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The supplement is organized as follows. Section S.I includes some details on the simulation

studies and the additional results of the ozone data analysis. Section S.II presents two main

lemmas and the proof of Theorem 1. The two main lemmas are proved in Section S.III

with some preliminary lemmas and discussions. Section S.IV provides detailed proofs of

the preliminary lemmas. Section S.V proves the theory of the power improvement of the

2d-SMT compared to the 1d-SMT and provides a concrete example to investigate the power

improvement. We discuss the estimation for the covariance of noises in Section S.VI. Sec-

tion S.VII thoroughly describes the details of Algorithm 1 in Section 3 of the main paper

which overcomes the computational bottleneck of a naive grid search. The R package and

reproducible code of this work are accessible at https://github.com/denglinsui/TwoDSMT

and https://github.com/denglinsui/2dSMT-manuscript-sourcecode, respectively.

S.I Additional Experimental Results

This section provides additional results for the simulations and the real data analysis with

some implementation details. In particular, Section S.I.1 visualizes the simulation settings

1



S.I. ADDITIONAL EXPERIMENTAL RESULTS

in Section 5 of the main paper. Section S.I.2 first reports the FDPs and powers under

Setup II with location size m = 900, and then presents the results of location size m =

2000 under Setups I–III. Section S.I.3 describes and reports the simulations studies for a

two-dimensional domain where the covariance is unknown and needs to be estimated. In

Section S.I.4, we investigate the sensitivity of 2d-SMT to the number of observations in the

nearest neighbors. Section S.I.5 explores a data-adaptive approach to determine the number

of neighbors for each location. In Section S.I.6, we examine the integration of covariate and

spatial information within the framework of the 2d-SMT method. Section S.I.7 depicts the

partition of the Contiguous United States into nine regions, and provides analytical and

numerical findings related to the ozone data.

S.I.1 Simulation Settings

• Figure S.1 depicts the one-dimensional signal process µ(s) for Setups I–III as described

in Section 5 of the main paper. The plots are depicted with magnitude γ = 1.

• Figure S.2 shows the two-dimensional signal process for three signal sparsity levels in

Section S.I.3. The plots are depicted with magnitude γ = 1.

• Figure S.3 displays the spatial covariances of the noise process ε(s) versus the spatial

distance for three dependency strengths as described in Sections 5.

S.I.2 Additional Simulation Studies for a One-Dimensional Domain

In this section, we demonstrate the performance of the 2d procedures under the Setup II

(see Section 5 of the main paper) with m = 900 and under Setups I–III with m = 2000. The

results for Setup II were displayed in Figure S.4 and generally similar to those in Setup I of
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Figure S.1: The one-dimensional signal process µ(s) (s ∈ [0, 30]) with γ = 1 in Section 5 of the main paper.
The top to bottom panels correspond to Setups I–III of our simulation settings respectively.

3



S.I. ADDITIONAL EXPERIMENTAL RESULTS

Sparse Medium Dense

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0

1

2

3

4

5

s1

s
2

0.0

0.4

0.8

1.2

1.6

μ(s1, s2)

Figure S.2: The two-dimensional signal process µ(s1, s2) ((s1, s2) ∈ [0, 5]2) with γ = 1 in Section S.I.3. The
left to right panels correspond to sparse, medium, and dense signals of our simulation settings respectively.
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Figure S.3: The covariance structure of the noise process ε(s) used in our simulation studies. The x-axis is
the distance between s and t, denoted as ‖s− t‖, and y-axis is the covariance between ε(s) and ε(t), denoted
as cov{ε(s), ε(t)}. The choices of (r, ρε, k) for the weak, medium, and strong dependence strengths (from left
to right) are: (1) r = 0.5, ρε = 0.05, k = 1 (exponential kernel), (2) r = 0.8, ρε = 0.1, k = 1 (exponential
kernel), and (3) r = 0.6, ρε = 0.2, k = 2 (Gaussian kernel), respectively.
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our main paper.
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Figure S.4: The mean and (1.96 multiple of) the standard error of FDP (Panel A) and power (Panel B)
under Setup II with γ ∈ {1, 1.5, 2}. The percentages on the top of bars represent the power improvement of
2d procedures compared to their 1d counterparts.

Then, we demonstrate the performance of the 2d procedures for one-dimensional domain

with increased location sizes. The simulation setting is the same as Section 5 of the main

paper but the process X(s) was observed at m = 2000 locations evenly distributed over the

domain S = [0, 60]. The simulation results are reported in Figures S.5 and S.7. It can be

seen that under Setups I–II, 2D (ST), 2D (IHW) and 2D (SA) satisfactorily controlled FDR
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in all cases. Compared to the results of m = 900, the performance of LAWS and AdaPT

with m = 2000 became better in terms of FDR control. However, they were still more likely

to have FDR inflation in contrast with the proposed 2d procedures. Under Setup III, the

2d procedures were much more powerful than other methods.
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Figure S.5: The mean and (1.96 multiple of) the standard error of FDP (Panel A) and power (Panel B)
under Setup I with γ ∈ {2, 3, 4} and m = 2000. The percentages on the top of bars represent the power
improvement of 2d procedures compared to their 1d counterparts.
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Figure S.6: The mean and (1.96 multiple of) the standard error of FDP (Panel A) and power (Panel B)
under Setup II with γ ∈ {1, 1.5, 2} and m = 2000. The percentages on the top of bars represent the power
improvement of 2d procedures compared to their 1d counterparts.

S.I.3 Simulation Studies for a Two-Dimensional Domain with Unknown Co-

variance

In this section, we consider a spatial process X(s) = µ(s) + ε(s) defined on the unit square

S = [0, 5]2. We observe the process on a 30 × 30 lattice within the unit square. The noise

ε(s) was generated from a mean-zero Gaussian process defined on [0, 5]2 with the same
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Figure S.7: The mean and (1.96 multiple of) the standard error of FDP (Panel A) and power (Panel B)
under Setup III with γ ∈ {2, 3, 4} and m = 2000. The percentages on the top of bars represent the power
improvement of 2d procedures compared to their 1d counterparts.
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covariance function as described in Section 5 of the main paper based on the distances

between locations. Unlike Section 5 of the main paper, we now assume that the covariance

structure is unknown, but three replications are available at each location. Given multiple

realizations at each location, we could employ the maximum likelihood estimation with a

pre-specified family of covariance functions to estimate the spatial covariance structure. The

details are provided in Section S.VI of the supplement. We consider two structures for the

signal process µ(s) with s = (s1, se).

• Setup IV (smooth signal): µsm(s) = γµ0(s), where µ0(s) = f1(s1)f2(s2) and {fi}i=1,2

being generated using B-spline functions as in Setup I.

• Setup V (clustered signal): µcl(s) = γµ0(s), where µ0(s) ∼ Bernoulli(π̄0(s)) with

π̄0(s) = 0.9, if (s1 − 1/2)2 + (s2 − 1/2)2 ≤ (1/4)2; and 0.01 otherwise.

Three signal sparsity levels based on Setups IV and V were investigated: (1) sparse signal:

µ0(s) = µcl(s); (2) medium signal: µ0(s) = µsm(s); and (3) dense signal: µ0(s) = µsm(s) +

µcl(s). The realized signal processes associated with these sparsity levels are shown in

Figure S.2 of the supplement, and their percentages of the non-null locations are 5%, 17%,

and 23%, respectively. We set the magnitude γ at values {0.5, 1, 1.5} in both setups.

We report the numerical results of the FDP and power of competing methods based on

100 simulation runs in Figure S.8. Generally speaking, the 2d procedures had the best FDR

and power trade-off. LAWS showed higher power at the expense of FDR inflation. AdaPT

provided reliable FDR control in all cases but their power were dominated by 2D (ST),

2D (IHW), and 2D (SA) for the sparse signal and weak correlation structures. The power

improvements from the 2d procedures were most significant when the correlation was weak.
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It is also worth mentioning that in the case of strong correlation, the underlying covariance

function was based on the Gaussian kernel while we estimated the covariance structure using

the exponential kernel. The 2d procedures appeared robust to the misspecification subject

to the parametric family of covariance functions.
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Figure S.8: The mean and (1.96 multiple of) the standard error of FDP (Panel A) and power (Panel B) on
the two-dimensional domain with γ ∈ {0.5, 1, 1.5}. The percentages on the top of bars represent the power
improvement of 2d procedures compared to their 1d counterparts.
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S.I.4 Sensitivity to the Number of Nearest Neighbors

In this section, we conduct a simulation study to investigate the sensitivity of 2d-SMT to the

number of observations in N (s). To be concrete, we let N (s) be the κ-nearest neighbors for

each location s. We focus on the settings in Setups I–III and let κ ∈ {1, 2, 3, 4, 7, 10, 13, 16}.

The false discovery proportions (FDPs) and powers of BH, ST, SABHA, and IHW (with the

global null proportion estimate) as well as their corresponding 2d versions are summarized

in Figures S.9–S.14. The difference between the 2d procedures with zero neighbor and their

1d counterparts is that the 2d procedures add a small offset q (i.e., the FDR level) to the

estimate of the number of false rejections (see Section 3 of the main paper).

Figures S.9, S.11, and S.13 show that the FDP increased when incorporating the first

neighbor, then gradually decreased and maintained stability afterwards as more neighbors

were included for the three setups. As seen from Figures S.10 and S.12, including more

neighbors improved the detection power for all the 2d procedures, which was significantly

higher than that of the corresponding 1d counterpart under all setups of Setups I and II. In

Figure S.14, although the detection power of the 2d procedure remained larger than that of

the corresponding 1d counterpart, the different 2d procedures behaved differently for varying

κ under Setup III. In particular, the powers of 2D (IHW), 2D (ST), and 2D (BH) gradually

decreased when κ was larger than 7. For 2D (SABHA), when the signal was sparse, its

detection power first decreased and then increased when more neighbors were included. For

the medium and dense signal cases, its behavior was similar to the other 2d procedures.

These findings empirically suggest that one may choose κ between 2 and 7 in 2d-SMT to
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Figure S.9: The mean and (1.96 multiple of) the standard error of FDP under Setup I with γ = 2. Each
color represents one particular 1d procedure (the circle at the leftmost column of each plot) and its 2d
counterpart (the triangles).

control the FDP and improve the detection power.

S.I.5 Data-Adaptive Neighborhood

So far, each location has been assigned an equal number of neighbors. In this section,

we present a simple strategy to determine the number of neighbors, and then assess its

effectiveness through numerical simulations. The idea of this strategy is to adaptively enlarge

the neighborhood size of locations that are more likely to be within a large cluster of spatial

signals. We achieve this by continuously including neighbors for location s from its nearest

neighbors (as candidates) until a primary statistic below zero is found from a candidate, i.e.,

we use the sign of the primary statistic as an initial criterion to distinguish the nulls and the

alternatives in candidates. To be specific, let Nκ(s) denote the set of κ-nearest neighbors of
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Figure S.10: The mean and (1.96 multiple of) the standard error of power under Setup I with γ = 2. Each
color represents one particular 1d procedure (the circle at the leftmost column of each plot) and its 2d
counterpart (the triangles).

Weak Medium Strong

S
p
a
rs

e
M

e
d
iu

m
D

e
n
s
e

1D 0 5 10 15 1D 0 5 10 15 1D 0 5 10 15

0.00

0.05

0.10

0.15

0.20

0.00

0.05

0.10

0.15

0.20

0.00

0.05

0.10

0.15

0.20

Num of Neighors

F
a
ls

e
 D

is
c
o
ve

ry
 P

ro
p
o
rt

io
n

Dim

2D

1D

Method

IHW

BH

ST

SABHA

Figure S.11: The mean and (1.96 multiple of) the standard error of FDP under Setup II with γ = 1. Each
color represents one particular 1d procedure (the circle at the leftmost column of each plot) and its 2d
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Figure S.12: The mean and (1.96 multiple of) the standard error of power under Setup II with γ = 1.
Each color represents one particular 1d procedure (the circle at the leftmost column of each plot) and its
2d counterpart (the triangles).
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Figure S.13: The mean and (1.96 multiple of) the standard error of FDP under Setup III with γ = 2. Each
color represents one particular 1d procedure (the circle at the leftmost column of each plot) and its 2d
counterpart (the triangles).

14



S.I. ADDITIONAL EXPERIMENTAL RESULTS

Weak Medium Strong

S
p
a
rs

e
M

e
d
iu

m
D

e
n
s
e

1D 0 5 10 15 1D 0 5 10 15 1D 0 5 10 15

0.05

0.10

0.15

0.20

0.15

0.20

0.25

0.30

0.350

0.375

0.400

0.425

0.450

0.475

Num of Neighors

P
e
rc

e
n
ta

g
e
 o

f 
D

is
c
o
ve

ri
e
s

Dim

2D

1D

Method

IHW

BH

ST

SABHA

Figure S.14: The mean and (1.96 multiple of) the standard error of power under Setup III with γ = 2.
Each color represents one particular 1d procedure (the circle at the leftmost column of each plot) and its
2d counterpart (the triangles).

location s. The number of neighbors for location s is determined as follows

κs =


4, T2(v) < 0 for some v ∈ N2(s)

max {2 ≤ κ ≤ 7 : T2(v) > 0 for all v ∈ Nκ(s)} , otherwise,

(S.1)

where a value of four is used in Section 5 of the main paper and the range of κ is suggested

in Section S.I.4. In this experiment, we considered two variants to implement the above

strategy: 1) utilized a separate dataset specifically for the neighbor selection process, and 2)

used the same dataset for both the neighbor selection process and the subsequent inference.

