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S1 Simulation

S1.1 Score Variation Test

This section aims to validate the results presented in Section 3. We set the param-

eters as follows: n = 100, m = 100, h = 0.003, M = 300 and generate π∗
i from a

uniform grid ranging from 1 to 3. The experiment is repeated 1000 times, and the

test statistic is computed for each item. The histograms of the test statistics for

the first ten items are depicted in Figure 1, with the line representing the density

of the standard normal distribution. We observe that the empirical distribution

closely aligns with the theoretical value.
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Figure 1: Empirical and theoretical density of test statistic Ta.

Then we consider the scenario where π∗
i (t) ≡ a0i for i = 1, . . . , n

2
, and π∗

i (t) =

a0(i−n
2
)+0.5 sin(5a0it) for i =

n
2
+1, . . . , n, where a0i are equidistant points sampled

from the interval [1, 3]. We normalize the sum of score functions to 1
2
at each time

point for both the static and dynamic groups. We set m = 50, M = 150, p = 1,

and vary the bandwidth h from 0.003 to 0.009. Additionally, we change the value

of n from 30 to 90. The experiment is repeated 2000 times for each combination

of settings. We conduct the tests for items 1 and n/2 + 1 under Ha
0 and Ha

1

respectively. The empirical type I errors and test powers are presented in Tables 1

and 2.

We find the empirical type I errors are close to 0.05 and the empirical test

powers are close to 1. The results indicate that both the test level and power are

not sensitive to the choice of h. In fact, the cross-validation algorithm proposed

by Bong et al. (2020) can be directly applied here. As they point out, it is com-
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Table 1: Type I error of score variation test with the change of n and h.

h 0.003 0.004 0.005 0.006 0.007 0.008 0.009

n=30 0.0850 0.0615 0.0605 0.0470 0.0495 0.0485 0.0590

n=50 0.0615 0.0640 0.0595 0.0475 0.0455 0.0490 0.0535

n=70 0.0505 0.0610 0.0615 0.0540 0.0475 0.0500 0.0585

n=90 0.0590 0.0460 0.0475 0.0535 0.0515 0.0540 0.0515

Table 2: Test power of score variation test with the change of n and h.

h 0.003 0.004 0.005 0.006 0.007 0.008 0.009

n=30 0.9720 0.9970 0.9995 1 1 1 1

n=50 1 1 1 1 1 1 1

n=70 1 1 1 1 1 1 1

n=90 1 1 1 1 1 1 1

putationally expensive to select h when n and M are large, and experiments show

that h within a reasonable range yields good performance close to those obtained

through cross-validation.

Then we keep h = 0.005 fixed and vary M and m. The results in Figure 2

indicate that n and m have minimal impact on the type I error, while the power

shows an increasing trend as n, m and M grow.

We then consider the multiple hypothesis testing. For the FDR control, we

still use the above score functions. We test the score variation of items 1 to k,
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Figure 2: Results of score variation test with the change of n, m and M .

and recall that we have k0 = n/2. We let Mh = 2, m = 50, p = 1 and set

n = 30, 60, and 90, and vary k such that k0/k changes from 0.5 to 1. We repeat

the experiment 2000 times for each combination of settings. Table 3 presents the

empirical FDR results. The results illustrate that the FDR is well controlled below

the nominal α and there is an increasing trend of empirical FDR with the increase

of k0/k. Table 4 shows the empirical FDR power, which is defined as the true

positive rate. The empirical FDR power is close to 1, indicating that the proposed
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Table 3: Empirical FDR of score variation test with the change of n, α and k0/k.

α=0.05 α=0.1 α=0.2

k0/k 0.5 0.75 1 0.5 0.75 1 0.5 0.75 1

n=30 0.0066 0.0123 0.0280 0.0114 0.0200 0.0435 0.0186 0.0335 0.0695

n=60 0.0071 0.0135 0.0435 0.0115 0.0224 0.0620 0.0192 0.0358 0.0955

n=90 0.0071 0.0144 0.0475 0.0119 0.0223 0.0765 0.0196 0.0378 0.1230

Table 4: Empirical FDR power of score variation test with the change of n, α and k0/k.

α=0.05 α=0.1 α=0.2

k0/k 0.5 0.75 1 0.5 0.75 1 0.5 0.75 1

n=30 0.9934 0.9976 1.0000 0.9886 0.9959 1.0000 0.9814 0.9925 1.0000

n=60 0.9929 0.9967 1.0000 0.9885 0.9946 1.0000 0.9808 0.9909 1.0000

n=90 0.9929 0.9967 1.0000 0.9881 0.9945 1.0000 0.9804 0.9908 1.0000

FDR procedure is able to identify dynamic items with well-controlled FDR.

S1.2 Score Function Equality Test

Consider the functions π∗
i (t) = a0i + 0.5 sin(5a0it), i ∈ [n], where {a0i}i∈[n] are

equidistant points sampled from the interval [1, 3]. We conduct a test under the

null hypothesis Hb
0 by setting π∗

2(t) = π∗
1(t) and examining whether items 1 and 2

share the same score function. We set n = 100, p = 1, m = 100 and h = 0.003.

We let M vary from 300 to 500, and repeat the experiment 1000 times. Figure

3 displays the density of the empirical statistic Tb in comparison to the standard

normal distribution.



NAN LU, JIAN SHI, XIN-YU TIAN AND KAI SONG

Figure 3: Empirical and theoretical density of test statistic Tb.

Then with m = 50 and M = 150, we vary n and h, repeating the experiments

2000 times. The type I error results are summarized in Table 5. The results indicate

that the type I error is close to 0.05 when h lies within the range [0.005, 0.008].

Additionally, we conduct a test to determine whether items 1 and [n
4
] share the

same score function under Hb
1. The results are shown in Table 6. We can observe

that h has minimal influence on both the type I error and the test power.

To investigate further, we fix h at 0.005 and examine how the rejection pro-

portion varies with changes of n and M . As depicted in Figure 4, the type I error

remains close to 0.05, and there is a slight increasing trend as n grows. Besides,

there is a significant increase in test power with larger values of n, m, and M .

S1.3 Top-K Test

In this section, we focus on the top-K test. We consider a scenario with n = 10,

where the score functions are defined as follows: π∗
1(t) = π∗

2(t) = 0.3+0.01 sin(5πt),

π∗
3(t) = 0.2+0.025 sin(5πt−π) and π∗

4(t) = 0.15+0.025 sin(5πt)+δ. The remaining
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Table 5: Type I error of score equality test with the change of n and h.

h 0.003 0.004 0.005 0.006 0.007 0.008 0.009

n=70 0.0315 0.0435 0.0390 0.0410 0.0470 0.0475 0.0620

n=90 0.0400 0.0375 0.0465 0.0430 0.0470 0.0580 0.0660

n=110 0.0355 0.0450 0.0425 0.0540 0.0475 0.0575 0.0565

n=130 0.0360 0.0495 0.0485 0.0525 0.0530 0.0505 0.0670

Table 6: Test power of score equality test with the change of n and h.

h 0.003 0.004 0.005 0.006 0.007 0.008 0.009

n=70 1 1 1 1 1 1 1

n=90 1 1 1 1 1 1 1

n=110 1 1 1 1 1 1 1

n=130 1 1 1 1 1 1 1

six items are equally partitioned to ensure that the sum of scores is 1 at each time

point. Set h = 0.05 and p = 1. We employ 500 bootstrap repetitions and repeat

the simulations 500 times.

We test whether item 3 ranks among the top 3 items at time point 0.1, with

different distances betweenHc
0 andHc

1 adjusted using the parameter δ. As Theorem

5 implies, the test’s difficulty is determined by ∆̃. Specifically, the type I error is

more likely to occur when π∗
(3)(t0)−π∗

(4)(t0) is close to 0, since a small perturbation

can lead to the wrong order of the two items. Conversely, with a large value of
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Figure 4: Results of score equality test with the change of n, M and m.

π∗
(3)(t0)− π∗

(4)(t0), it is less prone to getting a wrong rank. To investigate the most

error-prone scenario, we set ∆̃ to a small value, specifically 10−5. This choice of

a small ∆̃ allows us to examine the performance in a highly challenging situation.

Additionally, we conduct the top-K test over a time interval [0.1, 0.2], which is

approximated by sequential points spaced by 0.01.

From the results in Tables 7 and 8, the type I error is controlled at approx-
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Table 7: Rejection proportions of top-K test at time point 0.1.

H0 H1

∆̃ 10−5 0.02 0.05 0.08 0.10

Mh DRI DRIS DRI DRIS DRI DRIS DRI DRIS DRI DRIS

10.0 0.000 0.012 0.000 0.062 0.006 0.330 0.052 0.866 0.192 0.992

12.5 0.000 0.024 0.000 0.110 0.004 0.462 0.100 0.928 0.324 1.000

15.0 0.000 0.026 0.002 0.096 0.020 0.530 0.164 0.974 0.512 1.000

17.5 0.002 0.062 0.004 0.172 0.030 0.634 0.292 0.990 0.700 1.000

20.0 0.000 0.040 0.002 0.162 0.038 0.700 0.384 0.996 0.778 1.000

22.5 0.000 0.038 0.002 0.222 0.046 0.762 0.462 0.996 0.890 1.000

25.0 0.000 0.050 0.004 0.194 0.092 0.846 0.622 1.000 0.940 1.000

Table 8: Rejection proportions of top-K test at time interval [0.1,0.2].

