 0,(1). Note that u,, is the minimizer of f[;:(u),

since %, is the minimizer of L*(v). This together with Lemmas B—H, implies that

Hyy (@) = —/n@, T + N/, (N1 = TPV, + op (Vi + n]@,)?) (55.46)

> =Vl | [IT5] + 0p(1)] + 0l ]* [Amin + 0p(1)],

where A, is the smallest eigenvalue of Ny —J;° = N*/2 with N* defined before Corollary @,
and T = 0 330 S50 G, (W5)0n, (4t — G1,m (). Demote Z7 = 0 G, (85 )0br, (v —
Gt (W5)), then Ty = n™2 330 | ZE. Since by = arg mingey Y3, Elpn, (4 — 9o ()], we
have E(Z}) = 0. Moreover, by Lemma 2.1 of White and Domowit7 (1984) and Assumption
@, for any nonzero vector ¢ € R% we can show that ¢'Z} is also a strictly stationary and

1-2/5

a-mixing process with the mixing coefficient a(n) satisfying >, _,[a(n)] < o for some

0 > 2. Asaresult, by central limit theorem for a-mixing process given in Theorem 2.21 of Fan
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and Yao (2003) and the Cramér-Wold device, T’ convergences in distribution to a normal

random variable with mean zero and variance matrix M* = E(Z}Z}) +n! D E(Z] zZ¥)

as n — o0. Then similar to ()—() in the proof of Theorem E, we can verify the

asymptotic normality of zAbn ]

S6 Proofs of Theorems —@ for special cases

In this section, we prove that Theorems m—@ still hold for both CQR estimators in ARMA-

GARCH, ALDAR and ESTAR-GARCH models. It is equivalent to verify that Assumptions

@—a can be implied by Assumptions @—B (or Assumptions —, or Assumptions —) for

ARMA-GARCH models (or ALDAR models, or ESTAR-GARCH models).

S6.1 Proof of Theorems I for ARMA-GARCH models

Proof. For the ARMA-GARCH model (@), recall that

P q Q P
e (9') = Z QY + Z Bier—j and hy(9") =, |w+ Z Vi€l + Z vihi
i=1 i=1 j=1

j=1
where 9" = (a1,...,0ap, 51, ., By Wy V1, ---,70, V1, - - -, Vp)'- Define the characteristic poly-
nomials by a(2) = 1 -3 2", B(z) = 1+ X0 B2, y(2) = 39 izt and v(z) =
1 —Zle v;2). Denote .77 ;2" = v(2)/v(2) and 1+ 3.7, d;z* = a(2)/B(2). Then y,(9") and

hy(9") of model (@) have the autoregressive representions:

o0 e @]
(9 = — Z diye—; and  h,(9") =, |w/v(1) + 2 cie (9,
i-1 i-1
where €,(9") = 3 + S divi.
We first verify that ¢f, (¢) and g}, (¢') for model (@) with Assumptions @—B imply

Assumptions @—B Note that w = 1 by Assumption B (iii) for the semi-parametric CQR
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in model (), then we rewrite the model parameter by 9% = (a1,..., 0, B1, .-+, By Vs -+ -
V9,11, ..., vp). Thusit holds that ¢ . (¢") = 1, (9}) +bphe(9%), where @' = (97, b1,...,bx)".
Obviously, qg’m(q.’)l) is continuous in ¢' € ®' and Assumption @ (i) holds, where ®! = RPT4 x
R x RX is the parameter space. Denote the true parameter by ¢}) = (191’0, b1, - - -, bko)’,
where 9L, = (o, . .. L 0y B10s - -+ Bg0s Y105 - - - s YQ0sV105 - - - s Vpo)'. Then we can get ap(z) =
1= 30 o2, Bo(z) = 1+ 31, Bz, w(z) = 39 izt and vo(z) = 1 — Zle vioz?. For
Assumption@ (ii), we can write qim(gbl) = yt—et(ﬂi) +bkht(’t9£). Then if q;Tk(qu) = qiﬁk(gbé),

it holds that
e(9%) — €(9%) — behe(9%) + brohe(9y) = 0. (S6.1)
Denote ¢, = ,(19%,), then by Assumption m, we have
a0
Gt('ﬂi) — € = Z Qi€r—i,
i=1

where 1+ > 7 a;2" = a(2)Bo(2)/[a0(2)B3(2)]. Therefore, () can be written as

aj€—1 + Hipo — bk\/ﬁ(ﬁ%l + Hyy2)?+ Hsy o + ka\/CwE%fl + Hyy 9 =0, (S6.2)

where Y17 cioz’ = y0(2)/10(2),

o0] o0
Hy, ;= Zaiet—iu Hy ;= Zazft—j—z',
i=j i=1
0 0
Hyyj=1/v(1) + > cie) ,(9), and  Hyyj = 1/(1) + ) cioe . (S6.3)
i=j i=j

Since €;_ is independent of all the others given F; 5, it holds that
a; — bkcz-l/2 + bkoc%2 = 0. (S6.4)

Let ¢(x) = ax + Hy — byci(z + Hy)? + H3]Y? + bro(cro2? + Hy)Y?, then we can get from

() that ¢(z) = 0 for all z € R. Since Hy; ; > 0 for any ¢t — j € Z and d*s(z)/dz* = 0
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when x = —Hs, it holds that Hs = 0, which together with () yields Hs; o = 0. Hence,
€,_1(0%) = €_1, then together with Assumption @ (i), we obtain a; = ayo forall 1 <i <p
and ; = Bjo for all 1 < j < ¢. Then combining with () and (), it can be further
verified that H,;_; = 0 for any ¢t — j € Z and bkcg = bkoc “foralli > 1. Therefore, it holds

that

27(2) _ 12 70_(3) S <
bky(z) = bkoyo(z)’ |z| < 1. (S6.5)

This together with Assumption @ (ii) implies that by = by for 1 < k < K, and then v; = 750

for all 1 <4 < Q and v; = vjy for 1 < j < P. Therefore, ¢' = ¢ and Assumption @ (ii)
holds.
Denote ¢; = 0c; /0", ¢ = é’QCi/(&(ﬁI@(ﬁ ), and the same as d; and d; for each i > 1. Then

under Assumptions El, B and B (i), it holds that

(i) sup |c;|, sup ||, sup |G| sup|di|, sup|d;|, sup |di|| < Cp
¢! ¢! ¢! ¢! ¢! ¢!

(it)e; = Cp', (S6.6)

for some constants C' > 0 and 0 < p < 1; see Francq and Zakoian (2004). Since b < by < b
for 1 < k < K by Assumption B E(|y:]) < oo by Assumption B (ii) and (), it follows

that

e
E sup |qg,7'k( < E sup [Z |dillye—i| + 0] + [b] Z Vel lee—i] ]

¢I€<I)I ¢ edl! 1

o0
E(ul) Y6 + 57%) < . o)

i=1

Since
coh 19fk .
‘ 51(91 ) <C + Z lei/v/eil lee—i| + 2 Vi (2 \dl|Hytl-l|> (S6.8)
¥ =1



S6. Proofs of Theorems E—H for special cases

and

*hy(9,)
0oL o9t

/\

it

together with b < b, < b for 1 < k < K by Assumption B (i), F(y?) < co by Assumption B

(ii), and (), we have

E | by (950) sup [d, (6]
Pled!

