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The supplementary material contains additional simulation results and proofs.

S1 Simulation

S1.1 Score Variation Test

This section aims to validate the results presented in Section [3] We set the param-
eters as follows: n = 100, m = 100, A = 0.003, M = 300 and generate 7} from a
uniform grid ranging from 1 to 3. The experiment is repeated 1000 times, and the
test statistic is computed for each item. The histograms of the test statistics for
the first ten items are depicted in Figure [T} with the line representing the density
of the standard normal distribution. We observe that the empirical distribution

closely aligns with the theoretical value.

Corresponding author: Jian Shi. E-mail: jshi@iss.ac.cn.
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Figure 1: Empirical and theoretical density of test statistic Tj,.

Then we consider the scenario where 7} (t) = ag; for i = 1,..., %, and 7 (t) =
ag(i—n)+0.5 sin(5ag;t) for i = §+1,...,n, where ay; are equidistant points sampled
from the interval [1,3]. We normalize the sum of score functions to % at each time
point for both the static and dynamic groups. We set m = 50, M = 150, p = 1,
and vary the bandwidth h from 0.003 to 0.009. Additionally, we change the value
of n from 30 to 90. The experiment is repeated 2000 times for each combination
of settings. We conduct the tests for items 1 and n/2 + 1 under H§ and HY
respectively. The empirical type I errors and test powers are presented in Tables
and 2

We find the empirical type I errors are close to 0.05 and the empirical test
powers are close to 1. The results indicate that both the test level and power are

not sensitive to the choice of h. In fact, the cross-validation algorithm proposed

by Bong et al.| (2020)) can be directly applied here. As they point out, it is com-
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Table 1: Type I error of score variation test with the change of n and h.

h

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.0850

0.0615

0.0505

0.0590

0.0615

0.0640

0.0610

0.0460

0.0605

0.0595

0.0615

0.0475

0.0470

0.0475

0.0540

0.0535

0.0495

0.0455

0.0475

0.0515

0.0485

0.0490

0.0500

0.0540

0.0590

0.0535

0.0585

0.0515

Table 2: Test power of score variation test with the change of n and h.

h

0.003

0.004

0.005

0.006 0.007 0.008 0.009

n=30

n=>50

n="70

0.9720 0.9970 0.9995

1

putationally expensive to select h when n and M are large, and experiments show

that h within a reasonable range yields good performance close to those obtained

through cross-validation.

Then we keep h = 0.005 fixed and vary M and m. The results in Figure

indicate that n and m have minimal impact on the type I error, while the power

shows an increasing trend as n, m and M grow.

We then consider the multiple hypothesis testing. For the FDR control, we

still use the above score functions. We test the score variation of items 1 to k,
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Figure 2: Results of score variation test with the change of n, m and M.

and recall that we have kg = n/2. We let Mh = 2, m = 50, p = 1 and set
n = 30, 60, and 90, and vary k such that ky/k changes from 0.5 to 1. We repeat
the experiment 2000 times for each combination of settings. Table |3| presents the
empirical FDR results. The results illustrate that the FDR is well controlled below
the nominal a and there is an increasing trend of empirical FDR with the increase
of ko/k. Table 4| shows the empirical FDR power, which is defined as the true

positive rate. The empirical FDR power is close to 1, indicating that the proposed
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Table 3: Empirical FDR of score variation test with the change of n, a and ko /k.

a=0.05 a=0.1 a=0.2

ko/k 0.5 0.75 1 0.5 0.75 1 0.5 0.75 1

n=30 0.0066 0.0123 0.0280 0.0114 0.0200 0.0435 0.0186 0.0335 0.0695

n=60 0.0071 0.0135 0.0435 0.0115 0.0224 0.0620 0.0192 0.0358 0.0955

n=90 0.0071 0.0144 0.0475 0.0119 0.0223 0.0765 0.0196 0.0378 0.1230

Table 4: Empirical FDR, power of score variation test with the change of n, a and kq/k.

a=0.05 a=0.1 a=0.2

ko/k 0.5 0.75 1 0.5 0.75 1 0.5 0.75 1

n=30 0.9934 0.9976 1.0000 0.9886 0.9959 1.0000 0.9814 0.9925 1.0000

n=60 0.9929 0.9967 1.0000 0.9885 0.9946 1.0000 0.9808 0.9909 1.0000

n=90 0.9929 0.9967 1.0000 0.9881 0.9945 1.0000 0.9804 0.9908 1.0000

FDR procedure is able to identify dynamic items with well-controlled FDR.

S1.2 Score Function Equality Test

Consider the functions 7 (t) = ao; + 0.5sin(5aqt), ¢ € [n], where {ao;}icin are
equidistant points sampled from the interval [1,3]. We conduct a test under the
null hypothesis H{ by setting m3(t) = 7} (t) and examining whether items 1 and 2
share the same score function. We set n = 100, p = 1, m = 100 and h = 0.003.
We let M vary from 300 to 500, and repeat the experiment 1000 times. Figure
displays the density of the empirical statistic 7, in comparison to the standard

normal distribution.
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Figure 3: Empirical and theoretical density of test statistic T}.

Then with m = 50 and M = 150, we vary n and h, repeating the experiments
2000 times. The type I error results are summarized in Table[§] The results indicate
that the type I error is close to 0.05 when h lies within the range [0.005,0.008].
Additionally, we conduct a test to determine whether items 1 and [%] share the
same score function under H?. The results are shown in Table |§| We can observe
that h has minimal influence on both the type I error and the test power.

To investigate further, we fix h at 0.005 and examine how the rejection pro-
portion varies with changes of n and M. As depicted in Figure [ the type I error
remains close to 0.05, and there is a slight increasing trend as n grows. Besides,

there is a significant increase in test power with larger values of n, m, and M.

S1.3 Top-K Test

In this section, we focus on the top-K test. We consider a scenario with n = 10,
where the score functions are defined as follows: 7} (t) = 74 (t) = 0.3+0.01 sin(57t),

73 (t) = 0.2+0.025 sin(5nt —7) and 7} (t) = 0.15+0.025 sin(57t) +6. The remaining
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Table 5: Type I error of score equality test with the change of n and h.

h 0.003

0.004

0.005

0.006

0.007

0.008

0.009

n=70  0.0315

n=90  0.0400

n=110 0.0355

n=130 0.0360

0.0435

0.0375

0.0450

0.0495

0.0390

0.0465

0.0425

0.0485

0.0410

0.0430

0.0540

0.0525

0.0470

0.0470

0.0475

0.0530

0.0475

0.0580

0.0575

0.0505

0.0620

0.0660

0.0565

0.0670

Table 6: Test power of score equality test with the change of n and h.

h 0.003 0.004 0.005 0.006 0.007 0.008 0.009
n="70 1 1 1 1 1 1 1
n=90 1 1 1 1 1 1 1
n=110 1 1 1 1 1 1 1
n=130 1 1 1 1 1 1 1

six items are equally partitioned to ensure that the sum of scores is 1 at each time

point. Set h = 0.05 and p = 1. We employ 500 bootstrap repetitions and repeat

the simulations 500 times.