We generated the synthetic datasets according to Setups I–III in Section 5 of the main

paper, equipped with the medium signal and weak correlation. Four different methods were

compared: the standard ST and its three 2d variants. The first variant, 2DFix(ST), assigned

4-nearest neighbors for all locations. The second variant, 2DAda,1(ST), and the third variant,
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2DAda,2(ST), determined the number of neighbors according to (S.1) using a separate dataset

and the inference dataset, respectively.

We report the numerical results of the empirical FDP and power of the competing meth-

ods based on 100 simulation runs in Figure S.15. All 2d procedures exhibited an enhanced

power relative to the standard ST procedure. Our neighbor selection strategy, as detailed in

(S.1), boosted the power in Setups I and II. Notably, the 2DAda,2(ST) approach encountered

difficulties in controlling FDR, particularly in Setup I with γ = 4. Its performance highlights

the necessity for caution in data reuse, especially when no additional dataset for neighbor

selection is available.

Figure S.16 displays the average number of neighbors for all locations based on 100 sim-

ulation runs. The strategy (S.1) effectively allocated a larger set of neighbors to locations

under the alternative in Setups I and II, thereby improving power through adaptive neighbor

selection. As illustrated in Figure S.1(c), given that locations under the alternative were dis-

persed into several small clusters in Setup III, determining neighbors became more complex.

In conclusion, while adaptive selection of neighbors can improve detection efficiency, further

investigation is required to ensure both the safety and efficacy of the neighbor selection

strategy.

S.I.6 Combining Covariate and Spatial Information

Section 2.7 of the main paper introduces the concept of weighted thresholds, highlighting the

potential to further exploit spatial information. When both covariate and spatial information

are available, we can utilize the covariate information through weights and spatial informa-
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Figure S.15: The mean and (1.96 multiple of) the standard error of FDP (Panel A) and power (Panel
B) under Setup I with γ ∈ {2, 3, 4}, Setup II with γ ∈ {1, 1.5, 2}, and Setup III with γ ∈ {2, 3, 4}. The
percentages on the top of bars represent the power improvement of 2DFix(ST), 2DAda,1(ST) and 2DAda,2(ST)
compared to ST.
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Figure S.16: The average number of neighbors for 900 locations based on 100 simulation runs.

tion through auxiliary statistics. In this section, we conduct simulations to investigate the

ability of the 2d-SMT procedure to simultaneously use spatial and covariate information.

In a variant of Setup I, as illustrated in Figure S.17, we partitioned the locations into

four groups: the first two groups were all under the null, whereas the third and fourth groups

comprised approximately 1/2 and 2/3 of locations under the alternative, respectively. In this

setup, the signal pattern exhibits both grouping designs and spatial trends. We considered

the three degrees of spatial dependence as shown in Figure S.3. We evaluated four types

of weights, deriving eight methods by considering both the 1d and 2d approaches. The BH

and 2D (BH) used uniform weights w(s) ≡ 1. The FDP estimator of 2D (ST) is detailed in

Section 2.6 of the main paper, while the FDP estimator of ST sets the threshold for primary

statistics t1 to be −∞. To incorporate group information, we utilized the null proportion

estimators as described in Section 2.5 for each group, denoted as groupwise null proportion

estimates π̂0(s). Based on these estimates, SAGrp and 2D (SAGrp) assigned weights inversely

proportional to π̂0(s), and LAWSGrp and 2D (LAWSGrp) assigned weights proportional to
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Figure S.17: The one-dimensional signal process µ(s) (s ∈ [0, 30]) with γ = 1 that possesses both spatial
and group information.

{1− π̂0(s)}/π̂0(s).

We report the numerical results of the empirical FDP and power of the eight methods

based on 100 simulation runs in Figure S.18. All procedures controlled the FDR fairly well.

The performance of the four 1d procedures indicated that incorporating null proportion

estimates can significantly enhance detection power, and including groupwise estimates can

provide further improvements. Furthermore, LAWSGrp, which employs a weighting function

that uses group information more aggressively, detected more signals. The 2d procedures

outperformed their 1d counterparts by incorporating spatial information. In general, 2D

(LAWSGrp) achieved the highest power while controlling the FDR under the nominal level.

S.I.7 Additional Results for the Ozone Data Analysis

Figure S.19 uses distinct shapes and colors to illustrate the partition of the Contiguous

United States into nine different regions as discussed in Section 6 of the main paper. The

region to which each location belongs is treated as a categorical variable and is used as the

covariate in IHW and the group indicator in SABHA.
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Figure S.18: The mean and (1.96 multiple of) the standard error of FDP (Panel A) and power (Panel B)
under the setup that possesses both spatial pattern and group information with γ ∈ {2, 3, 4} and m = 900.
The percentages on the top of bars represent the power improvement of 2d procedures compared to their
1d counterparts.
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Figure S.19: The Contiguous United States is divided into nine different regions based on latitude and
longitude, i.e., each station belongs to a region coded between one and nine. The stations in the same region
are depicted using the same shape and color.

Table S.1 shows the locations with the most significant decline in CO or NO2 concen-

tration levels and whether the competing methods detected them in the study of the decline

of the ozone level for various β0. Table S.2 presents the average standardized slopes of CO

and NO2 at the locations detected by the 2d procedure or the 1d procedure, but not both.

It shows that the NO2 concentration level at the locations detected by the 2d procedures

decreased faster than their 1d counterparts on average. For CO, when the null hypothesis

was β0 = 0.2 or β0 = 0.5, the average standardized slope of its concentration level at the

locations detected by the 2d procedures remained smaller than their 1d counterparts. The

only exception was when β0 = 3, the locations detected by the 1d procedure (SABHA) had

a smaller average standardized slope of CO level than those detected by 2D (SA).

Motivated by Sun et al. (2015), we conducted further simulations to study the sensitivity

of 2d-SMT to covariance misspecification. We considered two approaches to determine the

covariance for simulating the ozone level data. The first approach fitted the residuals with
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Table S.1: The locations with the most significant decline in the CO or NO2 levels. Reported are the locations
where at least one of the 2d procedures gives different decisions to their corresponding 1d counterparts. The
column “Stand. Coeff.” represents the value of the standardized coefficient.

Ozone
precursor

β0 Lat. Lon.
Stand.
Coeff.

Methodology

ST 2D (ST) IHW 2D (IHW) SABHA 2D (SA)

CO

0.1 40.63 -75.34 -0.56 7 3 7 7 7 7
0.2 42.14 -87.80 -0.94 7 3 7 7 7 7
0.3 41.00 -80.35 -2.19 3 3 3 3 7 3
0.4 36.20 -95.98 -0.85 3 3 3 3 7 3
0.5 41.53 -90.59 -3.46 7 7 7 7 7 3

NO2

0.1 40.63 -75.34 -3.49 7 3 7 7 7 7
0.2 42.14 -87.80 -4.60 7 3 7 7 7 7
0.3 32.87 -97.91 -43.10 3 3 3 3 7 3
0.4 35.41 -94.52 -7.27 7 7 7 7 7 3
0.5 41.53 -90.59 -9.16 7 7 7 7 7 3

Table S.2: The average standardized slopes of CO and NO2 at the locations where at least one of the 2d
procedures gives different decisions to their corresponding 1d counterparts. Each letter refers to the specific
location depicted in Figure 4 of the main paper.

Ozone
precursor

Methodology

β0

0.2 0.3 0.5

Loc. Avr. Loc. Avr. Loc. Avr.

CO

ST — — — — — —
2D (ST) d,e -0.48 — — — —
SABHA — — e, j 0.11 b -0.96
2D (SA) — — h, i 0.56 c, e, f, h -1.40

NO2

ST c -1.30 f -1.30 — —
2D (ST) a, e, f -2.73 a, c -6.44 — —
SABHA — — e, f, j -2.81 b, d -3.63
2D (SA) — — b, d, g -17.17 a, c, f, g, h, i -4.68
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a Gaussian kernel, and the second utilized the empirical covariance matrix to accommodate

non-stationarity. We then generated the simulated data accordingly to (6.1) of the main pa-

per with modified covariance. The subsequent steps followed those of the ozone simulations

in Section 6, which used the exponential kernel. Tables S.3 and S.4 demonstrate that the

2d procedures still achieved equal or higher power compared to their 1d counterparts while

controlling FDR under 10%. To summarize, our procedure is robust to model misspecifi-

cation, which confirms the reasonableness of modeling ozone data with (6.1) of the main

paper.

Table S.3: Mean and standard deviation of FDPs and percentage of true discoveries (PTDs) for simulated
ozone data using the Gaussian kernel. The results are based on 100 simulation runs.

Criterion β0 ST IHW SABHA 2D (ST) 2D (IHW) 2D (SA)

FDP

0.5 0.024(0.027) 0.025(0.029) 0.042(0.030) 0.025(0.028) 0.025(0.029) 0.054(0.036)
0.4 0.022(0.018) 0.020(0.017) 0.026(0.017) 0.023(0.019) 0.020(0.017) 0.033(0.018)
0.3 0.017(0.014) 0.013(0.013) 0.014(0.012) 0.017(0.015) 0.013(0.013) 0.015(0.012)
0.2 0.017(0.013) 0.010(0.009) 0.012(0.010) 0.017(0.013) 0.010(0.009) 0.012(0.010)
0.1 0.015(0.011) 0.008(0.008) 0.009(0.008) 0.015(0.012) 0.008(0.008) 0.009(0.008)

PTD

0.5 0.277(0.097) 0.280(0.095) 0.412(0.115) 0.281(0.099) 0.280(0.095) 0.474(0.114)
0.4 0.401(0.115) 0.391(0.106) 0.481(0.079) 0.409(0.117) 0.391(0.106) 0.517(0.081)
0.3 0.547(0.112) 0.508(0.099) 0.511(0.097) 0.554(0.113) 0.508(0.099) 0.521(0.096)
0.2 0.695(0.088) 0.628(0.079) 0.633(0.081) 0.702(0.088) 0.628(0.079) 0.640(0.081)
0.1 0.799(0.060) 0.716(0.061) 0.725(0.060) 0.803(0.060) 0.716(0.061) 0.729(0.060)

Table S.4: Mean and standard deviation of FDPs and percentage of true discoveries (PTDs) for the simulated
ozone data using the empirical covariance matrix. The results are based on 100 simulation runs.

Criterion β0 ST IHW SABHA 2D (ST) 2D (IHW) 2D (SA)

FDP

0.5 0.018(0.036) 0.018(0.035) 0.027(0.040) 0.019(0.038) 0.018(0.036) 0.036(0.044)
0.4 0.017(0.034) 0.014(0.027) 0.018(0.029) 0.018(0.034) 0.014(0.027) 0.020(0.030)
0.3 0.016(0.025) 0.011(0.019) 0.012(0.020) 0.017(0.026) 0.011(0.019) 0.013(0.020)
0.2 0.016(0.021) 0.009(0.015) 0.010(0.015) 0.016(0.022) 0.009(0.015) 0.010(0.016)
0.1 0.016(0.021) 0.008(0.012) 0.008(0.012) 0.016(0.021) 0.008(0.012) 0.008(0.013)

PTD

0.5 0.258(0.189) 0.264(0.182) 0.369(0.207) 0.261(0.192) 0.265(0.183) 0.416(0.216)
0.4 0.375(0.221) 0.363(0.205) 0.412(0.181) 0.380(0.223) 0.362(0.206) 0.438(0.176)
0.3 0.500(0.229) 0.465(0.207) 0.480(0.190) 0.506(0.229) 0.464(0.207) 0.491(0.187)
0.2 0.645(0.206) 0.582(0.189) 0.586(0.187) 0.650(0.205) 0.582(0.190) 0.592(0.186)
0.1 0.761(0.152) 0.677(0.146) 0.682(0.149) 0.765(0.151) 0.677(0.147) 0.686(0.148)
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S.II Proof of Theorem 1 of the Main Paper

We introduce two lemmas, which play key roles in the proof of Theorem 1 of the main paper.

Lemma S.1. Under Assumptions 1–9 of the main paper, for any t′1, t′2 > 0, we have

sup
|t1|≤t′1,|t2|≤t′2

∣∣∣∣ 1

m

∑
s∈Sm

[ ∫
L {t1, t2, x, ρ̂(s)} dĜm̃(x)

−
∫
L {t1, t2, x, ρ(s)} dG0(x)

]∣∣∣∣ = oP (1),

(S.2)

as m→∞.

Lemma S.2. Under Assumptions 1–5, 8, and 9 of the main paper, for any t′1, t′2 > 0, we

have

sup
|t1|≤t′1,|t2|≤t′2

∣∣∣∣ 1

m0

V̂m (t1, t2)−K0 (t1, t2)

∣∣∣∣ = oP (1), (S.3)

sup
|t1|≤t′1,|t2|≤t′2

∣∣∣∣ 1

m1

Ŝm (t1, t2)−K1 (t1, t2)

∣∣∣∣ = oP (1), (S.4)

∣∣∣F̂m(λ)− F (λ)
∣∣∣ = oP (1), (S.5)

as m = m0 +m1 →∞, where F̂m(λ) = m−1
∑

s∈Sm 1{T̂2(s) ≤ λ}.

Lemma S.1 states that the estimated number of false discoveries in the proposed 2d-

SMT procedure converges to the limiting process defined in Assumption 9 of the main paper.

