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In the Supplementary Material, we provide additional discussions in Sections S1–S3, including

the discussions on the kernel matrix in COPES-DR, technical Assumption (A1), and addi-

tional asymptotic results of COPES methods. The additional numerical results are presented

in Section S4. In Section S5, we present technical proofs.
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S1 Kernel matrix in COPES-DR and its sample esti-

mator

We show that the matrix Mh
eDR can be re-expressed as Mh

eDR = 2
∑8

i=1Ki,

where the expressions of Ki, i = 1, . . . , 8, are

K1 =
1

3

∫ 1

0

Dh(u)D
⊤
h (u)du, K2 =

(∫ 1

0

uDh(u)du

)2

, K3 =

(∫ 1

0

Ch(u)C
⊤
h (u)du

)2

,

K4 =

(∫ 1

0

C⊤
h (u)Ch(u)du

)(∫ 1

0

Ch(u)C
⊤
h (u)du

)
,

K5 = −
(∫ 1

0

Dh(u)Ch(u)du

)(∫ 1

0

uC⊤
h (u)du

)
,

K6 = −
{∫ 1

0

Dh(u)

(∫ 1

0

uCh(u)du

)
C⊤

h (u)du

}
, K7 = K⊤

5 , K8 = K⊤
6 .

We first decompose Gh(u, u
∗) as follows,

Gh(u, u
∗) =

1

h2
E
{
(
−→
X −

−→
X∗)(

−→
X −

−→
X∗)⊤I(Ỹ < F−1(uh))I(Ỹ ⋆ < (F ∗)−1(u∗h))

}
− u∗ ·median{σ(Σ−1/2Th(u)Σ

−1/2)}Σ− u ·median{σ(Σ−1/2Th(u
∗)Σ−1/2)}Σ

=u∗ 1

h
E
{−→
X
−→
X⊤I(Ỹ < F−1(uh))

}
+ u

1

h
E
{−→
X∗(

−→
X∗)⊤I(Ỹ ∗ < (F ∗)−1(u∗h))

}
− 1

h2
E
{−→
XI(Ỹ < F−1(uh))

}
E
{
(
−→
X∗)⊤I(Ỹ ∗ < (F ∗)−1(u∗h))

}
− 1

h2
E
{
(
−→
X∗)I(Ỹ ∗ < (F ∗)−1(u∗h))

}
E
{−→
X⊤I(Ỹ < F−1(uh))

}
− u∗ ·median{σ(Σ−1/2Th(u)Σ

−1/2)}Σ− u ·median{σ(Σ−1/2Th(u
∗)Σ−1/2)}Σ

=u∗Dh(u) + uDh(u
∗)−Ch(u)C

⊤
h (u

∗)−Ch(u
∗)C⊤

h (u).
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Then,

Mh
DR =

∫ 1

0

∫ 1

0

Gh(u, u
∗)G⊤

h (u, u
∗)dudu∗

=

∫ 1

0

∫ 1

0

(u∗)2Dh(u)D
⊤
h (u)dudu

∗ +

∫ 1

0

∫ 1

0

u∗uDh(u)D
⊤
h (u

∗)dudu∗

−
∫ 1

0

∫ 1

0

u∗Dh(u)Ch(u
∗)C⊤

h (u)dudu
∗ −

∫ 1

0

∫ 1

0

u∗Dh(u)Ch(u)C
⊤
h (u

∗)dudu∗

+

∫ 1

0

∫ 1

0

u2Dh(u
∗)D⊤

h (u
∗)dudu∗ +

∫ 1

0

∫ 1

0

u∗uDh(u
∗)D⊤

h (u)dudu
∗

−
∫ 1

0

∫ 1

0

uDh(u
∗)Ch(u)C

⊤
h (u

∗)dudu∗ −
∫ 1

0

∫ 1

0

uDh(u
∗)Ch(u

∗)C⊤
h (u)dudu

∗

−
∫ 1

0

∫ 1

0

u∗Ch(u)C
⊤
h (u

∗)D⊤
h (u)dudu

∗ −
∫ 1

0

∫ 1

0

uCh(u)C
⊤
h (u

∗)D⊤
h (u

∗)dudu∗

+

∫ 1

0

∫ 1

0

Ch(u)C
⊤
h (u

∗)Ch(u
∗)C⊤

h (u)dudu
∗ +

∫ 1

0

∫ 1

0

Ch(u)C
⊤
h (u

∗)Ch(u)C
⊤
h (u

∗)dudu∗

−
∫ 1

0

∫ 1

0

uCh(u
∗)C⊤

h (u)D
⊤
h (u

∗)dudu∗ −
∫ 1

0

∫ 1

0

u∗Ch(u
∗)C⊤

h (u)D
⊤
h (u)dudu

∗

+

∫ 1

0

∫ 1

0

Ch(u
∗)C⊤

h (u)Ch(u)C
⊤
h (u

∗)dudu∗ +

∫ 1

0

∫ 1

0

Ch(u
∗)C⊤

h (u)Ch(u
∗)C⊤

h (u)dudu
∗

=2
8∑

i=1

Ki.

Note that K3 follows from the fact that

∫ 1

0

∫ 1

0

Ch(u
∗)C⊤

h (u)Ch(u
∗)C⊤

h (u)dudu
∗ =

∫ 1

0

∫ 1

0

Ch(u
∗)C⊤

h (u
∗)Ch(u)C

⊤
h (u)dudu

∗

=

(∫ 1

0

Ch(u)C
⊤
h (u)du

)(∫ 1

0

Ch(u
∗)C⊤

h (u
∗)du∗

)
,

where the first equation holds since C⊤
h (u)Ch(u

∗) = C⊤
h (u

∗)Ch(u) always

holds.
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Consequently, the sample estimator of the kernel matrix is

M̂
k/n
eDR = 2

8∑
i=1

K̂
k/n
i ,

where each component K̂
k/n
i , i = 1, . . . , 8, is as follows.

K̂1 =
1

3k

k∑
m=1

D̂k/n

(m
k

)
D̂⊤

k/n

(m
k

)
, K̂2 =

(
1

k

k∑
m=1

m

k
D̂k/n

(m
k

))2

K̂3 =

(
1

k

k∑
m=1

Ĉk/n

(m
k

)
Ĉ⊤

k/n

(m
k

))2

,

K̂4 =

(
1

k

k∑
m=1

Ĉ⊤
k/n

(m
k

)
Ĉk/n

(m
k

))(1

k

k∑
m=1

Ĉk/n

(m
k

)
Ĉ⊤

k/n

(m
k

))
,

K̂5 = −

(
1

k

k∑
m=1

D̂k/n

(m
k

)
Ĉk/n

(m
k

))(1

k

k∑
m=1

m

k
Ĉ⊤

k/n

(m
k

))
,

K̂6 = −

{
1

k

k∑
m=1

D̂k/n

(m
k

)(1

k

k∑
m=1

m

k
Ĉk/n

(m
k

))
Ĉ⊤

k/n

(m
k

)}
,

K̂7 = K̂⊤
5 , K̂8 = K̂⊤

6 .

S2 Discussion on Assumption (A1)

Aghbalou et al. (2024) assumed that limy→y+ E(X|Y > y), which does

not hold for many common distributions. We consider a toy example on

E(X|Y > y) where the dimension p = 1. Note that E(X|Y > y) is re-

lated to the concept of marginal expected shortfall (Acharya et al. 2017) in

systemic risk management.