We test whether item 3 ranks among the top 3 items at time point 0.1, with

different distances between H§ and Hy adjusted using the parameter . As Theorem

implies, the test’s difficulty is determined by A. Specifically, the type I error is

more likely to occur when 73 (t0) — 7(y) (fo) is close to 0, since a small perturbation

can lead to the wrong order of the two items. Conversely, with a large value of
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Figure 4: Results of score equality test with the change of n, M and m.

*

T3 (to) — Ty (to), it is less prone to getting a wrong rank. To investigate the most
error-prone scenario, we set A to a small value, specifically 1075, This choice of
a small A allows us to examine the performance in a highly challenging situation.
Additionally, we conduct the top-K test over a time interval [0.1,0.2], which is
approximated by sequential points spaced by 0.01.

From the results in Tables [7] and [§] the type I error is controlled at approx-
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Table 7: Rejection proportions of top-K test at time point 0.1.

HO H1

107° 0.02 0.05 0.08 0.10

>

Mh DRI DRIS DRI DRIS DRI DRIS DRI DRIS DRI DRIS

10.0 0.000 0.012 0.000 0.062 0.006 0.330 0.052 0.866 0.192 0.992

12.5° 0.000 0.024 0.000 0.110 0.004 0.462 0.100 0.928 0.324 1.000

15.0 0.000 0.026 0.002 0.096 0.020 0.530 0.164 0.974 0.512 1.000

175 0.002 0.062 0.004 0.172 0.030 0.634 0.292 0.990 0.700 1.000

20.0 0.000 0.040 0.002 0.162 0.038 0.700 0.384 0.996 0.778 1.000

22.,5 0.000 0.038 0.002 0.222 0.046 0.762 0.462 0.996 0.890 1.000

25.0 0.000 0.050 0.004 0.194 0.092 0.846 0.622 1.000 0.940 1.000

Table 8: Rejection proportions of top-K test at time interval [0.1,0.2].

HO H1

1075 0.02 0.05 0.08 0.10

>

Mh DRI DRIS DRI DRIS DRI DRIS DRI DRIS DRI DRIS

15.0 0.000 0.000 0.000 0.036 0.000 0.290 0.036 0.880 0.166 0.994

17.5 0.000 0.004 0.002 0.030 0.006 0.396 0.070 0.932 0.300 1.000

20.0 0.000 0.002 0.000 0.052 0.000 0.460 0.114 0.986 0.436 1.000

22,5 0.000 0.002 0.000 0.042 0.004 0.560 0.186 0.98 0.624 1.000

25.0 0.000 0.006 0.000 0.052 0.006 0.618 0.234 0.994 0.758 1.000

imately 0.05 for both the DRI and DRIS methods. Furthermore, the test power

tends to 1 with growing M and A. We observe that the increasing speed of DRIS
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is significantly faster than that of DRI.

S2 Proof of Results in Section [3l

Before presenting the proofs of Theorems, we establish the entrywise expansion
result in Section [S2.1] which is of independent interest. Then we analyze the main
term of the test statistic in Section and present the proofs of the theorems in

the remaining part.

S2.1 Entrywise Expansion of the KRC estimator

We first present a group inverse approximation result in the Lemma S1], and then
derive the entrywise expansion of the KRC estimator in Theorem SI} We introduce

some notations for further discussion. Define the transition matrix P*(t) that

;

s ¥i (1) if (4,4) € €,
Pit) =19 1=, Pit) ifi=j (S2.1)
\ 0 otherwise.

We let A(t) = I — P*(t) and A% (t) be the group inverse of A(t) (Cao, 1998).

Lemma S1. Suppose that np > clogn for sufficiently large c. Letting fl(t) be the

diagonal matriz such that
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then we have

max ||A;(t) — A% (t)]|2 = O,

=
i€[n) Vnp'

The next theorem establishes the entrywise expansion of the KRC estimator

based on the ER graph.

Theorem S1. Let Assumptions (A1)-(A3) hold. Suppose that np > clogn for

sufficiently large c. If nMh® — 0, IX%‘ — 0 and n — oo, then for any fixed i € [n]

and t € (0,1), we have the following expansion with probability tending to 1,

> ,)15 yr(t) | Z (m () + 75 (1)) A () + (),

J:(i,5)€€

wi(t) — m (t) =

A Dot emy; Wai (k) =y (6k)) Kn (6, tk)
where Ay;(t) = —* ]EtkeTji L

. Letting f;(t) denote the leading term

1 al Zj:(i’j)eg(’ﬂ': (t) + 5 (t))Aij(t), we have

2jitigee Yi
logn
sup max |f;(t)] = O —), S2.2
s maxl ()] = 0,0y |5 (52

logn h?
sup max |g;(t)| = O (—=—) + O, (—). S2.3
JSup le:()] = Op( n4th) b(—) (52.3)

Remark S1. The conditions lﬁf}’: — 0 and nMh® — 0 are introduced to simplify
the the remainders and can be relaxed. We let V(f) represent the total variation

of f, and impose additional assumptions that

V(K) <00, V(] |K) < 0.
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By replacing the conditions IX/‘;{: — 0 and nM~h®> — 0 with Mh > V(K) and

hlogn — 0, Lemmastill holds with sup,¢ o 1) max; [e;(t)| = Op(2) + 0, ( né‘;gj\zh).

Proof. Let E(t) = P(t) — P*(t). Define Yy, (t) = 2npPy(t). Let d = 2np. Utilizing

the expansion of the group inverse, we have

mi(t) — m; (t)

— (0T E()A* () + 7(0) E() A* (1) B(H) A% (1)

(k,1)EE k<1

== > @)+ (6) Yult) = yin(6) (Au(t) — Aw(t))

(k)€€ k<l

+ é > () + 7 () (Ya(t) — () (A7 (1) — Au(t) + Aw(t) — AL (1))

(kD)€€ k<l

R E()A* () E() A% (1), (S2.4)

We use By, B and Bj to denote the three terms in the above equation, respectively.

Utilizing the definition of A, we have

B, = é Z (mr(t) 4+ 77 (1) (Yia(8) — iy (8)) (Aui(t) — Agi(t))
(k,1)EE k<l
- % > (m () + () (Viilt) — y5(8) Au(t)
ji(ig)eE

- : 0 Y (@) + () (Yalt) = y5(D): (S2.5)

D gyee Vi (t j:(irj)EE

Y @)+ 7 () (Yult) — () (A] (1) — ALD) + () E() A* () E(t) A%

(t)
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We further decompose (52.5)) to analyze the order.
Lo 3 s m (et TIE ) )
Z] (7'.7 65 yz]( ) (1,])65 ' ! ZthTi]’ Kh(t7 tk) 7

B 1 . oo et Wi (te) — y5i (k)
D INRTA) j:(%):eg(m (t)+7;(t)) S en Kl t)
1 > iper,; Wi (te) — 5 (0) Kn(t, tr)

Z] (ig)eE yzg (t) Z ( z*(t) + W;(t» Ztkng ( + )

J:(3,4)€EE

Kh(ta tk)

+

(52.6)

The first term in ((S2.6)) is O,( ng‘;gﬁh) using Hoeffding inequality. The second term

is O, (% ®) by the smoothness of y;;(t) and the boundedness of 77 (t). Therefore, B,

is Op(y/ A8L) 4 Op(h%). We then present the order of By and Bs;. We have

n3pMh

By = é (mi(®) + 77 () (Y (1) — wia (D) (A (1) — Ault) + Ailt) — AL (1))
(k)€€ k<l
. l o o #oN A o ZtmeTM Kn(t —tm) (Wri(tm) — i (tm))
T, 2 k<l( R(@) + 7 () (A (1) — Au(t) + Awi(t) — Af(2)) S Rl )

b O+ m )AL — Ault) + Au(t) - AL () (ZZK (;h_(f 2 ffj)(m = 3(0)).