H0 H1

∆̃ 10−5 0.02 0.05 0.08 0.10

Mh DRI DRIS DRI DRIS DRI DRIS DRI DRIS DRI DRIS

15.0 0.000 0.000 0.000 0.036 0.000 0.290 0.036 0.880 0.166 0.994

17.5 0.000 0.004 0.002 0.030 0.006 0.396 0.070 0.932 0.300 1.000

20.0 0.000 0.002 0.000 0.052 0.000 0.460 0.114 0.986 0.436 1.000

22.5 0.000 0.002 0.000 0.042 0.004 0.560 0.186 0.986 0.624 1.000

25.0 0.000 0.006 0.000 0.052 0.006 0.618 0.234 0.994 0.758 1.000

imately 0.05 for both the DRI and DRIS methods. Furthermore, the test power

tends to 1 with growing M and ∆̃. We observe that the increasing speed of DRIS
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is significantly faster than that of DRI.

S2 Proof of Results in Section 3

Before presenting the proofs of Theorems, we establish the entrywise expansion

result in Section S2.1, which is of independent interest. Then we analyze the main

term of the test statistic in Section S2.2 and present the proofs of the theorems in

the remaining part.

S2.1 Entrywise Expansion of the KRC estimator

We first present a group inverse approximation result in the Lemma S1, and then

derive the entrywise expansion of the KRC estimator in Theorem S1. We introduce

some notations for further discussion. Define the transition matrix P ∗(t) that

P ∗
ij(t) =


1

2np
y∗ij(t) if (i, j) ∈ E ,

1−
∑

s ̸=i P
∗
is(t) if i = j,

0 otherwise.

(S2.1)

We let A(t) = I − P ∗(t) and A#(t) be the group inverse of A(t) (Cao, 1998).

Lemma S1. Suppose that np > c log n for sufficiently large c. Letting Ã(t) be the

diagonal matrix such that

Ãii(t) =
1

Aii(t)
=

2np∑
j:(i,j)∈E y

∗
ij(t)

,
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then we have

max
i∈[n]

∥Ã·i(t)− A#
·i (t)∥2 = Op(

1√
np

).

The next theorem establishes the entrywise expansion of the KRC estimator

based on the ER graph.

Theorem S1. Let Assumptions (A1)-(A3) hold. Suppose that np > c log n for

sufficiently large c. If nMh5 → 0, logn
Mh

→ 0 and n → ∞, then for any fixed i ∈ [n]

and t ∈ (0, 1), we have the following expansion with probability tending to 1,

π̂i(t)− π∗
i (t) =

1∑
j:(i,j)∈E y

∗
ij(t)

∑
j:(i,j)∈E

(π∗
i (t) + π∗

j (t))∆̄ij(t) + εi(t),

where ∆̄ij(t) =

∑
tk∈Tji

(yji(tk)−y∗ji(tk))Kh(t,tk)∑
tk∈Tji

Kh(t,tk)
. Letting fi(t) denote the leading term

1∑
j:(i,j)∈E y∗ij(t)

∑
j:(i,j)∈E(π

∗
i (t) + π∗

j (t))∆̄ij(t), we have

sup
t∈(0,1)

max
i

|fi(t)| = Op(

√
log n

n3pMh
), (S2.2)

sup
t∈(0,1)

max
i

|εi(t)| = Op(
log n√
n4pMh

) +Op(
h2

n
). (S2.3)

Remark S1. The conditions logn
Mh

→ 0 and nMh5 → 0 are introduced to simplify

the the remainders and can be relaxed. We let V(f) represent the total variation

of f , and impose additional assumptions that

V(K) < ∞,V(| · |K) < ∞.
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By replacing the conditions logn
Mh

→ 0 and nMh5 → 0 with Mh ≥ V(K) and

h log n → 0, Lemma 1 still holds with supt∈(0,1)maxi |εi(t)| = Op(
h
n
)+op(

√
logn

n3pMh
).

Proof. Let E(t) = P (t)− P ∗(t). Define Ykl(t) = 2npPkl(t). Let d = 2np. Utilizing

the expansion of the group inverse, we have

π̂i(t)− π∗
i (t)

= π∗(t)⊤E(t)A#
·i (t) + π̂(t)E(t)A#(t)E(t)A#

·i (t)

=
1

d

∑
(k,l)∈E,k<l

(π∗
k(t) + π∗

l (t))(Ykl(t)− y∗kl(t))(A
#
li (t)− A#

ki(t)) + π̂(t)E(t)A#(t)E(t)A#
·i (t)

=
1

d

∑
(k,l)∈E,k<l

(π∗
k(t) + π∗

l (t))(Ykl(t)− y∗kl(t))(Ãli(t)− Ãki(t))

+
1

d

∑
(k,l)∈E,k<l

(π∗
k(t) + π∗

l (t))(Ykl(t)− y∗kl(t))(A
#
li (t)− Ãli(t) + Ãki(t)− A#

ki(t))

+ π̂(t)E(t)A#(t)E(t)A#
·i (t). (S2.4)

We use B1, B2 and B3 to denote the three terms in the above equation, respectively.

Utilizing the definition of Ã, we have

B1 =
1

d

∑
(k,l)∈E,k<l

(π∗
k(t) + π∗

l (t))(Ykl(t)− y∗kl(t))(Ãli(t)− Ãki(t))

=
1

d

∑
j:(i,j)∈E

(π∗
i (t) + π∗

j (t))(Yji(t)− y∗ji(t))Ãii(t)

=
1∑

j:(i,j)∈E y
∗
ij(t)

∑
j:(i,j)∈E

(π∗
i (t) + π∗

j (t))(Yji(t)− y∗ji(t)). (S2.5)
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We further decompose (S2.5) to analyze the order.

(S2.5) =
1∑

j:(i,j)∈E y
∗
ij(t)

∑
j:(i,j)∈E

(π∗
i (t) + π∗

j (t))
(∑

tk∈Tij
yji(tk)Kh(t, tk)∑

tk∈Tij
Kh(t, tk)

− y∗ji(t)
)

=
1∑

j:(i,j)∈E y
∗
ij(t)

∑
j:(i,j)∈E

(π∗
i (t) + π∗

j (t))

∑
tk∈Tij

(yji(tk)− y∗ji(tk))Kh(t, tk)∑
tk∈Tij

Kh(t, tk)

+
1∑

j:(i,j)∈E y
∗
ij(t)

∑
j:(i,j)∈E

(π∗
i (t) + π∗

j (t))

∑
tk∈Tij

(y∗ji(tk)− y∗ji(t))Kh(t, tk)∑
tk∈Tij

Kh(t, tk)
.

(S2.6)

The first term in (S2.6) is Op(
√

logn
n3pMh

) using Hoeffding inequality. The second term

is Op(
h2

n
) by the smoothness of y∗ij(t) and the boundedness of π∗

i (t). Therefore, B1

is Op(
√

logn
n3pMh

) +Op(
h2

n
). We then present the order of B2 and B3. We have

B2 =
1

d

∑
(k,l)∈E,k<l

(π∗
k(t) + π∗

l (t))(Ykl(t)− y∗kl(t))(A
#
li (t)− Ãli(t) + Ãki(t)− A#

ki(t))

=
1

d

∑
(k,l)∈E,k<l

(π∗
k(t) + π∗

l (t))(A
#
li (t)− Ãli(t) + Ãki(t)− A#

ki(t))

∑
tm∈Tkl

Kh(t− tm)(ykl(tm)− y∗kl(tm))∑
tm∈Tkl

Kh(t− tm)

+
1

d

∑
(k,l)∈E,k<l

(π∗
k(t) + π∗

l (t))(A
#
li (t)− Ãli(t) + Ãki(t)− A#

ki(t))
(∑

tm∈Tkl
Kh(t− tm)y

∗
kl(tm)∑

tm∈Tkl
Kh(t− tm)

− y∗kl(t)
)
.

(S2.7)

The first term is Op(
√

logn
n4pMh

) using Hoeffding ineqaulity. The second term is

Op(
h2

n
). Utilizing the similar technique in Tian et al. (2024), we can obtain that

B3 is op(
logn√
n4pMh

) + op(
h2

n
). Combing the above results, we have that

π̂i(t)− π∗
i (t) =

1∑
j:(i,j)∈E y

∗
ij(t)

∑
j:(i,j)∈E

(π∗
i (t) + π∗

j (t))

∑
tk∈Tij

(yji(tk)− y∗ji(tk))Kh(t, tk)∑
tk∈Tij

Kh(t, tk)
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+Op(
log n√
n4pMh

) +Op(
h2

n
).