<C Z lei/v/eil + vei) (Z Hdl||yt—z‘—l|>

+ CZ (és/v/edl + s/ /el leeil + Y ve <Z ||dl||yt—i—l|> , (56.9)

Ohy(9},)

3
O (V9 s

&191

<E | h7'(9L,) sup H
| ¢IE<I>I

+ Iht(ﬁiﬂs)]

<CE sup [Z ldi |22, + Z (léi//cill? + ci)e; + Zcz (Z iy l>]

I
*

] i=1 =1

and
E | by (94) sup |G, (¢ 1)2]
Pled!

2
P*hi(9})
o9t o9t

Ohi(9})
09

2
(72/%(1%)
0900t

-2

)

<E | h; '(90) sup (

Pled!

)

+CE sup [Z [é:/v/ell + e/ veil) e A+Zf<2 |dillye—i- z|>]

pled! | iz i=1

I
*

<CE sup [Z Il lge—] + Z Jés/ /@l + V@) (2 |dz||\yt_i_l\>]

pled! | ;24 =1

E(ly]) 2 ph+pl?) < oo,
then Assumption B holds.

For Assumption [, since 1, (9%) — Jie(9L) = — 312, dis—s, e (9L) — fi(9L) = — 227 diy—s,

RACH) —%2(191 iflet | +Z\/’|€t =, (S6.10)
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and
: 1 oh2(vl) 1 oh(¥l)
h ,01 h ,'91 t */ _ t *
) ) oD el o o9
_ L fom) @y | | 1 1 | k(o))
29l | o0t oot 2h(9) 2R, (9L) | 00

<C+Zcz|et z|/f+2f(2 dys—i- l)
s (5 lym)]
ol )

CD .
> dl?Jt—i—l)
t—i
together with b < b, < b for 1 < k < K by Assumption E(Jy:|) < oo by Assumption @

l=t—
(ii) and (86.6), it holds that

N

[\DI»—t

ST h (W) sup laks, (8) — G, ()]

t=1 P'ed!
0 - N
<23 b (9h) sup (| (BL) = BB + lha(0h) — Tu(9h))
t=1 Pled!
0 0
W [Zp\yt i +Zp/2\et i +Zp”2<2 pl|yt—i—l|>]
t=1 =t l i
o0

//\

Z PSp < 0,

and

0
2 b (o) sup i, (@) = @, (&)

t=1 Pled!

[ee} .
. < 720 o o
<C Y hi'(9) sup (|Mt(79i) — 1 (0,)* + 07 |he(9,,) — hu(9) 7 + [ (D)) — ht('ﬂi)|2>
t=1 Pled!

Q0 t—1 00

<CZp [Zp Yo +Z/f/2|E ] +CZ/)’/2 (Zpﬂyt”I) +C Y p” < > pl|ymz|>

i=1 l=t—1

8

<C’Z pls, < o,

t—1
where 0 < p < 1and s, = >,7 p'ly_|]. Then Assumption B holds.

Then we prove that g; . (1') and g} . (1) of the parametric CQR for model (@) with
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Assumptions @—B imply Assumptions @—B For model (@), Yir (4') has the form of

i, (W) = 1e(9") + Qr, (N he(9Y),

where 3" = (9", )\)". Obviously, g}, (1') is continuous in 3" € ¥' and Assumption @ (i)

holds, where W' = RPH7 x R x R. For Assumption @ (ii), similar to ()—(), it

holds that 9. = 9%, and

Vw@r (A) = vwoQr, (Ao)

if g, ., (') = g%,Tk(zbé). Then we prove that w = wy and A = Ay under Assumption @ (iv).
Consider four arbitrary quantile levels 0 < 7 < 75 < 73 < 74 < 1, and two arbitrary shape
parameter A, X < 1 such that

~

Qr,(\) = cQ,, (V) for all 1 < j <4, (86.12)

where ¢ > 0. We show () holds if and only if A = X and ¢ = 1 in the following.
Define G(7) = Q-(\) — cQ,(\), it follows that G(r) = G(r) = G(r3) = G(rs) = 0 and
thus G(r) = 0 has at least four different solutions. The first derivative of G(7) is G(7) =
™+ (1 - 1)t - c[T;‘*1 + (1 - 7.)%1]' Then G(7) = 0 if and only if S(7) = ¢, where

S(T) _ 7./\—1_‘_(1_7_))\71

T;‘_l-'r(].—T)’N\_l ’

Then S(7) = ¢ has at least three different solutions. It can be simply
verified that: (i) when A < A < 1, S(7) is strictly increasing for 7 > 0.5 and strictly
decreasing for 7 < 0.5, which implies that S(7) > S(0.5) = 1; (ii) when A < A < 1, S(7)
is strictly decreasing for 7 > 0.5 and strictly increasing for 7 < 0.5, which implies that
S(r) < S(0.5) = 1; (iii) when A = X\ < 1, S(7) = 1 for all 7. Then it holds that: (a)
when ¢ # 1, the equation S(7) = ¢ has at most two different solutions; (b) when ¢ = 1 and
A # A, the equation S(7) = 1 has at most two different solutions; (c) when ¢ = 1 and A = X,

S(7) = 1 holds for all 7. Since G(7) = 0 has at least four different solutions, we prove that
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Case (c) holds, then A = \g and w = wy. Therefore, 9" = 1§ and Assumption @ (ii) holds.

For Assumption H, similar to ()—(), we have

Haht(ﬂ) <c+2||cz/muet Z\+Z\F<Z il l|> -
(" | -
T(gﬂy) <C + OZ (léi/+/el + v/er) (; |dl|\yt_i_l\>

Z(ch/x/a\Hch/\fH - J+Z\7<Z |dillye—i- z\)

i=1 i=1 =1

Since A < A < X by Assumption B (i), there exist positive constants @, and @, such that

where Q,()\) denotes the first derivative of Q-(\). This together with E(y2) < o0 by As-

sumption B (i), and () yields that

E sup |g;, ()| < E sup [
Plew! Pplew!

0
\d;i||ye—i| + @1\/5 + @1 Z M‘Et—i’]
i=1

15 10+

(0" +p'?) < o0,

CE(lyil)

~.
Il
it

E | hy'(9%) sup |, (¢ ||3]
Plew!

Ope (9 —3|loh
<E |h; ('91),,,1 D (H 501 + @ 51(91> |ht(191)!3>]
) D (0" +p')
=1
and
E | h ' (95) sup [§,.,, (¢ 1)12]
| Plew!
[ 2 (I ° o | 2RO P =2 k()|
1 t t t
<E |k, 1(190);151 <‘ 9o + @ PYTPwSL + Qs gl
E(ly) Y (o' + p?) <

=1
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then Assumption B holds.

For Assumption B, similar to ()—(), we have i, (9") — fil(9") = =27, diyi s,
ﬂ}t(ﬁl) - ﬁ%(ﬁl) = Zit diyt—iy

0 t—

1
hy(9") — ?Lt(ﬁl) < Z Veleril + ) Vele—i —&-f,  and
i=t =1

. 0 0 o0
he(9") = hy(9") <C + ) éalenil /v + ) e (Z dzyt_i_l>
=1 i=t =1

-1 o =
+ Z N [( Z dlyt—i—l> +3 ( Z dlyt—i—l>
izl —— =1

(2

I —

l

These together with F(y?) < oo by Assumption B (ii) and () imply that

M8

hy ' (90) sup g, (W) = G, (¥
Plew!

pt@06) sup (Jp(9") = ("2 + Qilhn(9") — u(9)?)
Pplew!

t

P !