(k)€€ k<l

(S2.7)

The first term is O, ni‘;g]gh) using Hoeffding ineqaulity. The second term is

Op(h%). Utilizing the similar technique in Tian et al.| (2024), we can obtain that

By is 0p(—22—) + 0,(- ®). Combing the above results, we have that

\/n4pMh

et (Yii(te) — 453 (Ek) ) K (2, T,
O =7 = s 3 (@) + ny() DA Y Bt )

Zj:(i,j)ef Yij t Ji(i,5)€€
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logn h?
——=——) + Op(—).
\/nipMh n

+ O,(

S2.2 Proof of Lemma [1

Proof. Define v, = = Kullite) (1)) 4 Wj(tl))\/yjl(tk)(l —y5;(tr)) and zj, =

€Ty, Kp(ti—ty)

yji(ti) =y}, (te)

V5 () L=y ()

for j such that (i, j) € &, k € [Mj;]. Here k is dependent on j and

i, and we omit the symbols for simplicity without ambiguity. Using Theorem SI]

since m = o(min{ m, 1Ogn}) we have
np

> laa(®)(@i(t) — =i ()]

tes

:i [ai(t) = a7 2 () + ) Ay(h) +al(tl)>r
=1 :(i,5)€E y” l j:(i,j)€€E

=) | oi(t) Vo] 2+ 0,(1),

*
= Ljitigee Vi (t)
where v; = (vj,11, Vjo11, V205 Viglls Vjo2l, Uj Yl and 2 = (25,1, 2jy1, 25,25 Zisls Zin2s Zj )’
1 — J11ly Ygalls Vg12l5 Vjslly Vja2l, Vi3l - - - — J11ls #jalsy #5125 531y #ja2y #5139 - - -

for {j1,jo,...} ={j € [n] : (i,4) € £}. We define the matrix W = 27;1(%)2”1“;

2jitigyes iy

and the random variable T),y; = 2" Wz.

Then we demonstrate the asymptotic normality of T),,,. Let B = diag(WW) and

Ty = 27 (W — B)z. We first consider the asymptotic distribution of LY

\ Var(TnM)

Thrp—m

and then prove the asymptotic normality of Vit

Tn u is a quadratic form of independent random variables {z;};—;. 4 with mean
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0 and variance 1, where d = Z iee Mji- Note that W — B is a symmetric matrix
with diagonal elements equal to 0 and we have E(T,) = tr(W) — m. Let and

W = (wij)axa- We can obtain

ET2M = F( Z zlz]ww = Z 2i2jW;j) +E Zz w“

1<s ]<d 1<i#5<d

= ETQM—i—Zw“Ez + Z w”w]jEz

i=1 1<z;é]<d
— ETQM + Zmez Zw”Ez + anEz + Z w”wﬂEz
1<i#5<d
= Var(T%,) + (ET.)? + Zwi(Ezf — (EZ22)?).
i=1
Then we show that
-2 2
07 max wi; — 0, (52.8)
1<j<d

where o2 = Var(T,y), and there exists a constant ¢ such that

max EZ 1{|z |>ct — 0. (829)

1<i<d

Note that for (i,j) € £, we can obtain

- (1)
wij =) [ .
=D jiigyee Yig(t)
Using m = o(y/npM#?), we have o2 = Var(Tour) + o(1) = 2m, which leads to

T

m

npMh

Yow; = O( ). (S2.10)
(1S2.8).
From Assumption (A1), we have that {z;,i = 1,...,d} is uniformly bounded

by v/1 + k. Therefore, the condition (S2.9) holds for any ¢ lager than /1 + k.
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We use us,s = 1,...,d to denote the eigenvalues of W — B. We then show

that the eigenvalues are negligible that

O'T 1H<1?<)§lul — 0. (S2.11)

By noticing that (maxljf;gd“? )2 < Zi:;é 4 and St = tr(W=B)%), it is sufficient
to prove tr((W — B)*) = o(m?). We can obtain
tr(W — B)*) =tr(W*) — 4tr(W?*B) + 4tr(W?*B?)
+ 2tr(W BW B) — 4tr(W B*) + tr(B*),
where tr(WB?) = tr(B*) = 2%, wh = o(1). Since B is a diagonal matrix with

elements o(1), it is sufficient to prove tr(W?), tr(W?3) and tr(W*?) are all o(m?).

We have
tr(W?) = tr(Zm:( ai(tu) )2, v, Z @i(ti) )Yu,v,)
l1=1 Z] (i.4)€€ yl] <tll) o lo=1 (z j)eE yz] (t12> o
_ o7} (th) 2 ai<tl2> 2 o 2
- Z Z( ) ( * ) ( Z Z Ujkllvjk)lg)
l1=11s=1 Z] :(3,5)€€ yzg (tll) Z j:(i,j)€E yij(tl2> ._(i =l

. " Oéi(tl) 2 a; tl -
R3S ST e I ARD Z

j:(i.5)e€ Yij (t1) j:(i,§) €€ k=1

Gy tl1) 2 ai(tlz) 2 S Virg. Vs 2
! Z Z :(4,5)€€ yw(th)) ( ; ) ( Z Z skl ﬂdQ)

I la:h #l 2jtigpee Y (ta) Ji(ig) €€ k=1

(S2.12)

We focus on the following term

=

ij
2
Vjkl, Vjkiy)
1

( ai<tll) 2 @ tlz
Zj:(i,j)eg y:]<tll) Z :(i,5)€E yzg (tZQ

B
Il

J: (13)65
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h 1
N i (ty) N ;i (t1,) _
J K(U)de\/ﬂ-i (ti,) Zj-(ij)eé’ le\/7T (t,) Zj-(ij) TZQ 2=t Kl = 1)
1
X T Z ZKh t, — te) Kn(t, — te) (] (t,) + 75 (8,))
> i1 Knlt, — :(i,5)€E k=1
x (] (t,) + 75 () (5 (t) (1 = w53 (8))))*. (52.13)

When Mh — oo, we have

= ( / K(v)zdvdwf(tll) 3 W}; J (t,) ”Jj\gb)

(i,5)€E gl

J:
1 7Tz>'k (tl2) + 7T;'< (tl2)
)

t, — U 2
St )Tt K(v)K 2 Sdv) .
My i) i) ll)/ WK+ )

j:(i,5)€€

(S2.14)

We have (S2.14) = 1 when I; = ly. When [y # Iy, we have (52.14)) = (O((mh)*))?
using Assumption (A4). Hence,

m(m — 1)

tr(W?) = mO(1) + 5 O((mh)*) = O(m + (m'™°h)?). (S2.15)
Similarly, we can obtain
tr(W?) = O(m + (m'**h*)?), (52.16)
tr(W*) = O(m + (m*™he)*). (S2.17)
Combing above results, we have tr((W — B)*) = o(m?) when m = o(h1+2< ). There-
fore, we have (52.11]). Combining ((S2.8]), (S2.9) and (S2.11)), we have
__Tw__ o, N(0,1) (52.18)

Var(TnM)
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using Theorem 5.2 in de Jong (1987). Further, we can obtain

d
TnM _TnM - g Wy = E wm E Wi
i=1

d
= O, Var(z w;22)) = sz Var(z?)) = 0,(1) (52.19)

and Zle w;; = m + 0,(1) using (S2.10)).