S2.2 Proof of Lemma 1

Proof. Define vjkl =
Kh(tl−tk)∑

tk∈Tji
Kh(tl−tk)

(π∗
i (tl) + π∗

j (tl))
√
y∗ji(tk)(1− y∗ji(tk)) and zjk =

yji(tk)−y∗ji(tk)√
y∗ji(tk)(1−y∗ji(tk))

for j such that (i, j) ∈ E , k ∈ [Mji]. Here k is dependent on j and

i, and we omit the symbols for simplicity without ambiguity. Using Theorem S1,

since m = o(min{ 1√
npMh5

,
√
n

logn
}), we have

∑
t∈S

[αi(t)(π̂i(t)− π∗
i (t))]

2

=
m∑
l=1

[
αi(tl)

( 1∑
j:(i,j)∈E y

∗
ij(tl)

∑
j:(i,j)∈E

(π∗
i (tl) + π∗

j (tl))∆̄ij(tl) + εi(tl)
)]2

=z⊤
m∑
l=1

(
αi(tl)∑

j:(i,j)∈E y
∗
ij(tl)

)2vlv
⊤
l z + op(1),

where vl = (vj11l, vj21l, vj12l, vj31l, vj22l, vj13l, . . .)
⊤ and z = (zj11, zj21, zj12, zj31, zj22, zj13, . . .)

⊤

for {j1, j2, . . .} = {j ∈ [n] : (i, j) ∈ E}. We define the matrixW =
∑m

l=1(
αi(tl)∑

j:(i,j)∈E y∗ij(tl)
)2vlv

⊤
l

and the random variable TnM = z⊤Wz.

Then we demonstrate the asymptotic normality of TnM . Let B = diag(W ) and

T̃nM = z⊤(W − B)z. We first consider the asymptotic distribution of T̃nM√
V ar(T̃nM )

,

and then prove the asymptotic normality of TnM−m√
2m

.

T̃nM is a quadratic form of independent random variables {zi}i=1,...,d with mean
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0 and variance 1, where d =
∑

j:(i,j)∈E Mji. Note that W −B is a symmetric matrix

with diagonal elements equal to 0 and we have E(TnM) = tr(W ) → m. Let and

W = (wij)d×d. We can obtain

ET 2
nM = E(

∑
1≤i,j≤d

zizjwij)
2 = E(

∑
1≤i ̸=j≤d

zizjwij)
2 + E(

d∑
i=1

z2iwii)
2

= ET̃ 2
nM +

d∑
i=1

w2
iiEz4i +

∑
1≤i ̸=j≤d

wiiwjjEz2i z
2
j

= ET̃ 2
nM + (

d∑
i=1

wiiEz2i )
2 − (

d∑
i=1

wiiEz2i )
2 +

d∑
i=1

w2
iiEz4i +

∑
1≤i ̸=j≤d

wiiwjjEz2i z
2
j

= V ar(T̃ 2
nM) + (ETnM)2 +

d∑
i=1

w2
ii(Ez4i − (Ez2i )

2).

Then we show that

σ−2

T̃
max
1≤i≤d

∑
1≤j≤d

w2
ij → 0, (S2.8)

where σ2
T̃
= V ar(T̃nM), and there exists a constant c such that

max
1≤i≤d

Ez2i 1{|zi|>c} → 0. (S2.9)

Note that for (i, j) ∈ E , we can obtain

wij =
m∑
l=1

(
αi(tl)∑

j:(i,j)∈E y
∗
ij(tl)

)2vivj = O(
m

npMh
). (S2.10)

Using m = o(
√
npMh2), we have σ2

T̃
= V ar(TnM) + o(1) → 2m, which leads to

(S2.8).

From Assumption (A1), we have that {zi, i = 1, . . . , d} is uniformly bounded

by
√
1 + κ. Therefore, the condition (S2.9) holds for any c lager than

√
1 + κ.
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We use µs, s = 1, . . . , d to denote the eigenvalues of W − B. We then show

that the eigenvalues are negligible that

σ−2

T̃
max
1≤i≤d

µ2
i → 0. (S2.11)

By noticing that (
max1≤i≤d µ2

i

σ2
T̃

)2 ≤
∑d

i=1 µ
4
i

σ4
T̃

and
∑d

i=1 µ
4
i = tr((W−B)4), it is sufficient

to prove tr((W −B)4) = o(m2). We can obtain

tr((W −B)4) =tr(W 4)− 4tr(W 3B) + 4tr(W 2B2)

+ 2tr(WBWB)− 4tr(WB3) + tr(B4),

where tr(WB3) = tr(B4) =
∑d

i=1 w
4
ii = o(1). Since B is a diagonal matrix with

elements o(1), it is sufficient to prove tr(W 2), tr(W 3) and tr(W 4) are all o(m2).

We have

tr(W 2) = tr(
m∑

l1=1

(
αi(tl1)∑

j:(i,j)∈E y
∗
ij(tl1)

)2vl1v
⊤
l1

m∑
l2=1

(
αi(tl2)∑

j:(i,j)∈E y
∗
ij(tl2)

)2vl2v
⊤
l2
)

=
m∑

l1=1

m∑
l2=1

(
αi(tl1)∑

j:(i,j)∈E y
∗
ij(tl1)

)2(
αi(tl2)∑

j:(i,j)∈E y
∗
ij(tl2)

)2(
∑

j:(i,j)∈E

Mij∑
k=1

vjkl1vjkl2)
2

=
m∑
l

(
αi(tl)∑

j:(i,j)∈E y
∗
ij(tl)

)2(
αi(tl)∑

j:(i,j)∈E y
∗
ij(tl)

)2(
∑

j:(i,j)∈E

Mij∑
k=1

vjklvjkl)
2

+
∑

l1,l2:l1 ̸=l2

(
αi(tl1)∑

j:(i,j)∈E y
∗
ij(tl1)

)2(
αi(tl2)∑

j:(i,j)∈E y
∗
ij(tl2)

)2(
∑

j:(i,j)∈E

Mij∑
k=1

vjkl1vjkl2)
2.

(S2.12)

We focus on the following term

(
αi(tl1)∑

j:(i,j)∈E y
∗
ij(tl1)

)2(
αi(tl2)∑

j:(i,j)∈E y
∗
ij(tl2)

)2(
∑

j:(i,j)∈E

Mij∑
k=1

vjkl1vjkl2)
2
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= (
h∫

K(v)2dv
√

π∗
i (tl1)

∑
j:(i,j)∈E

π∗
j (tl1 )

Mij

√
π∗
i (tl2)

∑
j:(i,j)∈E

π∗
j (tl2 )

Mij

× 1∑M
k=1 Kh(tl1 − tk)

× 1∑M
k=1 Kh(tl2 − tk)

∑
j:(i,j)∈E

Mij∑
k=1

Kh(tl1 − tk)Kh(tl2 − tk)(π
∗
i (tl1) + π∗

j (tl1))

× (π∗
i (tl2) + π∗

j (tl2))(y
∗
ji(tk)(1− y∗ji(tk))))

2. (S2.13)

When Mh → ∞, we have

(S2.13) →
(∫

K(v)2dv

√√√√π∗
i (tl1)

∑
j:(i,j)∈E

π∗
j (tl1)

Mij

√√√√π∗
i (tl2)

∑
j:(i,j)∈E

π∗
j (tl2)

Mij

)−2

×
( ∑

j:(i,j)∈E

1

Mij

π∗
i (tl2) + π∗

j (tl2)

π∗
i (tl1) + π∗

j (tl1)
π∗
i (tl1)π

∗
j (tl1)

∫
K(v)K(v +

tl2 − tl1
h

)dv
)2

.

(S2.14)

We have (S2.14) = 1 when l1 = l2. When l1 ̸= l2, we have (S2.14) = (O((mh)ς))2

using Assumption (A4). Hence,

tr(W 2) = mO(1) +
m(m− 1)

2
O((mh)2ς) = O(m+ (m1+ςhς)2). (S2.15)

Similarly, we can obtain

tr(W 3) = O(m+ (m1+ςhς)3), (S2.16)

tr(W 4) = O(m+ (m1+ςhς)4). (S2.17)

Combing above results, we have tr((W −B)4) = o(m2) when m = o( 1

h
2ς

1+2ς
). There-

fore, we have (S2.11). Combining (S2.8), (S2.9) and (S2.11), we have

T̃nM√
V ar(T̃nM)

D−→ N(0, 1) (S2.18)
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using Theorem 5.2 in de Jong (1987). Further, we can obtain

TnM − T̃nM −
d∑

i=1

wii =
d∑

i=1

wiiz
2
i −

d∑
i=1

wii

= Op(

√√√√V ar(
d∑

i=1

wiiz2i )) = Op(

√√√√ d∑
i=1

w2
iiV ar(z2i )) = op(1) (S2.19)

and
∑d

i=1 wii = m+ op(1) using (S2.10).

Therefore, we have∑
t∈S [αi(t)(π̂i(t)− π∗

i (t))]
2 −m

√
2m

=
TnM + op(1)−m√

2m

=
T̃nM + TnM − T̃nM −m+ op(1)√

2m
=

T̃nM√
2m

+ op(1)
D−→ N(0, 1).

S2.3 Proof of Theorem 1

We need the following lemma, whose proof is provided in Section S4.2.

Lemma S2. Let Assumptions (A1)-(A3) hold. If h → 0, Mh → ∞ and n → ∞,

then we have

V ar[
m∑
r=1

α2
i (t)f

2
i (t)] → 2m.