Lemma S.2 states the uniform convergence for the processes counting the numbers of false

and true rejections and the empirical cumulative distribution function for T̂2(s). In the

following derivations, we let C be a positive constant which can be different from line to

line.

Proof of Theorem 1 of the main paper. We fix t′1 = t?1 and t′2 = t?2 as defined in Assumption

24



S.II. PROOF OF THEOREM 1 OF THE MAIN PAPER

10 of the main paper. To prove Theorem 1, we first show

sup
|t1|≤t?1,|t2|≤t?2

∣∣∣F̂DPλ,S̃m (t1, t2)− FDP∞λ (t1, t2)
∣∣∣ = oP (1), (S.6)

and

sup
|t1|≤t?1,|t2|≤t?2

∣∣∣∣∣ V̂m (t1, t2)

V̂m (t1, t2) + Ŝm (t1, t2)
− π0K0 (t1, t2)

K (t1, t2)

∣∣∣∣∣ = oP (1). (S.7)

To show (S.6), according to Lemma S.2 and Assumption 8 of the main paper, we have

sup
|t1|≤t?1,|t2|≤t?2

∣∣∣K̂m (t1, t2)−K (t1, t2)
∣∣∣ = oP (1),

where K̂m(t1, t2) = m−1
{
V̂m(t1, t2)+Ŝm(t1, t2)

}
. For any |t1| ≤ t?1, |t2| ≤ t?2 and large enough

m, we get ∣∣∣K̂m (t1, t2)−K (t1, t2)
∣∣∣ ≤ |K (t1, t2)|

2
,

which implies ∣∣∣K̂m (t1, t2)
∣∣∣ ≥ |K (t1, t2)|

2
≥ K (t?1, t

?
2)

2
> 0 (S.8)

because inf |t1|≤t?1,|t2|≤t?2 |K (t1, t2)| ≥ K (t?1, t
?
2) > 0. For large enough m, it follows that

F̂DPλ,S̃m (t1, t2)− FDP∞λ (t1, t2)

=
m−1K(t1, t2)Fm(λ)

∑
s∈Sm

∫
L {t1, t2, x, ρ̂(s)} dĜm̃(x)− K̂m(t1, t2)F (λ)K0(t1, t2)

Φ(λ)K̂m(t1, t2)K(t1, t2)

≤
2m−1K(t1, t2)Fm(λ)

∑
s∈Sm

∫
L {t1, t2, x, ρ̂(s)} dĜm̃(x)− K̂m(t1, t2)F (λ)K0(t1, t2)

Φ(λ)K2(t?1, t
?
2)

,

where the last inequality holds by (S.8). Thus (S.6) follows from Lemma S.1 and Lemma S.2.

Similarly, we can prove (S.7).

Next we use (S.6) and (S.7) to show lim supm→∞ F̃DRm ≤ q. Due to Assumption 10 of

the main paper, we have FDP∞λ (t?1, 0) < q and FDP∞λ (0, t?2) < q. Then, for large enough
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m, we have

F̂DPλ,S̃m (t?1, 0) < q and F̂DPλ,S̃m (0, t?2) < q,

which implies that (t̃?1, t̃
?
2) satisfies |t̃?1| ≤ t?1 and |t̃?2| ≤ t?2. Thus, we get

F̂DPλ,S̃m

(
t̃?1, t̃

?
2

)
−

V̂m
(
t̃?1, t̃

?
2

)
V̂m
(
t̃?1, t̃

?
2

)
+ Ŝm

(
t̃?1, t̃

?
2

)
≥ inf
|t1|≤t?1,|t2|≤t?2

{
F̂DPλ,S̃m (t1, t2)− V̂m (t1, t2)

V̂m (t1, t2) + Ŝm (t1, t2)

}
.

(S.9)

Rearranging the second formula, we obtain

inf
|t1|≤t?1,|t2|≤t?2

{
F̂DPλ,S̃m (t1, t2)− V̂m (t1, t2)

V̂m (t1, t2) + Ŝm (t1, t2)

}

= inf
|t1|≤t?1,|t2|≤t?2

{
F̂DPλ,S̃m (t1, t2)− FDP∞λ (t1, t2) +

π0K0 (t1, t2)

K (t1, t2)

− V̂m (t1, t2)

V̂m (t1, t2) + Ŝm (t1, t2)
+ FDP∞λ (t1, t2)− π0K0 (t1, t2)

K (t1, t2)

}
,

which converges in probability to

inf
|t1|≤t?1,|t2|≤t?2

{
FDP∞λ (t1, t2)− π0K0 (t1, t2)

K (t1, t2)

}
according to (S.6) and (S.7). As

−1 ≤ inf
|t1|≤t?1,|t2|≤t?2

{
F̂DPλ,S̃m (t1, t2)− V̂m (t1, t2)

V̂m (t1, t2) + Ŝm (t1, t2)

}
≤ F̂DPλ,S̃m

(
t̃?1, t̃

?
2

)
≤ q,

Lebesgues’s dominated convergence theorem implies

lim inf
m→∞

E

[
inf

|t1|≤t?1,|t2|≤t?2

{
F̂DPλ,S̃m (t1, t2)− V̂m (t1, t2)

V̂m (t1, t2) + Ŝm (t1, t2)

}]

= inf
|t1|≤t?1,|t2|≤t?2

{
FDP∞λ (t1, t2)− π0K0 (t1, t2)

K (t1, t2)

}
≥ 0,

where the last inequality stands due to the fact that F (λ)/Φ(λ) ≥ π0 and K0 (t1, t2) ≤

limm→∞
∑

s∈Sm

∫
L{t1, t2, x, ρ(s)} dG0(x)/m implied by (4.4) in Assumption 9 of the main
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paper. It then yields that

lim inf
m→∞

E

[
F̂DPλ,S̃m

(
t̃?1, t̃

?
2

)
−

V̂m
(
t̃?1, t̃

?
2

)
V̂m
(
t̃?1, t̃

?
2

)
+ Ŝm

(
t̃?1, t̃

?
2

)]

≥ lim inf
m→∞

E

[
inf

|t1|≤t?1,|t2|≤t?2

{
F̂DPλ,S̃m (t1, t2)− V̂m (t1, t2)

V̂m (t1, t2) + Ŝm (t1, t2)

}]

= inf
|t1|≤t?1,|t2|≤t?2

{
FDP∞λ (t1, t2)− π0K0 (t1, t2)

K (t1, t2)

}
≥ 0,

where the first inequality holds because of (S.9) and the monotonicity of expectation. Finally,

we obtain

lim sup
m→∞

F̃DRm ≤ lim inf
m→∞

E
{

F̂DPλ,S̃m

(
t̃?1, t̃

?
2

)}
≤ q,

which completes the proof.

S.III Proofs of Lemmas S.1 and S.2

In this section, we prove Lemmas S.1 and S.2 with the help of some preliminary lemmas. In

particular, Section S.III.1 presents the logic flow why the proposed estimator Ĝm̃ is able to

estimate the limiting distribution of the signal process ξ(s) by introducing multiple inter-

mediate variants. Section S.III.2 states some preliminary lemmas for proving Lemma S.1.

In Section S.III.3, we complete the proofs of Lemmas S.1 and S.2.

S.III.1 Notation and Proof Sketch of Lemma S.1

To better present the proof of Lemma S.1, this section briefly introduces some notation

and intermediate quantities to connect the proposed general maximum likelihood estimator

(GMLE) with the limiting distribution G0. To begin with, we present a fact of GMLE that

is useful in the following proof. There exists a discrete solution to (2.4) of the main paper
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with no more than |S̃| + 1 support points by the Carathéodory’s theorem. Specifically, we

can write the solution as

G̃S̃(u) =
l̃∑

i=1

π̃i1 {ṽi ≤ u} ,
l̃∑

i=1

π̃i = 1, and π̃i > 0, (S.10)

where {ṽi}l̃i=1 is the set of support points and l̃ ≤ |S̃|+ 1. The support of G̃S̃ is within the

range of {T1(s) : s ∈ S̃} due to the monotonicity of φ(x − u) in |x − u|, where φ(x) is the

density of standard normal distribution.

Now recall from (4.1) of the main paper that

T ∗1 (s; r) = E
[
T1(s) | F

{
∪v∈N (s)B(v; r)

}]
/ζr(s),

where ζ2
r (s) = var

(
E
[
T1(s) | F

{
∪v∈N (s)B(v; r)

}])
. We call ζr(s) the normalization term

since it ensures var{T ∗1 (s; r)} = 1. It can be directly shown that under Assumption 5 of the

main paper, {T ∗1 (s; r) : s ∈ S̃m} are independent and normally distributed random variables

with unit variance, provided that (4.2) of the main paper is satisfied for the subset S̃m. This

result fulfills the commonly-used independence assumption in the theory of nonparametric

empirical Bayes (NPEB); see Zhang (2009); Jiang and Zhang (2009) for details. We will

prove that T ∗1 (s; r) and T̂1(s) used in our implementation are close by using the near epoch

dependency (NED, Assumption 4 of the main paper), the consistency of variance (i.e.,

showing τ̂(s)→ τ(s)), and the convergence of the normalization term (i.e., showing ζr(s)→

1). More precisely, we will show that T̂1(s) and T ∗1 (s; r) are close to each other through the

following approximations:

T̂1(s) ≈ T1(s) ≈ T1(s; r) ≈ T ∗1 (s; r),
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where T1(s) is defined in (2.1) of the main paper (the auxiliary statistics with true variance);

and T1(s; r) = T1(s)/ζr(s) is an intermediate variant involving the normalization term ζr(s)

defined above. The difference between T1(s) and T̂1(s) lies oin whether the normalization

term is the true standard deviation of
∑

v∈N (s) X(v) or its estimate. As for T1(s) and

T1(s; r), they again differ by the normalization terms (τ(s) versus ζr(s)). The difference

between T1(s; r) and its conditional version T ∗1 (s; r) is controlled by NED. The following

intermediate quantities are the corresponding GMLEs based on T̂1(s), T1(s; r), and T ∗1 (s; r):

• The GMLE based on {T̂1(s), s ∈ S̃m} is denoted as

Ĝm̃(u) =
l̂∑

i=1

π̂i1 {v̂i ≤ u} ,

where |v̂i| ≤ sups∈S̃m |T̂1(s)|, l̂ ≤ m̃+ 1,
∑l̂

i=1 π̂i = 1, and π̂i > 0;

• The GMLE based on {T1(s; r) : s ∈ S̃m} is denoted as

G̃m̃,r(u) =
l̃∑

i=1

π̃i1 {ṽi ≤ u} ,

where |ṽi| ≤ sups∈S̃m |T1(s; r)|, l̃ ≤ m̃+ 1,
∑l̃

i=1 π̃i = 1, and π̃i > 0;

• The GMLE based on {T ∗1 (s; r) : s ∈ S̃m} is denoted as

G̃∗m̃,r(u) =
l̃∗∑
i=1

π̃∗i 1 {ṽ∗i ≤ u} ,

where |ṽ∗i | ≤ sups∈S̃m |T
∗
1 (s; r)|, l̃∗ ≤ m̃+ 1,

∑l̃∗

i=1 π̃
∗
i = 1, and π̃∗i > 0.

Here we suppress the dependence of π̃i, ṽi, π̃
∗
i , and ṽ∗i on r to simplify the presentation. We

now describe the key idea and steps for proving Lemma S.1 as visualized in Figure S.20.

The key idea is to prove that Ĝm̃ converges to G0 in terms of the Hellinger distance when
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the subset S̃m satisfies (4.2) of the main paper. The details will be shown in Lemma S.8.

To arrive at this result, we need the following steps. On the one hand, (iv) and (v) in

Figure S.20 state that Ĝm̃ approximates

Gm̃,r(u) =
1

m̃

∑
s∈S̃m

1{ξ(s)/ζr(s) ≤ u}, (S.11)

with high accuracy (see Lemmas S.5 and S.6). On the other hand, (vi) in Figure S.20 states

that Gm̃,r(u) approaches

Gm̃(u) =
1

m̃

∑
s∈S̃m

1{ξ(s) ≤ u}

by showing that ζr(s) tends to 1 as r →∞ (see Lemma S.3). Together with Assumption 7

of the main paper, Gm̃,r(u) converges to G0(u) as m̃→∞, which will be shown in Lemma

S.7. The detailed statements of Lemmas S.3–S.8 are presented in the next subsection.

S.III.2 Some Preliminary Lemmas

Following the proof sketch in Section S.III.1, we now introduce some preliminary lemmas.

These lemmas are in accordance with the strategies depicted in Figure S.20. In particular,

Lemmas S.3 to S.5 focus on a series of properties derived from NED and the consistency of

variance. Lemma S.6 provides a large deviation inequality that gives the convergence rate

of Ĝm̃ to Gm̃,r as defined in (S.11). Lemmas S.7 and S.8 show that dH(fĜm̃ , fG0) = oP (1),

which is an important step in the proof of Lemma S.1. Lemma S.9 establishes the law of

large numbers for the number of false/true discoveries. The relations among Theorem 1 of

the main paper and Lemmas S.1–S.9 are depicted in Figure S.21.
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T1(s)T̂1(s) T ∗1 (s; r)

T1(s; r)

G̃m̃,rĜm̃ G̃∗m̃,r

Gm̃,rGm̃

G0

∑
s∈Sm

∫
L {t1, t2, x, ρ(s)} dG0(x)/m

∑
s∈Sm

∫
L {t1, t2, x, ρ̂(s)} dĜm̃(x)/m

(i) var. est. (ii) norm. ind. app.