Assume that the two random variables X, Y ∈ R are asymptotically de-
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pendent in the sense that for any (x, y) ∈ [0,∞]2\ {(∞,∞)}, the following

limit exists and is not identically zero,

lim
t→∞

tPr(1− FX(X) ≤ x/t, 1− FY (Y ) ≤ y/t),

where FX and FY are cumulative distribution functions forX and Y , respec-

tively. Assuming that X has a heavy right-hand tail, it has been established

in Cai et al. (2015) that the following asymptotic limit exists,

lim
y→y+

E(X | Y > y)

Q(FY (y))
→ c,

where c > 0 is some constant and Q is the quantile function of X such

that Q(α) = inf{x ∈ R : Pr(X ≤ x) ≥ α} for any 0 ≤ α ≤ 1. Thus, as y

approaches y+, the conditional expectation E(X | Y > y) → ∞, resulting

in the collapse of the convergence condition. Even in the case where X

follows the normal distribution, Hua & Joe (2014) showed that with some

additional conditions on the tail dependence of Y and X, we still have

E(X | Y > y) → ∞ as y → y+.

Assuming that X is from the univariate EC distribution. When we

replace X with the contour-projected predictor
−→
X = sign(X)σ, where σ2 is

the scatter parameter, the tail moment becomes to

E(
−→
X | Y > y) = σE(sign(X) | Y > y) = 2σ Pr{sign(X) = 1 | Y > y} − 1.

Then, the convergence assumption on E(X | Y > y) reduces to assuming

5
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the convergence of the conditional probability Pr{sign(X) = 1 | Y > y} as

y → y+, which is fairly mild in most applications.

S3 Additional asymptotic results

We first present the refinement of Theorem 5 under new assumptions. Then,

parallel to the development of the asymptotic theory of COPES-DR, we

develop the asymptotic theories of COPES-SIR and COPES-SAVE.

Recall that F denotes the cumulative distribution function of Ỹ = −Y .

A function f(y) is called eventually decreasing if there exists a constant y0,

such that f(y) is decreasing for y ≥ y0. We introduce the following two

assumptions, adapted from Assumptions (A1) and (A2).

(A1′) Let a(y) = E(
−→
X | Y > y)−ν with ν in Assumption (A1). Assume that

∥a(y)∥ is an eventually decreasing function such that
√
k∥a{−F−1(k/n)}∥ =

O(1) as n → ∞.

(A2′) Let b(y) := E(
−→
X
−→
X⊤|Y > y) − T with T in Assumption (A2). As-

sume that ∥b(y)∥F is an eventually decreasing function such that

√
k∥b{−F−1(k/n)}∥F = O(1) as n → ∞.

Corollary S1. Assume the same assumptions in Theorem 5 and that As-

sumptions (A1′) & (A2′) hold. Then, as n → ∞, we have (i) ∥M̂k/n
eDR −

6



S3. ADDITIONAL ASYMPTOTIC RESULTS7

MeDR∥F = OP (k
−1/2); (ii) ∥P

β̂
k/n
eDR

−PSY∞|X∥F = OP (k
−1/2).

Assumption (A1′) specifically quantifies the convergence rate of E(
−→
X |

Y > y) − ν in Assumption (A1) and imposes restrictions on the choice of

k to control the biases of the estimators; namely, k cannot be too large.

Similar conditions are often assumed in the literature on extreme value

statistics; see, for example, Lalancette et al. (2021) and de Haan & Fer-

reira (2006). Assumption (A2′) is proposed in the same spirit as Assump-

tion (A1′), specifying the convergence rate of E(
−→
X
−→
X⊤|Y > y) − T. With

these additional convergence rate assumptions, M̂
k/n
eDR and span(β̂

k/n
eDR) ex-

hibit
√
k-consistency in estimating MeDR and SY∞|X.

The following two theorems claim the consistency results for the esti-

mated kernel matrices and working subspaces in COPES-SIR and COPES-

SAVE.

Theorem S1. Assume that X follows the EC distribution and Assumption

(A1) & (A3) hold. Moreover, we assume that Cov(
−→
X|Y > y) converges as

y → y+. Then, as n → ∞, we have (i) ∥M̂k/n
eSIR − M

k/n
eSIR∥F = OP (k

−1/2);

(ii) ∥M̂k/n
eSIR −MeSIR∥F = oP (1); (iii) ∥Pβ̂

k/n
eSIR

−PSeSIR
∥F = oP (1).

Theorem S2. Assume that X follows the EC distribution and Assumptions

(A2) & (A3) hold. Moreover, we assume that Cov{vec(
−→
X
−→
X⊤)|Y > y}

converges as y → y+. Then, as n → ∞, we have (i) ∥M̂k/n
eSAVE−M

k/n
eSAVE∥F =

7
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OP (k
−1/2); (ii) ∥M̂k/n

eSAVE − MeSAVE∥F = oP (1). By further assuming that

dim(SeSAVE) < p/2, we have (iii) ∥P
β̂
k/n
eSAVE

−PSY∞|X∥F = oP (1).

With additional convergence Assumptions (A1′) and (A2′), a refined

description of the convergence properties for P
β̂
k/n
eSIR

, P
β̂
k/n
eSAVE

, span(β̂
k/n
eSIR),

and span(β̂
k/n
eSAVE) is available, presented in the following two corollaries.

Corollary S2. Assume the same assumptions in Theorem S1 and that

Assumption (A1′) holds. Then, as n → ∞, we have (i) ∥M̂k/n
eSIR−MeSIR∥F =

OP (k
−1/2); (ii) ∥P

β̂
k/n
eSIR

−PSeSIR
∥F = OP (k

−1/2).

Corollary S3. Assume the same assumptions in Theorem S2 and that As-

sumption (A2′) holds. Then, as n → ∞, we have (i) ∥M̂k/n
eSAVE−MeSAVE∥F =

OP (k
−1/2); (ii) ∥P

β̂
k/n
eSAVE

−PSY∞|X∥F = OP (k
−1/2).

S4 Additional numerical results

S4.1 The discussion on numerical performance of COPES

We provide more details about the comparison among the three specific

COPES methods. In summary, COPES-DR combines the advantages of

COPES-SIR and COPES-SAVE, dominating other competitors in most sit-

uations. And in scenarios where d∗ > 1, COPES-SAVE and COPES-DR

are better choices. Specifically, in Model A, where there is a monotone

8
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trend in the more contributing component of the model, COPES-SIR ex-

hibits the most favorable estimation performance and COPES-DR perform

comparably to COPES-SIR. In comparison, COPES-SAVE performs worse.

In Model C, where the monotone trend is absent, COPES-SAVE performs

comparably with COPES-SIR, while COPES-DR achieves the best perfor-

mance. In Models B and D, where d∗ = 2, the dimension-deficient method

COPES-SIR performs the worst. COPES-DR is, once again, the best com-

petitor in either heavy-tailed or light-tailed cases. In fact, under the mul-

tivariate normal distribution, similar patterns in the four models have also

been observed by their SDR counterparts, SIR, SAVE, and DR, see Li &

Wang (2007), for example. Thus, these COPES methods partly inherit the

characteristics of their counterparts in SDR.

S4.2 MSE plots under Models A–D

The MSE of the subspace estimation plots under Models A, C, and D are

presented in Figures S1–S3.

S4.3 Accuracy of structural dimension determination

In this section, we evaluate the accuracy of the dimension determination

based on COPES-SAVE and COPES-DR. The procedure has been de-

9
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Figure S1: MSEs for different competitors under various ν’s under Model A.
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Figure S2: MSEs for different competitors under various ν’s under Model C.

tailedly discussed in Section 5.4.

We set the ratio adjustment constant ε = 10−5. In each model, we

record the correct dimension selection ratio. We consider three sample sizes,

n = 5000, 10000, and 20000, and four k’s, including k = 2[n0.6], k = [n2/3],

10
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Figure S3: MSEs for different competitors under various ν’s under Model D.

k = [n0.7], and k = [2
3
n0.75], where [a] denotes the largest integer less or

equal to a. In Table S1, we report the dimension determination results of

COPES-DR under the scenario where the degree of freedom ν = 3. The

results for COPES-SAVE and other ν’s yield similar findings and are not

reported here.