N

2
t

p's, < o,

s L

C

N

t

1

and

hy ' (9) sup (g, (1) = Gi 5 ()]

Pplew!

he'(9h) sup (utwﬂ) RO+ QL (8Y) — P + Tl — %twlw)

1 Plew!

18

t

C

N
s ™

t

RgE

C

N

Py < 0,

&~
I

1

where 0 < p < 1 and g, = 3,7 p'ly_¢|. Then Assumption B holds and the proof is accom-

plished.
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S6.2 Proof of Theorems @-E in ALDAR models

Similar to the previous subsection [86.1 - we only verify that ¢;" (¢") and 9t (4™ for ALDAR

model (@) with Assumptions — imply Assumptions @—H

Proof. For ALDAR model (@), recall that

q
11 my _ + —
(97) Z%yt i and My (97) = 2 a'yt—j_aj yt—j)?
=1 j=1
I _ + .t + A Y
where 97 = (01,02, .,0p,w, ), 05, af a0y, a7)

We first verify that ¢, (¢") with Assumptions — satisfies Assumptions @—B Note that
w = 1 by Assumption I for semi-parametric CQR in ALDAR models, then we denote the
model parameter by 9L = (@1, 99, ..., 0p, a5, ... ,at,ar,ay,...,a;). Thus it holds
that ¢/ (@) = 1, (9Y) + bphe(9Y), where ¢ = (93, by,...,bk)". Obviously, ¢!, (¢") is

continuous in ¢ € ® and then Assumption @ (i) holds, where ® = R? x R** x RK

is the parameter space. Denote the true parameter qbél = (1956,1)10, ..., bgo) with ’1950 =
(€10, - -+ Pp0, gy - -+, Ay, Qg - - -5 ). For Assumption @ (i), if ¢ Tk(¢H) = G (O), it
holds that

(1 — ©10)¥e—1 + (beay — broafy)yy — (beay — broy) Y1 + (br — bro)

p q
= 2(%‘0 — i)Y + Z [(brociy — bra )y — (brocip — bray )y ] - (S6.14)

i=2 i=2

Since (y;-1,9;"1,v;_;) are independent of all the others given F; o, we have b, = by and
then it holds that o = o) and o] = aj, under Assumption {/| (i), thus ¢; = ;o follows.
Therefore, ¢ = ¢§ and Assumption @ (ii) holds.

Then we consider Assumption B In model (), it holds that

Q%Irk(qb ) (YQ 1>kat 15 e (‘95)62),7
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where Yt—l = (yt—l, Yi—2,- - Jyt—p)/7 Xt—l = (y;;h s 7y;_—q7 _y;la SR _yt_—q)/ and e is a

K-dimensional vector with the kth element being 1 and others being 0. Since p < ¢; < p for

1<i<p 0<a<a; aforl <i<gandb<b, <bforl<k< K by Assumption

i S

(i) and E(|y]?) < oo by Assumption p/| (i), then by Taylor expansion, it holds that

p q
E sup g, (@) < B [|¢| Z Y| + 0 (1 + EZ |yt—z|>] < o,
i-1 iz1

¢II€cI>II

< CE | sup \qu((ﬁn)?’]
_qu‘I)H

E | h (94) sup [di, (1)

¢HE¢,H

3
q
-3 -
< CE HYt*1H3 + b ”Xt,1H3 + (1 + @Z ‘ytz’>
i=1

< CE(jyl*) < o0,

and

E | hi(950) sup [y, (61)* | < 2B [| X |?] < CE(y) < 0.

Plleal!
Then Assumption H holds.

We next prove that ggm (") with Assumptions — for model () implies Assumptions
@—H. For model (@), gt (') has the form g{'. (¥") = p,(9") + Q- (A)he(9"), where 9" =
(9", \). Clearly, g;" (") is continuous in 9" € W' and then Assumption @ (i) holds,
where UM = RP x R*™"" x R is the parameter space. For Assumption @ (ii), similar to
() and the proof of (), we can show that ' = 4 under the Assumption @] (ii)
if g’ (™) = gim, ( ). Then Assumption @ (ii) holds.

For Assumption H, since

g (M) = (Y 1, Qr(N), Qre (N X1, Qr, (N e (9™

p<p<pforl<i<pw<w<w _

wand 0 < a <o) ,a; <afor1<i<q by Assumption

N
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1), Y¢|°) < 00 by Assumption 11), together with (p6.13), it holds that
51 (1), E(|y|? by A her with (86.13), it holds th

p q
E sup |g (¥ <E [I@!Z lye—il + Q, <E+EZ \yt—i|>] < o,
=1 =1

'z/JIIe\I/H

<CE sup gL, (v

t,T
,lpHe\I,H ’

E 07 (95) sup | gen (1)

'leG\IIII

3
q
—3 . =3 (_ _
<CE HYt—1||3 + Q1HXt—1H5 + @, (W + 042 \%—i’)

=1

< CE(jyl*) < 0,

and
E | h ' () sup [Gon ()* | < CE[|X|?] < CE(y) < 0.
’l,bHE\I/H
Then Assumption B holds and the proof is accomplished. O

S6.3 Proof of Theorems @—E in ESTAR-GARCH models

Similar to Section , we only verify that ¢ ., (¢) and ¢ ., (¢) for ESTAR-GARCH model

(@) with Assumptions — imply Assumptions @—B

Proof. For ESTAR-GARCH model (@), recall that p(9"™) = ago + a10G(ye—a; v, ¢) +

Zf:1[040i+0‘1iG(3/t7d; 7, €)]y;—i and ht(19m> = (W‘mﬁ?—l +bh‘?—1)1/2 = [W/(l —b) + GZ?L bi_lE?—l

where 9™ = (g, apr, . . . s Qops Q105 A1, - - -5 Q1p, Y, G, W, G, b))

We first verify that ¢/} (¢"") and gL (¢"") for model (@) with Assumptions —
imply Assumptions @—B Note that w = 1 by Assumption (i) for semi-parametric CQR
in model (@), then we rewrite the model parameter by 91" = (ago, o1, - - -, Qop, @10, 11,
..., 0,7, ¢, a,b)'. Thus it holds that ¢} (™) = 11,(97)") + bphy(97"), where @' = Cras

..., bk)’. Obviously, ¢/ (¢"") is continuous in ¢ € " and Assumption @ (i) holds, where

]1/2

Y
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P = R2*2 x RT x R x R x R¥X is the parameter space. Denote the true parameter
by IH = (192(},7 b107 s 7bK0)/ with 19{1}(} = (Oégm O‘[)X)‘l? s 7a6kp> O‘TO? aTl? s 7a>1kp7 7o, €o, Ao, bO),'
Define f(z) = ajpe G974 3P_ [ag+ae =97z  and fo(z) = adje G004 3P o+
e~ (Z"=e)0] i then we have e(9M) = —ag + [1 — f(B)] d (9)%) = —af 1-
14 ) t\ Uy 00 Ye an et( *0) Qg + [
fo(B)]y;. For Assumption @ (ii), if qETIk(quH) = quTIk( oD, we can write qHI (™) =y, —

e:(OM) + behy (W), Then if ¢! (™) = ¢! (), it holds that

t, Tk Tk
er(9)") — (95 — brhu(9") + brohe (95 = (36.15)
Denote ¢, = €,(9%)), then by Assumption El, we have