(iii) norm.

(iii)
ind. app.

(iv) var. consis. (iv) ind. app.

Lemma S.1

(v) GMLE consis.

(vi) norm. consis.
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Figure S.20: The diagram of proving Lemma S.1 using the intermediate variants. The overall strategies
are: (i) replacing the unknown variance with the true variance τ(s); (ii) replacing the correlated auxil-
iary statistics with its normalized independent approximation; (iii) analyzing the normalized independent
approximation by its normalization term and independent approximation term; (iv) showing GMLE es-

timated from different sources are close; (v) showing GMLE G̃∗m̃,r estimated from T ∗1 (s; r) converges to
Gm̃,r; and (vi) proving that Gm̃,r approaches G0 by showing ζr(s) → 1 and the large sample consistency.
Lemma S.1 establishes the convergence using the above strategies. Here var., est., norm., ind., app., and
consis. are abbreviations for “variance”, “estimation”, “normalization”, “independently”, “approximation”
and “consistency” respectively.
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Lemma S.3 Lemma S.4

Lemma S.5

Lemma S.8Lemma S.7 Lemma S.1

Lemma S.6

Lemma S.9

Lemma S.2

Theorem 1

Figure S.21: The relations among Lemmas S.1–S.8 and Theorem 1.

Now, we start to present Lemmas S.3–S.9.

Lemma S.3 (Convergence of τ̂ 2(s)). Under Assumptions 1–5 of the main paper, we have

(a) |ζ2
r (s)− 1| ≤ Cψ2(r) and |1/ζ2

r (s)− 1| ≤ Cψ2(r) uniformly for large enough r.

(b) sups∈S̃m |τ̂
2(s)/τ 2

r (s)− 1| ≤ Cψ2(r)+Cm̃−q uniformly for large enough r with probability

tending to one as m̃→∞.

(c) supm sups∈Sm η(s; r) is uniformly bounded for large enough r.

Remark S.1. According to the definition of NED (see Definition 1 of the main paper),

Lemma S.3(a) implies that ζr(s)→ 1 as r →∞. It further implies

sup
s∈Sm

E {T ∗1 (s; r)}2 = 1 + sup
s∈Sm

[
E{T ∗1 (s; r)}

]2 ≤ 1 + sup
s∈Sm

ν2
0/ζ

2
r (s) ≤ 1 + 2ν2

0

4
= ν2

1 (S.12)

due to Assumption 7 of the main paper and the unit variance of T ∗1 (s; r) as defined in (4.1)

of the main paper.
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As for Lemma S.3(b), we note that

sups∈S̃m |τ̂
2(s)/τ 2

r (s)− 1|
1− sups∈S̃m |τ̂ 2(s)/τ 2

r (s)− 1|
≤ {Cψ2(r) + Cm̃−q}/[1− {Cψ2(r) + Cm̃−q}]

≤ Cψ2(r) + Cm̃−q

(S.13)

with high probability when r and m̃ are large. Both (S.13) and (S.12) will be useful in our

theoretical analysis.

Remark S.2. A similar conclusion holds for primary statistics T2(s). Specifically, define

T ∗2 (s; r) = E
[
T2(s) | F

{
∪v∈N (s)B(v; r)

}]
/ζ̆r(s),

where ζ̆2
r (s) = var

(
E
[
T2(s) | F

{
∪v∈N (s)B(v; r)

}])
. We have

∣∣∣ζ̆2
r (s)− 1

∣∣∣ ≤ Cψ2(r) and∣∣∣1/ζ̆2
r (s)− 1

∣∣∣ ≤ Cψ2(r) uniformly and supm sups∈Sm η̆(s; r) is uniformly bounded for large

enough r.

Lemma S.4. Under Assumptions 1–5 and 7 of the main paper, for m̃ large enough and any

δ1, δ2 > 0, with probability at least

1− m̃ exp(−ν2
1δ

2
1/2)− Cm̃ψp(r)/νp1δ

p
1 − Cψp(r)/δ

p
2, (S.14)

the following events occur simultaneously.

(a)

sup
s∈S̃m
|T ∗1 (s; r)| ≤ ν1(1 + δ1) and sup

s∈S̃m
|T1(s; r)| ≤ ν1(1 + 2δ1).

(b)

m̃−1
∑
s∈S̃m

|T1(s; r)− T ∗1 (s; r)| ≤ δ2 and m̃−1

∣∣∣∣∣∣
∑
s∈S̃m

T 2
1 (s; r)− {T ∗1 (s; r)}2

∣∣∣∣∣∣ ≤ ν1δ2(2 + 3δ1).
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(c)

m̃−1
∑
s∈S̃m

|T1(s; r)| ≤ ν1 (1 + δ1) + δ2,

and

m̃−1
∑
s∈S̃m

T 2
1 (s; r) ≤ ν2

1 + ν1δ2(2 + 3δ1) + ν2
1δ1 (2 + δ1) .

Remark S.3. The three tail probabilities in (S.14) respectively correspond to the events of

sups∈S̃m |T
∗
1 (s; r)− E{T ∗1 (s; r)}| ≤ ν1δ1, sups∈S̃m |T

∗
1 (s; r)− T1(s; r)| ≤ ν1δ1, and

m̃−1
∑

s∈S̃m |T1(s; r)− T ∗1 (s; r)| ≤ δ2. In the proof, we will show that these events imply the

upper bounds in (a)–(c) of Lemma S.4.

Lemma S.5. Under Assumptions 1–5 and 7 of the main paper, with probability at least

(S.14), the difference of generalized log-likelihood

1

m̃

∣∣∣∣∣∣
∑
s∈S̃m

log

[
fG̃∗m̃,r

{T1(s; r)}
fG̃∗m̃,r

{T ∗1 (s; r)}
fG̃m̃,r{T̂1(s)}
fG̃m̃,r{T1(s; r)}

fĜm̃{T
∗
1 (s; r)}

fĜm̃{T1(s; r)}
fĜm̃{T1(s; r)}
fĜm̃{T̂1(s)}

]∣∣∣∣∣∣ (S.15)

is upper bounded by

Cν2
1

{
ψ2(r) + m̃−q

}
(1 + δ2

1) + Cν1δ2 (1 + δ1) .

Lemma S.6. Under Assumptions 2, 5, and 7 of the main paper, conditioning on E|T ∗1 (s; r)| ≤

ν1, if Ĝm̃ satisfies ∏
s∈S̃m

[
fĜm̃ {T

∗
1 (s; r)}

fGm̃,r {T ∗1 (s; r)}

]
≥ e−2t2m̃c2m̃/15, (S.16)

where

cm̃ =

√
log(m̃)

m̃

{
m̃1/b

√
log m̃ (1 ∨ ν1)

}b/(2+2b)

(S.17)

for some b > 0, then there exists a universal constant t∗ such that for all t ≥ t∗ and
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log m̃ ≥ 2/b,

P
{
dH
(
fĜm̃ , fGm̃,r

)
≥ tcm̃

}
≤ exp

{
− t

2m̃c2
m̃

2 log m̃

}
≤ e−t

2 log m̃.

Lemma S.6 is a direct consequence of Theorem 1 in Zhang (2009). It states that

dH(fĜm̃ , fGm̃,r) would be small enough, as long as the generalized likelihood is nearly max-

imized in the sense of (S.16). This result together with Lemma S.5 allows us to replace

T ∗1 (s; r) with T̂1(s) in estimating Gm̃,r.

Lemma S.7. Under Assumptions 1–5, and 7 of the main paper, for m̃→∞ and arbitrary

δ3 > 0, we have

dH(fGm̃,r , fG0) ≤ Cν
1/2
1 ψ(r) + δ3,

with probability tending to one.

Lemma S.8. Under Assumptions 1–7 of the main paper, the GMLE based on {T̂1(s), s ∈

S̃m} satisfies dH
(
fĜm̃ , fG0

)
= oP (1) as m→∞.

Lemma S.8 is a consequence of Lemmas S.5–S.7. Its proof uses the convergence result of

dH(fGm̃,r , fG0) in Lemma S.7, and shows the convergence rate in Lemma S.5 is fast enough

to ensure that Ĝm̃ is an approximate GMLE of Gm̃,r and the condition in Lemma S.6 is

fulfilled.

Lemma S.9. Under Assumptions 1–5, and 9 of the main paper, we have∑
s∈S0,m 1 {T1(s) ≥ t1, T2(s) ≥ t2}

m0

:=
Vm(t1, t2)

m0

p−→ K0 (t1, t2) ,∑
s∈S1,m 1 {T1(s) ≥ t1, T2(s) ≥ t2}

m1

:=
Sm(t1, t2)

m1

p−→ K1 (t1, t2) ,

as m0 and m1 goes to infinity.

Lemma S.9 addresses the challenge posed by the non-Lipschitz nature of 1{T1(s) ≥
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t1, T2(s) ≥ t2}, which complicates the application of the NED-based law of large numbers

by a new approach.

S.III.3 Detailed Proofs of Lemmas S.1 and S.2

In this subsection, we complete the proofs of Lemmas S.1 and S.2 using Lemmas S.3–S.9.

Proof of Lemma S.1. Due to the triangular inequality, the LHS of (S.2) can be written as∣∣∣∣∣ 1

m

∑
s∈Sm

{∫
L {t1, t2, x, ρ̂(s)} dĜm̃(x)−

∫
L {t1, t2, x, ρ(s)} dG0(x)

}∣∣∣∣∣
≤

∣∣∣∣∣ 1

m

∑
s∈Sm

∫
[L {t1, t2, x, ρ̂(s)} − L {t1, t2, x, ρ(s)}] dĜm̃(x)

∣∣∣∣∣
+

∣∣∣∣∣ 1

m

∑
s∈Sm

∫
L {t1, t2, x, ρ(s)}

{
dĜm̃(x)− dG0(x)

}∣∣∣∣∣ .
Thus, we only need to prove

sup
|t1|≤t′1,|t2|≤t′2

∣∣∣∣∣ 1

m

∑
s∈Sm

∫
[L {t1, t2, x, ρ̂(s)} − L {t1, t2, x, ρ(s)}] dĜm̃(x)

∣∣∣∣∣ = oP (1) (S.18)

and

sup
|t1|≤t′1,|t2|≤t′2

∣∣∣∣∣ 1

m

∑
s∈Sm

∫
L {t1, t2, x, ρ(s)}

{
dĜm̃(x)− dG0(x)

}∣∣∣∣∣ = oP (1). (S.19)

To simplify our presentation, we will prove (S.18) and (S.19) under the condition that

L (t1, t2, x, c) is uniformly continuous over R3 × [−1, 1]. The justification of the uniform

continuity of L (t1, t2, x, c) is given later.

(i) Now, we prove (S.18) with the uniform continuity of L (t1, t2, x, c). For an arbitrary

ε > 0, there exists 0 < δ < 2 such that

sup
(t1,t2,x)∈R3

|L (t1, t2, x, c1)− L (t1, t2, x, c2)| < ε, (S.20)
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for any c1, c2 ∈ [−1, 1] satisfying |c1 − c2| < δ. Thus, we have

sup
(t1,t2,x)∈R3

∫
|L (t1, t2, x, c1)− L (t1, t2, x, c2)| dĜm̃(x) < ε.

It further implies that

P

(∣∣∣∣∣ 1

m

∑
s∈Sm

∫
[L {t1, t2, x, ρ̂(s)} − L {t1, t2, x, ρ(s)}] dĜm̃(x)

∣∣∣∣∣ > ε

)

≤ P

{
1

m

∑
s∈Sm

∫
|L {t1, t2, x, ρ̂(s)} − L {t1, t2, x, ρ(s)}| dĜm̃(x) > ε; sup

s∈Sm
|ρ(s)− ρ̂(s)| < δ

}

+ P

{
sup
s∈Sm
|ρ(s)− ρ̂(s)| > δ

}
= P

{
sup
s∈Sm
|ρ(s)− ρ̂(s)| > δ

}
→ 0,

where the convergence in the last step is due to Assumptions 2 and 3(b) of the main paper.