Therefore, we have

Dreslai()(@i(t) — i) —m T +0p(1) —
V2m V2m
TnM+TnM_TnM_m+Op(1) T’nM

= T = Z2=+op(1) S NO.1),

3

S2.3 Proof of Theorem [1
We need the following lemma, whose proof is provided in Section

Lemma S2. Let Assumptions (A1)-(A3) hold. If h — 0, Mh — oo and n — oo,

then we have
Var[z aZ(t) fE(t)] — 2m.
r=1
Proof. We can obtain

Dol laa(t)(7a(t) — o Yoy 7ilty))]> —m

V2m
O lea(t) (Fi(t) — w () + i (0) — £ SR wi(t)]2 = m
- V2m
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_ Deslea@(Fi(t) — 77 ()] —m N > Lo () (7 (0) — 5 300 7ilt)]?

Vam V2m
| S 2a) (Rt = () () — & S ()] 5200
V2m
Notice that under Hg, 7} (t) is a constant. We can obtain = > | 7;(ty) — 7} (¢) =

OP(W), so the second term of (S2.20)) is 0,(1). For the last term in (S2.20)),

we have

Dol () (7s(t) — m (8)) (mf (1) — = Doy 7ilt)]

[~
,_\
??‘
H
/\
\_/
—
el
—~~
<t
~—
A
~—
—~
A
N
<
—~
~
&
N~—
SN—

vm
% > Z;cnzl,k;él o () fi () fi(tr)
Vi '

We further bound the second term in (S2.21)) as follows. Note that

Var Z Z 2(t) f: tl)fz(tk))

ke[m]\{1}

_Covz Y At filtn) filtw,), Z > i) filtn) filts,)

=1ki€[m }\{11} =1 ka€[m]\{l2}

—0,(1) — (S2.21)

m

_Z > Z > Cov([of (ty) filty) filtr)], [07 (t,) fi(t,) fi(t,));

=1 kem]\{1} l2=1 k€ [m]\ {2}

(S2.22)

1

Covtailt it it filte) =ttt e G e v 0)




NAN LU, JIAN SHI, XIN-YU TIAN AND KAI SONG

XY (g () + m (8)) (75 (8) + 5 (1)) Cov(Dyg (£), Ay (1), (52.23)

J:(i.5)€€

h A (L), A (th)) = _ L te t)) K (L, t t)(1—
whnere COU( z]( s); zj( k)) (z:l]\ile Kh(tk,tl))( Kh tst) thET ( ks l) h( S9 l)y]z( l)(

y5;(t1)). When Mh — oo, we have

i (1) b
Z i Sw—w* i
52.23) — e EH

Therefore, we have

w7 (ts)+
Zj:(i,j)eg T )+

ts

S T TR >K<v+“-tk>dv
() e mi ) W

COU(ai(ts)fi( s) az(tk‘) ( ))
(
i (

+0(1)

\/71—; (tS) Zj:(i,j)e:‘: W; (t8>

— O((mh)").

Hence, we can obtain that E[a?(t;) fi(t;) fi(tr)] = o(1). Then we consider the fourth

moment of f;(t). Actually, from Lemma 2| we can obtain

E([0(t1) fi(t1) fi(t2)] [0 (E5) filts) fi(ta)]) = O(%) + O((mh)*); (S2.24)
B([03(0) H) A [03(0) A0 flt)) = O ) +O((mh)); (52.25)

E([og (t) fi(ta) fi(t2)]]o () fi(ta) fi(t2)]) = O(1). (52.26)
Therefore, we have

(52.22) = O(m*) x (S2.24) + O(m?) x (S2.25) + O(m?) x (S2.26))
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= O(ﬂ;) + O(m?) + O(m*(mh)*) 4+ O(m?*(mh)*). (S2.27)

n

Thus, we can obtain ) ", > 3% a?(t) fi(t) fi(te) = Op(\/:’:—; + m? + mA(mh)? + m3(mh)s).

Combining that ((S2.21)) is 0,(1) using m = o(n?) and m = o(——), we have
KT+

S lea () (7i(t) — - >y i) —m p
Jom — N(0,1).

By noting that &;(t) — «;(t) = O(n) and m = o(nMh), we have

Yot (7ilt) — 5 iy m(t)))* —m p
NeT) — N(0,1).

Then we prove P(T,; > z1_,) — 1. Note that

Yo loa(B) (Fi(th) — o Doty Filte)) P —m_ Foeslaa(t)(7it) — mi ()] —m

V2m V2m
N Sorlad (t) (27i(t) — i (t) — oo D opsy Talte)) () (1) — o Doy 7iltn)]
V2m '

(S2.28)

The first term convergences to N(0,1) using Lemma |I} For the second term, we

have

2o lof () (2 (t) — () — o 3o @ilte) (m () — o Doty Talte))]

\/%
\/i%z () __Zw 1) + 2:(t) — 27T;k(tl)+%z7rz>‘k(tl)_%Zﬁi(tk))

x(w;‘m)—azwzm Zw ) —%Zm»)). (52.20)

When m,n — oo, we have

%Z ) = 0w+ 2m(n) — 2w () + D () - % S wlt)
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COEESSIORIT D MAOEED S Ry RO ADR (AL

where the right hand side is a constant of order nMh under Hfj. Therefore, we

have ({52.29) — oo in probability, which leads to

P(Zzl[di(tl)(ﬁi(tl) R N 1(79) | D
V2m

> Zl—a) — 1.

S2.4 Proof of Theorem [2
We need the following lemma, whose proof is provided in Section

Lemma S3. Let Assumptions (A1)-(A3) and H{ hold. If h — 0, Mh — oo and

n — oo, then we have

E[Z(a\%) (filts) — fi(t5))*]? — m® + 2m.

yqp(tk)*y;p(tk)

Proof. We introduce some notations for further discussion. Let 2, =

4m¥(t VK (61—t o Ky (t—t *
Uz]kl - Ztkeil‘ [gh ltl lzk \/yjz tk y]z tk))? Uipkl - Zt ETZE ;{h(kgitk)( tl +7T \/ypz tk yp'L(tk))

K N : .
and vy = ZtkeTh(t}(ht(iz tk)( )+ (t) \/yp] te)(1 =y, (tr)) for items i, j, p, q €
[n], I € [m]. Here t; is dependent on the correlated items, and we omit the symbols
for simplicity.