Generally speaking, when the sample size n is large enough, and k is

selected at some reasonable ratio, our procedure achieves accurate deter-

mination of the structural dimension. Specifically, for fixed k, the correct

selection ratio steadily increases as n increases. For fixed n, the correct

selection ratio attains the peak for some properly selected k. Thus, when

samples are efficient, our method provides a simple and accurate way of de-

termining the structural dimension. The high accuracy also suggests that

11
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Table S1: Correct selection ratio based on COPES-DR under the scenario where ν = 3.

k n = 5000 n = 10000 n = 20000 n = 5000 n = 10000 n = 20000

Model A Model B

2[n0.6] 0.965 1 1 0.875 0.96 1

[n2/3] 0.965 1 1 0.85 0.96 1

[n0.7] 0.975 0.995 1 0.9 0.98 1

[ 23n
0.75] 0.975 0.995 1 0.9 0.98 1

Model C Model D

2[n0.6] 0.685 0.905 0.98 0.92 0.99 0.995

[n2/3] 0.58 0.88 0.98 0.855 0.985 0.995

[n0.7] 0.765 0.96 0.995 0.94 1 1

[ 23n
0.75] 0.76 0.955 0.995 0.94 1 1

the extreme SAVE subspace SeSAVE and extreme DR subspace SeDR co-

incide with the CES SY∞|X, indicating the exhaustiveness of two extreme

subspaces.

S4.4 Simulation results with non-identity scatter matrix

In this subsection, we examine the performance of our methods under Mod-

els A–D with X = W/
√
u/ν, where W ∼ N(0,Σ), u ∼ χ2

ν , and u is

independent of W. Here, we consider Σ = (σij) with σij = 0.5|i−j| for

1 ≤ i ≤ j ≤ p. All other settings remain consistent with those in Section 6.

The MSE of subspace estimation for each method is presented in Figures

S4–S7.

12
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Figure S4: MSEs for different competitors under various ν’s under Model A for autore-

gressive scatter matrix.

The results indicate patterns similar to those observed in Section 6.

Specifically, the COPES methods outperform the TIREX methods under

the heavy-tailed distribution, while they demonstrate comparable perfor-

mance under the normal distribution.

S4.5 Simulation results with non-EC distribution

Our proposal assumes the EC distribution for predictors. One intuitive

question is how the COPES methods perform when such EC distribution

is violated. To this end, we independently generate each covariate Xj,

j = 1, . . . , p, from t distribution with degree of freedom ν. We repeat all

experiments in Section 6. The results under four models with ν = 2, 3, 5

13



14 LIUJUN CHEN AND JING ZENG

0.00

0.25

0.50

0.75

1.00

0 500 1000 1500 2000
k

M
S

E

ν= 2

0.00

0.25

0.50

0.75

1.00

0 500 1000 1500 2000
k

M
S

E

ν= 3

0.00

0.25

0.50

0.75

1.00

0 500 1000 1500 2000
k

M
S

E

ν= 5

0.00

0.25

0.50

0.75

1.00

0 500 1000 1500 2000
k

M
S

E

Multivariate Normal

TIREX1 TIREX2 COPES−SIR COPES−SAVE COPES−DR

Figure S5: MSEs for different competitors under various ν’s under Model B for autore-

gressive scatter matrix.
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Figure S6: MSEs for different competitors under various ν’s under Model C for autore-

gressive scatter matrix.

are displayed in Figures S8–S10. It can be seen that COPES methods

still outperform TIREX1 and TIREX2 even when X is not from the EC

14
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Figure S7: MSEs for different competitors under various ν’s under Model D for autore-

gressive scatter matrix.

distribution, suggesting their insensitivity to the violation of the EC distri-

bution assumption. It is worth noting that COPES-DR performs the best

or comparably to the best method throughout all four models.

S4.6 Scatterplot in real data analysis

On Chinese stock dataset, we display the scatterplot of the reduced pre-

dictors β̂⊤
1 X and β̂⊤

2 X from COPES-SAVE in Figure S11. The red circles

represent the non-tail samples, and the green crosses represent the tail sam-

ples.
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Figure S8: MSE under Models A–D with Xj , j = 1, . . . , p, are independently generated

from t2.

S5 Proofs

S5.1 Proof of Theorem 1

It suffices to show that for any two EDR subspaces, Sα and Sβ, their

intersection Sα

⋂
Sβ = Sδ is also an extreme SDR subspace. Let α =

(α1, δ), β = (β1, δ), and η = (α1,β1, δ). When α1 = 0 or β1 = 0, then

δ = α or δ = β, and the result trivially follows. We consider the case

where α1 ̸= 0 and β1 ̸= 0. We first introduce the following preliminary

lemma.

Lemma S1. Assume that Sβ1 is an EDR subspace of Y given X. For any

Sβ2 such that Sβ1 ⊆ Sβ2, Sβ2 is also an EDR subspace of Y given X.

16
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Figure S9: MSE under Models A–D with Xj , j = 1, . . . , p, are independently generated

from t3.
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Figure S10: MSE under Models A–D with Xj , j = 1, . . . , p, are independently generated

from t5.
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Figure S11: Scatter plot of the reduced predictors β̂⊤
1 X and β̂⊤

2 X from COPES-SAVE on

Chinese stock dataset. The green crosses correspond to the observations with a response

less than y0, and the red circles correspond to those with a response greater than y0.

Since Sα and Sβ are EDR subspaces, then by Lemma S1, Sη is also an

EDR subspace. Let W = η⊤X = (W⊤
1 ,W

⊤
2 ,W

⊤
3 )

⊤, where W1 = α⊤
1 X,

W2 = β⊤
1 X, and W3 = δ⊤X. Consider a fixed point x ∈ ΩX and η⊤x =

(w⊤
1 ,w

⊤
2 ,w

⊤
3 )

⊤. We prove by showing that for any ε > 0, there exists some

constant y0 such that for any y ≥ y0, we have

∣∣∣∣Pr(Y > y | X = x)− Pr(Y > y | W3 = w3)

Pr(Y > y)

∣∣∣∣ ≤ ε, ∀x ∈ ΩX.

Let ΩW denote the support of W. Also, let Ω12|3(w3) denote the support

18



S5. PROOFS19

of (W1,W2) | (W3 = w3), which is defined as Ω12|3(w3) = {(w1,w2) :

(w1,w2,w3) ∈ Ωw}. Then, it is also equivalent to show that for any ε > 0,

there exists some constant y0 such that for any y ≥ y0, we have∣∣∣∣Pr(Y > y | X = x)− Pr(Y > y | W3 = w3)

Pr(Y > y)

∣∣∣∣ ≤ ε, ∀(w1,w2) ∈ Ω12|3(w3).

We prove by exploiting the fact that any two points in a convex set can be

chained by series of linked points. Here, we call that two points (w1,w2)

and (w∗
1,w

∗
2) in Ω12|3(w3) are linked if w1 = w∗

1 or w2 = w∗
2. This chain-

ing argument is motivated by the proof of Proposition 6.4 in Cook (1998).

However, Cook’s proof only involves the conditional distribution. In com-

parison, we need to deal with the conditional tail probability, used in the

definition of EDR subspace, more carefully.