(ii) To prove (S.19), it is sufficient to show that

sup
|t1|≤t′1,|t2|≤t′2

sup
c∈[−1,1]

∣∣∣∣∫ L (t1, t2, x, c)
{
dĜm̃(x)− dG0(x)

}∣∣∣∣ = oP (1). (S.21)

To show (S.21), we note that the following pointwise convergence,∫
L (t1, t2, x, c)

{
dĜm̃(x)− dG0(x)

}
= oP (1), (S.22)

can directly b obtained according to the proof of (44) in Yi et al. (2021) when (t1, t2, c) is

fixed. For any ε > 0, we can split [−t′1, t′1] × [−t′2, t′2] × [−1, 1] into B disjoint finite sets

∪1≤k≤BCk such that

sup
(t1,t2,c),(t̃1,t̃2,c̃)∈Ck

∣∣∣∣∫ {L (t1, t2, x, c)− L
(
t̃1, t̃2, x, c̃

)}
dG0(x)

∣∣∣∣ ≤ ε/2,

and sup
(t1,t2,c),(t̃1,t̃2,c̃)∈Ck

∣∣∣∣∫ {L (t1, t2, x, c)− L
(
t̃1, t̃2, x, c̃

)}
dĜm̃(x)

∣∣∣∣ ≤ ε/2,

according to the uniform continuity of L(t1, t2, x, c). Fixing (tk1, t
k
2, c

k) ∈ Ck, 1 ≤ k ≤ B, we
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have

sup
|t1|≤t′1,|t2|≤t′2

sup
c∈[−1,1]

∣∣∣∣∫ L (t1, t2, , x, c)
{
dĜm̃(x)− dG0(x)

}∣∣∣∣
= sup

(t1,t2,c)∈∪1≤k≤BCk

∣∣∣∣∫ L (t1, t2, x, c)
{
dĜm̃(x)− dG0(x)

}∣∣∣∣
≤ max

1≤k≤B
sup

(t1,t2,c)∈Ck

∣∣∣∣∫ L (t1, t2, x, c)− L
(
tk1, t

k
2, x, c

k
)
dG0(x)

∣∣∣∣
+ max

1≤k≤B
sup

(t1,t2,c)∈Ck

∣∣∣∣∫ L (t1, t2, x, c)− L
(
tk1, t

k
2, x, c

k
)
dĜm̃(x)

∣∣∣∣
+ max

1≤k≤B

∣∣∣∣∫ L
(
tk1, t

k
2, x, c

k
){

dĜm̃(x)− dG0(x)
}∣∣∣∣

≤ ε+ max
1≤k≤B

∣∣∣∣∫ L
(
tk1, t

k
2, x, c

k
){

dĜm̃(x)− dG0(x)
}∣∣∣∣ .

Due to the pointwise convergence of (S.22) and the arbitrariness of ε > 0, the uniform

convergence of (S.21) stands from the eabove displayed inequality. Finally, the definition of

K0(t1, t2) in Assumption 9 together with (S.2) implies the conclusion of Lemma S.1.

We now justify the uniform continuity to complete the proof of Lemma S.1. We first

prove L (t1, t2, x, c) is uniformly continuous over R3 × [−1 + δρ, 1 − δρ] for any 0 < δρ <

1. Denote by f(u, v; c) the bivariate normal density with mean zero, variance one and

correlation c ∈ (−1, 1). Then we have

L(t1, t2, x, c) =

∫ ∞
t2−x

∫ ∞
t1

f(u, v; c)dvdu

=

∫ ∞
t2−x

du

∫ ∞
t1

1

2π
√

(1− c2)
exp

{
−u

2 − 2cuv + v2

2 (1− c2)

}
dv.

Next, we prove that given δρ,M > 0, c1 and c2 such that |c1 − c2| < δ and 0 < δ < 2−2δρ,
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the following inequalities hold

sup
(t1,t2,x)∈R3;−1+δρ≤c1,c2≤1−δρ

|L(t1, t2, x, c1)− L(t1, t2, x, c2)|

≤ sup
−1+δρ≤c1,c2≤1−δρ

∫ ∞
−∞

∫ ∞
−∞
|f(u, v; c1)− f(u, v; c2)| dudv

≤ 8

∫ ∞
M

φ(u)du+ sup
−1+δρ≤c1,c2≤1−δρ

∫ M

−M

∫ M

−M

∣∣∣∣∂f(u, v; c)

∂c
|c=c̃(c1,c2)

∣∣∣∣ |c1 − c2| dudv

≤ 8

∫ ∞
M

φ(u)du+ δ

∫ M

−M

∫ M

−M
sup

c∈[−1+δρ,1−δρ]

∣∣∣∣∂f(u, v; c)

∂c

∣∣∣∣ dudv
≤ 8

∫ ∞
M

φ(u)du+ δC(δρ,M),

where the second inequality is achieved by covering (−∞,∞)2 with five regions, namely

[−M,M ]2, (−∞,−M)× (−∞,∞),(M,∞)× (−∞,∞),(−∞,∞)× (M,∞) and (−∞,∞)×

(−∞,−M) and then applying the mean value theorem to the first region and using the fact∫∞
−∞ f(u, v; c)dv = φ(u) (and

∫∞
−∞ f(u, v; c)du = φ(v)) for the remaining four regions, and

the last inequality stands because ∂f(u, v; c)/∂c is continuous and

C(M, δρ) = 4M2 sup
(u,v)∈[−M,M ]2,c∈[−1+δρ,1−δρ]

∣∣∣∣∂f(u, v; c)

∂c

∣∣∣∣
is a positive constant depending only on M and δρ. For any ε > 0, we can choose M > 0 large

enough such that 8
∫∞
M
φ(u)du < ε/2. We then take δ(M, δρ) = min{2−2δρ, ε/2C(δρ,M)} >

0 to fulfill |L(t1, t2, x, c1)− L(t1, t2, x, c2)| ≤ ε when |c1 − c2| < δ(M, δρ). We extend the

uniform continuity for the correlation parameter c in [−1+ δρ, 1− δρ] to [−1, 1]. To this end,

it is sufficient to show that for any ε > 0, there exists δρ > 0 such that

sup
(t1,t2,x)∈R3

|L(t1, t2, x, 1− δ)− L(t1, t2, x, 1)| ≤ ε,

and sup
(t1,t2,x)∈R3

|L(t1, t2, x,−1 + δ)− L(t1, t2, x,−1)| ≤ ε,
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for any δ satisfying 0 < δ ≤ δρ. We present the proof of the first inequality above. The

proof for the second equality is similar and thus omitted. Letting t1 − x ≤ t2, we have

|L(t1, t2, x, 1− δ)− L(t1, t2, x, 1)| = |L(t1, t2, x, 1− δ)− P (V2(s) ≥ t2)|

= |P {V1(s) + x ≥ t1, V2(s) ≥ t2} − P{V2(s) ≥ t2}|

= P {V1(s) < t1 − x, V2(s) ≥ t2}

< P {V1(s) < V2(s)} ,

where (V1(s), V2(s)) follows a bivariate normal distribution with variance one and correlation

1− δ. Similarly, when t1 − x > t2, we have

|L(t1, t2, x, 1− δ)− L(t1, t2, x, 1)| < P {V1(s) > V2(s)} ,

which implies

|L(t1, t2, x, 1− δ)− L(t1, t2, x, 1)| < P {V1(s) 6= V2(s)} .

As P {V1(s) 6= V2(s)} as a function of the correlation δ is right continuous at δ = 0, a proper

δρ > 0 can always be selected. To sum up, we have verified the uniform continuity and the

proof is thus completed.

Proof of Lemma S.2. To show the uniform convergence of m−1
0 V̂m(t1, t2) in (S.3), we begin

with the pointwise convergence. In other words, we first show |m−1
0 V̂m(t1, t2)−K0(t1, t2)| =

oP (1) for any fixed (t1, t2). It suffices to show that

P
{
m−1

0 V̂m (t1, t2) ≤ K0 (t1, t2) + δ0

}
→ 1 (S.23)

and

P
{
m−1

0 V̂m (t1, t2) ≥ K0 (t1, t2)− δ0

}
→ 1 (S.24)
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as m→∞.

We now focus on (S.23). Observe that

V̂m (t1, t2) =
∑
s∈S0,m

1
{
T̂1(s) ≥ t1, T̂2(s) ≥ t2

}
=
∑
s∈S0,m

1
{
T1(s) ≥ r̂(1)(s)t1, T2(s) ≥ r̂(2)(s)t2

}
:= Vm

(
r̂(1)t1, r̂

(2)t2
)
,

where r̂(1)(s) = σ̂(s)/σ(s), r̂(2)(s) = τ̂(s)/τ(s) for s ∈ S0,m, and r̂(k) = (r̂(k)(s))s∈S0,m for

k = 1, 2. For an arbitrary δ > 0, we define three events Ak,δ = {sups∈S0,m
∣∣r̂(k)(s)− 1

∣∣ ≤ δ}

for k = 1, 2, and

A3,δ(t1, t2) =
{∣∣m−1

0 Vm(t1, t2)−K0(t1, t2)
∣∣ ≤ δ

}
.

It can be seen that P (Ak,δ) → 1 for k = 1, 2 due to Assumptions 2 and 3. Similarly,

P{A3,δ(t1, t2)} → 1 for any fixed (t1, t2) ∈ R2 as m→∞, because of Assumptions 2, 8, and

Lemma S.9.To verify (S.23), we notice that{
1

m0

V̂m (t1, t2) ≤ K0 (t1, t2) + δ0

}
⊇
{

1

m0

Vm
(
r̂(1)t1, r̂

(2)t2
)
≤ K0 (t1, t2) + δ0

}
∩ (A1,δ ∩ A2,δ)

⊇
{

1

m0

Vm
(
r̂(1)t1, r̂

(2)t2
)
≤ 1

m0

Vm ((1− δ)t1, (1− δ)t2)

}
∩ (A1,δ ∩ A2,δ)

∩
{∣∣∣∣ 1

m0

Vm ((1− δ)t1, (1− δ)t2)−K0 ((1− δ)t1, (1− δ)t2)

∣∣∣∣ ≤ δ0/2

}
∩ {|K0 ((1− δ) t1, (1− δ) t2)−K0(t1, t2)| ≤ δ0/2}

⊇ (A1,δ ∩ A2,δ) ∩ A3,δ0/2((1− δ)t1, (1− δ)t2)
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∩ {|K0((1− δ)t1, (1− δ)t2)−K0(t1, t2)| ≤ δ0/2} ,

where the first inclusion is because of V̂m (t1, t2) = Vm
(
r̂(1)t1, r̂

(2)t2
)
; the second inclusion

is due to the triangle inequality; as for the third inclusion, we used the fact that Vm is

monotonically decreasing with respect (t1, t2) and{
1

m0

Vm
(
r̂(1)t1, r̂

(2)t2
)
≤ 1

m0

Vm ((1− δ)t1, (1− δ)t2)

}
holds true under A1,δ ∩ A2,δ, and the definition of A3,δ. Thus for an arbitrary δ0 > 0, we

can choose δ > 0 to guarantee

|K0((1− δ)t1, (1− δ)t2)−K0(t1, t2)| ≤ δ0/2,

because K0(t1, t2) is continuous, and (S.23) holds due to

P
(
A1,δ ∩ A2,δ ∩ A3,δ0/2 ((1− δ)t1, (1− δ)t2)

)
→ 1.

For (S.24), it can be shown similarly and thus the pointwise convergence of m−1
0 V̂m(t1, t2)

holds. The uniform convergence in (S.3) can be derived similarly as in the proof of Lemma S.1

after getting the pointwise convergence of m−1
0 V̂m(t1, t2). As for (S.4) and (S.5), these two

results can be proved analogously as (S.3) and thus their proofs are omitted.

S.IV Proofs of Lemmas S.3–S.9

This section is organized as follows. Section S.IV.1 discusses how to choose a set S̃m used

for NPEB such that Assumption 6 of the main paper is satisfied. Section S.IV.2 presents

the detailed proofs of Lemmas S.3–S.9.
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S.IV.1 Justification of Assumption 6 of the main paper

Observe that {T ∗1 (s; r) : s ∈ S̃m} defined in (4.1) of the main paper are independent once

(4.2) of the main paper is fulfilled. Due to Assumptions 1 and 2 of the main paper, (4.2) of

the main paper holds as long as

dist(s, s′) ≥ 2Nnei∆u + 2r, s, s′ ∈ S̃m. (S.25)

It is because for any w ∈ ∪v∈N (s)B(v; r), dist(s, w) ≤ dist(s, v) + dist(v, w) ≤ Nnei∆u + r,

where we have used Assumption 2 of the main paper thatN (s) is the set of nearest neighbors

with uniformly bounded cardinality for each location s. With (S.25), r can be taken as large

as ∆̃l,m/2−Nnei∆u to ensure the independence of {T ∗1 (s; r) : s ∈ S̃m}, where ∆̃l,m is defined

as in (4.3) of the main paper. In other words, r and ∆̃l,m are of the same order. We show

that S̃m can be chosen such that

m̃ = |S̃m| � m/rK . (S.26)

To this end, we pick all possible s ∈ Sm into S̃m which satisfies (S.25) for any s′ ∈ S̃m until

no more locations satisfy the condition. A typical choice is

S̃m = arg max
S̃m∈S̃m

|S̃m| with S̃m =
{
S̃m ⊂ Sm : S̃m satisfies (S.25)

}
, (S.27)

which can be viewed as the largest 2Nnei∆u + 2r-packing, motivated by the definition of

packing number (see e.g., Definition 5.4 of Wainwright, 2019). Borrowing the idea of volume

comparison lemma, we construct m K-dimensional cubes centered at the locations in Sm

with the length ∆l/2, which are non-overlapping due to Assumption 1, and m̃ K-dimensional

cubes centered at the locations in S̃m with the length 2(2Nnei∆u + ∆u + 2r). It is straight-
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forward to verify the cubes centered at S̃m cover all cubes centered at Sm; otherwise, (S.27)

will be violated. Thus m, m̃, and r satisfy

m∆K
l /2

K ≤ m̃2K(2Nnei∆u + ∆u + 2r)K ,

where the LHS is the total volume of cubes centered at Sm and the RHS is the total volume

of cubes centered at S̃m. Hence, we obtain

m̃ ≥ m
∆K
l

4K(2Nnei∆u + ∆u + 2r)K
∝ m/rK .

To satisfy the other side of (S.26), we just need to pick fewer locations into the S̃m. This

completes the proof of (S.26).