(ﬁIH) — €& =My + Z mi€g—g,

=1
where mg = —agy + afy[1 — f(2)]/[1 — fo(z)] and 1 + D32, mzt = [1 — f(2)]/[1 — fo(2)].
Then similar to ()—(), we can prove that a;; = of; for i = 0,1 and 0 < j < p, v = 70,
c=cg, a=ag, b=>byand b, = by for 1 < k < K and then Assumption @ (ii) holds.
Denote ¢; = abi™, ¢; = 0¢;/0¢™ and ¢ = 02¢; /(0™ 0™ ) for each i > 1. Then under

Assumptions EI, E and p"| (i), together with (), we have

(i) sup ¢; < Cp',sup & < Cp'ysup 6] < C
¢IH ¢IH (bHI

(ii)c; = Op', (S6.16)
for some constants C' > 0 and 0 < p < 1. Since av < o; < @ for¢ = 0,1 and 0 < j < p,
b < by <bfor1 <k < K by Assumption p"| (i), E(|y|) < oo by Assumption p” (ii), together

with the fact that |G(yi—q;7,¢)| <1 and (), it follows that

E sup ‘q,{ITIk(qSHIH 2a(1 +Z|yt ; —|—b+b2 sup  +/cil€e—i

¢HIG¢III im1 ¢IHE¢,IH

Bl + 30" < . (36.17)

i=1



Chaoxu Lei and Qiangian Zhu

Since 0 < v <y <7 by Assumption p"| (i), together with the facts that z, 2? < e” for x > 0,

|$e*$2/'7| < /y and |:[; e * /'Y| < ’)/ lt holds that

. _ 2 (yy_ 7C>2
0G(yr—a;7:0) | _ (yt—d2 Q) o 11
oy gl v o
0G (ye-da37,0)| _ |2(yt_d—c)le_w BRYE
oc y =1 ’
*G(ys_g; 2y;_g — €)? _wa=o? =)t wege)? 3
(v ;l»%c) < (ys d3 c) . %Jr(ytd4 c) . td <2
2 . (yp— *0)2 — 2 (yyp_ 7(:)2
J G(yt—;z,%C) < 2 e |4(yt—d2 o) - (e < 97
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O*he(9,)
8’19HIa’l9HII
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PMealll —1 ¢!l
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i=1

0

+ C'Z sup /¢
i=1 ¢'ea!l!

Ppie-i(9,")
o9 o’

Since b < by < b for 1 < k < K by Assumption 5" (i) and F(y?) < oo by Assumption p”] (ii),

together with (), it holds that

T
¢IH€(I>III

|0 o 1o |
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then Assumption B holds.

For Assumption a, similar to ()—(), it holds that g, (951) = i, (9,

h(0) — hu(93) < Z\f Jeail,
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and
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<O+ Rl lail/va
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These together with E(y?) < oo by Assumption (ii) and b < by < bfor 1 < k < K by

Assumption p”| (i), imply that

0
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where 0 < p < 1 and ¢, = >.)7 p'ly_¢|. Then Assumption a holds.
Then we prove that g/l (") and gL (3™") for model (@) with Assumptions —

t, Tk

imply Assumptions @—a For model (@) gPTI (4p"") has the form of

Gim, (1) = 1(9™) + Qr (V) e(9™),

where ™ = (9", A)’. Obviously, gt (™) is continuous in 9" € ¥ and Assumption@ (i)
holds, where U = R#+2x R+ x RxR** xR. For Assumption @ (if), if g/ (") = g™ (abg"),

t,7y

similar to the proof of () and ()7 it holds that "™ = 4" under Assumption

(ii). Then Assumption @ (ii) holds.
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For Assumption H, similar to (), we have [k, (9")| < C (1 + X2, p"?|yii),
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These together with b < b, < b for 1 < k < K by Assumption (i), E(y?) < o by

Assumption p”| (ii) and (), imply that
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then Assumption B holds.

For Assumption B, similar to ()—(), it holds that p,(9") = [, (9™,

ht(ﬂlﬂ) 19111 Z\f‘et ;
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These together with E(y?) < oo by Assumption 5" (ii) and (), imply that
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where 0 < p < 1 and ¢, = >,2 p'ly_¢|. Then Assumption E holds and the proof is accom-

plished. [

S7 The selection consistency for the proposed BIC

Theorem 1. Let (pg,qo) be the true order and muya, be a predetermined positive integer.
For (Dn, @n) = argminy<, g<mu.. BIC(p, q), if Assumptions B H hold and po, o < Mmax, then

Pr(ﬁn:poﬁn:%)ﬁl as n — 0.

Proof. Recall that the BIC proposed in Section has the form of

BIC(p, q) = 2(n — Munax) 10g Ly, (V) + d1og(n — muay), (S7.1)
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where zn(“) = (n— mrnax)_1 Z?:mmaxﬂl:(v) with th(’U) = 25:1 P (Ye — a‘/,m (v)), &,Tk(.) is
the feasible conditional quantile function of both CQRs for ARMA-GARCH, ALDAR and

ESTAR-GARCH models. Denote the true order by (po, qo), then it suffices to show that the

following result holds for any (p, q) # (po, qo):

linolo (BIC(p, q) — BIC(po, q0) > 0) = 1. (S7.2)

Denote ©29 (or ©2%) as the semi-parametric or parametric CQR estimator for ARMA-

GARCH, ALDAR or ESTAR-GARCH models with the order (p,q) (or (po,qo)). Then by

(87.1)), it holds that

BIC(p, )~ BIC(po, 40) = 2(n— i) [10g L (84%) = log L (87) | + (d — do) 10g(n — ).

where d is the dimension of ©2? dj is the dimension of D?*% | and My, is a predetermined

positive integer. Moreover, denote Y77 and v5? as the parameter space and true parameter
of v with the order set to (p,q), respectively. Below we prove the selection consistency of
BIC for the semi-parametric CQR, and the proof also applies to the parametric CQR. To
verify (), we next consider two cases.