Since Sα is an EDR subspace, for any ε > 0, there exists some constant

yα such that for any y ≥ yα, we have∣∣∣∣Pr(Y > y | X = x)− Pr(Y > y | W1 = w1,W3 = w3)

Pr(Y > y)

∣∣∣∣ ≤ ε. (S5.1)

For any (w∗
1,w

∗
2) ∈ Ω12|3(w3), assume (w1,w

∗
2) ∈ Ω12|3(w3), which is linked

with both (w∗
1,w

∗
2) and (w1,w2). Since (w1,w

∗
2) ∈ Ω12|3(w3), then there

exists some point x∗ ∈ ΩX such that η⊤x∗ = (w⊤
1 , (w

∗
2)

⊤,w⊤
3 )

⊤, then for

y ≥ yα,∣∣∣∣Pr(Y > y | X = x∗)− Pr(Y > y | W1 = w1,W3 = w3)

Pr(Y > y)

∣∣∣∣ ≤ ε, (S5.2)

19



20 LIUJUN CHEN AND JING ZENG

and there exists some constant yη such that for any y ≥ yη,∣∣∣∣Pr(Y > y | X = x∗)− Pr(Y > y | W1 = w1,W2 = w∗
2,W3 = w3)

Pr(Y > y)

∣∣∣∣ ≤ ε.

(S5.3)

Combining (S5.2) and (S5.3), for y ≥ max{yα, yη}, we have∣∣∣∣Pr(Y > y | W1 = w1,W3 = w3)− Pr(Y > y | W1 = w1,W2 = w∗
2,W3 = w3)

Pr(Y > y)

∣∣∣∣ ≤ 2ε.

(S5.4)

The subspace Sβ is also an EDR subspace, there exists some constant yβ

such that for any y ≥ yβ,∣∣∣∣Pr(Y > y | X = x∗)− Pr(Y > y | W2 = w∗
2,W3 = w3)

Pr(Y > y)

∣∣∣∣ ≤ ε. (S5.5)

Combining (S5.3) and (S5.5), by taking y ≥ max{yβ, yη}, we have∣∣∣∣Pr(Y > y | W2 = w∗
2,W3 = w3)− Pr(Y > y | W1 = w1,W2 = w∗

2,W3 = w3)

Pr(Y > y)

∣∣∣∣ ≤ 2ε.

(S5.6)

Since (w∗
1,w

∗
2) ∈ Ω12|3(w3), then there exists some point x∗∗ ∈ ΩX such

that η⊤x∗∗ = ((w∗
1)

⊤, (w∗
2)

⊤,w⊤
3 )

⊤. Similarly, for y ≥ max{yβ, yη}, we

obtain∣∣∣∣Pr(Y > y | X = x∗∗)− Pr(Y > y | W1 = w∗
1,W2 = w∗

2,W3 = w3)

Pr(Y > y)

∣∣∣∣ ≤ ε,

and ∣∣∣∣Pr(Y > y | X = x∗∗)− Pr(Y > y | W2 = w∗
2,W3 = w3)

Pr(Y > y)

∣∣∣∣ ≤ ε,

20



S5. PROOFS21

which is followed by∣∣∣∣Pr(Y > y | W2 = w∗
2,W3 = w3)− Pr(Y > y | W1 = w∗

1,W2 = w∗
2,W3 = w3)

Pr(Y > y)

∣∣∣∣ ≤ 2ε.

(S5.7)

Combining all results in (S5.1)(S5.4)(S5.6)(S5.7), for any y ≥ max{yα, yβ, yη},

we obtain∣∣∣∣Pr(Y > y | X = x)− Pr(Y > y | W1 = w∗
1,W2 = w∗

2,W3 = w3)

Pr(Y > y)

∣∣∣∣ ≤ 7ε.

(S5.8)

Since the support ΩX is convex, then Ω12|3(w3) is also convex. Any two

points in Ω12|3(w3) are connected by a series of linked points. Therefore,

(S5.8) holds for any (w∗
1,w

∗
2) ∈ Ω12|3(w3). Then, it follows that∣∣∣∣Pr(Y > y | X = x)− Pr(Y > y | W3 = w3)

Pr(Y > y)

∣∣∣∣ ≤ 7ε, ∀(w1,w2) ∈ Ω12|3(w3),

which completes the proof.

S5.2 Proof of Lemma 1

For EC distributed X, let R = ∥X − µ∥Σ. It is known that
−→
X and R are

independent (Johnson 1987). Thus,

Pr(Y > y|
−→
X) =E

{
Pr(Y > y|

−→
X, R)|

−→
X
}
=

∫
Pr(Y > y|

−→
X, r)dF

R|
−→
X
(r)

=

∫
Pr(Y > y|

−→
X, r)dFR(r) =: ER

{
Pr(Y > y|

−→
X, R)

}
,

21



22 LIUJUN CHEN AND JING ZENG

where ER denotes the expectation over R. Similarly, we have that,

Pr(Y > y|β⊤−→X) = ER

{
Pr(Y > y|β⊤−→X, R)

}
.

As a result,

∣∣∣Pr(Y > y|
−→
X)− Pr(Y > y|β⊤−→X)

∣∣∣
=
∣∣∣ER

{
Pr(Y > y|

−→
X, R)− Pr(Y > y|β⊤−→X, R)

}∣∣∣
=
∣∣ER

{
Pr(Y > y|X)− Pr(Y > y|β⊤X, R)

}∣∣
=
∣∣ER

{
Pr(Y > y|X)− Pr(Y > y|β⊤X) + Pr(Y > y|β⊤X)− Pr(Y > y|β⊤X, R)

}∣∣
≤ER

∣∣Pr(Y > y|X)− Pr(Y > y|β⊤X)
∣∣+ ER

∣∣Pr(Y > y|β⊤X)− Pr(Y > y|β⊤X, R)
∣∣

= : I1 + I2.

Since Sβ is an EDR subspace, then for any ε > 0, there exists some constant

y0 such that for all y ≥ y0,

∣∣∣∣Pr(Y > y|X = x)− Pr(Y > y|β⊤X = β⊤x)

Pr(Y > y)

∣∣∣∣ ≤ ε, for all x ∈ ΩX,

(S5.9)

which leads to

I1 ≤ εPr(Y > y).

For I2, since

Pr(Y > y|β⊤X) = E
{
Pr(Y > y|β⊤X)|β⊤X, R

}
,

22
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and

Pr(Y > y|β⊤X, R) =E
{
I(Y > y)|β⊤X, R

}
=E

[
E {I(Y > y)|X} |β⊤X, R

]
=E

{
Pr (Y > y|X) |β⊤X, R

}
,

then we have

I2 =ER

∣∣Pr(Y > y|β⊤X)− Pr(Y > y|β⊤X, R)
∣∣

=ER

∣∣E{Pr(Y > y|β⊤X)− Pr(Y > y|X)|β⊤X, R
}∣∣ .

By (S5.9), we have that, for y ≥ y0,

I2 ≤ εPr(Y > y).

For any x ∈ ΩX, let
−→x denote the corresponding contour-projected

vector and let Ωx⃗ denote the support of −→x . By combining the results for I1

and I2, we conclude that, for any ε > 0, there exists some constant y0 such

that for all y ≥ y0,∣∣∣∣∣Pr(Y > y|
−→
X = −→x )− Pr(Y > y|β⊤−→X = β⊤−→x )

Pr(Y > y)

∣∣∣∣∣ ≤ 2ε, for all −→x ∈ Ωx⃗,

and thus the proof is completed.

S5.3 Proof of Theorem 2

We first introduce the following auxiliary lemma.

23



24 LIUJUN CHEN AND JING ZENG

Lemma S2. If Sβ is an EDR subspace of Y given X, then for any real

valued functions g and h, measurable and bounded, we have

E
[
h(β⊤X)I(Y > y)

{
E
(
g(X)|Y,β⊤X

)
− E

(
g(X)|β⊤X

)}]
P (Y > y)

−→ 0, y → y+.