Next, we show that S̃m can be constructed such that m̃1/(λp){log(m̃)}−1/(2λ) = o(∆̃l,m)

to fulfill (S.47) and m̃→∞ as m→∞, where λ, p > 0 are associated with the Lp-NED in

Assumption 4. The above requirement on S̃m can be guaranteed when we take, for simplicity,

∆̃l,m � m̃1/(λp), which implies r � m̃1/(λp). Combining with (S.26), we get

m̃ � m
λp

K+λp ,

which tends to infinity and m̃1/(λp){log(m̃)}−1/(2λ) = o(∆̃l,m) as m→∞.

S.IV.2 Detailed Proofs of Lemmas S.3–S.9

In this section, we provide the detailed proofs of Lemmas S.3–S.8 stated in Section S.III.2.

We first present some results about the difference between T1(s; r) and T ∗1 (s; r). Suppose X

is Lp(d)-NED on the random field Y = {Y (s), s ∈ Vm}. Then the Lp norm of the difference

between T1(s) and E
[
T1(s) | F

{
∪v∈N (s)B(v; r)

}]
is controlled by

∥∥T1(s)− E
[
T1(s) | F

{
∪v∈N (s)B(v; r)

}]∥∥
p
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≤
∑

v∈N (s)

∥∥X(v)− E
[
X(v) | F

{
∪v∈N (s)B(v; r)

}]∥∥
p

τ(s)

≤
∑

v∈N (s)

dm(v)

τ(s)
ψ(r) (S.28)

due to the triangular inequality and the generalized non-decreasing property. Accordingly,

the difference between the normalized variants is controlled by

‖T1(s; r)− T ∗1 (s; r)‖p ≤
∑

v∈N (s)

dm(v)

τ(s)ζr(s)
ψ(r) := η(s; r)ψ(r), (S.29)

where η(s; r) =
∑

v∈N (s) dm(v)/{τ(s)ζr(s)}. Thus, it can be seen that

P {|T1(s; r)− T ∗1 (s; r)| > δ} ≤ 1

δp
‖T1(s; r)− T ∗1 (s; r)‖pp ≤

ηp(s; r)ψp(r)

δp

for any δ > 0 due to the Markov inequality. Subsequently, we can establish the convergence

of

sup
s∈S̃m
|T1(s; r)− T ∗1 (s; r)| and

1

m̃

∑
s∈S̃m

|T1(s; r)− T ∗1 (s; r)| .

In particular, for a fixed δ > 0, the maximum difference between T1(s; r) and T ∗1 (s; r) is

controlled by

P

{
sup
s∈S̃m
|T1(s; r)− T ∗1 (s; r)| ≤ δ

}
= P

{
∩s∈S̃m |T1(s; r)− T ∗1 (s; r)| ≤ δ

}
≥ 1− 1

δp

∑
s∈S̃m

ηp(s; r)ψp(r).

(S.30)

The mean difference is controlled by

P

 1

m̃

∑
s∈S̃m

|T1(s; r)− T ∗1 (s; r)| > δ

 ≤ 1

m̃pδp

∥∥∥∥∥∥
∑
s∈S̃m

|T1(s; r)− T ∗1 (s; r)|

∥∥∥∥∥∥
p

p

≤ 1

m̃pδp

∑
s∈S̃m

‖T1(s; r)− T ∗1 (s; r)‖p


p

(S.31)
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≤ 1

m̃pδp

∑
s∈S̃m

η(s; r)ψ(r)


p

,

where the first, second, and last inequalities are due to the Markov inequality, the triangular

inequality, and (S.29), respectively.

Proof of Lemma S.3. First note that X is uniformly Lp-NED on Y for p ≥ 2 implies that X

is uniformly L2-NED on Y .

(a) Recall ζ2
r (s) = var

(
E
[
T1(s) | F

{
∪v∈N (s)B(v; r)

}])
and var {T1(s)} = 1. Then we

have

ζ2
r (s) = var

(
E
[
T1(s) | F

{
∪v∈N (s)B(v; r)

}])
≤ var {T1(s)} = 1 (S.32)

according to the law of total variance. Further, setting p = 2 in (S.28), we obtain

∥∥T1(s)− E
[
T1(s) | F

{
∪v∈N (s)B(v; r)

}]∥∥
2
≤
∑

v∈N (s)

dm(v)

τ(s)
ψ(r) ≤ Cψ(r)

where the last inequality holds by Assumptions 2, 3(a) and 4 of the main paper. Therefore,

we get ∣∣ζ2
r (s)− 1

∣∣ =
∣∣var

(
E
[
T1(s) | F

{
∪v∈N (s)B(v; r)

}])
− var {T1(s)}

∣∣
=
∣∣∣E (E [T1(s) | F

{
∪v∈N (s)B(v; r)

}]
− T1(s)

)2
∣∣∣

=
∥∥T1(s)− E

[
T1(s) | F

{
∪v∈N (s)B(v; r)

}]∥∥2

2

≤ Cψ2(r),

where the second equality stands because E
(
E
[
T1(s) | F

{
∪v∈N (s)B(v; r)

}])
= E {T1(s)}.

For the third equality, we have

E
(
T1(s)E

[
T1(s) | F

{
∪v∈N (s)B(v; r)

}])
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= E
{
E
(
T1(s)E

[
T1(s) | F

{
∪v∈N (s)B(v; r)

}]
| F
{
∪v∈N (s)B(v; r)

})}
= E

(
E
[
T1(s) | F

{
∪v∈N (s)B(v; r)

}])2
,

where T1(s)E
[
T1(s) | F

{
∪v∈N (s)B(v; r)

}]
∈ L1 is due to the Gaussianity from Assumption 5

of the main paper.

Together with (S.32), for large enough r, we have

∣∣1/ζ2
r (s)− 1

∣∣ ≤ {1− Cψ2(r)
}−1

Cψ2(r) ≤ Cψ2(r)

since |1/x2 − 1| decreases as x2 ∈ (0, 1] increases. This completes Part (a) of this lemma.

(b) Assumptions 2 and 3 of the main paper imply |τ̂(s)/τ(s) − 1| = oP (m̃−q) and

|τ̂ 2(s)/τ 2(s) − 1| = oP (m̃−q). For any 0 < δ = Cm̃−q < 1, combining it with the proved

conclusion in (a), we have∣∣τ̂ 2(s)/τ 2
r (s)− 1

∣∣ =
∣∣τ̂ 2(s)/τ 2(s)ζ2

r (s)− 1
∣∣

≤
∣∣τ̂ 2(s)/τ 2(s)ζ2

r (s)− τ̂ 2(s)/τ 2(s)
∣∣+
∣∣τ̂ 2(s)/τ 2(s)− 1

∣∣
≤ τ̂ 2(s)/τ 2(s)

∣∣1/ζ2
r (s)− 1

∣∣+
∣∣τ̂ 2(s)/τ 2(s)− 1

∣∣
≤
(
1 + Cm̃−q

)
Cψ2(r) + Cm̃−q

≤ Cψ2(r) + Cm̃−q

for large enough r with probability tending to one as m̃→∞.

For (c), we notice that

sup
m

sup
s∈Sm

η(s; r) = sup
m

sup
s∈Sm

∑
v∈N (s)

dm(v)

τ(s)ζr(s)
≤ C sup

m
sup
s∈Sm

1

ζr(s)
,

where the last inequality stands due to Assumptions 2, 3(a), and 4 of the main paper.

Finally, supm sups∈S̃m η(s; r) is bounded for large enough r according to Part (a) of this
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lemma.

Proof of Lemma S.4. Note that

P

(
sup
s∈S̃m
|T ∗1 (s; r)− E {T ∗1 (s; r)}| > ν1δ1 ∪ sup

s∈S̃m
|T ∗1 (s; r)− T1(s; r)| > ν1δ1

∪ m̃−1
∑
s∈S̃m

|T1(s; r)− T ∗1 (s; r)| > δ2


≤ P

[
sup
s∈S̃m
|T ∗1 (s; r)− E {T ∗1 (s; r)}| > ν1δ1

]

+ P

{
sup
s∈S̃m
|T ∗1 (s; r)− T1(s; r)| > ν1δ1

}

+ P

m̃−1
∑
s∈S̃m

|T1(s; r)− T ∗1 (s; r)| > δ2


≤ m̃ exp(−ν2

1δ
2
1/2) + Cm̃ψp(r)/νp1δ

p
1 + Cψp(r)/δp2

(S.33)

due to (S.30), (S.31), Lemma S.3(c), and the observation that

P

(
sup
s∈S̃m
|T ∗1 (s; r)− E {T ∗1 (s; r)}| > ν1δ1

)
= P

(
∪s∈S̃m [T ∗1 (s; r)− E {T ∗1 (s; r)} > ν1δ1]

)
≤ m̃ exp(−ν2

1δ
2
1/2)

implied directly by Assumption 5. Thus, to obtain Parts (a)–(c) of Lemma S.4 with prob-

ability at least (S.14), it suffices to show the desired upper bounds in Lemma S.4 can be

derived from the complementary event of (S.33), i.e.,

sup
s∈S̃m
|T ∗1 (s; r)− E {T ∗1 (s; r)}| ≤ ν1δ1, (S.34)

sup
s∈S̃m
|T ∗1 (s; r)− T1(s; r)| ≤ ν1δ1, (S.35)
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and

m̃−1
∑
s∈S̃m

|T1(s; r)− T ∗1 (s; r)| ≤ δ2. (S.36)

Now let us turn to the cumbersome details.

(a) First, sups∈S̃m T
∗
1 (s; r) is upper bounded by ν1(1 + δ1) through

sup
s∈S̃m
|T ∗1 (s; r)| ≤ sup

s∈S̃m
|T ∗1 (s; r)− E {T ∗1 (s; r)}|+ sup

s∈S̃m
|E {T ∗1 (s; r)}| ≤ ν1(1 + δ1), (S.37)

where the second inequality is due to (S.12) and (S.34). For T1(s; r), we have

sup
s∈S̃m
|T1(s; r)| ≤ sup

s∈S̃m
|T ∗1 (s; r)|+ sup

s∈S̃m
|T ∗1 (s; r)− T1(s; r)| ≤ ν1(1 + 2δ1), (S.38)

where the second inequality is because of (S.35) and (S.37).

(b) To measure the difference between T 2
1 (s; r) and {T ∗1 (s; r)}2, we have

m̃−1

∣∣∣∣∣∣
∑
s∈S̃m

T 2
1 (s; r)− {T ∗1 (s; r)}2

∣∣∣∣∣∣
= m̃−1

∣∣∣∣∣∣
∑
s∈S̃m

{T1(s; r)− T ∗1 (s; r)} {T1(s; r) + T ∗1 (s; r)}

∣∣∣∣∣∣
≤

m̃−1

∣∣∣∣∣∣
∑
s∈S̃m

T1(s; r)− T ∗1 (s; r)

∣∣∣∣∣∣

{

sup
s∈S̃m
|T1(s; r) + T ∗1 (s; r)|

}

≤

m̃−1
∑
s∈S̃m

|T1(s; r)− T ∗1 (s; r)|


{

sup
s∈S̃m
|T1(s; r)|+ sup

s∈S̃m
|T ∗1 (s; r)|

}

≤ ν1δ2(2 + 3δ1),

(S.39)

where the first inequality in the above holds by the Hölder’s inequality and the last inequality

is due to (S.36)–(S.38).
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(c) The upper bound for m̃−1
∑

s∈S̃m |T1(s; r)| is obtained by

m̃−1
∑
s∈S̃m

|T1(s; r)|

= m̃−1
∑
s∈S̃m

|T1(s; r)− T ∗1 (s; r) + T ∗1 (s; r)− E{T ∗1 (s; r)}+ E{T ∗1 (s; r)}|

≤ m̃−1
∑
s∈S̃m

|T1(s; r)− T ∗1 (s; r)|+ sup
s∈S̃m
|T ∗1 (s; r)− E{T ∗1 (s; r)}|+ sup

s∈S̃m
|E{T ∗1 (s; r)}|

≤ ν1 (1 + δ1) + δ2 (S.40)

where the last step in (S.40) is due to (S.12), (S.34), and (S.36). As for m̃−1
∑

s∈S̃m T
2
1 (s; r),

the Hölder inequality implies

m̃−1
∑
s∈S̃m

[
{T ∗1 (s; r)}2 − E {T ∗1 (s; r)}2]

≤

∣∣∣∣∣∣m̃−1
∑
s∈S̃m

[T ∗1 (s; r)− E {T ∗1 (s; r)}]

∣∣∣∣∣∣× sup
s∈S̃m
|T ∗1 (s; r) + E {T ∗1 (s; r)}|

≤ sup
s∈S̃m
|T ∗1 (s; r)− E {T ∗1 (s; r)}| ×

{
sup
s∈S̃m
|T ∗1 (s; r)|+ sup

s∈S̃m
E |T ∗1 (s; r)|

}

≤ ν2
1δ1(2 + δ1), (S.41)

where the last line is due to (S.12), (S.34), and (S.37). We then have

m̃−1
∑
s∈S̃m

T 2
1 (s; r)

= m̃−1
∑
s∈S̃m

[
T 2

1 (s; r)− {T ∗1 (s; r)}2]+ m̃−1
∑
s∈S̃m

[
{T ∗1 (s; r)}2 − E {T ∗1 (s; r)}2]

+ m̃−1
∑
s∈S̃m

E {T ∗1 (s; r)}2
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≤ m̃−1

∣∣∣∣∣∣
∑
s∈S̃m

T 2
1 (s; r)− {T ∗1 (s; r)}2

∣∣∣∣∣∣+ m̃−1
∑
s∈S̃m

[
{T ∗1 (s; r)}2 − E {T ∗1 (s; r)}2]

+ sup
s∈S̃m

E {T ∗1 (s; r)}2

≤ ν2
1 + ν1δ2(2 + 3δ1) + ν2

1δ1 (2 + δ1) , (S.42)

where we have used (S.12), (S.39), and (S.41) to obtain the last inequality in (S.42). The

proof is thus completed.