Proof. We can obtain∑m
l=1[αi(tl)(π̂i(tl)− 1

m

∑m
k=1 π̂i(tk))]

2 −m
√
2m

=

∑m
l=1[αi(tl)(π̂i(tl)− π∗

i (tl) + π∗
i (tl)− 1

m

∑m
k=1 π̂i(tk))]

2 −m
√
2m
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=

∑
t∈S [αi(t)(π̂i(t)− π∗

i (t))]
2 −m

√
2m

+

∑m
l=1[αi(tl)(π

∗
i (tl)− 1

m

∑m
k=1 π̂i(tk))]

2

√
2m

+

∑m
l=1[2α

2
i (tl)(π̂i(tl)− π∗

i (tl))(π
∗
i (tl)− 1

m

∑m
k=1 π̂i(tk))]√

2m
. (S2.20)

Notice that under Ha
i0, π

∗
i (t) is a constant. We can obtain 1

m

∑m
k=1 π̂i(tk)−π∗

i (tl) =

Op(
1√

mn3pMh
), so the second term of (S2.20) is op(1). For the last term in (S2.20),

we have ∑m
l=1[α

2
i (tl)(π̂i(tl)− π∗

i (tl))(π
∗
i (tl)− 1

m

∑m
k=1 π̂i(tk))]√

m

=
1
m

∑m
l=1

∑m
k=1[α

2
i (tl)(π̂i(tl)− π∗

i )(π
∗
i − π̂i(tk))]√

m

=
1
m

∑m
l=1[α

2
i (tl)(π̂i(tl)− π∗

i )(π
∗
i − π̂i(tl))]√

m

+
1
m

∑m
l=1

∑m
k=1, k ̸=l[α

2
i (tl)(π̂i(tl)− π∗

i )(π
∗
i − π̂i(tk))]√

m

= op(1)−
1
m

∑m
l=1

∑m
k=1, k ̸=l α

2
i (tl)fi(tl)fi(tk)√

m
. (S2.21)

We further bound the second term in (S2.21) as follows. Note that

V ar
( m∑

l=1

∑
k∈[m]\{l}

α2
i (tl)fi(tl)fi(tk)

)
= Cov(

m∑
l1=1

∑
k1∈[m]\{l1}

α2
i (tl1)fi(tl1)fi(tk1),

m∑
l2=1

∑
k2∈[m]\{l2}

α2
i (tl2)fi(tl2)fi(tk2))

=
m∑

l1=1

∑
k∈[m]\{l}

m∑
l2=1

∑
k2∈[m]\{l2}

Cov([α2
i (tl1)fi(tl1)fi(tk1)], [α

2
i (tl2)fi(tl2)fi(tk2)]);

(S2.22)

Cov(αi(ts)fi(ts), αi(tk)fi(tk)) = αi(ts)αi(tk)
1

(
∑

j:(i,j)∈E y
∗
ij(ts))(

∑
j:(i,j)∈E y

∗
ij(tk))
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×
∑

j:(i,j)∈E

((π∗
i (ts) + π∗

j (ts))(π
∗
i (tk) + π∗

j (tk))Cov(∆̄ij(ts), ∆̄ij(tk)), (S2.23)

where Cov(∆̄ij(ts), ∆̄ij(tk)) =
1

(
∑Mji

l=1 Kh(tk,tl))(
∑Mji

l=1 Kh(ts,tl))

∑
tl∈Tji

Kh(tk, tl)Kh(ts, tl)y
∗
ji(tl)(1−

y∗ji(tl)). When Mh → ∞, we have

(S2.23) →

∑
j:(i,j)∈E

π∗
i (ts)+π∗

j (ts)

π∗
i (tk)+π∗

j (tk)
π∗
i (tk)π

∗
j (tk)√

π∗
i (ts)

∑
j:(i,j)∈E π

∗
j (ts)

√
π∗
i (tk)

∑
j:(i,j)∈E π

∗
j (tk)

∫
K(v)K(v + ts−tk

h
)dv∫

K2(v)dv
.

Therefore, we have

Cov(αi(ts)fi(ts), αi(tk)fi(tk))

=

∑
j:(i,j)∈E

π∗
i (ts)+π∗

j (ts)

π∗
i (tk)+π∗

j (tk)
π∗
i (tk)π

∗
j (tk)√

π∗
i (ts)

∑
j:(i,j)∈E π

∗
j (ts)

√
π∗
i (tk)

∑
j:(i,j)∈E π

∗
j (tk)

∫
K(v)K(v + ts−tk

h
)dv∫

K2(v)dv
+ o(1)

= O((mh)ς).

Hence, we can obtain that E[α2
i (tl)fi(tl)fi(tk)] = o(1). Then we consider the fourth

moment of fi(t). Actually, from Lemma S2 we can obtain

E([α2
i (t1)fi(t1)fi(t2)][α

2
i (t3)fi(t3)fi(t4)]) = O(

1

n2
) +O((mh)2ς); (S2.24)

E([α2
i (t1)fi(t1)fi(t2)][α

2
i (t1)fi(t1)fi(t3)]) = O(

1

n2
) +O((mh)ς); (S2.25)

E([α2
i (t1)fi(t1)fi(t2)][α

2
i (t1)fi(t1)fi(t2)]) = O(1). (S2.26)

Therefore, we have

(S2.22) = O(m4)× (S2.24) +O(m3)× (S2.25) +O(m2)× (S2.26)
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= O(
m4

n2
) +O(m2) +O(m4(mh)2ς) +O(m3(mh)ς). (S2.27)

Thus, we can obtain
∑m

l=1

∑m
k=1, k ̸=l α

2
i (tl)fi(tl)fi(tk) = Op(

√
m4

n2 +m2 +m4(mh)2ς +m3(mh)ς).

Combining that (S2.21) is op(1) using m = o(n2) and m = o( 1

h
2ς

1+2ς
), we have∑m

l=1[αi(tl)(π̂i(tl)− 1
m

∑m
k=1 π̂i(tk))]

2 −m
√
2m

D−→ N(0, 1).

By noting that α̂i(t)− αi(t) = O(n) and m = o(nMh), we have∑m
l=1[α̂i(tl)(π̂i(tl)− 1

m

∑m
k=1 π̂i(tk))]

2 −m
√
2m

D−→ N(0, 1).

Then we prove P (Tai > z1−α) → 1. Note that∑m
l=1[αi(tl)(π̂i(tl)− 1

m

∑m
k=1 π̂i(tk))]

2 −m
√
2m

=

∑
t∈S [αi(t)(π̂i(t)− π∗

i (t))]
2 −m

√
2m

+

∑m
l=1[α

2
i (tl)(2π̂i(tl)− π∗

i (tl)− 1
m

∑m
k=1 π̂i(tk))(π

∗
i (tl)− 1

m

∑m
k=1 π̂i(tk))]√

2m
.

(S2.28)

The first term convergences to N(0, 1) using Lemma 1. For the second term, we

have∑m
l=1[α

2
i (tl)(2π̂i(tl)− π∗

i (tl)− 1
m

∑m
k=1 π̂i(tk))(π

∗
i (tl)− 1

m

∑m
k=1 π̂i(tk))]√

2m

=

√
m

2

( 1

m

m∑
l=1

(
α2
i (tl)(π

∗
i (tl)−

1

m

m∑
l=1

π∗
i (tl) + 2π̂i(tl)− 2π∗

i (tl) +
1

m

m∑
l=1

π∗
i (tl)−

1

m

m∑
k=1

π̂i(tk))

× (π∗
i (tl)−

1

m

m∑
l=1

π∗
i (tl) +

1

m

m∑
l=1

π∗
i (tl)−

1

m

m∑
k=1

π̂i(tk))
))

. (S2.29)

When m,n → ∞, we have

1

m

m∑
l=1

[α2
i (tl)(π

∗
i (tl)−

1

m

m∑
l=1

π∗
i (tl) + 2π̂i(tl)− 2π∗

i (tl) +
1

m

m∑
l=1

π∗
i (tl)−

1

m

m∑
k=1

π̂i(tk))
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(π∗
i (tl)−

1

m

m∑
l=1

π∗
i (tl) +

1

m

m∑
l=1

π∗
i (tl)−

1

m

m∑
k=1

π̂i(tk))]
P−→

∫ 1

0

α2
i (t)(π

∗
i (t)−

∫ 1

0

π∗
i (s)ds)

2dt,

where the right hand side is a constant of order nMh under Ha
i1. Therefore, we

have (S2.29) → ∞ in probability, which leads to

P
(∑m

l=1[α̂i(tl)(π̂i(tl)− 1
m

∑m
k=1 π̂i(tk))]

2 −m
√
2m

> z1−α

)
→ 1.

S2.4 Proof of Theorem 2

We need the following lemma, whose proof is provided in Section S4.3.

Lemma S3. Let Assumptions (A1)-(A3) and Hb
0 hold. If h → 0, Mh → ∞ and

n → ∞, then we have

E[
m∑
s=1

(
α(ts)√

2
(fi(ts)− fj(ts)))

2]2 → m2 + 2m.

Proof. We introduce some notations for further discussion. Let zpqk =
yqp(tk)−y∗qp(tk)√
y∗qp(tk)(1−y∗qp(tk))

,

vijkl =
4π∗

i (tl)Kh(tl−tk)∑
tk∈Tji

Kh(tl−tk)

√
y∗ji(tk)(1− y∗ji(tk)), vipkl =

Kh(tl−tk)∑
tk∈Tpi

Kh(tl−tk)
(π∗

i (tl)+π∗
p(tl))

√
y∗pi(tk)(1− y∗pi(tk))

and vjpkl = − Kh(tl−tk)∑
tk∈Tpj

Kh(tl−tk)
(π∗

j (tl)+π∗
p(tl))

√
y∗pj(tk)(1− y∗pj(tk)) for items i, j, p, q ∈

[n], l ∈ [m]. Here tk is dependent on the correlated items, and we omit the symbols

for simplicity.