Case I (overfitting): p = py and g = qo, and at least one inequality holds. In this case, it
holds that d — dy > 0, which implies that (d — dy) log(n — muyax) — 9 as n — . Then by

Taylor expansion, we have
log L, (0%7) — log L, (02%) = ~——

where v* is between v2? and vP*%. By ergodic theorem, together with the stationarity and

ergodicity of {y;} by Assumption m and Lemma EI, it holds that

sup yin(@*)\ = Su% L, (%) +0,(1) < E [sup \lt(v*)]] + 0p(1) < 0,
v¥e

v¥eY v¥eT
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which implies that
LY(®%) = 0,(1). (S7.3)

Rewrite L, (077) — L, (D7%) as follows:

+ [Ln@qu) _ En(agw)] , (S7.4)

where Ly, (V) = (0 — Max) " 2,4 Li(v) with [(v) = S pr (e — Gr (V). Note that
the model with order (p,q) in Case I corresponds to a bigger model, and then it holds that

lt(’l)g’q) = lt(vgquo) and
L,(vh?) = L, (vh>?). (S7.5)

Moreover, by Theorem EI, it holds that ©2? — v{? and V2" — v*® as n — . From

() in the proof of Theorem B, we have

0 | La(@5) = La(wh) | =~V T0 + /n@l P sy + oy (vl + nl@g?|?),
where @? = o7 — of?, THT = 02 30 MU0 G (V) n (e = G (0F7)), and 77 =
Zszl f(br)E [h;l(ﬂgﬂ)g%(vqu)gﬂ(vgﬂ)] /2 with 957 being the true model parameter
vector with the order (p,q). From the proof of Theorem B, we have /n|ul?] = O,(1),

|79 = 0,(1) and |S29| = O,(1), which imply that n [zn@p:q) - En(vg’q)] — 0,(1). This

n

together with Lemma EI (3) implies that
Lo(@9) = Ly(vh?) = Op(n™) and L, (v}™) — L (7%) = Op(n7"). (S7.6)
Then combining ()—(), we have

BIC(p, q) — BIC(po, qo) = Op(1) + (d — dp) log(n — myax) — © as n — .
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As a result, () holds for Case I.

Case II (underfitting): p < pg or ¢ < qo. Let p, = max(p,po) and ¢, = max(q, qo). Denote
v (or vEY ™) as the parameter vector with the order set to (ps, g«), including v5 (or v§”%)
as its subvector at the corresponding locations and zeroes at the remaining locations. Since

P0,40

E [l;(v)] has a unique minimum at v{>* by Lemma m, the following result holds for some

constant 6 > 0:
El(vg")] = E[l(vg™™)] = Elli(v)] — E [li(vg;™)] > 0.
This together with ergodic theorem, implies that
L, (vp?) — Ly (v"") > 0,(1) + 4. (S7.7)
Similar to the proof of (), it holds that
La(wf?™) = L,™) = O™, (579

Assume that F [[;(v??)] has a unique minimum at v5? on TP, Similar to the proof of

Theorem [l|, we can prove that v?? — V2% as n — oo, which implies that |02 —vP?
) n 0 ) n 0

| = 0p(1).
Then by Taylor expansion and ergodic theorem, together with the fact that |p,(z)| < |x| and

E (Supvp,qerp,q HZ}Tk (Up’q)”) < o by Assumption B (ii), it holds that

n K
Zn(@%q) - En(“g’q) < ; Z Z [IOTk (yt - Ct,Tk (aﬁ,q» — Py (yt - C-t,Tk (Ug,q)>]

n—m
max t=Mmax+1k

> 2 G @0 = G (0hY)]

—m
max tzmmax"rl k=1

K 1 n -
< 85T — o (n— > HCt,Tk(v’f’q)!)

—m
max t=Mmax+1

Il
—

1

<o [8( s Gnw) am]=am s

VP aeYPa
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where v2? is between ©7? and v)?. Combining ()—(), we have
log Ly (B29) — log L, (D7) > O,(n~") + 0,(1) + 6.
Then as n — oo, it holds that
BIC(p, q) — BIC(po, qo) = 2(n — Mumax)d + Op(1) + 0,(n) + (d — do) log(n — muyax) — .

As a result, () holds for Case II and the proof is accomplished. [

S8 Additional simulation results

Due to space limitation, we only reported the results for ARMA-GARCH models for three
simulation experiments in Section @, with the results for estimating and predicting high
conditional quantiles relegated to Table @ This section also provides additional results for
ALDAR and ESTAR-GARCH models in three experiments.

For the first experiment, Tables @—@ list the biases, empirical standard deviations
(ESDs), and asymptotic standard deviations (ASDs) of both CQRs for DGP2-DGP4. The
following findings in Section @ remain unchanged: (i) as the sample size increases, biases,
ESDs, and ASDs generally decrease, and ESDs approach ASDs; (ii) most of the ASDs and
ESDs increase as the distribution of 7, gets more heavy-tailed; (iii) the ASDs of the semi-
parametric CQR using hyg in (@) are slightly smaller compared to those using h g, and closer
to the corresponding ESDs; (iv) for the mis-specified situation of @, () that 7, follows Fy or
F,, but the Tukey-lambda distribution is employed for @Q.(X), the biases of the parametric
CQR estimator are still small, and the ESDs/ASDs are close to those of the semi-parametric
CQR estimator.

For the second experiment, Tables @—@ report the biases and RMSEs of the in-sample
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estimation and out-of-sample prediction using the semi-parametric and parametric CQRs,
GQMLE and EQMLE for DGP2 and DGP4. For the ALDAR and ESTAR-GARCH models,
it can be found that (i) as the distribution of 7, becomes more heavy-tailed or the target
quantile level 7 gets more extreme, the biases and RMSEs of all the estimation methods
generally increase, indicating that the accuracy of estimation and prediction decreases; (ii)
the semi-parametric CQR and EQMLE perform similarly and they have better performance
than the GQMLE; (iii) the parametric CQR outperforms the semi-parametric CQR when

the quantile function @Q,(\) is correctly specified for the innovation 7.

For the third experiment, Figures El! and @ plot the ARE(@N, 'E‘n), ARE(&“ 9,) and
ARE(an,én) defined in Remark for the ALDAR and ESTAR-GARCH models. The
following findings in Section @ remain unchanged: (i) as 7; becomes more heavy-tailed,
ARE(@mén) gets smaller than one; (ii) the semi-parametric CQR is less efficient than
GQMLE (or EQMLE) when 7; approximately follows the normal (or Laplace) distribution,
but it tends to be more efficient than GQMLE and EQMLE when 7, becomes more heavy-
tailed; (iii) when 6 = 0 such that n, ~ N(0,1), then ARE(@M{%) < 1 and the GQMLE is
the most efficient. (iv) when § = 1 and m(x) is the pdf of a standard Laplace distribution
such that 7, follows a standard Laplace distribution, then ARE(@n, {9”) < 1 and the EQMLE

is the most efficient.

S9 Additional results for the empirical analysis

To save space, the ACF and PACF plots of {y;} are provided in Figure @, which imply that

{y:} is serial correlated.
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Table S.1: Biases and RMSEs for estimating and predicting conditional quantiles at 7 = 0.1%, 0.5%, 99.5%
and 99.9% for DGP1, where the innovations follow the standard normal, Student’s ¢5 or Tukey-lambda
distribution with the shape parameter A = 0.1, denoted by Fi, F}, or F), respectively. M1, M2, M3 and M4

represent the semi-parametric CQR, parametric CQR, GQMLE and EQMLE, respectively.