Proof of Lemma S.5. The proof of Lemma S.4 has shown that with probability at least

(S.14), the events of (S.36)–(S.42) hold. It is thus sufficient to show that (S.15) is upper

bounded by Cν2
1 {ψ2(r) + m̃−q} (1 + δ2

1) + Cν1δ2 (1 + δ1) under the events of (S.36)–(S.42).

To show this, we divide (S.15) into four components and examine their upper bounds under

the events of (S.36)–(S.42) separately.

To begin with, it can be shown∣∣∣∣∣∣ 1

m̃

∑
s∈S̃m

log fG̃m̃,r{T1(s; r)} − 1

m̃

∑
s∈S̃m

log fG̃m̃,r{T̂1(s)}

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1

m̃

∑
s∈S̃m

log

[∑l̃
i=1 π̃iφ{T1(s; r)− ṽi}∑l̃
i=1 π̃iφ{T̂1(s)− ṽi}

]∣∣∣∣∣∣
=

∣∣∣∣∣ 1

m̃

∑
s∈S̃m

log

(
e−{T

2
1 (s;r)−T̂ 2

1 (s)}
/

2

×

∑l̃
i=1 π̃i exp

{
T̂1(s)ṽi − v̂2

i /2
}

exp
[{
T1(s; r)− T̂1(s)

}
ṽi

]
∑l̃

i=1 π̃i exp
{
T̂1(s)ṽi − ṽ2

i /2
} )∣∣∣∣∣

≤

∣∣∣∣∣∣ 1

m̃

∑
s∈S̃m


∣∣∣T̂ 2

1 (s)− T 2
1 (s; r)

∣∣∣
2

+
∣∣∣T̂1(s)− T1(s; r)

∣∣∣ max
i=1,··· ,l̃

|ṽi|


∣∣∣∣∣∣
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≤

∣∣∣∣∣∣ 1

m̃

∑
s∈S̃m


∣∣∣T̂ 2

1 (s)− T 2
1 (s; r)

∣∣∣
2

+
∣∣∣T̂1(s)− T1(s; r)

∣∣∣ sup
s∈S̃m
|T1(s; r)|


∣∣∣∣∣∣

≤
sups∈S̃m |τ̂

2(s)/τ 2
r (s)− 1|

2
{

1− sups∈S̃m |τ̂ 2(s)/τ 2
r (s)− 1|

}
 1

m̃

∑
s∈S̃m

T 2
1 (s; r) + sup

s∈S̃m
|T1(s; r)|

∣∣∣∣∣∣ 1

m̃

∑
s∈S̃m

T1(s; r)

∣∣∣∣∣∣
 ,

where the second inequality follows from the fact that the support of G̃m̃ is within the range

of
{
T1(s; r) : s ∈ S̃m

}
. Plugging in (S.38), (S.40), and (S.42), we observe that∣∣∣∣∣∣ 1

m̃

∑
s∈S̃m

T 2
1 (s; r)

∣∣∣∣∣∣+ sup
s∈S̃m
|T1(s; r)|

∣∣∣∣∣∣ 1

m̃

∑
s∈S̃m

T1(s; r)

∣∣∣∣∣∣
≤ ν2

1 + ν1δ2(2 + 3δ1) + ν2
1δ1 (2 + δ1) + ν1 (1 + 2δ1) {ν1 (1 + δ1) + δ2}

= 2ν2
1 + ν1δ2(3 + 5δ1) + ν2

1δ1(5 + 3δ1).

Combining the above with (S.13), we immediately obtain that the first component of the

target difference (S.15) is bound by

Cν1

{
ψ2(r) + m̃−q

}
{2ν1 + δ2(3 + 5δ1) + ν1δ1(5 + 3δ1)} .

Secondly, we have∣∣∣∣∣∣ 1

m̃

∑
s∈S̃m

log fG̃∗m̃,r
{T1(s; r)} − 1

m̃

∑
s∈S̃m

log fG̃∗m̃,r
{T ∗1 (s; r)}

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1

m̃

∑
s∈S̃m

log

[∑l̃∗

i=1 π̃
∗
i φ{T1(s; r)− ṽ∗i }∑l̃∗

i=1 π̃
∗
i φ{T ∗1 (s; r)− ṽ∗i }

]∣∣∣∣∣∣
=

∣∣∣∣∣ 1

m̃

∑
s∈S̃m

log

(
e
−
[
T 2
1 (s;r)−{T ∗1 (s;r)}2

]/
2

×
∑l̃∗

i=1 π̃
∗
i exp

{
T ∗1 (s; r)ṽ∗i − (ṽ∗i )

2 /2
}

exp [{T1(s; r)− T ∗1 (s; r)} ṽ∗i ]∑l̃∗

i=1 π̃
∗
i exp

{
T ∗1 (s; r)ṽ∗i − (ṽ∗i )

2 /2
}

)∣∣∣∣∣
≤

∣∣∣∣∣∣ 1

m̃

∑
s∈S̃m

{T ∗1 (s; r)}2 − T 2
1 (s; r)

2

∣∣∣∣∣∣+
1

m̃

∑
s∈S̃m

|T1(s; r)− T ∗1 (s; r)| max
i=1,··· ,l̃∗

|ṽ∗i |
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≤

∣∣∣∣∣∣ 1

m̃

∑
s∈S̃m

{T ∗1 (s; r)}2 − T 2
1 (s; r)

2

∣∣∣∣∣∣+
1

m̃

∑
s∈S̃m

|T1(s; r)− T ∗1 (s; r)| sup
s∈S̃m
|T ∗1 (s; r)| ,

where the second inequality follows the fact that the support of G̃∗m̃,r is within the range of{
T ∗1 (s; r) : s ∈ S̃m

}
. Using (S.36), (S.37), and (S.39), we further obtain that ν1δ2 (3 + 4δ1)

is an upper bound for the above difference. As for the third component of the target (S.15),

we have∣∣∣∣∣∣ 1

m̃

∑
s∈S̃m

log fĜm̃{T̂1(s)} − 1

m̃

∑
s∈S̃m

log fĜm̃{T1(s; r)}

∣∣∣∣∣∣
≤

sups∈S̃m |τ̂
2(s)/τ 2

r (s)− 1|
2
{

1− sups∈S̃m |τ̂ 2(s)/τ 2
r (s)− 1|

}

∣∣∣∣∣∣ 1

m̃

∑
s∈S̃m

T 2
1 (s; r)

∣∣∣∣∣∣+ sup
s∈S̃m

∣∣∣T̂1(s)
∣∣∣
∣∣∣∣∣∣ 1

m̃

∑
s∈S̃m

T1(s; r)

∣∣∣∣∣∣


≤
sups∈S̃m |τ̂

2(s)/τ 2
r (s)− 1|

2
{

1− sups∈S̃m |τ̂ 2(s)/τ 2
r (s)− 1|

}
×


∣∣∣∣∣∣ 1

m̃

∑
s∈S̃m

T 2
1 (s; r)

∣∣∣∣∣∣+
sups∈S̃m |T1(s; r)|

1− sups∈S̃m |τ̂ 2(s)/τ 2
r (s)− 1|

∣∣∣∣∣∣ 1

m̃

∑
s∈S̃m

T1(s; r)

∣∣∣∣∣∣


≤
sups∈S̃m |τ̂

2(s)/τ 2
r (s)− 1|

2
{

1− sups∈S̃m |τ̂ 2(s)/τ 2
r (s)− 1|

}
×


∣∣∣∣∣∣ 1

m̃

∑
s∈S̃m

T 2
1 (s; r)

∣∣∣∣∣∣+ C sup
s∈S̃m
|T1(s; r)|

∣∣∣∣∣∣ 1

m̃

∑
s∈S̃m

T1(s; r)

∣∣∣∣∣∣
 ,

where the last inequality holds for the same reason as for (S.13). Combining (S.13), (S.38),

(S.40), and (S.42), we get the upper bound

C
{
ψ2(r) + m̃−q

}{
ν2

1 + ν1δ2(2 + 3δ1) + ν2
1δ1 (2 + δ1) + Cν1(1 + 2δ1) {ν1(1 + δ1) + δ2}

}
= C

{
ψ2(r) + m̃−q

} [
ν2

1 (1 + C) + ν1δ2 {2 + C + δ1 (3 + 2C)}+ ν2
1δ1 {2 + 3C + δ1 (1 + 2C)}

]
≤ Cν1

{
ψ2(r) + m̃−q

}
{ν1 + δ2 (1 + δ1) + ν1δ1 (1 + δ1)} .
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For the fourth component, we obtain∣∣∣∣∣∣ 1

m̃

∑
s∈S̃m

log fĜm̃{T
∗
1 (s; r)} − 1

m̃

∑
s∈S̃m

log fĜm̃{T1(s; r)}

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1

m̃

∑
s∈S̃m

{T ∗1 (s; r)}2 − T 2
1 (s; r)

2

∣∣∣∣∣∣+
1

m̃

∑
s∈S̃m

|T1(s; r)− T ∗1 (s; r)| sup
s∈S̃m

∣∣∣T̂1(s)
∣∣∣

≤

∣∣∣∣∣∣ 1

m̃

∑
s∈S̃m

{T ∗1 (s; r)}2 − T 2
1 (s; r)

2

∣∣∣∣∣∣+
sups∈S̃m |T1(s; r)|

1− sups∈S̃m |τ̂ 2(s)/τ 2
r (s)− 1|

×

 1

m̃

∑
s∈S̃m

|T1(s; r)− T ∗1 (s; r)|


≤

∣∣∣∣∣∣ 1

m̃

∑
s∈S̃m

{T ∗1 (s; r)}2 − T 2
1 (s; r)

2

∣∣∣∣∣∣+ C sup
s∈S̃m
|T1(s; r)|

 1

m̃

∑
s∈S̃m

|T1(s; r)− T ∗1 (s; r)|

 .

Similarly, due to (S.36), (S.38), and (S.39), the upper bound of the above is

ν1δ2 (2 + 3δ1) + Cν1δ2 (1 + 2δ1) ≤ Cν1δ2 (1 + δ1) .

Finally, combining the four components with the triangular inequality, we get the upper

bound

1

m̃

∣∣∣∣∣∣
∑
s∈S̃m

log

[
fG̃∗m̃,r

{T1(s; r)}
fG̃∗m̃,r

{T ∗1 (s; r)}
fG̃m̃,r{T̂1(s)}
fG̃m̃,r{T1(s; r)}

fĜm̃{T
∗
1 (s; r)}

fĜm̃{T1(s; r)}
fĜm̃{T1(s; r)}
fĜm̃{T̂1(s)}

]∣∣∣∣∣∣
≤ Cν2

1

{
ψ2(r) + m̃−q

}
{1 + δ1 (1 + δ1)}+ Cν1δ2 (1 + δ1)

≤ Cν2
1

{
ψ2(r) + m̃−q

} (
1 + δ2

1

)
+ Cν1δ2 (1 + δ1) ,

which finishes the proof.

Lemma S.6 is a direct consequence of Theorem 1 in Zhang (2009). Interested readers

are referred to Zhang (2009) and references therein for more details.

Proof of Lemma S.7. First, notice that d2
H(fGm̃,r , fGm̃) ≤ dTV (fGm̃,r , fGm̃), where dTV de-
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notes the total variation distance

dTV
(
fGm̃,r , fGm̃

)
=

1

2

∫ ∣∣∣∣∫ φ(v − u){dGm̃,r(u)− dGm̃(u)}
∣∣∣∣ dv.

Plugging the definitions of Gm̃,r(u) and Gm̃(u) into the above equation, dTV
(
fGm̃,r , fGm̃

)
can

be written as

1

2m̃

∫ ∣∣∣∣∣∣
∑
s∈S̃m

∫
φ(v − u)[d1{ξ(s)/ζr(s) ≤ u} − d1{ξ(s) ≤ u}]

∣∣∣∣∣∣ dv
=

1

2m̃

∫ ∣∣∣∣∣∣
∑
s∈S̃m

φ{v − ξ(s)/ζr(s)} − φ{v − ξ(s)}

∣∣∣∣∣∣ dv
≤ 1

2m̃

∑
s∈S̃m

∫
|φ{v − ξ(s)/ζr(s)} − φ{v − ξ(s)}| dv.

Note that φ{v−ξ(s)/ζr(s)} and φ{v−ξ(s)} are symmetric about x = ξ(s){ζr(s)+1}/2ζr(s).