We consider (i, j) ∈ E in the following proof. The case (i, j) /∈ E is simpler.

Since we can obtain mε = op(
√

1
n3pMh

) by using m = o(min{ 1√
npMh5

,
√
n

logn
}), we
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have

m∑
l=1

[
1√
2
αi(tl)(π̂i(tl)− π̂j(tl))]

2 =
m∑
l=1

[
1√
2
αi(tl)(fi(tl)− fj(tl))]

2 + op(1)

=
m∑
l=1

[
1√
2
αi(tl)

1∑
s:(s,i)∈E y

∗
is(tl)

(
∑

s:(i,s)∈E,s ̸=j

(π∗
i (tl) + π∗

s(tl))

∑
tk∈Tsi

(ysi(tk)− y∗si(tk))Kh(tl, tk)∑
tk∈Tsi

Kh(tl, tk)

−
∑

s:(j,s)∈E,s ̸=i

(π∗
j (tl) + π∗

s(tl))

∑
tk∈Tsj

(ysj(tk)− y∗sj(tk))Kh(tl, tk)∑
tk∈Tsj

Kh(tl, tk)

+ 4π∗
i (tl)

∑
tk∈Tji

(yji(tk)− y∗ji(tk))Kh(tl, tk)∑
tk∈Tji

Kh(tl, tk)
)]2 + op(1)

= z⊤
m∑
l=1

(
αi(tl)√

2
∑

s:(s,i)∈E y
∗
is(tl)

)2vlv
⊤
l z + op(1),

where z = (zij1, zii11, zjj11, . . .)
⊤ and vl = (vij1l, vii11l, vjj11l, . . .)

⊤ for {i1, i2, . . .} =

{s : (i, s) ∈ E , s ̸= j} and {j1, j2, . . .} = {s : (j, s) ∈ E , s ̸= i}. We use W to denote

the matrix
∑m

l=1(
αi(tl)√

2
∑

s:(s,i)∈E y∗is(tl)
)2vlv

⊤
l and let T = z⊤Wz. We can obtain E(T ) =

tr(W ) → m. Let B = diag(W ), T̃ = z⊤(W−B)z, d =
∑

l ̸=i,j Mli+
∑

l ̸=i,j Mlj+Mij

and µs, s = 1, . . . , d be the eigenvalues of W − B. Notice that the components of

z are independent random variables with mean 0 and variance 1.

We first deduce the asymptotic distribution of T̃√
V ar(T̃ )

, and then demonstrate

the asymptotic normality of T−m√
2m

. Note that

ET 2 = E(
∑

1≤i,j≤d

zizjwij)
2 = E(

∑
1≤i ̸=j≤d

zizjwij)
2 + E(

d∑
i=1

z2iwii)
2

= ET̃ 2 +
d∑

i=1

w2
iiEz4i +

∑
1≤i ̸=j≤d

wiiwjjEz2i z
2
j
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= ET̃ 2 + (
d∑

i=1

wiiEz2i )
2 − (

d∑
i=1

wiiEz2i )
2 +

d∑
i=1

w2
iiEz4i +

∑
1≤i ̸=j≤d

wiiwjjEz2i z
2
j

= V ar(T̃ 2) + (ET )2 +
d∑

i=1

w2
ii(Ez4i − (Ez2i )

2).

Let σ2
T̃
denote V ar(T̃ ). We can obtain that wpq = O( m

npMh
), and further we have

σ2
T̃
→ 2m and

σ−2 max
1≤i≤d

∑
1≤j≤d

w2
ij = o(1). (S2.30)

Note that {zi, i = 1 . . . , d} is uniformly bounded by
√
1 + κ from Assumption (A1).

Letting c be a constant lager than
√
1 + κ, we can obtain

max
1≤i≤d

Ez2i 1{|zi|>c} → 0. (S2.31)

Following the same way of proving Theorem 1, we then show that tr(W 2),

tr(W 3) and tr(W 4) are all o(m2).

tr(W 2) = tr(
m∑

l1=1

(
αi(tl1)√

2
∑

s:(s,i)∈E y
∗
is(tl1)

)2vlv
⊤
l

m∑
l2=1

(
αi(tl2)√

2
∑

s:(s,i)∈E y
∗
is(tl2)

)2vlv
⊤
l

=
m∑

l1=1

m∑
l2=1

(
αi(tl1)√

2
∑

s:(s,i)∈E y
∗
is(tl1)

)2(
αi(tl2)√

2
∑

s:(s,i)∈E y
∗
is(tl2)

)2(vij1l1vij1l2 + vi11l1vi11l2 + . . .)2

=
m∑
l

(
αi(tl)√

2
∑

s:(s,i)∈E y
∗
is(tl)

)2(
αi(tl)√

2
∑

s:(s,i)∈E y
∗
is(tl)

)2(vij1lvij1l + vi11lvi11l + vj11lvj11l + . . .)2

+
∑

l1,l2:l1 ̸=l2

(
αi(tl1)√

2
∑

s:(s,i)∈E y
∗
is(tl1)

)2(
αi(tl2)√

2
∑

s:(s,i)∈E y
∗
is(tl2)

)2(vij1l1vij1l2 + vi11l1vi11l2 + . . .)2.

(S2.32)
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Similar to the deduction of (S2.15), we have

tr(W 2) = O(m+ (m1+ςhς)2),

tr(W 3) = O(m+ (m1+ςhς)3),

tr(W 4) = O(m+ (m1+ςhς)4). (S2.33)

In addition, we have tr((W −B)4) = o(m2) using m = o( 1

h
2ς

1+2ς
). Combing (S2.30)

and (S2.31), we have

T̃√
V ar(T̃ )

D−→ N(0, 1) (S2.34)

using Theorem 5.2 in de Jong (1987).

Further, we can obtain T − T̃ −
∑d

i=1 wii = op(1) and
∑d

i=1wii = m + op(1)

using wpq = O( m
npMh

), p, q = 1, . . . , d. Therefore, we have∑m
l=1[

1√
2
αi(tl)(π̂i(tl)− π̂j(tl))]

2 −m
√
2m

=
T + op(1)−m√

2m
=

T̃ + T − T̃ −m+ op(1)√
2m

=
T̃√
2m

+ op(1)
D−→ N(0, 1).

As mentioned in Theorem 1, we have α̂i(t) − αi(t) = O(n) and m = o(nMh).

Hence, we can obtain

m∑
l=1

[
1√
2
αi(tl)(π̂i(tl)− π̂j(tl))]

2 −
∑
t∈S

[
1√
2
α̂i(t)(π̂i(t)− π̂j(t))]

2 = o(
√
m),

which concludes the first part of the Theorem.

When m,n → ∞, we have

1

m

∑
t∈S

[
1√
2
α̂i(t)(π̂i(t)− π̂j(t))]

2 − 1 →
∫ 1

0

[
1√
2
α∗
i (t)(π

∗
i (t)− π∗

j (t))]
2dt+O(1),
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the right-hand side of which is a constant of order nMh under H1. Therefore, we

can obtain ∑
t∈S [

1√
2
α̂i(t)(π̂i(t)− π̂j(t))]

2 −m
√
2m

→ ∞.

S3 Proof of Results in Section 4

S3.1 Proof of Theorem 3

Proof. Recall that in Theorem S1, we have

π̂i(t)− π∗
i (t) =

1∑
j:(i,j)∈E y

∗
ij(t)

∑
j:(i,j)∈E

(π∗
i (t) + π∗

j (t))∆̄ij(t) + εi(t),

where ∆̄ij(t) =

∑
tk∈Tji

(yji(tk)−y∗ji(tk))Kh(t,tk)∑
tk∈Tji

Kh(t,tk)
. Applying Hoeffding inequality, we can

obtain

P (|
∑

j:(i,j)∈E

∑
tk∈Tji

(π∗
i (t) + π∗

j (t))Kh(t, tk)(yji(tk)− y∗ji(tk))∑
tk∈Tji

Kh(t, tk)
| ≥ x)

≤ 2 exp(− x2∑
j:(i,j)∈E

∑
tk∈Tji

2(π∗
i (t)+π∗

j (t))
2K2

h(t,tk)

(
∑

tk∈Tji
Kh(t,tk))2

).

Set x =

√
b0
∑

j:(i,j)∈E
∑

tk∈Tji

2(π∗
i (t)+π∗

j (t))
2K2

h(t,tk)

(
∑

tk∈Tji
Kh(t,tk))2

log n, where b0 is a constant.

When Mh → ∞ and h → 0, we have

P
(
|
∑

j:(i,j)∈E
∑

tk∈Tji

(π∗
i (t)+π∗

j (t))Kh(t,tk)(yji(tk)−y∗ji(tk))∑
tk∈Tji

Kh(t,tk)
| ≥
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b0
Mh

∑
j:(i,j)∈E 2(π

∗
i (t) + π∗

j (t))
2
∫
K2(v)dv log n

)
≤ 2

nb0
.