(S5.10)

Proof of Lemma S2. Since span(β) is an EDR subspace, we have that for

any ε > 0, there exists some constant y0 such that for all y ≥ y0,∣∣∣∣Pr(Y > y | X)− Pr(Y > y | β⊤X)

Pr(Y > y)

∣∣∣∣ ≤ ε, x ∈ ΩX,

By dominance convergency theorem, we have

∣∣∣∣Pr(Y > y | X)− Pr(Y > y | β⊤X)

Pr(Y > y)

∣∣∣∣ −→ 0, y → y+, in L1.

Then, by Propositions 3 and 4 in Aghbalou et al. (2024), (S5.10) holds.

The proof is similar to that of Theorem 1 in Aghbalou et al. (2024). It

suffices to show that

QβΣ
−1E(

−→
X | Y > y) −→ 0, y → y+.

Let πy = Pr(Y > y), then

QβΣ
−1E(

−→
X | Y > y) =π−1

y QβΣ
−1E{

−→
XI(Y > y)}

=π−1
y QβΣ

−1E{E(
−→
X | β⊤−→X, Y )I(Y > y)}.

24
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Since X is EC distributed, so is
−→
X. Then

−→
X satisfies the linearity condition

and we have that

E(
−→
X | β⊤−→X) = P⊤

β(p−1Σ)

−→
X,

which follows from Lemma 1.1 in Li (2018) and the fact that Cov(
−→
X) =

p−1Σ. Therefore,

QβΣ
−1E(

−→
X | β⊤−→X) = QβΣ

−1P⊤
β(p−1Σ)

−→
X = 0.

Then,

QβΣ
−1E(

−→
X | Y > y) = π−1

y QβΣ
−1E

[{
E(

−→
X | β⊤−→X, Y )− E(

−→
X | β⊤−→X)

}
I(Y > y)

]
.

According to Lemma 1, Sβ is also an EDR subspace of Y given
−→
X. We take

h = 1 and g(
−→
X) =

−→
X i, i = 1, . . . , p, in Lemma S2. Since

−→
X i is bounded,

then Lemma S2 is satisfied and we obtain that for i = 1, . . . , p,

π−1
y E

[{
E(

−→
X i | β⊤−→X, Y )− E(

−→
X i | β⊤−→X)

}
I(Y > y)

]
−→ 0, y → y+.

As a consequence,

QβΣ
−1E(

−→
X | Y > y) −→ 0, y → y+,

which completes the proof.

25
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S5.4 Proof of Lemma 2

Since

Ch(u) = uE
{−→
X | Ỹ < F−1(uh)

}
,

then under Assumption (A1), for any u ∈ [0, 1], we have

Ch(u) −→ uν, h → 0.

Since ∥
−→
X∥ is bounded from above, by dominated convergence theorem, we

have ∫ 1

0

Ch(u)C
⊤
h (u)du −→

∫ 1

0

u2νν⊤du, h → 0.

Therefore,

Mh
eSIR −→ 1

3
νν⊤ := MeSIR, h → 0

Then,

Σ−1span(MeSIR) = Σ−1span(ν) = SeSIR,

which completes the proof.

S5.5 Proof of Lemma 3

We define the standardized predictor
−→
Z = Σ−1/2−→X, which is uniformly

distributed on the unit sphere Sp−1 = {u ∈ Rp | ∥u∥ = 1}. Let α ∈ Rp×d

26
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be the orthonormal basis matrix of subspace Σ1/2span(η), then we have

Cov(
−→
X | η⊤−→X) = Σ1/2Cov(

−→
Z | η⊤Σ1/2−→Z )Σ1/2

= Σ1/2Cov(
−→
Z | α⊤−→Z )Σ1/2. (S5.11)

Let α0 ∈ Rp×(p−d) be the orthonormal basis of the orthogonal complement

of span(α) such that (α,α0) is orthogonal. Following the arguments in the

proof of Lemma 3 in Luo et al. (2009), we have that

Cov(
−→
Z | α⊤−→Z ) =

1− ∥α⊤−→Z ∥2

p− d
Pα0 .

Since

∥α⊤−→Z ∥2 =
−→
Z⊤Pα

−→
Z =

−→
X⊤Σ−1/2PαΣ

−1/2−→X,

and

Pα = PΣ1/2η = Σ1/2η(η⊤Ση)−1η⊤Σ1/2.

Then,

∥α⊤−→Z ∥2 =
−→
X⊤η(η⊤Ση)−1η⊤−→X = ∥P⊤

η(Σ)

−→
X∥2Σ.

By noting that ∥
−→
X∥2Σ = 1, we obtain

1− ∥α⊤−→Z ∥2 = ∥
−→
X∥2Σ − ∥P⊤

η(Σ)

−→
X∥2Σ = ∥Q⊤

η(Σ)

−→
X∥2Σ. (S5.12)
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From (S5.12), it can be seen that 1−∥α⊤−→Z ∥2 is a function of η⊤−→X. There,

we denote

ζ(η⊤−→X) =
1− ∥α⊤−→Z ∥2

p− d
=

∥Q⊤
η(Σ)

−→
X∥2Σ

p− d

and it follows that

Cov(
−→
Z | α⊤−→Z ) = ζ(η⊤−→X)Pα0 . (S5.13)

Combining (S5.11) and (S5.13), we obtain

Cov(
−→
X | η⊤−→X) = ζ(η⊤−→X)Σ1/2Pα0Σ

1/2 = ζ(η⊤−→X)ΣQη(Σ).

S5.6 Proof of Theorem 3

We show that

QβΣ
−1E

[−→
X
−→
X⊤ − ζ(β⊤−→X)Σ | Y > y

]
−→ 0, y → y+,

which is equivalent to

π−1
y QβΣ

−1E
([−→

X
−→
X⊤ − ζ(β⊤−→X)Σ

]
I(Y > y)

)
−→ 0, y → y+,

where πy = Pr(Y > y).

We begin with proving

QβΣ
−1E

[−→
X
−→
X⊤ − ζ(β⊤−→X)Σ | β⊤−→X

]
= 0. (S5.14)
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According to Lemma 3, we have

Cov(
−→
X | β⊤−→X) = ζ(β⊤−→X)ΣQβ(Σ).

Then,

QβΣ
−1E

[−→
X
−→
X⊤ − ζ(β⊤−→X)Σ | β⊤−→X

]
=QβΣ

−1
[
Cov(

−→
X | β⊤−→X) + E(

−→
X | β⊤−→X)E(

−→
X⊤ | β⊤−→X)− ζ(β⊤−→X)Σ

]
=QβΣ

−1
{
−ζ(β⊤−→X)ΣPβ(Σ) + (P⊤

β(p−1Σ)

−→
X)(P⊤

β(p−1Σ)

−→
X)⊤

}
,

=− ζ(β⊤−→X)QβΣ
−1ΣPβ(Σ) +QβΣ

−1P⊤
β(p−1Σ)

−→
X
−→
X⊤Pβ(p−1Σ)

=− ζ(β⊤−→X)QβPβ(Σ) +QβΣ
−1P⊤

β(Σ)

−→
X
−→
X⊤Pβ(Σ)

=0,

where in the second equation, we used the fact that E(
−→
X | β⊤−→X) =

P⊤
β(p−1Σ)

−→
X , and in the last equation, we use the fact that

QβPβ(Σ) =(I− β(β⊤β)−1β⊤)β(β⊤Σβ)−1β⊤Σ

=β(β⊤Σβ)−1β⊤Σ− β(β⊤Σβ)−1β⊤Σ

=0,

and

QβΣ
−1P⊤

β(Σ) =(I− β(β⊤β)−1β⊤)Σ−1Σβ(β⊤Σβ)−1β⊤

=β(β⊤Σβ)−1β⊤ − β(β⊤Σβ)−1β⊤

=0.
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Then, we have

π−1
y QβΣ

−1E
{(−→

X
−→
X⊤ − ζ(β⊤−→X)Σ

)
I(Y > y)