Fy F F

Bias RMSE Bias RMSE Bias RMSE

T F in out in out in out in out in out in out

01% M1 -0.124 -0.139 1119 1.109 0.725  0.949 7317 7.604 6.499  9.354 11.919 15.761
M2 0313 0.355 1161 1.186 3.591  3.608 5.613  5.744 3.955  5.444 7324 9.186
M3 0108 0.111 0.374  0.376 -5.671  -5.935 15.373  16.391 -0.503  3.125 17.961  21.450
M4 0159 0.159 0.946  0.921 -3.746  -3.957 12.243  14.061 -0.396  3.620 19.053 24.214
0.5% M1 -0.024 -0.039 0.635  0.651 0.073  0.066 3.260  3.024 3.396  5.144 7129 9.830
N

=

20137 0172 0.713  0.728 1256 1241 2.503  2.589 3.18)  4.414 5205  6.639
M3 0.022 0.024 0.265 0.263 -2.937  -3.106 7578 1.597 0.260  3.322 13.953 17.519
M4 0.076 0.07 0.773  0.749 -1.718  -1.783 6.847  6.863 0.539  3.940 15.142  19.739
99.5% M1 0.034 0.040 0.635  0.640 0.026  0.056 3.003  4.195 -3.618  -5.027 7.254  9.448
M2 -0.137 -0.157 0.713  0.731 -1.256  -1.206 2.505  2.563 -3.183  -4.383 5205  6.638
M3 -0928 -0.038 0.260  0.255 -4.914  2.622 7458 7.204 -16.277  -3.509 14.076  18.273
M4 -0.970 -0.093 0.774 0.750 -5.538  1.333 7.075  7.006 -16.728  -4.273 15.262  20.376
99.9% M1 0148 0.152 1174 1.159 0.779  0.843 8.274 13.191 -6.475  -9.451 12075 15.998
M2 -0312 -0.340 1162 1.185 -3.5092  -3.573 5.614  5.702 -3.954  -5.413 7324 9.197
M3 -1791 -0.118 0.379  0.379 -11.258  4.758 13.832  13.803 -29.562  -3.197 17.575  22.278
M4 -1.826 -0.171 0.940 0.914 -11.733 2.742 11.805 11.591 -30.057  -3.910 18.783  24.285
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Figure S.1: The ARE(Y,,,9,) (left), ARE(9,,Y,) (middle) and ARE(9,,¥,) (right) for the ALDAR model,

where A = 0.1 + 0.02k and 6 = k/20 with £ = 0,1,..
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GARCH model, where A = 0.140.02k and § = k/20 with k = 0,1,.
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bounds.
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Table S.2: Biases, ASDs, and ESDs of the semi-parametric CQR estimator for DGP2 and DGP3, where the
innovations follow the standard normal, Student’s t5 or Tukey-lambda distribution with the shape parameter
A = 0.1, denoted by Fu, F, or F), respectively. ASD; and ASDy correspond to the bandwidths hp and

hys, respectively.

n Bias ASD; ASD, ESD Bias ASD; ASD, ESD Bias ASD; ASD, ESD

F=Fy F=F, F =,

DGP2

#1500 -0.005 0.055 0.054 0.053 -0.004  0.057 0.055 0.055 -0.006  0.079 0.077 0.067
1000 -0.001 0.039 0.039 0.037 -0.001  0.041  0.039 0.040 -0.005 0.046 0.045 0.049
af 500 -0.007 0.085 0.084 0.090 -0.006  0.086 0.080 0.085 -0.001  0.072  0.069 0.064
1000 -0.002  0.065 0.064 0.060 -0.004  0.060 0.056 0.058 -0.004 0.044 0.042 0.048
a; 500 -0.010 0.099 0.097 0.098 -0.004  0.106  0.098 0.109 -0.005  0.116  0.111 0.093
1000 -0.002 0.071  0.071 0.070 -0.003  0.077 0.072 0.071 -0.004 0.063 0.060 0.062

DGP3

¢ 500 -0.004 0.057 0.056 0.056 -0.008  0.059  0.057 0.062 -0.010  0.158 0.151 0.103
1000 -0.004 0.040 0.039 0.040 -0.003  0.041 0.040 0.046 -0.014 0.141 0.135 0.096
af 500 -0.008 0.092 0.089 0.087 -0.004 0.091 0.088 0.097 0.048 0.170 0.165 0.190
1000 -0.002  0.067 0.066 0.063 -0.006  0.066 0.062 0.067 0.036 0.188 0.181 0.169
ay 500 -0.007 0.090 0.087 0.089 -0.003  0.089 0.087 0.100 0.063 0.172 0.167 0.187
1000 -0.004 0.064 0.063 0.059 -0.003  0.065 0.061 0.068 0.042 0.175 0.167 0.177
a; 500 -0.005 0.110 0.106 0.103 -0.007  0.114 0.111 0.118 0.086 0.249 0.242 0.273
1000 -0.004 0.075 0.073 0.073 -0.005 0.076  0.072 0.089 0.068 0.216 0.207 0.265
a; 500 -0.006 0.109 0.106 0.105 -0.006  0.113 0.110 0.136 0.102 0.240 0.233 0.307
1000 -0.002 0.073 0.072 0.073 -0.005 0.076  0.072 0.089 0.063 0.214 0.205 0.252
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Table S.3: Biases, ASDs, and ESDs of the parametric CQR estimator for DGP2 and DGP3, where the
innovations follow the standard normal, Student’s ¢5 or Tukey-lambda distribution with the shape parameter

A = 0.1, denoted by F, Fi, or F), respectively.

n Bias ASD ESD Bias ASD ESD Bias ASD ESD
F=Fy F =F,, F=F)
DGP2
o1 500 -0.002 0.079 0.053 -0.001  0.090 0.056 -0.002 0.069 0.067
1000  0.000 0.056 0.037 0.000 0.049 0.040 -0.003 0.047 0.049
af 500 -0.038 0.080 0.084 -0.041 0.075 0.075 -0.003 0.054 0.054
1000 -0.034 0.059 0.056 -0.039 0.046 0.050 -0.004 0.038 0.042
a; 500 -0.046 0.093 0.092 -0.048 0.092 0.094 -0.010 0.089 0.072
1000 -0.037 0.065 0.066 -0.046  0.059 0.062 -0.005 0.056 0.055
DGP3
o1 500 -0.001 0.113 0.056 -0.004 0.070 0.063 0.001 0.149 0.110
1000 -0.003 0.057 0.040 -0.001 0.050 0.047 -0.004 0.131 0.099
af 500 -0.041 0.097 0.080 -0.047 0.066 0.076 -0.007 0.118 0.096
1000 -0.037 0.060 0.057 -0.048 0.050 0.053 -0.002 0.118 0.110
ay 500 -0.039 0.095 0.078 -0.045 0.065 0.076 0.003 0.117 0.124
1000 -0.038 0.058 0.053 -0.046  0.049 0.053 -0.002 0.106 0.090
a; 500 -0.045 0.115 0.092 -0.063 0.082 0.091 0.006 0.164 0.177
1000 -0.046 0.066 0.066 -0.062 0.057 0.069 0.004 0.121 0.166
a; 500 -0.044 0.116 0.094 -0.062 0.082 0.109 0.013 0.162 0.201

1000 -0.042 0.066 0.065 -0.060 0.057 0.071 -0.003 0.125 0.137
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Table S.4: Biases, ASDs, and ESDs of the semi-parametric CQR estimator for DGP4, where the innovations
follow the standard normal, Student’s t5 or Tukey-lambda distribution with the shape parameter A = 0.1,
denoted by Fuy, Fy, or F)\, respectively. ASD; and ASDy correspond to the bandwidths hp and hpg,

respectively.