Therefore, we have P (|fi(t)| ≥ C
√

logn
n3pMh

) ≤ 2
nb0

, where C is a constant indepen-

dent of i. Let Ts = {t1, t2, . . . , ts} = {1
s
, 2
s
, . . . , 1}, then we can obtain

P (max
t∈Ts

|fi(t)| ≥ C

√
log n

n3pMh
) ≤ s× P (|fi(t)| ≥ C

√
log n

n3pMh
) ≤ 2s

nb0
. (S3.35)

Since |ẏ∗ij(t)|, i, j ∈ [n], t ∈ [0, 1] is uniformly bounded by c1, we can deduce that

|ḟi(t)| ≤ C1
1
nh
, where C1 is a constant depending on c1 and independent of i and

t. Thus, we have

| sup
t

fi(t)−max
t∈Ts

fi(t)| ≤ C1
1

snh
. (S3.36)

Combining (S3.35) and (S3.36) yields

P (sup
t

|fi(t)| ≥ C

√
log n

n3pMh
+ C1

1

snh
) ≤ 2s

nb0
,

which leads to

P (max
i

sup
t

|fi(t)| ≥ C

√
log n

n3pMh
+ C1

1

snh
) ≤ 2ns

nb0
.

Setting s =
√

nM
h logn

and b0 = 6, we conclude the theorem.

S3.2 Proof of Proposition 1

Proof. Notice that E2 = {∀t ∈ T,∀j ̸= i, π∗
i (t)−π∗

j (t) ∈ [π̂i(t)− π̂j(t)− S1−α

γij
, π̂i(t)−

π̂j(t) +
S1−α

γij
]}. If there is item j such that π̂i(t)− π̂j(t)− S1−α

γij
> 0, then we have
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π∗
i (t)− π∗

j (t) > 0. Further, we can obtain

r̄i(t) = n−
∑
j∈[n]

1(π∗
i (t)− π∗

j (t) > 0) ≤ n−
∑
j∈[n]

1(π̂i(t)− π̂j(t)−
S1−α

γij
> 0) = Ru(t).

Similarly, we can obtain ri(t) ≥ Rl(t).

S3.3 Proof of Theorem 4

Proof. We omit the superscript in x
(ij)
kl for simplicity and omit t when there is no

confusion. Recall that nij = ni + nj − 1((i, j) ∈ E). Define

S0 = max
t∈T

max
j:j ̸=i

|

√
1

Mnij

M∑
k=1

nij∑
l=1

xkl|,

and

V0 =max
t∈T

max
j:j ̸=i

|

√
1

Mnij

M∑
k=1

nij∑
l=1

xklzkl|

=max
t∈T

max
j:j ̸=i

max{

√
1

Mnij

M∑
k=1

nij∑
l=1

xklzkl,−

√
1

Mnij

M∑
k=1

nij∑
l=1

xklzkl}.

We then prove the following two statements, which are sufficient according to

Theorem 2.1 in Chernozhuokov et al. (2022) and the proof of Corollary 3.1 in

Chernozhukov et al. (2013).

• There existsB, which may tend to infinity, such that c0 ≤ 1
Mnij

∑M
k=1

∑nij

l=1 E(x2
kl) ≤

C1, maxk0=1,2
1

Mnij

∑M
k=1

∑nij

l=1 E[|xkl|2+k0/Bk0 ]+E[exp(|xkl|/B)] ≤ 4 and
B2(log(v(n−1)Mnij))

7

Mnij
=

o(1), where c0 and C1 are global positive constants.
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• P (|S − S0| > ζ1) < ζ2, P (P (|V − V0| > ζ1|y) > ζ2) < ζ2, ζ1 ≥ 0, ζ2 ≥ 0, and

ζ1
√

log(v(n− 1)) + ζ2 = o(1).

When n is large enough, we have

|xkl| ≤

√
γ2
ijnijMKh(t, tk)∑M
k=1 Kh(t, tk)

(π∗
i (t) + π∗

l (t))∑
l:(i,l)∈E y

∗
il(t)

≲

√
1

h
.

Besides, we can obtain

1

Mnij

M∑
k=1

nij∑
l=1

E(x2
kl)

=
1

Mnij

M∑
k=1

( ∑
l:(i,l)∈E,l ̸=j

γ2
ijnijMK2

h(t, tk)

(
∑M

k=1 Kh(t, tk))2
(π∗

i (t) + π∗
l (t))

2y∗li(tk)(1− y∗li(tk))

(
∑

l:(i,l)∈E y
∗
il(t))

2

+
∑

l:(j,l)∈E,l ̸=i

γ2
ijnijMK2

h(t, tk)

(
∑M

k=1Kh(t, tk))2

(π∗
j (t) + π∗

l (t))
2y∗lj(tk)(1− y∗lj(tk))

(
∑

(j,l)∈E y
∗
jl(t))

2

+
γ2
ijnijMK2

h(t, tk)

(
∑M

k=1Kh(t, tk))2
(π∗

j (t) + π∗
i (t))

2y∗ji(tk)(1− y∗ji(tk))(
1∑

l:(i,l)∈E y
∗
il(t)

+
1∑

(j,l)∈E y
∗
jl(t)

)2
)
.

(S3.37)

Let B1, B2, B3 represent the three terms on the right-hand side. We have

B1 ≍
γ2
ij

Mh

∑
l:(i,l)∈E,l ̸=j

π∗
i (t)π

∗
l (t)

(
∑

l:(i,l)∈E y
∗
il(t))

2

∫
K2(v)dv, (S3.38)

which has uniform positive upper and lower bounds depending on κ. Similarly, B2

has a uniform upper bound. In addition, we have

B3 ≍
γ2
ij

Mh

∫
K2(v)dv π∗

i (t)π
∗
j (t)(

1∑
l:(i,l)∈E y

∗
il(t)

+
1∑

(j,l)∈E y
∗
jl(t)

)2. (S3.39)

Combining above results, there exist global constants c0, C1 > 0, such that

c0 ≤
1

Mnij

M∑
k=1

nij∑
l=1

E(x2
kl) ≤ C1.
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Let B = c̃
√

1
h
, where c̃ is large enough such that max{2, C1}|xkl| ≤ B when n is

large enough. Then we have maxk=1,2
1

Mnij

∑M
k=1

∑nij

l=1E[|xkl|2+k/Bk]+E[exp(|xkl|/B)] ≤

4. Since a1, b1 < 1, we have (log(vMn2))7

npMh
→ 0 and the condition 1 is satisfied.

Notice that

|V − V0| ≤max
t∈T

max
j:j ̸=i

|

√
1

Mnij

M∑
k=1

nij∑
l=1

(x̂kl − xkl)zkl|.

Using Theorem 3, we have supt maxi,l |y∗il(t)− ŷil(t)| ≲
√

log(nM)
npMh

. We define wtj =√
1

Mnij

∑M
k=1

∑nij

l=1(x̂kl − xkl)zkl. With probability larger than 1− 1
(nM)5

, we have

max
t∈T

max
j:j ̸=i

V ar(|wtj| | y) ≲
log(nM)

npMh
.

Since wtj|y follows the normal distribution, the maximal inequality leads to

E[max
t∈T

max
j:j ̸=i

|wtj| | y] ≲

√
log(nM) log(vn)

npMh
.

Using Borell inequality, we can obtain

P (max
t∈T

max
j:j ̸=i

wtj ≳

√
log(nM) log(vn)

npMh
| y) < 1

(vn)b1
,

where b1 can be any positive constant. Thus,

P (P (|V − V0| ≳

√
log(nM) log(vn)

npMh
| y) > 1

(vn)b1
) <

1

(nM)5
.

Using Theorem S1 and (S3.36), we have

|S − S0| ≲ γijε+

√
npMh

hv
,
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with probability tending to 1. Therefore, we set ζ1 = max{ log(nM) log(vn)
npMh

, γijε +

√
npMh
hv

}, ζ2 = max{ 1
(vn)b1

, 1
(nM)5

}, which leads to condition 2 and concludes the

proof.

S3.4 Proof of Proposition 2

Proof. If there exists t0 ∈ T , such that R̂l(t0) ̸= i or R̂u(t0) ̸= i, then there exists

j, such that

|π̂j(t0)− π∗
j (t0)|+ |π̂i(t0)− π∗

i (t0)|+
V1−α

γij
≥ min

j:j ̸=i
|π∗

i (t0)− π∗
j (t0)|

≥ min
j:j ̸=i

inf
t∈T

|π∗
i (t)− π∗

j (t)|. (S3.40)

Notice that when n is large enough, with α > 0, we have

P (sup
t∈T

max
j:j ̸=i

γij|π̂i(t)− π∗
i (t)− π̂j(t) + π∗

j (t)| > V1−α) >
α

2
.

From Theorem 3, with probability tending to 1, we have

sup
t∈T

∥π̂(t)− π∗(t)∥∞ ≤ c3

√
log(nM)

n3pMh
.

Therefore, V1−α

γij
≲

√
log(nM)
n3pMh

with probability tending to 1.

If minj:j ̸=i inft∈T |π∗
i (t) − π∗

j (t)| ≫
√

log(nM)
n3pMh

, we can obtain that the left hand

side of (S3.40) ≫
√

log(nM)
n3pMh

with probability tending to 1. This contradicts the uni-

form estimation error and the bound of V1−α/γij. Therefore, we have P ({There exists t0 ∈

T, such that R̂l(t0) ̸= i or R̂u(t0) ̸= i}) → 0.