}
=π−1

y QβΣ
−1E

{
E
(−→
X
−→
X⊤ − ζ(β⊤−→X)Σ | β⊤−→X, Y

)
I(Y > y)

}
=π−1

y QβΣ
−1E

[{
E
(−→
X
−→
X⊤ − ζ(β⊤−→X)Σ | β⊤−→X, Y

)
−

E
(−→
X
−→
X⊤ − ζ(β⊤−→X)Σ | β⊤−→X

)}
I(Y > y)

]
=π−1

y QβΣ
−1E

[{
E
(−→
X
−→
X⊤ | β⊤−→X, Y

)
− E

(−→
X
−→
X⊤ | β⊤−→X

)}
I(Y > y)

]
.

where the second equality follows from (S5.14). Since Sβ is an EDR sub-

space of Y given
−→
X, according to Lemma S2, by taking h = 1 and g(

−→
X) =

−→
X i

−→
X j, for i, j ∈ {1, . . . , p}, since g(

−→
X) is bounded, we have

π−1
y E

[{
E
(−→
X i

−→
X j | β⊤−→X, Y

)
− E

(−→
X i

−→
X j | β⊤−→X

)}
I(Y > y)

]
−→ 0, y → y+.

(S5.15)

Hence, we have

π−1
y QβΣ

−1E
{(−→

X
−→
X⊤ − ζ(β⊤−→X)Σ

)
I(Y > y)

}
−→ 0, y → y+,

which finishes the proof.

S5.7 Proof of Lemma 4

We equivalently rewrite SeSAVE as

SeSAVE = Σ−1/2span(Σ−1/2TΣ−1/2 − τβI).
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Since we assume that dim(SeSAVE) < p/2, then

#{i | σi(Σ
−1/2TΣ−1/2) = τβ} > p/2,

which completes the proof.

S5.8 Proof of Lemma 5

Since

Th(u) = uE
{−→
X
−→
X⊤ | Ỹ < F−1(uh)

}
,

under Assumption (A2), for any u ∈ [0, 1], we have

Th(u) −→ uT, h → 0,

and

Dh(u) −→ uT− u ·median{σ(Σ−1/2TΣ−1/2)}Σ = u(T− τΣ).

Since ∥
−→
X∥ is bounded from above, by dominated convergence theorem, we

have

∫ 1

0

Dh(u)D
⊤
h (u)du −→

∫ 1

0

u2 {T− τΣ} {T− τΣ}⊤ du, h → 0.

Therefore,

Mh
eSAVE −→ 1

3
{T− τΣ} {T− τΣ}⊤ := MeSAVE, h → 0
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Since by Lemma 4, by assuming that dim(SeSAVE) < p/2, then SeSAVE =

Σ−1span(T− τΣ), then

Σ−1span(MeSAVE) = Σ−1span(T− τΣ) = SeSAVE,

which completes the proof.

S5.9 Proof of Lemma 6

We re-express E{(
−→
X −

−→
X∗)(

−→
X −

−→
X∗)⊤ | Y > y, Y ∗ > y∗} as

E{(
−→
X −

−→
X∗)(

−→
X −

−→
X∗)⊤ | Y > y, Y ∗ > y∗}

=E(
−→
X
−→
X⊤ | Y > y, Y ∗ > y∗) + E(

−→
X∗(

−→
X∗)⊤ | Y > y, Y ∗ > y∗)

− E(
−→
X(

−→
X∗)⊤ | Y > y, Y ∗ > y∗)− E(

−→
X∗−→X⊤ | Y > y, Y ∗ > y∗).

By Lemma 2.1 of Li et al. (2005), since (
−→
X, Y ) ⊥⊥ (

−→
X∗, Y ∗), then

−→
X ⊥⊥

−→
X∗ | (Y, Y ∗),

−→
X ⊥⊥ Y ∗ | Y and

−→
X∗ ⊥⊥ Y | Y ∗. Therefore, it follows that

E{(
−→
X −

−→
X∗)(

−→
X −

−→
X∗)⊤ | Y > y, Y ∗ > y∗}

=E(
−→
X
−→
X⊤ | Y > y) + E(

−→
X∗(

−→
X∗)⊤ | Y ∗ > y∗)− E(

−→
X | Y > y)E((

−→
X∗)⊤ | Y ∗ > y∗)

− E(
−→
X∗ | Y ∗ > y∗)E(

−→
X⊤ | Y > y)

=2E(
−→
X
−→
X⊤ | Y > y)− 2E(

−→
X | Y > y)E(

−→
X⊤ | Y > y).

Therefore, under Assumptions (A1) and (A2),

A = lim
y,y∗→y+

E{(
−→
X −

−→
X∗)(

−→
X −

−→
X∗)⊤ | Y > y, Y ∗ > y∗} = 2(T− νν⊤),
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which completes the proof.

S5.10 Proof of Theorem 4

By Lemma 6, A = 2(T− νν⊤). Then

SeDR = Σ−1span(T− τβΣ− νν⊤) ⊆ SeSIR ⊕ SeSAVE,

where S ⊕ S∗ := {u+ v | ∀u ∈ S,v ∈ S∗}. By Theorems 2 and 3, we have

SeDR ⊆ span(β).

S5.11 Proof of Lemma 7

In the proof of Lemma 6, we have shown that A = 2(T−νν⊤). Therefore,

SeDR = Σ−1span(T− νν⊤ − τβΣ).

Recall that SeSIR = Σ−1span(ν) and SeSAVE = Σ−1span(T− τβΣ), then it

follows that

SeSAVE ⊆ SeDR ⊕ SeSIR,

where S ⊕ S∗ := {u+ v | ∀u ∈ S,v ∈ S∗}, and

dim(SeSAVE) ≤ dim(SeDR) + dim(SeSIR) ≤ dim(SeDR) + 1.

By assuming that dim(SeDR) < p/2 − 1, we obtain dim(SeSAVE) < p/2.

Then according to Lemma 4, we have τβ = median{σ(Σ−1/2TΣ−1/2)},

which completes the proof.

33



34 LIUJUN CHEN AND JING ZENG

S5.12 Proof of Lemma 8

Since

1

h2
E
{
(
−→
X −

−→
X∗)(

−→
X −

−→
X∗)⊤I(Ỹ < F−1(uh))I(Ỹ ⋆ < F−1(u∗h))

}
=uu∗E

{
(
−→
X −

−→
X∗)(

−→
X −

−→
X∗)⊤ | Ỹ < F−1(uh), Ỹ ⋆ < F−1(u∗h)

}
,

by Lemma 6, under Assumptions (A1) and (A2), for any u, u∗ ∈ [0, 1], we

have that as h → 0,

1

h2
E
{
(
−→
X −

−→
X∗)(

−→
X −

−→
X∗)⊤I(Ỹ < F−1(uh))I(Ỹ ⋆ < (F ∗)−1(u∗h))

}
−→ uu∗A.

For Th(u) and Th(u
∗), under Assumption (A2), for any u ∈ [0, 1], we have

that as h → 0,

Th(u) −→ uT, Th(u
∗) −→ u∗T,

which is followed by

Gh(u, u
∗) −→uu∗A− 2uu∗ ·median{σ(Σ−1/2TΣ−1/2)}Σ

= uu∗(A− 2τΣ).

Since ∥
−→
X∥ is bounded from above, by dominated convergence theorem, we

have that as h → 0,∫ 1

0

∫ 1

0

Gh(u, u
∗)G⊤

h (u, u
∗)dudu∗ −→

∫ 1

0

∫ 1

0

u2(u∗)2(A− 2τΣ)(A− 2τΣ)⊤dudu∗.