We consider (i,7) € & in the following proof. The case (i,j) ¢ & is simpler.

. . 1 . . 1
Since we can obtain me = 0,(y/ s 577;) by using m = o(mln{\/m, logn}>
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have

) (1) — ()P = D[l (fult) — ()7 + 0,(1)

ZtkeTSZv (ysi (tk) - y;i (tk))Kh (tb tk)

S

=1

NE §|"

~—~

1 1
[E ( )Zs:(s,i)eé' y;ks (tl) Z ( (tl) o (tl)) ZtkeTsi Kh(tl’ tk)

=1 5:(i,5)€E, 54]
Z ( *(t ) + ﬂ_*(t )) ZtkETs] (yS] (tk) y;](tk))Kh(tl’ tk)
B j\U s\t
5:(j,8) €€ 57 " D er, Kt tr)

D ver, (Wii(te) — i (te)) K (b, )
ZtkeTji Ky (ti, ty)

- ()
Z \/_Z szegyzs( )

+ 4 (1) “+0p(1)

Vo) 2 + 0,(1),

where z = (Zijb Ziig1ly 24115 - - .)T and v = (U'ijll7 Viiy 115 Vjji1l,5 - - .)T for {7;17 ig, .. } =
{s:(i,s) €& ,s# j}and {j1,72,...} ={s:(j,s) € E,s #i}. We use W to denote

: m i(t) 2., T _ T : _
the matrix Zl:l(\/ﬁzs;<s,i);g y;;(tl)) v, andlet T = z'Wz. We can obtain E(T') =
tr(W) — m. Let B = diag(W), T = 2T (W—=B)z,d= ZZ#J Mli—{_Zl;ﬁiJ M+ M;;

and pg,s = 1,...,d be the eigenvalues of W — B. Notice that the components of
z are independent random variables with mean 0 and variance 1.

We first deduce the asymptotic distribution of \/L—” and then demonstrate

Var(T)

the asymptotic normality of ,T_TTT:LL Note that

d

ET2 = E( Z Ziijij)Q = E( Z ZiZjU)ij)2 + E(Z Z?wzz)2

1<i j<d 1<i#j<d i=1

= FT? + Zw“EZ + Z wuw]]Ez2z2

1<i#5<d
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= ET?+ (Z wy B27)? Z wy B27)* + Zw“Ez + Z wiw;; B2}
i=1 1<i#£j<d
d
=Var(T?) + (ET)* + ) w}(Ez! — (Ez))?).
i=1

Let o2 denote Var(T). We can obtain that w,, = O(;377)» and further we have

0% — 2m and

—2 2 _
o~ max, wi; = o(1). (52.30)
1<j<d

Note that {z;,4 = 1...,d} is uniformly bounded by v/1 + x from Assumption (A1).

Letting ¢ be a constant lager than /1 4+ x, we can obtain

112?21(1 EZ 1{|Zl‘>c} — 0. (82.31)

Following the same way of proving Theorem , we then show that tr(1W?),

tr(W3) and tr(W*) are all o(m?).

- ;(t,) o7 - a;i(ty,) 2 T
tr(W?) =tr() _( : Yo ) ( : ) oy,
llzl \/52 (s,0)€€ yz*s (tll) lo=1 ﬁZs:(s,i)GE yjs<tl2>
ot Q (tll) 2 Q (tlz) 2 2
)°( " )” (Vi1 Viji, + Vi Vit + )
Z: g \/_Z (syi)e€ yzs<tl1) \/ézs:(s,i)eg yis(tlz) 1 i 1 ’
— a;(t) > a;(ty) 2 2
)7( " ) (vijuviju + viauviau + viauvin + - )
; Z (sg)e€ yzs (tl) \/§Zsz(s,i)€5 Yis (tl>
Q; t o, (t
+ Z (i) )%( (t) ) (Vi1 Vi, + v v, + )7

U1,lo:l £y \/_Z (s,0)€E yzs (tll) \/§Zsz(s,i)€8 y;ks (tl2>

(S2.32)
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Similar to the deduction of (S2.15)), we have
tr(W?) = O(m+ (m'**h*)?),
tr(W?) = O(m + (m'*<h*)?),
tr(W?*) = O(m + (m'Th%)*). (52.33)
L. i 4\
In addition, we have tr((W — B)*) = o(m?) using m = O(hi_f> Combing ((S2.30))

and (S2.31)), we have

T — 5 N(0,1) (52.34)
Var(T)

using Theorem 5.2 in |de Jong| (1987).
Further, we can obtain T — T — Z?zl w;; = 0,(1) and Z?:l wi; = m + o0,(1)

.,d. Therefore, we have

using wy, = O(anh), p,g=1
> 1[ sai(t) (7 (t) — 75(t))° —m _ THop(1)—m T+T—T—m+o,(1)
Vm B V2m V2m

As mentioned in Theorem |1, we have &;(t) — a;(t) = O(n) and m = o(nMh).

Hence, we can obtain

s (100 = 75 (0)]* = a0 (8) = ()] = o im).

which concludes the first part of the Theorem.

When m,n — oo, we have

LS s - 1%/ 71 (t) — w02t + O(1),
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the right-hand side of which is a constant of order nMh under H;. Therefore, we

can obtain

> resl () (7:(t) — 7;(1))]* —m
V2m

— OQ.

S3 Proof of Results in Section {4

S3.1 Proof of Theorem [3l

Proof. Recall that in Theorem I} we have

~ * 1 * * A
mi(t) —m; (t) = ) OB D (mE) + 7)) Ay (t) + &ilt),
((i,5)€€ yl] j:(ij)e€
ZtkeTji(yji(tk)_y;i(tk))Kh (t,tx)
ZtkETji K (t.tx)

where A;(t) = . Applying Hoeffding inequality, we can

obtain

> 1)

S0V Ent, 1) (i) — u3s(t0)
ji(i,)EE tk%T:gz ZtkETji Kn(t, te) |

$2

2(7y (1) 477 (8))2 K2 (t,ty) )
Zj:(i,j)eg ZthTji (ZtkET; Kp(t,te))?

< 2exp(—

2(m *(t)+7r*(t))2K2(tt )
Set z = \/bo Zj:(i,j)eg ZtkeTﬂ o Ty “logn, where by is a constant.