NAN LU, JIAN SHI, XIN-YU TIAN AND KAI SONG

S3.5 Proof of Theorem 5

Proof. We omit the symbol α in Π̃t(α) in this proof for simplicity. Notice that

the ranks that suit Ri(t) are equivalent to the set of scores that satisfy certain

conditions Πt := {π(t) : πi(t)− πj(t), j ̸= i have proper signs such that rr(π(t)) ⊂

Ri(t)}. Under H0, there exists t0 ∈ T , such that r∗(t0) /∈ Ri(t0), and hence

π∗(t0) /∈ Πt0 . Therefore, we have

P (reject H0) = P (for any t ∈ T, for any π(t) ∈ Π̃t, we have π(t) ∈ Πt)

≤ P (∃t0,∃j ̸= i, π∗
i (t0)− π∗

j (t0) /∈ [π̂i(t0)− π̂j(t0)−
V1−α

γij
, π̂i(t0)− π̂j(t0) +

V1−α

γij
]),

whose probability is less than α when n → ∞.

Under H1, for all t ∈ T , we have r∗(t) ∈ Ri(t). Hence,

{There exists t0 ∈ T, π ∈ Π̃t0 , r ∈ rr(π), such that r /∈ Ri(t0)}

⊂ {∃t0, ∥π̂(t0)− π∗(t0)∥∞ +
V1−α

γij
≥ ∆(π∗, Ri, t0)

2
}

⊂ {sup
t∈T

∥π̂(t)− π∗(t)∥∞ +
V1−α

γij
≥ ∆̃(π∗, Ri, T )

2
}.

Therefore, we have

P (accept H0) ≤ P (∪t0∈T ∪π∈Π̃t0
∪r∈rr(π){r /∈ Ri(t0)})

≤ P ({sup
t∈T

∥π̂(t)− π∗(t)∥∞ +
V1−α

γij
≥ ∆̃(π∗, Ri, T )

2
}). (S3.41)

From the proof of Proposition 2, with probability tending to 1, we have

V1−α

γij
≤ 2c3

√
log(nM)

n3pMh
.
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Hence, there exists a constant c4 such that if ∆̃(π∗, Ri, T ) > c4

√
log(nM)
n3pMh

, we have

(S3.41) holds with probability tending to 0.

S3.6 Proof of Proposition 3

Proof. Similar to Proposition 1, we have

E4 ⊂{∀t ∈ T, if sj(t) > 0, then π∗
i (t)− π∗

j (t) ∈ (−1, π̂i(t)− π̂j(t) +
S†
1−α

γij
]

and ∀t ∈ T, if sj(t) < 0, then π∗
i (t)− π∗

j (t) ∈ [π̂i(t)− π̂j(t)−
S†
1−α

γij
, 1)} ⊂ E3.

S4 Proof of Lemmas in Section S2

S4.1 Proof of Lemma S1

Proof. Recall that π∗(t) represents the latent score vector. Let e represent the n×1

vector (1, . . . , 1)⊤. Utilizing the property of group inverse, we have

(A(t) + eπ∗(t)⊤)A#(t) = I − eπ∗(t)⊤. (S4.42)

Therefore, for i ∈ [n], we have

(A(t) + eπ∗(t)⊤)(A#
·i (t)− Ã·i(t)) = I·i − eπi(t)− (A(t) + eπ∗(t)⊤)A·i(t).
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We define that R = I·i − eπi(t)− (A(t) + eπ∗(t)⊤)A·i(t). Utilizing the definition of

Ã(t), we can obtain

Ai·(t)Ã·i(t) = Aii(t)Ãii(t) = 1

Aj·(t)Ã·i(t) = Aji(t)Ãii(t) = − 1∑
j:(i,j)∈E y

∗
ij(t)

y∗ji(t),

π∗(t)⊤Ã·i(t) = π∗
i (t)Ãii(t) = π∗

i (t)
2np∑

j:(i,j)∈E y
∗
ij(t)

.

Therefore, we have

Rj =


−π∗

i (t)(
2np∑

j:(i,j)∈E y∗ij(t)
+ 1) j = i,

π∗
i (t)(

1
(π∗

i (t)+π∗
j (t))

∑
j:(i,j)∈E y∗ij(t)

+ 2np∑
j:(i,j)∈E y∗ij(t)

− 1) j ̸= i.

Noticing that 2np∑
j:(i,j)∈E y∗ij(t)

= O(1) and 1
(π∗

i (t)+π∗
j (t))

∑
j:(i,j)∈E y∗ij(t)

= O(1/p), we can

obtain ∥R∥2 = O(1/p∥eπi∥2) = O(1/(
√
np)). Since np > c log n for sufficiently

large c, we have 1 − max{λ2(P
∗),−λn(P

∗)} ≳ c using Lemma 4 in Negahban

et al. (2017). Therefore, we can obtain λmin(A(t) + eπ∗(t)⊤) = Op(1). Combining

(S4.42), we have

∥A#
·i (t)− Ã·i(t)∥2 = Op(

1√
np

). (S4.43)

S4.2 Proof of Lemma S2

Proof. Note that

E[αi(t1)fi(t1) αi(t2)fi(t2) αi(t3)fi(t3) αi(t4)fi(t4)]
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=
αi(t1)αi(t2)αi(t3)αi(t4)

(
∑

j:(i,j)∈E y
∗
ij(t1))(

∑
j:(i,j)∈E y

∗
ij(t2))(

∑
j:(i,j)∈E y

∗
ij(t3))(

∑
j:(i,j)∈E y

∗
ij(t4))∑

j1:(i,j1)∈E

∑
j2:(i,j2)∈E

∑
j3:(i,j3)∈E

∑
j4:(i,j4)∈E

(π∗
i (t1) + π∗

j1
(t1))(π

∗
i (t2) + π∗

j2
(t2))

(π∗
i (t3) + π∗

j3
(t3))(π

∗
i (t4) + π∗

j4
(t4))E[∆̄ij1(t1)∆̄ij2(t2)∆̄ij3(t3)∆̄ij4(t4)].

We can further calculate the expectation that

E[∆̄ij1(t1)∆̄ij1(t2)∆̄ij2(t3)∆̄ij2(t4)] = E[∆̄ij1(t1)∆̄ij1(t2)]E[∆̄ij2(t3)∆̄ij2(t4)]

=
1

(
∑Mij1

l=1 Kh(t1, tl))(
∑Mij1

l=1 Kh(t2, tl))

∑
tl∈Tj1i

Kh(t1, tl)Kh(t2, tl)y
∗
j1i
(tl)(1− y∗j1i(tl))

× 1

(
∑Mij2

l=1 Kh(t3, tl))(
∑Mij2

l=1 Kh(t4, tl))

∑
tl∈Tj2i

Kh(t3, tl)Kh(t4, tl)y
∗
j2i
(tl)(1− y∗j2i(tl)).

Letting gD(s1, s2, s3, s4) = Kh(t1, s1)Kh(t2, s2)Kh(t3, s3)Kh(t4, s4), we have

E[∆̄ij(t1)∆̄ij(t2)∆̄ij(t3)∆̄ij(t4)]

=
1

(
∑

tk∈Tji
Kh(t1, tk))(

∑
tk∈Tji

Kh(t2, tk))(
∑

tk∈Tji
Kh(t3, tk))(

∑
tk∈Tji

Kh(t4, tk))

× {
∑
k∈Tji

Kh(t1, tk)Kh(t2, tk)Kh(t3, tk)Kh(t4, tk)[(1− y∗ji(tk))
4y∗ji(tk) + (1− y∗ji(tk))y

∗
ji(tk)

4]

+
∑

k1∈Tji

∑
k2∈Tji, k2 ̸=k1

gD(tk1 , tk1 , tk2 , tk2)y
∗
ji(tk1)(1− y∗ji(tk1))y

∗
ji(tk2)(1− y∗ji(tk2))

+
∑

k1∈Tji

∑
k2∈Tji, k2 ̸=k1

gD(tk1 , tk2 , tk1 , tk2)y
∗
ji(tk1)(1− y∗ji(tk1))y

∗
ji(tk2)(1− y∗ji(tk2))

+
∑

k1∈Tji

∑
k2∈Tji, k2 ̸=k1

gD(tk1 , tk2 , tk2 , tk1)y
∗
ji(tk1)(1− y∗ji(tk1))y

∗
ji(tk2)(1− y∗ji(tk2))}.
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All the other fourth moments of ∆̄ vanish. Therefore, by Letting Mh → ∞, we

can obtain

E[αi(t1)fi(t1) αi(t2)fi(t2) αi(t3)fi(t3) αi(t4)fi(t4)]

=
1√

π∗
i (t1)

∑
j:(i,j)∈E

π∗
j (t1)

Mij

√
π∗
i (t2)

∑
j:(i,j)∈E

π∗
j (t2)

Mij

√
π∗
i (t3)

∑
j:(i,j)∈E

π∗
j (t3)

Mij

√
π∗
i (t4)

∑
j:(i,j)∈E

π∗
j (t4)

Mij

× h2

(
∫
K(v)2dv)2

∑
j1:(i,j1)∈E

∑
j2:(i,j2)∈E, j2 ̸=j1

(g(t1, t2, t3, t4) + g(t1, t3, t2, t4) + g(t1, t4, t2, t3)) + o(1),

(S4.44)

where

g(s1, s2, s3, s4) = (π∗
i (s1) + π∗

j1
(s1))(π

∗
i (s2) + π∗

j1
(s2))(π

∗
i (s3) + π∗

j2
(s3))(π

∗
i (s4) + π∗

j2
(s4))

×
y∗j1i(s1)y

∗
j2i
(s3)(1− y∗j1i(s1))(1− y∗j2i(s3))

Mij1Mij2h
2

∫
K(v)K(v +

s2 − s1
h

)dv

∫
K(v)K(v +

s4 − s3
h

)dv.