n Bias ASD; ASD, ESD Bias ASD; ASD, ESD Bias ASD; ASD, ESD
F=Fy F=F, F=F,

ag 900 -0.038 0.062 0.061 0.102 -0.031  0.094 0.091 0.123 -0.053 0126 0.124 0.173
1000 -0.023 0.053 0.052 0.083 -0.012  0.052  0.050 0.070 -0.036 0.086 0.084 0.111
apr 500  0.140 0253 0.246 0.292 0.104 0.359 0.349 0.349 0.111 0357 0.352 0.403
1000 0.105 0.206 0.203 0.231 0.041 0235 0230 0.232 0.069 0.265 0.262 0.304
oo 900 -0.095 0.337 0.326 0.358 -0.024 0303 0292 0.288 -0.024 0341 0334 0332
1000 -0.054 0.304 0.294 0.307 -0.002  0.204 0.196 0.192 -0.012 0204 0.199 0.208
oqp 9500 0.008 0221 0215 0212 -0.013  0.088 0.086 0.115 -0.009 0.093 0.091 0.089
1000 -0.010 0.180 0.174 0.183 -0.011  0.053  0.050 0.059 -0.007  0.076  0.075 0.069
v 500 0234 0599 0.578 0.626 0.223 0457 0439 0.404 0.236  0.655 0.646 0.790
1000 0.222  0.558 0.544 0.497 0.171 0307 0.298 0.318 0.162 0.507 0.500 0.557
c 500 -0.017 0271 0.263 0.309 -0.003 0354 0344 0.332 0.015 0271 0.265 0.246
1000 -0.009 0.246 0.239 0.246 0.016 0.164 0.158 0.191 0.022 0165 0.161 0.165
a 500 0.080 0.109 0.104 0.155 0425 0191 0.187 0.212 0.313 0.152 0151 0.190
1000  0.071  0.082 0.078 0.106 0.405 0.160 0.154 0.168 0316  0.107 0.105 0.126
b 500 0.037 0.057 0.055 0.083 0.027  0.059 0.057 0.052 0.020 0.0563 0.053 0.055
1000 0.020 0.047 0.045 0.060 0.024 0.036 0.033 0.035 0.010 0.037 0.036 0.039
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Table S.5: Biases, ASDs, and ESDs of the parametric CQR for DGP4, where the innovations follow the
standard normal, Student’s t5 or Tukey-lambda distribution with the shape parameter A = 0.1, denoted by

Fyn, Fy, or F), respectively.

n Bias ASD ESD Bias ASD ESD Bias ASD ESD
F=Fy F =F, F =F),

ago  H00  -0.017 0.057 0.075 -0.021  0.080 0.093 -0.038 0.123 0.162
1000 -0.014 0.047 0.068 -0.014 0.037 0.055 -0.029 0.087 0.105

ap1 500 0.083 0.303 0.251 0.050 0.313 0.275 0.135 0.440 0.409
1000 0.062 0.240 0.211 0.006 0.173 0.191 0.076 0.284 0.303

ap 500 0.010 0.244 0.235 -0.039 0.242 0.223 -0.006 0.238 0.290
1000 -0.016 0.218 0.210 -0.038 0.158 0.141 -0.008 0.165 0.184

a11 500 0.027 0.191 0.168 -0.006 0.083 0.092 -0.002  0.090 0.098
1000  0.003 0.164 0.144 -0.013  0.079 0.073 -0.001  0.057 0.059

y 500 0.087 0.602 0.575 0.136  0.571 0.623 0.159 0.684 0.644
1000 0.127 0.550 0.521 0.100 0.404 0.437 0.114 0.508 0.545

c 500 0.025 0.223 0.195 -0.020 0.314 0.289 0.013 0.451 0.497
1000 0.005 0.209 0.174 -0.012 0.216 0.198 0.004 0.287 0.301

a 500 -0.100 0.074 0.047 -0.121  0.057 0.034 -0.018 0.078 0.078
1000 -0.098 0.053 0.039 -0.126  0.030 0.022 -0.016 0.055 0.056
b 500 -0.026 0.086 0.106 0.005 0.049 0.052 0.006 0.055 0.056
1000 -0.006 0.046 0.052 0.011 0.034 0.040 0.002 0.039 0.039
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Table S.6: Biases and RMSEs for estimating and predicting conditional quantiles at 7 = 5%, 10%, 90% and
95% for DGP2, where the innovations follow the standard normal, Student’s t5 or Tukey-lambda distribution
with the shape parameter A = 0.1, denoted by Fi, F;, or F), respectively. M1, M2, M3 and M4 represent

the semi-parametric CQR, parametric CQR, GQMLE and EQMLE, respectively.

Fy Ft5 Fy

Bias RMSE Bias RMSE Bias RMSE

T F in out in out in out in out in out in out

5% M1 0.002 0.002 0.137  0.136 -0.004 -0.005 0.407  0.341 -0.024 -0.003 1204 0.924
M2 -0.026 -0.043 1.406 0.772 0.519  0.520 0.695 0.685 -0.026 -0.043 1406 0.772
M3 -0.582 -0.617 1216 1277 -1.341 -1.401 3.582  3.960 -5.217  -5.364 15.278  16.392
M4 0.010 0.008 0134 0137  -0.006 -0.003 0.463 0.378 0.009  0.057 1.08  1.121
10% ML 0.003 0.005 0.116 0.113 0.000 -0.003 0.283 0.255 -0.008  0.008 0.848  0.686
M2 0.035 0.036 0.108 0.107 0.079  0.081 0.305 0.283 -0.008 -0.016 1.093  0.580
M3 -0.457 -0.484 0.950  1.000 -0.933  -0.978 2482 2.797 -3.611 -3.712 10.539 11.317
M4 0.006 0.005 0.115 0.118 -0.011  -0.007 0.330 0.254 0.010 0.054 0.748  0.765
90% M1  0.000 -0.002 0.115 0.108 0.004 -0.002 0.282 0.231 0.022  0.029 0.858  0.721
M2 -0.035 -0.037 0.107 0.105 -0.079  -0.070 0.297 0.222 0.006  0.020 0.986  0.575
M3 0459 0483 0.962  0.990 0922 0.992 2,518 3.096 3.611  3.756 10.602  11.729
M4 -0.005 -0.005 0.116 0.124 -0.004  0.002 0.303 0.241 -0.024  0.006 0.796  1.242
95% M1 -0.001 -0.002 0.137  0.132 0.013  0.005 0.403 0.338 0.011  0.037 1.208  1.027
M2 -0.188 -0.190 0.229 0.230 -0.519 -0.508 0.691 0.627 0.024  0.047 1.288  0.782
M3 0.588 0.620 1231 1.274 1.334 1439 3.637  4.489 5176 5.376 15232 16.719
M4 -0.007 -0.006 0.134 0.139 -0.007  0.001 0.441 0.344 -0.049  -0.025 1.085  1.565
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Table S.7: Biases and RMSEs for estimating and predicting conditional quantiles at 7 = 0.1%, 0.5%, 99.5%
and 99.9% for DGP2, where the innovations follow the standard normal, Student’s t5 or Tukey-lambda
distribution with the shape parameter A = 0.1, denoted by Fi, F}, or F), respectively. M1, M2, M3 and M4

represent the semi-parametric CQR, parametric CQR, GQMLE and EQMLE, respectively.