When Mh — oo and h — 0, we have

(my () +75 () Kn (k) (50 () —y7; (L)
P<| ZJ(Z,])Eg ZtkETji : ZtkeTji Kh(z,tk) - | Z
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2
W Siapee 2 (0) + w5 (1) [ K2(o)dvlogn) < o

Therefore, we have P(|f;(t)] > C ng‘fﬁh) < =, where C'is a constant indepen-

dent of i. Let Ts = {t1,t0,...,ts} = %, %, ..., 1}, then we can obtain

logn logn 2s
) > < . > —_ ) < —. .
p(rt%%dfl(tﬂ > n3th) < sx P(|f:(t)| > C”rﬁth) < (S3.35)

Since |y;;(t)|,4,7 € [n],t € [0,1] is uniformly bounded by ¢;, we can deduce that

1fi(t)] < Ci, where C is a constant depending on ¢; and independent of i and

t. Thus, we have

1
!Slip fi(t) max L)l < C— (S3.36)
Combining (S3.35)) and ((S3.36)) yields
logn 1 2s

P(sup |fi(H)] = C

logn 1 2ns
P(m?xsgp oz c \/ n3pMh + G snh) = nbo

nM
hlogn

which leads to

Setting s = and by = 6, we conclude the theorem. O]

S3.2 Proof of Proposition

Proof. Notice that Ey = {Vt € T,Vj # i, 7 (t) =7 (t) € [7;(t) — 7;(t) — L= 72,(t) —

J Yij

7;(t) + Sj/T‘]O‘]} If there is item j such that 7;(t) — 7;(t) — S;—‘“ > 0, then we have

ij
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7 (t) — m;(t) > 0. Further, we can obtain

)

(t)=n—Y_ 1(x T(t) > 0) <n— Y L(Ai(t) — () —

JE€M] JE€N]

Similarly, we can obtain r,(t) > Ry(t).

S3.3 Proof of Theorem {4

Proof. We omit the superscript in -Tkz) for simplicity and omit ¢ when there is no

confusion. Recall that n;; =n; +n; —1((i,j) € £). Define

M ng

Tkl
teT i nw Z Z |

So = max max |
k=1 I=1

and

Yo = MZ.. 22
| k=1 i1=1
M nij 1 M N
= max max max{ g E Tl 2ty — g E Tr12k1 -
teT Mn,; My
Jg# =1 =1 =1 =1

We then prove the following two statements, which are sufficient according to

Theorem 2.1 in (Chernozhuokov et al| (2022)) and the proof of Corollary 3.1 in

Chernozhukov et al. (2013)).

e There exists B, which may tend to infinity, such that ¢y < M Z el

Chy maxyy=1,5 77— Yopey iy Bllww|* 0/ BX]+ Elexp(|zy| /B)] < 4 and =

o(1), where ¢ and C; are global positive constants.

’T'L”

(:L‘kl) <

2 (log(v(n— 1)Mn”))

Mn;
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o P(IS =S| > 1) < G, P(P(IV = Vol > Gly) > () <, (1 >0, >0, and
Gy/log(v(n — 1)) + ¢ = o(1)

When n is large enough, we have

WKh(t’tk)( ()+Wz(t))<[.
~Vh

S Kt ty)  Draee Ya ()

|| <

Besides, we can obtain

1 M nij

Mnijk 1 1=1

E(xiz)

Z 3 Vi MG (8 te) (7 (8) + 77 (8) w5 (t) (1 — i ()

ang h=1  L()es 4 (Ek 1Kh(t tk)) (Zl (4,0) Eé'yzl( ))
Py Vo MEKR(t ) (75 (t) + (t))2ylj(ik)( —yi(tr))
1:(G,1) €€ I (Caly Knlt, tr))? (X ee Yn(1))?
”yijnijMKh(t,tk) - 2 . 1 1 9
ol T T O+ m O yﬂ<tk>><zl:(i’l)€g ORI oL ).
(93.37)

Let By, By, B3 represent the three terms on the right-hand side. We have

2
Yij

B = Ju / K2(w ($3.38)
Mh Z (leleé’yzl

l:(¢,0) €€ l#]

which has uniform positive upper and lower bounds depending on x. Similarly, B,

has a uniform upper bound. In addition, we have

Vi / 2 1 1 2
= K2(v)dv (87 (£)( + 2. ($3.39)
doranee Yat)  Xnee Yn(t)

Combining above results, there exist global constants cq, C; > 0, such that
M nij

1

Mn; k=1 I=1
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Let B =¢ where ¢ is large enough such that max{2, Cy }|zg| < B when n is

h7
large enough. Then we have maxy—1 2 -— Mn” SM ST El|aw >R/ B+ Elexp(|xw|/ B)] <

(log(vMn?))7

N 0 and the condition 1 is satisfied.
np

4. Since aq,b; < 1, we have

Notice that

M nij

V — Vi <maxmax Z (T — )2
| ol teT“#J an Kl ki) 2k |-

k=1 l=

Using Theorem we have sup, max;; |y (t) — ga(t)] S kfp]’\l% We define wy; =

W Mn” Zk 1 l Y (&g — Tgt)zie. With probability larger than 1 — @ M)5, we have

log(n]\/[)
maxmax Var(juyl[y) S = v

Since wyj|y follows the normal distribution, the maximal inequality leads to

Elmax max wy| | ] S

\/log(nM) log(vn)
npMh '

Using Borell inequality, we can obtain

P(maxmaxwy; 2

teT jij#i

log(nM) log(vn) 1
npMh y

where b; can be any positive constant. Thus,

1 M)1 1 1
Pwmhwmz¢%m Joglen) 1) > L) <

npMh [v) (vn)r ) (nM)5
Using Theorem S1|and ([S3.36)), we have

npMh

S — ol S e + YPMR
| 0|N7J8+ hv
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log(nM) log(vn)
— Vi€ +

with probability tending to 1. Therefore, we set (; = max{ o Th

opllhy e = max{(m)b17 (nM 5} which leads to condition 2 and concludes the

proof. ]

S3.4 Proof of Proposition

Proof. If there exists t, € T, such that R(ty) # i or Ry(to) # i, then there exists

7, such that

A * A * V*Oé 3 * *
|75 (to) — mj (to)| + |7i(to) — i (o) + ; = min |mi (to) — 5 (to)|
ij JF

> min inf |77 (t) — 7 (t)]. (S3.40)

jigFiteT

Notice that when n is large enough, with o > 0, we have

* A * a
P(supmax ;| 7;(t) — m; (t) — 7;(¢) + 77 ()] > Viea) > 5
teT JigFi 2

From Theorem [3, with probability tending to 1, we have

log(nM)

T(t) — 7" (1) ]| oo < —.
sup [#(t) =7 (V)llee < es\[ 23 3,

Viea < log(nM)
Yig ™ n3pMh

Therefore, with probability tending to 1.

If ming.jz; infier |7 () — 75 ()] > lzg;%), we can obtain that the left hand

side of (|53.40) > 10g§3\% with probability tending to 1. This contradicts the uni-

form estimation error and the bound of V;_,/v;;. Therefore, we have P({There exists t, €

T, such that Rl(to) %14 or Ru(to) #1i}) — 0. O
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S3.5 Proof of Theorem [5l

Proof. We omit the symbol « in ﬁt(a) in this proof for simplicity. Notice that
the ranks that suit R;(f) are equivalent to the set of scores that satisfy certain
conditions II, := {m(t) : m;(t) — m;(t), j # ¢ have proper signs such that rr(w(t)) C
R;(t)}. Under Hy, there exists ¢, € T, such that r*(ty) ¢ R;(tp), and hence

7*(to) ¢ II;,. Therefore, we have
P(reject Hy) = P(for any t € T, for any 7(t) € II,, we have n(t) € II,)

Vica . . Vica
=2 #i(te) — 7j(to) + —
ij Vij

< P(3to, 35 # i, m; (o) — 75 (to) & [Tilto) — 7;(t0) — D,

whose probability is less than o when n — oc.