For different settings of t1, t2, . . . , t4 in (S4.44), we can obtain

E[αi(t)fi(t)]
2[αi(s)fi(s)]

2 →


3 s = t,

1 s ̸= t,

for t, s ∈ (0, 1), which concludes the proof.

S4.3 Proof of Lemma S3

Proof. Note that

E[α(t)(fi(t)− fj(t))]
2[α(s)(fi(s)− fj(s))]

2 =
α(t)2α(s)2

(
∑

l:(i,l)∈E y
∗
il(t))

2(
∑

l:(i,l)∈E y
∗
il(s))

2
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∑
l1:(i,l1)∈E

∑
l2:(i,l2)∈E

∑
l3:(i,l3)∈E

∑
l4:(i,l4)∈E

(π∗
i (t) + π∗

l1
(t))(π∗

i (t) + π∗
l2
(t)))(π∗

i (s) + π∗
l3
(s)(π∗

i (s) + π∗
l4
(s))

E(∆̄il1(t)− ∆̄jl1(t))(∆̄il2(t)− ∆̄jl2(t))(∆̄il3(s)− ∆̄jl3(s))(∆̄il4(s)− ∆̄jl4(s)),

(S4.45)

where we let ∆̄jj(t) denote ∆̄ji(t). For the notation simplicity, we assume that

all the Tl1l2 ,∀l1, l2 ∈ [n] are same. The derivation also holds for the general case.

Then we consider E(∆̄il1(t)−∆̄jl1(t))(∆̄il2(t)−∆̄jl2(t))(∆̄il3(s)−∆̄jl3(s))(∆̄il4(s)−

∆̄jl4(s)). We discuss different settings of l1, l2, l3, l4 separately.

• If none of l1, l2, l3 and l4 is equal to j, we can obtain

E[(∆̄il(t)− ∆̄jl(t))
2(∆̄il(s)− ∆̄jl(s))

2] =
1

(
∑

tk∈Til
Kh(t, tk))2(

∑
tk∈Til

Kh(s, tk))2∑
tk1∈Til

∑
tk2∈Til

∑
tk3∈Til

∑
tk4∈Til

Kh(t, tk1)Kh(t, tk2)Kh(s, tk3)Kh(s, tk4)

E[(yil(tk1)− yjl(tk1))(yil(tk2)− yjl(tk2))(yil(tk3)− yjl(tk3))(yil(tk4)− yjl(tk4))]

=
1

(
∑

tk∈Til
Kh(t, tk))2(

∑
tk∈Til

Kh(s, tk))2
[
∑
tk∈Til

Kh(t, tk)
2Kh(s, tk)

2(y∗il(tk)− 2y∗il(tk)y
∗
jl(tk)

+ y∗jl(tk)) +
∑

tk1∈Til

∑
tk2∈Til,k2 ̸=k1

(Kh(t, tk1)
2Kh(s, tk2)

2 + 2Kh(t, tk1)Kh(t, tk2)Kh(s, tk1)Kh(s, tk2))

× (y∗il(tk1)− 2y∗il(tk1)y
∗
jl(tk1) + y∗jl(tk1))(y

∗
il(tk2)− 2y∗il(tk2)y

∗
jl(tk2) + y∗jl(tk2))].

As for l1 ̸= l2, we have

E(∆̄il1(t1)− ∆̄jl1(t1))(∆̄il1(t2)− ∆̄jl1(t2))(∆̄il2(t3)− ∆̄jl2(t3))(∆̄il2(t4)− ∆̄jl2(t4))
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=

∑
tk∈Til1

Kh(t1, tk)Kh(t2, tk)(y
∗
il1
(tk)− 2y∗il1(tk)y

∗
jl1
(tk) + y∗jl1(tk))

(
∑

tk∈Til1
Kh(t1, tk))(

∑
tk∈Til1

Kh(t2, tk))

×
∑

tk∈Til2
Kh(t3, tk)Kh(t4, tk)(y

∗
il2
(tk)− 2y∗il2(tk)y

∗
jl2
(tk) + y∗jl2(tk))

(
∑

tk∈Til2
Kh(t3, tk))(

∑
tk∈Til2

Kh(t4, tk))

• When some of l1, l2, l3 and l4 equal to j, we have

E(∆̄ij(t1)− ∆̄ji(t1))(∆̄ij(t2)− ∆̄ji(t2))(∆̄ij(t3)− ∆̄ji(t3))(∆̄ij(t4)− ∆̄ji(t4))

=
1

(
∑

tk∈Tij
Kh(t1, tk))(

∑
tk∈Tij

Kh(t2, tk))(
∑

tk∈Tij
Kh(t3, tk))(

∑
tk∈Tij

Kh(t4, tk))

× [
∑
tk∈Tij

Kh(t1, tk)Kh(t2, tk)Kh(t3, tk)Kh(t4, tk)
16π∗

i (tk)
4π∗

j (tk) + 16π∗
j (tk)

4π∗
i (tk)

(π∗
i (tk) + π∗

j (tk))
5

+
∑

tk1∈Tij

∑
tk2∈Tij ,k2 ̸=k1

(Kh(t1, tk1)Kh(t2, tk1)Kh(t3, tk2)Kh(t4, tk2)

+Kh(t1, tk1)Kh(t2, tk2)Kh(t3, tk1)Kh(t4, tk2) +Kh(t1, tk1)Kh(t2, tk2)Kh(t3, tk2)Kh(t4, tk1))

×
16π∗

i (tk1)π
∗
j (tk1)π

∗
i (tk2)π

∗
j (tk2)

(π∗
i (tk1) + π∗

j (tk1))
2(π∗

i (tk2) + π∗
j (tk2))

2
].

For l ̸= i, j, we can obtain

E(∆̄ij(t1)− ∆̄ji(t1))(∆̄ij(t2)− ∆̄ji(t2))(∆̄il(t3)− ∆̄jl(t3))(∆̄il(t4)− ∆̄jl(t4))

= [
1

(
∑

tk∈Tij
Kh(t1, tk))(

∑
tk∈Tij

Kh(t2, tk))

∑
tk∈Tij

Kh(t1, tk)Kh(t2, tk)
4π∗

i (tk)π
∗
j (tk)

(π∗
i (tk) + π∗

j (tk))
2
]

× [

∑
tk∈Tij

Kh(t3, tk)Kh(t4, tk)(y
∗
il(tk)− 2y∗il(tk)y

∗
jl(tk) + y∗jl(tk))

(
∑

tk∈Tij
Kh(t3, tk))(

∑
tk∈Tij

Kh(t4, tk))
].

Hence, we have

(S4.45) =
α(t)2α(s)2

(
∑

l:(i,l)∈E y
∗
il(t))

2(
∑

l:(i,l)∈E y
∗
il(s))

2
[

∑
l1:(i,l1)∈E,l1 ̸=j

∑
l3:(i,l3)∈E,j,l1

(π∗
i (t) + π∗

l1
(t))2(π∗

i (s) + π∗
l3
(s))2
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×
∑

tk∈Til1
Kh(t, tk)

2(y∗il1(tk)− 2y∗il1(tk)y
∗
jl1
(tk) + y∗jl1(tk))

(
∑

tk∈Til1
Kh(t, tk))2

×
∑

tk∈Til3
Kh(s, tk)

2(y∗il3(tk)− 2y∗il3(tk)y
∗
jl3
(tk) + y∗jl3(tk))

(
∑

tk∈Til3
Kh(s, tk))2

+ 2
∑

l1:(i,l1)∈E,j

∑
l2:(i,l2)∈E,j,l1

(π∗
i (t) + π∗

l1
(t))(π∗

i (t) + π∗
l2
(t))(π∗

i (s) + π∗
l1
(s))(π∗

i (s) + π∗
l2
(s))

×
∑

tk∈Til1
Kh(t, tk)Kh(s, tk)(y

∗
il1
(tk)− 2y∗il1(tk)y

∗
jl1
(tk) + y∗jl1(tk))

(
∑

tk∈Til1
Kh(t, tk))(

∑
tk∈Til1

Kh(s, tk))

×
∑

tk∈Til2
Kh(t, tk)Kh(s, tk)(y

∗
il2
(tk)− 2y∗il2(tk)y

∗
jl2
(tk) + y∗jl2(tk))

(
∑

tk∈Til2
Kh(t, tk))(

∑
tk∈Til2

Kh(s, tk))
] + o(1).

Letting n → ∞, we have

E[α(t)(fi(t)− fj(t))]
2[α(s)(fi(s)− fj(s))]

2 →


12 s = t,

4 s ̸= t.

Therefore, we can obtain

E[
m∑
s=1

(
α(ts)√

2
(fi(ts)− fj(ts)))

2]2 → m2 + 2m.
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