Fy F F
Bias RMSE Bias RMSE Bias RMSE

T F in out in out in out in out in out in out

01% M1 0033 0039 0438 0441 1.854 1.784 3.208  3.240 8.695 8462  11.040 9.790
M2 1417 1423 1458 1462 9.737 9729 10536 10.580 0837 -1.002 6.673  5.679
M3 -0870 -0934 2132 2241 -3201 -3758 15282 24095 -13.905 -15.075  51.190 62.931
M4 0177 0174 0394 0.385 1.667  1.648 5105 4.863 2906 2744 8.858  7.249
05% M1 0010 0011 0241 0249 -0.099 -0.140 1750 1.761 0.586  0.582 3.344 2.898
M2 0889 0893 0925 0.928 4165  4.160 4566  4.579 0274 -0.352 3.323 2455
M3 -0.860 -0.917 1870 1.972 -3.042 -3.256 8.918 11218  -11.164 -11.535  34.679 38.720
M4 0047 0045 0244 0242 0213 0.187 1.565  1.448 0.560  0.603 3.383  3.036
99.5% M1 -0.011 -0.015  0.243 0.257 0.067  0.093 1.695  1.649 -0.532  -0.576 3.208  2.756
M2 -0.890 -0895  0.925 0.930 -4.165 -4.149 4565  4.534 0272 0.357 3.210  2.501
M3 -0579 0927  1.895 1.982 -3.024 3325 9.124  12.402 -0.034 12245 35770 38.335
M4 -0.038 -0.039 0241 0244 0223 -0.191 1.682  1.504 0246 -0.255 3414 3.376
99.9% M1 -0.053 -0.058  0.448 0.456 -1.928  -1.861 3.246  3.188 8701 -8490 11127 9.838
M2 -1418 -1424 1459 1464 -9.737 9717 10.536  10.537 0.835  1.006 6.583  5.732
M3 -1.808 093 2153 2233  -11.026 3985 16936 24.536  -19.367 15509 54370 59.331
M4 -0170 -0.170  0.387 0.387 -1.635 -1.519 5131 4.767 -2498  -2.492 8.807  8.801
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Table S.8: Biases and RMSEs for estimating and predicting conditional quantiles at 7 = 5%, 10%, 90% and
95% for DGP4, where the innovations follow the standard normal, Student’s t5 or Tukey-lambda distribution
with the shape parameter A = 0.1, denoted by Fi, F;, or F), respectively. M1, M2, M3 and M4 represent

the semi-parametric CQR, parametric CQR, GQMLE and EQMLE, respectively.

FN Ft F)\

Bias RMSE Bias RMSE Bias RMSE

T F in out in out in out in out in out in out

5% ML -0.001 -0.004 0.116 0.129 0.142  0.142 0.285 0.308 0.083 -0.021 0.835 1.163
M2  0.008 0.012 0.076 0.107 0.170  0.224 0.319 0.382 0.079  0.019 0.764 0.758
M3 0.004 0.007 0.061 0.071 0.116  0.146 0.381 0.463 -0.665 -0.996 7775 7.839
M4 0.002 0.006 0.068 0.073 0.127  0.169 0.283 0.361 -0.159  -0.140 2.674 2317
10% M1 0.005 0.003 0.096 0.113 0.092  0.092 0.212  0.262 0.074 -0.010 0.750  1.005
M2 0.002 0.005 0.064 0.098 0.098 0.131 0.216  0.257 0.076  0.015 0.633 0.681
M3 0.002 0.005 0.054  0.064 0.076  0.092 0.300 0.394 -0.350  -0.660 6.921 6.731
M4 0.001 0.005 0.060 0.065 0.085  0.111 0.214 0.254 -0.081 -0.047 2.167 2272
90% M1 -0.006 -0.004 0.097 0.112 -0.119 -0.142 0.240  0.299 -0.086  -0.008 0.815 1.038
M2 -0.002 -0.004 0.063 0.061 -0.105 -0.140 0.229 0.290 -0.072  -0.014 0.632 0.912
M3 -0.002 0.002 0.054 0.067 -0.090 -0.121 0.317  0.455 0.228 -0.088 6.507  5.350
M4 -0.002 0.001 0.059 0.064 -0.098 -0.129 0.227  0.289 0.086  0.197 2.353  3.449
95% M1 -0.003  0.000 0.117 0.125 -0.172 -0.202 0.318  0.399 -0.083  -0.020 0.824 0.992
M2 -0.008 -0.010 0.075  0.066 -0.178  -0.234 0.334 0.412 -0.075  -0.018 0.763  0.920
M3 -0.003 0.002 0.061 0.074 -0.135 -0.176 0.402 0.579 0.634 0.334 7.499  5.680
M4 -0.001  0.001 0.068 0.070 -0.145 -0.191 0.303 0.394 0.167  0.249 2.005 3.368
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Table S.9: Biases and RMSEs for estimating and predicting conditional quantiles at 7 = 0.1%, 0.5%, 99.5%
and 99.9% for DGP4, where the innovations follow the standard normal, Student’s t5 or Tukey-lambda
distribution with the shape parameter A = 0.1, denoted by Fi, F}, or F), respectively. M1, M2, M3 and M4

represent the semi-parametric CQR, parametric CQR, GQMLE and EQMLE, respectively.

FN Ft F)\

Bias RMSE Bias RMSE Bias RMSE

T F in out in out in out in out in out in out

0.1% M1 0.015 0.009 0.192 0205 0.248  0.254 0.678 0.782 0.008 -0.022 1778 1.865
M2 0042 0047 0157 0.169 0.693  0.874 1120 1.374 0.017  -0.079 1243 1470
M3 0.022 0.024 0.096 0.103 0.402 0485 0.893 1.08  -2.292 -2.504 13.249 12173
M4 0013 0.018 0.104 0.103 0406 0.507 0771 0948  -0.632 -0.584 6.622  4.861
05% ML 0.082 0.073 0.246  0.263 1455 1.714 1941 2333  -0.054 -0.150 2.633  2.176
M2 0.079 0.083 0.243  0.245 1470 1.829 2.269 2818  -0.088 -0.095 1792 1.799
M3 0.064 0.065 0.147  0.149 1.031  1.257 1.863 2.277  -3.585 -3.894 18.642  16.482
M4 0.052 0.056 0.151 0.148 1.020 1.228 L1755 2202 -1.063 -1.067 9.717  8.260
99.5% ML 0.004 0.009 0233 0230  -1434 -1.733 1.935 2.511 0.068 0.116 2.632  2.662
M2 -0.080 -0.082 0.244 0221 -1.477 -1.838 2.284 2839 0.092  0.096 2.025  1.876
M3 -0.067 -0.060 0.146 0142  -1.118 -1421 1.929 2.486 3.576  3.072 16.328 11.101
M4 -0.055 -0.051 0.150 0137  -1.090 -1.400 1790 2.509 1203 1.107 11.003  10.569
99.9% M1 0.034  0.039 0211 0213  -0.286 -0.340 0.677 0.882  -0.008 0.056 LT 1775
M2 -0.042 -0.04 0.157 0138  -0.701 -0.884 1136 1396  -0.004 0.023 1203 1.207
M3 -0.025 -0.019 0.094 0104  -0.460 -0.596 0.948 1.209 2291 1.976 12313 8.805
M4 -0.016 -0.014 0.101 0.101 -0.469 -0.615 0.833 1.149 0.621  0.698 7120 9.797
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