Therefore,

Mh
eDR −→ 1

9
(A− 2τΣ)(A− 2τΣ)⊤ := MeDR, h → 0. (S5.16)
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According to Lemma 7, by assuming that dim(SeDR) < p/2−1, then SeDR =

Σ−1span(A − 2τΣ), then Σ−1span(MeDR) = Σ−1span(A − 2τΣ) = SeDR,

which completes the proof.

S5.13 Proof of Lemma 9

According to the definition of ri, we have that, we have that,

ri ≤
σ1(MeDR) + ε

σd∗(MeDR) + ε
, i = 1, . . . , d∗ − 1,

and

ri = 1, i = d∗ + 1, . . . , p− 1.

By choosing ε > 0 such that

σ1(MeDR) + ε

σd∗(MeDR) + ε
≤ σd∗(MeDR)

ε
+ 1,

that is,

ε{σ1(MeDR)− 2σd∗(MeDR)} < σ2
d∗(MeDR),

then we have d∗ = argmaxi {ri} .

In Theorem 5, we have shown that ∥M̂k/n
eDR−MeDR∥F = oP (1) as n → ∞.

Then by Weyl’s inequality, for i = 1, . . . , p− 1, we have

|σi(M̂
k/n
eDR)− σi(MeDR)| = oP (1), n → ∞.
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Then, for i = 1, . . . , p− 1,

|r̂i − ri| = oP (1), n → ∞,

which completes the proof.

S5.14 Proofs of Theorems 5, S1, and S2

We need the following two consistency results of the estimated functions

Ĉk/n(u) and T̂k/n(u).

Lemma S3. Under the EC distribution assumption of X and Assump-

tions (A1) & (A3), as n → ∞, we have

√
k
(
Ĉk/n(u)−Ck/n(u)

)
d→ WC(u), u ∈ [0, 1],

where WC(u) is a Gaussian process with mean zero and covariance structure

E (WC(u1)WC(u2)) = min(u1, u2) lim
y→y+

Cov(
−→
X|Y > y), u1, u2 ∈ [0, 1].

provided that limy→y+ Cov(
−→
X|Y > y) exists.

Lemma S4. Under the EC distribution assumption of X and Assump-

tions (A2) & (A3), as n → ∞, we have

√
k
(
vec(T̂k/n(u))− vec(Tk/n(u))

)
d→ WT(u), u ∈ [0, 1],

where WT(u) is a Gaussian process with mean zero and covariance structure

E (WT(u1)WT(u2)) = min(u1, u2)

{
lim
y→y+

Cov{vec(
−→
X
−→
XT )|Y > y}

}
, u1, u2 ∈ [0, 1].

36



S5. PROOFS37

provided that limy→y+ Cov{vec(
−→
X
−→
XT )|Y > y} exists.

Proof of Lemmas S3 and S4. We have

Ĉk/n(u)−Ck/n(u) =
1

k

n∑
i=1

−→x iI
(
Ỹi ≤ F̂−1(uk/n)

)
− n

k
E
{−→
XI

(
Ỹ < F−1(uk/n)

)}
=

1

k

n∑
i=1

{
Xi − µ̂

∥Xi − µ̂∥Σ̂
− Xi − µ

∥Xi − µ∥Σ̂

}
I
(
Ỹi ≤ F̂−1(uk/n)

)
+

1

k

n∑
i=1

{
Xi − µ

∥Xi − µ∥Σ̂
− Xi − µ

∥Xi − µ∥Σ

}
I
(
Ỹi ≤ F̂−1(uk/n)

)
+

[
1

k

n∑
i=1

−→
X iI

(
Ỹi ≤ F̂−1(uk/n)

)
− n

k
E
{−→
XI

(
Ỹ < F−1(uk/n)

)}]

=: I1(u) + I2(u) + I3(u).

By Theorem 3 in Aghbalou et al. (2024), we have that,

√
kI3(u)

d→ WC(u).

Thus, it remains to show that, as n → ∞,

∥I1(u)∥ = oP (k
−1/2),

∥I2(u)∥ = oP (k
−1/2),

uniformly for u ∈ [0, 1].

For the sake of notation simplicity, we assume without loss of generality

that µ = 0 and Σ = Ip. For I1(u), define

gj(t) =
1

k

n∑
i=1

(Xij − tµ̂j)∥Xi − tµ̂∥−1

Σ̂
I
(
Ỹi ≤ F̂−1(uk/n)

)
.

where 0 ≤ t ≤ 1 and j = 1, 2, . . . , p. By the mean-value theorem, we have

that gj(1) − gj(0) = ġj(t̃) for some 0 ≤ t̃ ≤ 1 and ġj is the first-order
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derivative of gj:

ġj(t) = −µ̂j

{
1

k

n∑
i=1

∥Xi − tµ̂∥−1

Σ̂
I
(
Ỹi ≤ F̂−1(uk/n)

)}

+
1

k

n∑
i=1

(Xij − tµ̂j)∥Xi − tµ̂∥−3

Σ̂
(Xi − tµ̂)T Σ̂−1µ̂I

(
Ỹi ≤ F̂−1(uk/n)

)
.

Let µ̃ = t̃µ̂. Then, the j-th element of I1(u) is∣∣∣I(j)1 (u)
∣∣∣ = |gj(1)− gj(0)| =

∣∣ġj(t̃)∣∣
≤ 1

k

n∑
i=1

|µ̂j|
∥Xi − µ̃∥Σ̂

I
(
Ỹi ≤ F̂−1(uk/n)

)

+
1

k

n∑
i=1

(Xij − µ̃j)
{
Σ̂−1(Xi − µ̃)

}T

µ̂

∥Xi − µ̃∥3
Σ̂

I
(
Ỹi ≤ F̂−1(uk/n)

)
=: I

(j)
1,1(u) + I

(j)
1,2(u).

Let p = 3 and q = 3/2. The 1/p + 1/q = 1. By applying the Hölder’

inequality, we have that,

I
(j)
1,1(u) ≤

1

k

{
n∑

i=1

|µ̂j|p

∥Xi − µ̃∥p
Σ̂

}1/p{ n∑
i=1

I
(
Ỹi ≤ F̂−1(uk/n)

)}1/q

≤ 1

k

{
n∑

i=1

∥µ̂∥p

∥Xi − µ̃∥p
Σ̂

}1/p

k1/q.

Note that,
n∑

i=1

∥µ̂∥p

∥Xi − µ̃∥p
Σ̂

≤
n∑

i=1

∥µ̂∥p

∥Σ̂∥−p/2∥Xi − µ̃∥p

= n∥µ̂∥p × ∥Σ̂∥p/2 ×

{
1

n

n∑
i=1

1

∥Xi − µ̃∥p

}
By Theorem 4.2 of Tyler (1987), we have µ̂ = OP (n

−1/2) and Σ̂ = OP (1)

as n → ∞. Under Assumption (A3), by (A27) of Luo et al. (2009), we have
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1
n

∑n
i=1 1/∥Xi − µ̃∥p = OP (1). Thus, as n → ∞,

I
(j)
1,1(u) = OP

{
1

k

(
nn−p/2

)1/p
k1/q

}
= OP (n

−1/6k−1/3) = OP (k
−1/2(k/n)1/6) = oP (k

−1/2),

uniformly for u ∈ [0, 1]. Similarly, we can show that,

I
(j)
1,2(u) = oP (1),

and hence

∥I1(u)∥ = oP (1),

uniformly for u ∈ [0, 1] as n → ∞.