Under Hy, for all t € T, we have r*(t) € R;(t). Hence,

{There exists ty € T, 7 € 11,7 € 77(7), such that r ¢ R;(to)}
‘/I—a 2 A(ﬂ-*a Ri? tO)
Yij 2

Viea A

C {3to, [[7(to) = 7" (to) e +

}

A(m*, R;, T)
>
“Yij 2

}.

C {sup [|7(t) — 7" (1) || +
teT
Therefore, we have

P(accept Hy) < P(Uper Ureil,, Urerrm{r & Ri(to)})

‘/l—a > A<7T*7Ri7T)
Yij 2

< P({igg 17 () = 7 () ]|oo + 1 (S3.41)

From the proof of Proposition [2, with probability tending to 1, we have

Vica < %0, loi(nM)‘
Vij n3pMh
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Hence, there exists a constant ¢, such that if A(7*, Ry, T) > ¢4 %, we have
(S3.41]) holds with probability tending to 0. m
S3.6 Proof of Proposition
Proof. Similar to Proposition [I| we have
. , . AP Sloa
By C{Vt €T, if s5(t) > 0, then 7} (t) — 7;(t) € (=1, m(t) — 7;(t) + ]
Yij
ST
and Vt € T, if 5;(t) <0, then 7} (t) — 7 (t) € [Fi(t) — 7;(t) — =2 1)} C Es.
Yig

]

S4 Proof of Lemmas in Section

S4.1 Proof of Lemma S1]

Proof. Recall that 7*(t) represents the latent score vector. Let e represent the n x 1

vector (1,...,1)". Utilizing the property of group inverse, we have
(A(t) +em* () A (t) =1 —en*(1)". (S4.42)
Therefore, for i € [n], we have

(A(t) +em™ (1) (AT () = Au(t)) = Li — emi(t) — (A(t) +em*(t) ) Au(2).
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We define that R = I; — em;(t) — (A(t) + er*(t) ") A;(t). Utilizing the definition of

A(t), we can obtain

1
2 jigee Yis(t)
2np
> tigyes Ui (@)

Therefore, we have

o 2np .
R, = i (t)(zj:(i,j)es B10) +1) J=h
]

* 1 2np . . .
T e O e m® T Sapeenm L) I FE

Noticing that % = O(1) and (Wi‘(t)+7r;*(t))%ij:(i,j)egy;}(t) = O(1/p), we can
obtain ||R|ls = O(1/pllem|l2) = O(1/(y/np)). Since np > clogn for sufficiently
large ¢, we have 1 — max{\y(P*), —\,(P*)} 2 ¢ using Lemma 4 in Negahban
et al[ (2017). Therefore, we can obtain Ay (A(t) + en*(t)") = O,(1). Combining
(1S4.42)), we have

1

) (S4.43)

1AZ () = As(t)l2 = O

S4.2 Proof of Lemma S2
Proof. Note that

Ela;(ty) fi(th) cu(ta) fi(ta) cu(ts) fi(ts) cilta) fi(ta)]
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_ i (t)ai(ta)ai(ts)ai(ts)

a (Zj:(i,j)ec‘? Yij (tl))(Zj:(i,j)ES y:j<t2))(2j:(i,j)€€ Yij (t3)>(2j:(i,j)€€ Y (ta))
S > > () () (f) + ()

J1:(3,51) €E j2:(4,52) €E §3:(4,53) EE ja:(i,54)EE

(77 (ts) + 75, (£3)) (0] (ta) + 75, (ta) ) E[ Dy (1) Ay (B2) Ay (t3) Dy (£a)]-

We can further calculate the expectation that

E[Aj, (1) D, (t2) Aijy (t3) Aijy (ta)] = E[Ai, (1) Aijy (t2) | E[Aij, (t3) Ay (t4)]

1 * o
T R T R B, O 0 0]

1 * —yr.
(Zz b Kh(tg,tl))(zl 72 K (ta, 1)) tzEzT:jzi Fnlta 1) Flta ()L = 9500

Letting gp(s1, 2, 53, 54) = K (t1, 51)Kn(t2, 52) Kn(ts, 53) Kp(t4, s4), we have

E[A(t) Ay (t2) A (t3) A (ta)]
1
O er Knltn t)) e, Knlta, i) Cyer, Knlts, te)) (i er,, Kn(ta,tr))

x> Kt te) Kn(ta, t) Kn (s, te) Kn (tas t) (1 — 375 (80)) 5 (t) + (1 = w35 (8)) s (t) ]

k}ETji

+ Z Z gD (tkp Uy s Uy tk2)y;z(tk1)(1 - y;kz (tkl))y;z (tk2)(1 - y;z (t/@))

k1€Tj; ko €Ty, koFk1

+ Z Z gD<t/€1’ 758 tkntk2)y;i(t/€1)(1 - yg*z (tk1))y;i(tk2)(1 - y;i (tk2))

k1€Tj; ko €Ty, ho#ka

+ Z Z gD<tk17tk27 tk27 tk1)y;i<tk1)(1 - y;i(tkl))y;i<tk2)(1 - y;z(tk2)>}

k1€Tj; ko€Tyi, koFky
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All the other fourth moments of A vanish. Therefore, by Letting Mh — oo, we

can obtain

Elai(ty) fi(t1) cuta) fi(ta) cults) fi(ts) Oéi(t4)fi(t4)]

X T (t1) 5 (t2) T (t3) « T (ta)
\/7Tz' (t1) Z(z J)eE 5\/1”1 \/ F(t2) 22 = \/ (t3) 22 ;\/Izj \/ﬂi (ta) Zji(i:j)@f JM_:

fK BBt >, Z (g(tr, ta, t, ta) + glt1, b3, b, ta) + g(t1, ta, b, 1)) + o(1),

J1:(4,51)E€E jo:(4,52) EE, joFj1

(S4.44)

where

9(s1,52,83,54) = (77 (s1) + 77, (51)) (70 (82) + 7, (52)) (70 (83) + 75, (53)) (7] (54) + 7}, (54))

v y;li(sl)y;gi($3)(]\14; ]?ﬁz(;))(l - y;‘;i(s?»)) /K(U)K(v n So — Sl)dv/K(v)K(v n S4 — S3

For different settings of tq,1s,...,ts in ((S4.44), we can obtain

3 s =1,
E[O‘l(t)fz(t)]Q[ai(S)fz(S)]Q -
1 s #t,
for t,s € (0,1), which concludes the proof. ]
S4.3 Proof of Lemma S3
Proof. Note that
Bla(®)((6) — £O)Pla(s) () — £(s)) = o1 als)
' ’ ' ’ (Zl:(i,l)e&' y:l<t>>2(21:(i,l)e€ yi(s))?
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Z Z ‘ ‘ (77 (t) + 7 (8)) (mf (£) + 75, (4))) (707 (8) + 707, (5) (75 (5) + 77, (5))

>

E(Day (1) = Ajiy () (D, (1) = Ajiy (1)) (Diy (5) — Ay (8)) (D () — Ay (9)),

(S4.45)
where we let A;;(t) denote Aj;(t). For the notation simplicity, we assume that

all the Ty, VI, 1l € [n] are same. The derivation also holds for the general case.