Next, we consider I2(u). For the j-th element of I2(u),∣∣∣I(j)2 (u)
∣∣∣ = ∣∣∣∣∣1k

n∑
i=1

{
Xij

∥Xi∥Σ̂
− Xij

∥Xi∥

}
I
(
Ỹi ≤ F̂−1(uk/n)

)∣∣∣∣∣
=

∣∣∣∣∣1k
n∑

i=1

{
Xij

∥Xi∥Σ̂∥Xi∥
·
∥Xi∥2 − ∥X∥2

Σ̂

∥Xi∥+ ∥X∥Σ̂
· I
(
Ỹi ≤ F̂−1(uk/n)

)}∣∣∣∣∣
=

∣∣∣∣∣∣1k
n∑

i=1

 Xij

∥Xi∥Σ̂∥Xi∥
·
XT

i

(
Ip − Σ̂−1

)
Xi

∥Xi∥+ ∥X∥Σ̂
· I
(
Ỹi ≤ F̂−1(uk/n)

)
∣∣∣∣∣∣

≤ ∥Ip − Σ̂−1∥

∣∣∣∣∣1k
n∑

i=1

{
∥Σ̂∥1/2∥Xi∥
∥Xi∥∥Xi∥

· ∥Xi∥2

∥Xi∥+ ∥Σ̂∥−1/2∥Xi∥
· I
(
Ỹi ≤ F̂−1(uk/n)

)}∣∣∣∣∣
= ∥Ip − Σ̂−1∥1

k
∥Σ̂∥1/2

{
1 + ∥Σ̂∥−1/2

}−1
n∑

i=1

I
(
Ỹi ≤ F̂−1(uk/n)

)
≤ 1

k
∥Ip − Σ̂−1∥∥Σ̂∥1/2

{
1 + ∥Σ̂∥−1/2

}−1

k

= ∥Ip − Σ̂−1∥∥Σ̂∥1/2
{
1 + ∥Σ̂∥−1/2

}−1

.

By Theorem 4.2 of Tyler (1987), we have that, as n → ∞,

∥Ip − Σ̂−1∥ = OP (n
−1/2),
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and

∥Σ̂∥1/2 = OP (1), ∥Σ̂∥−1/2 = OP (1).

Thus, as n → ∞, ∥I2(u)∥ = oP (k
−1/2) uniformly for u ∈ [0, 1] and the proof

is complete.

The proof of Lemma S4 is similar to that of Lemma S3 and is thus

omitted.

We prove Theorem 5 as an example. The proofs of Theorems S1 and

S2 are similar to that of Theorem 5 and are thus omitted. By integrating

Ĉk/n(u) and D̂k/n(u) on u over [0, 1], according to Lemma S3 and S4, we

have that,

∥M̂k/n
eDR −M

k/n
eDR∥F = OP (k

−1/2), n → ∞. (S5.17)

Note that,

∥M̂k/n
eDR −MeDR∥F ≤ ∥M̂k/n

eDR −M
k/n
eDR∥F + ∥Mk/n

eDR −MeDR∥F ,

According to (S5.17) and the result in Lemma 8, we have that,

∥M̂k/n
eDR −MeDR∥F = oP (1), n → ∞.

In addition,

∥Σ̂−1M̂
k/n
eDR −Σ−1MeDR∥F ≤ ∥Σ̂−1∥∥M̂k/n

eDR −MeDR∥F + ∥MeDR∥∥Σ̂−1 − Ip∥F .
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Since we have

∥Σ̂−1∥ = OP (1), ∥Ip − Σ̂−1∥F = OP (n
−1/2),

then

∥Σ̂−1M̂
k/n
eDR −Σ−1MeDR∥F = oP (1).

Recall that under the assumption that dim(SeDR) < p/2 − 1, we have

Σ−1span(MeDR) = SeDR = SY∞|X. Since β̂
k/n
eDR = SVDd∗(Σ̂

−1M̂
k/n
eDR). Then

by Theorem 2 in Yu et al. (2015), we have

∥P
β̂
k/n
eDR

−PSY∞|X∥F ≤ 2
√
2∥Σ̂−1M̂

k/n
eDR −Σ−1MeDR∥F

σd∗(Σ−1MeDR)
.

Since dim(Σ−1MeDR) = d∗, then σd∗(Σ
−1MeDR) > 0. And we have that

∥P
β̂
k/n
eDR

−PSY∞|X∥F = oP (1).

S5.15 Proofs of Corollaries S1, S2, and S3

We only prove Corollary S1, the proofs for Corollaries S2 and S3 are similar

and thus omitted.

In the proof of Theorem 5, we obtain that

∥M̂k/n
eDR −MeDR∥F ≤ ∥M̂k/n

eDR −M
k/n
eDR∥F + ∥Mk/n

eDR −MeDR∥F
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and that

∥M̂k/n
eDR −M

k/n
eDR∥F = OP (k

−1/2), n → ∞.

It only remains to show that as n → ∞,

∥Mk/n
eDR −MeDR∥F = O(k−1/2). (S5.18)

Recall that

Ch(k/n) = uE
{−→
X | Ỹ < F−1(uk/n)

}
.

Under Assumption (A1′), we have that,

∥Ch(u)− uν∥ = u∥a(−F−1(uk/n))∥ = O(k−1/2),

uniformly for all u ∈ [0, 1]. Similarly, we can show that

∥Th(u)− uT∥F = O(k−1/2),

uniformly for all u ∈ [0, 1]. Then (S5.18) holds since M
k/n
eDR are constructed

by Ch(u) and Th(u).

S5.16 Proof of Lemma S1

We have

Pr(Y > y | X)− Pr(Y > y | β⊤
2 X)

Pr(Y > y)

=
Pr(Y > y | X)− Pr(Y > y | β⊤

1 X)

Pr(Y > y)
+

Pr(Y > y | β⊤
1 X)− Pr(Y > y | β⊤

2 X)

Pr(Y > y)
.

(S5.19)
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Since Sβ1 is an EDR subspace of Y given X, then for any ε > 0, there exists

some constant y0 such that for any y ≥ y0, we have

∣∣∣∣Pr(Y > y | X = x)− Pr(Y > y | β⊤
1 X = β⊤

1 x)

Pr(Y > y)

∣∣∣∣ ≤ ε, ∀x ∈ ΩX.

(S5.20)

Meanwhile,

Pr(Y > y | β⊤
1 X)− Pr(Y > y | β⊤

2 X)

Pr(Y > y)

=
E
{
Pr(Y > y | β⊤

1 X) | β⊤
2 X
}
− E

{
Pr(Y > y | X) | β⊤

2 X
}

Pr(Y > y)

=E
{
Pr(Y > y | β⊤

1 X)− Pr(Y > y | X)

Pr(Y > y)

∣∣∣∣β⊤
2 X

}
.

Then,

∣∣∣∣Pr(Y > y | β⊤
1 X)− Pr(Y > y | β⊤

2 X)

Pr(Y > y)

∣∣∣∣ ≤ E
{∣∣∣∣Pr(Y > y | β⊤

1 X)− Pr(Y > y | X)

Pr(Y > y)

∣∣∣∣ ∣∣∣∣β⊤
2 X

}
.

Combined with (S5.20), we have

∣∣∣∣Pr(Y > y | β⊤
1 X = β⊤

1 x)− Pr(Y > y | β⊤
2 X = β⊤

2 x)

Pr(Y > y)

∣∣∣∣ ≤ ε, ∀x ∈ ΩX.

Therefore, for any ε > 0, there exists some constant y0 such that for any

y ≥ y0, we have

∣∣∣∣Pr(Y > y | X = x)− Pr(Y > y | β⊤
2 X = β⊤

2 x)

Pr(Y > y)

∣∣∣∣ ≤ ε, ∀x ∈ ΩX,

which finishes the proof.
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