Then we consider E(Ay, (t) — Aﬂl () (Ag, (1) — Aj, (1)) (Ai,(s)— Ajlg (5))(Ai(s) —

Aji,(s)). We discuss different settings of 1y, I, I3, Iy separately.

e If none of [y, ls, I3 and [4 is equal to j, we can obtain

El(Aa(t) = Aat)*(Dals) = Aals)] = = tk));(Z 7 En(s.t))?

Z Z Z Z Kh(t,tkl>Kh(t,tkz)Kh(S,tks)Kh(S,tk4)

tkl eT’Ll tk:g ET“ th ET“ tk4 ETil

El(ya(tr,) — vi(tr ) Wi (try) — Y () Wi (trs) — v5n(ts)) (Wi (tra) — Y (trs))]
1

" e, KT, Kot g, 0 1 ) = 200509

Ty + D D Gt ) K (s, 1) 2Ka(E by ) K (8 1) K (s, B ) Kn (s )

iy €Tt tey €T k27K

X (Yalte) = 295 (Ee) Y5 (k) + Y50 () (Wi (Ees) — 295 (Eea) Y5 (B ) + Y50 (Er2))]-
As for [; # I3, we have

E(Aa, (t1) — Dgi, (02)) (Air, (2) = A, (t2)) (D, (t3) — Dy (t3)) (D, (£a) — Dy (t4))
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(ZtkETill Kh(tlv tk))(ZtkeTul Kh(t27 tk))
D tpery, Knts, te) K (ta, ) (Wi, (k) — 205, ()5, (Ek) + 45, (k)
(ter, Knlts 1)y, ey, Knta, i)

- 2ery, Bt ) Ko(ta, te) (v, (t) — 243, (), (1) + 3, (T))

e When some of [y, [5, I3 and 4 equal to j, we have

E(Ai(t1) — Dji(t)) (Dj(ta) — Djilta)) (Aij(ts) — Djilts) ) (Aij(ta) — Aji(ta))
1
(D tpery, BKnltr te)) Xy e, Knlte, te))(Xier, Knlts, ) Oy, er, Knlta; te))
167T;<(tk)471'; (tk> -+ 167‘(’; (tk)47T;k(tk)
(75 (te) + 75 (tr))®

< [ Kty ) K (ta, i) K (ts, te) Kn(ta, ti)

tkETij

+ Z Z (Kh<t17tk1)Kh(t27tkl)Kh(t37tk2)Kh(t47tk2>

tkl ETij th ETi]‘,k’Q#k‘l

+ Kh(th tkl)Kh<t2a tk2>Kh(t37 tk1)Kh(t47 tkz) + Kh(t17 tk‘l)Kh(t27 tkg)Kh<t3a tk2>Kh(t47 tkl))

% 167]-; (tkl)ﬂ.;'( (t/ﬂ)ﬂ-; (tkz)ﬂ';" (tk2>
(77; (tkl) + ﬂ-; (t/ﬂ ))2(77-1* (tk2> + ﬂ-; (th))2 .

For [ # i, 7, we can obtain

E(Aj(t1) = 8yi(t1))(Aij(t2) — Djilt2)) (Dalts) — Aj(ts)) (Dalta) — Aju(ta))

B 1 A} (te)7; ()
— [(ZtkETi]‘ Kt 1)) Xy, er,, Knlta, tr)) tkeZTij K (t, te) Kn(t2, tr) (73 (t) + 7 (tn))?
y [ZtkeTij K (ts, i) Kn(ta, te) (Wi (te) — 295 () y5 () + v (tk))
(X tper; Knlts te)) (s e, Kn(ts, tr))

]

!

Hence, we have

(5513 -

ait) o > Yo @)+ (0)(m(s) + 7, (5))”

* 2 * 2
(Zl:(i,l)es yzl( )) (Zl:(i,l)EE yzl(s)) 11:(3,011) €E 1 £7 13:(4,13) EE 5,11
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y Dtpera, Knlt i) (i, (te) — 205, (B, (t) + i, ()
e, Falt. 1))

D teer, Kn(s,te)? (Wi, (te) — 205, (G5, (be) + w3, (£)
: rvery, Knls, )2

2 ) Y @O+ @) () + i, (0)(w () + w7, () (7 () + 77, ()

lli(i,ll)eg 7 lQ‘(i ZQ)E(‘: 7,01
ZthTul (t tk’)Kh(S tk)(y il1

(tx )
(tpery, Knltst) (X er,, Knls )
2 tery, Bn(ts ) Kn(s, te) (v, (k) — 295, (te) Y, (B) + 4, (8)
)( (

) = 2y, (v, (te) + vy, (8))

(S avern, Fnt0) (S ey, Knl.10)) ot
Letting n — oo, we have
12 s=t,
Ela()(fi(t) — f;0)Plals)(fils) = fi(s)] —
4 s #t.
Therefore, we can obtain
B  (r) — )P =+ 2m
s=1 \/5 Z !
H

Bibliography

Bong, H., W. Li, S. Shrotriya, and A. Rinaldo (2020). Nonparametric estimation
in the dynamic Bradley-Terry model. In International Conference on Artificial

Intelligence and Statistics, pp. 3317-3326. PMLR.



NAN LU, JIAN SHI, XIN-YU TIAN AND KAI SONG

Cao, X.-R. (1998). The maclaurin series for performance functions of markov

chains. Advances in Applied Probability 30(3), 676-692.

Chernozhukov, V., D. Chetverikov, and K. Kato (2013). Gaussian approximations
and multiplier bootstrap for maxima of sums of high-dimensional random vectors.

Annals of Statistics 41, 2786-2819.

Chernozhuokov, V., D. Chetverikov, K. Kato, and Y. Koike (2022). Improved
central limit theorem and bootstrap approximations in high dimensions. Annals

of Statistics 50(5), 2562-2586.

de Jong, P. (1987). A central limit theorem for generalized quadratic forms. Prob-

ability Theory and Related Fields 75, 261-277.

Negahban, S., S. Oh, and D. Shah (2017). Rank centrality: Ranking from pairwise

comparisons. Operations Research 65, 266-287.

Tian, X., J. Shi, X. Shen, and K. Song (2024). A spectral approach for the dynamic

bradley—terry model. Stat 13(3), e722.



	Simulation
	Score Variation Test
	Score Function Equality Test
	Top-K Test

	Proof of Results in Section 3
	Entrywise Expansion of the KRC estimator
	Proof of Lemma 1
	Proof of Theorem 1
	Proof of Theorem 2

	Proof of Results in Section 4
	Proof of Theorem 3
	Proof of Proposition 1
	Proof of Theorem 4
	Proof of Proposition 2
	Proof of Theorem 5
	Proof of Proposition 3

	Proof of Lemmas in Section S2
	Proof of Lemma S1
	Proof of Lemma S2
	Proof of Lemma S3