The above integral is equivalent to

1

m̃

∑
s∈S̃m

∣∣∣∣∫ ∞
ξ(s){1+ζr(s)}/2ζr(s)

[φ{v − ξ(s)/ζr(s)} − φ{v − ξ(s)}]dv
∣∣∣∣

=
1

m̃

∑
s∈S̃m

∣∣Φ[ξ(s){1− ζr(s)}/2ζr(s)]− Φ[ξ(s){ζr(s)− 1}/2ζr(s)]
∣∣

=
1

m̃

∑
s∈S̃m

|φ(u(s))| |ξ(s){1− ζr(s)}/ζr(s)| ,

where u(s) is some value between ξ(s){1− ζr(s)}/2ζr(s) and ξ(s){ζr(s)− 1}/2ζr(s) due to

the mean value theorem. Finally, by Lemma S.3(a), (S.12), and the uniform boundedness

of φ(x), dTV
(
fGm̃,r , fGm̃

)
is upper bounded by Cν1ψ

2(r). Taking the square root, we get

dH(fGm̃,r , fGm̃) ≤ d
1/2
TV

(
fGm̃,r , fGm̃

)
≤ Cν

1/2
1 ψ(r).

Assumption 7 states that dH(fGm̃ , fG0) ≤ δ3 for any δ3 > 0 with probability tending to

one. The desired result follows from the triangular inequality.
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Proof of Lemma S.8. Due to the triangular inequality, the Hellinger distance dH := dH
(
fĜm̃ , fG0

)
is bounded by the summation of the following two components,

dH,1 := dH
(
fĜm̃ , fGm̃,r

)
and dH,2 := dH

(
fGm̃,r , fG0

)
for any r > 0. Thus, for an arbitrary ε > 0, it shows that

P (dH ≥ ε) ≤ P (dH,1 ≥ ε/2) + P (dH,2 ≥ ε/2)

≤ P (dH,1 ≥ tcm̃) + P
{
dH,2 ≥ Cν1φ

2(r) + ε/4
}
, (S.43)

where the first inequality is because of the triangular inequality and the second inequality

is achieved once (i) choosing r such that Cν1φ
2(r) ≤ ε/4; (ii) m̃ is sufficiently large that

induces arbitrarily small cm̃ with fixed b > 0 defined at (S.17) in Lemma S.6. The second

term of the RHS in (S.43) tends to zero by setting δ3 = ε/4 in Lemma S.7. As for the first

term of the RHS in (S.43), we have

P (dH,1 ≥ tcm̃) = P

dH,1 ≥ tcm̃,
1

m̃

∑
s∈S̃m

log

[
fĜm̃ {T

∗
1 (s; r)}

fGm̃,r {T ∗1 (s; r)}

]
≥ −2t2c2

m̃/15


+ P

 1

m̃

∑
s∈S̃m

log

[
fĜm̃ {T

∗
1 (s; r)}

fGm̃,r {T ∗1 (s; r)}

]
< −2t2c2

m̃/15


≤ Cm̃−2 + P

 1

m̃

∑
s∈S̃m

log

[
fĜm̃ {T

∗
1 (s; r)}

fGm̃,r {T ∗1 (s; r)}

]
< −2t2c2

m̃/15

 (S.44)

when t is large enough due to Lemma S.6. As for the second term of the RHS in (S.44),

notice that

1

m̃

∑
s∈S̃m

log

[
fĜm̃{T

∗
1 (s; r)}

fGm̃,r{T ∗1 (s; r)}

]

=
1

m̃

∑
s∈S̃m

log

[
fG̃∗m̃,r

{T ∗1 (s; r)}
fGm̃,r{T ∗1 (s; r)}

fG̃∗m̃,r
{T1(s; r)}

fG̃∗m̃,r
{T ∗1 (s; r)}

fG̃m̃,r{T1(s; r)}
fG̃∗m̃,r

{T1(s; r)}
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×
fG̃m̃,r{T̂1(s)}
fG̃m̃,r{T1(s; r)}

fĜm̃{T̂1(s)}
fG̃m̃,r{T̂1(s)}

fĜm̃{T
∗
1 (s; r)}

fĜm̃{T̂1(s)}

]

≥ 1

m̃

∑
s∈S̃m

log

[
fG̃∗m̃,r

{T1(s; r)}
fG̃∗m̃,r

{T ∗1 (s; r)}
fG̃m̃,r{T̂1(s)}
fG̃m̃,r{T1(s; r)}

fĜm̃{T
∗
1 (s; r)}

fĜm̃{T1(s; r)}
fĜm̃{T1(s; r)}
fĜm̃{T̂1(s)}

]
, (S.45)

where the last inequality is due to the definitions of G̃∗m̃,r, G̃m̃,r, and Ĝm̃. In addition, (S.17)

implies

2t2c2
m̃/15 = 2t2m̃−b/(1+b) (log m̃)(2+3b)/(2+2b) (1 ∨ ν1)b/(1+b) /15. (S.46)

Plugging (S.45) and (S.46) into the second probability of the RHS of (S.44) yields

P

∣∣∣∣∣∣ 1

m̃

∑
s∈S̃m

log

[
fG̃∗m̃,r

{T1(s; r)}
fG̃∗m̃,r

{T ∗1 (s; r)}
fG̃m̃,r{T̂1(s)}
fG̃m̃,r{T1(s; r)}

fĜm̃{T
∗
1 (s; r)}

fĜm̃{T1(s; r)}
fĜm̃{T1(s; r)}
fĜm̃{T̂1(s)}

]∣∣∣∣∣∣ > Cm̃−a

 ,

for some a such that b/(1 + b) < a < min(q, 1/p) when m̃ is large enough.

Next, we shall show that the above probability goes to zero as m→∞ when the subset

S̃m used for NPEB fulfills Assumption 6 of the main paper. Using Lemma S.5, we only need

to show for δ > 0,

m̃ exp(−ν2
1δ

2
1/2) ≤ δ, Cm̃ψp(r)/νp1δ

p
1 ≤ δ, and Cψp(r)/δp2 ≤ δ,

as well as

Cν2
1

{
ψ2(r) + m̃−q

} (
1 + δ2

1

)
= O(m̃−a) and Cν1δ2 (1 + δ1) = O(m̃−a)

for some δ1, δ2 > 0. Note that m̃ exp(−ν2
1δ

2
1/2) ≤ δ is equivalent to δ1 ≥

√
2 ln(m̃/δ)/ν1.

We set

δ1 =
1

ν1

√
2 ln(m̃/δ)

in the following calculations. For δ2, Cν1δ2 (1 + δ1) ≤ m̃−a implies δ2 ≤ Cm̃−a/ν1(1 + δ1).
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With the choice of δ1, we set

δ2 =
Cm̃−a

ν1 +
√

2 ln(m̃/δ)
.

Similarly, with the above choice of δ1, the constraint Cν2
1m̃
−q (1 + δ2

1) ≤ m̃−a becomes

m̃−q ≤ Cm̃−a

ν2
1 + 2 ln(m̃/δ)

,

which can be achieved according to the upper and lower bounds of a. As Cm̃ψp(r)/νp1δ
p
1 ≤ δ,

Cψp(r)/δp2 ≤ δ, and Cν2
1ψ

2(r) (1 + δ2
1) ≤ m̃−a, we require

r−λ � ψ(r) ≤ min

[
Cδm̃−1/p

√
ln(m̃/δ), Cδ1/pm̃−a

/{
ν1 +

√
2 ln(m̃/δ)

}
,

m̃−a/2
/√

ν2
1 + 2 ln(m̃/δ)

] (S.47)

after plugging in δ1 and δ2 with Assumption 4. Again, according to the upper bounds of a,

the RHS of (S.47) is dominated by its first term when m̃ is large enough. Thus (S.47) is a

consequence of Assumption 6 when we take r = ∆̃l,m/2, which completes the proof.

In the proof of Lemma S.8, (S.47) requires r increases as m̃ increases for non-degenerating

ψ(r). A special case is m-dependent, that is ψ(r) = 0, whenever r > R for some R > 0.

According to (S.47), the choice of r is free of m̃ and only depends on R in this special case.

Proof of Lemma S.9. We prove the first convergence and the second can be proved similarly.

For arbitrary ε > 0, we can choose m0 large enough such that

P

(∣∣∣∣Vm (t1, t2)

m0

−K0(t1, t2)

∣∣∣∣ > ε

)
≤P

(∣∣∣∣Vm (t1, t2)

m0

− E
{
Vm (t1, t2)

m0

}∣∣∣∣ > ε/2

)
+ P

(∣∣∣∣E {Vm (t1, t2)

m0

}
−K0(t1, t2)

∣∣∣∣ > ε/2

)
≤4var {Vm (t1, t2)}

ε2m2
0

, (S.48)
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where the first inequality is due to the triangular inequality, the first probability in line 2 is

bound by Chebyshev inequality and the second probability in line 2 holds by taking large

enough m0 and applying Assumption 9 of the main paper. We just need to show that line

3 of the above formula can be arbitrarily small by taking sufficient large m0. Note that the

numerator can be expressed as follows

∑
s∈S0,m

 ∑
s′∈S0,m

dist(s,s′)≤r̃

cov {1 {T1(s) ≥ t1, T2(s) ≥ t2} , 1 {T1(s′) ≥ t1, T2(s′) ≥ t2}}

+
∑

s′∈S0,m
dist(s,s′)>r̃

cov {1 {T1(s) ≥ t1, T2(s) ≥ t2} , 1 {T1(s′) ≥ t1, T2(s′) ≥ t2}}

 .
(S.49)

The idea is to choose an appropriate r̃ so that the first summation does not have many

terms and the covariances in the second summation are small enough. For the first part,

we adopt the same idea in Section S.IV.1. Fixing s ∈ S0,m, we construct K-dimensional

non-overlapping cubes centered at the locations {s′ ∈ S0,m : dist(s, s′) ≤ r̃} with the length

∆l/2, and one big K-dimensional cube centered at location s with the length 2r̃ + ∆l/2.

Since the small cubes are covered by the big cube, we have

m(s) ≤ (4r̃/∆l + 1)K , because m(s)(∆l/2)K ≤ (2r̃ + ∆l/2)K , (S.50)

where m(s) = |{s′ ∈ S0,m : dist(s, s′) ≤ r̃}|.

For the second part, we are going to replace T1(s) and T2(s) with their normalized condi-

tional statistics T ∗1 (s; r) and T ∗2 (s; r). Similar to the discussion of T ∗1 (s; r),
(
T ∗1 (s; r), T ∗2 (s; r)

)
and

(
T ∗1 (v; r), T ∗1 (v; r)

)
are independent if s, s′ ∈ S satisfy (4.2) of the. W.l.o.g, we can define
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r = r̃/2−Nnei∆u, (S.51)

where r̃ large enough so that r > 0. Similar to the derivation of (S.28) and (S.29), for any

δ > 0, we have

P {|T2(s)− T ∗2 (s; r)| > δ} ≤ 1

δp
‖T2(s)− T ∗2 (s; r)‖pp ≤

η̆p(s; r)ψp(r)

δp
, (S.52)

where η̆(s; r) = dm(s)/{τ(s)ζ̆r(s)}. Then, we can obtain that

P {T1(s) ≥ t1, T2(s) ≥ t2, T1(s′) ≥ t1, T2(s′) ≥ t2}

≤P {T1(s) ≥ t1, T2(s) ≥ t2, T1(s′) ≥ t1, T2(s′) ≥ t2,

|T1(s)− T ∗1 (s; r)| ≤ δ, |T1(s′)− T ∗1 (s′; r)| ≤ δ, |T2(s)− T ∗2 (s; r)| ≤ δ, |T2(s′)− T ∗2 (s′; r)| ≤ δ}

+P {|T1(s)− T ∗1 (s; r)| > δ}+ P {|T1(s′)− T ∗1 (s′; r)| > δ}

+P {|T2(s)− T ∗2 (s; r)| > δ}+ P {|T2(s′)− T ∗2 (s′; r)| > δ}

≤P {T ∗1 (s; r) ≥ t1 − δ, T ∗2 (s; r) ≥ t2 − δ}P {T ∗1 (s′; r) ≥ t1 − δ, T ∗2 (s′; r) ≥ t2 − δ}+ Cψp(r)/δp,

where the last inequality holds by (S.29), (S.52), Lemma S.3(c), and Remark S.2. Similarly,

we can derive that

P {T ∗1 (s; r) ≥ t1 + δ, T ∗2 (s; r) ≥ t2 + δ}

≤P {T ∗1 (s; r) ≥ t1 + δ, T ∗2 (s; r) ≥ t2 + δ, |T1(s)− T ∗1 (s; r)| ≤ δ, |T2(s)− T ∗2 (s; r)| ≤ δ}

+P {|T1(s)− T ∗1 (s; r)| > δ}+ P {|T2(s)− T ∗2 (s; r)| > δ}

≤P {T1(s) ≥ t1, T2(s) ≥ t2}+ Cψp(r)/δp.

Therefore, we have

cov {1 {T1(s) ≥ t1, T2(s) ≥ t2} , 1 {T1(s′) ≥ t1, T2(s′) ≥ t2}}
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=P {T1(s) ≥ t1, T2(s) ≥ t2, T1(s′) ≥ t1, T2(s′) ≥ t2}

− P {T1(s) ≥ t1, T2(s) ≥ t2}P {T1(s′) ≥ t1, T2(s′) ≥ t2}

≤P {T ∗1 (s; r) ≥ t1 − δ, T ∗2 (s; r) ≥ t2 − δ}P {T ∗1 (s′; r) ≥ t1 − δ, T ∗2 (s′; r) ≥ t2 − δ}

−P {T ∗1 (s; r) ≥ t1 + δ, T ∗2 (s; r) ≥ t2 + δ}P {T ∗1 (s′; r) ≥ t1 + δ, T ∗2 (s′; r) ≥ t2 + δ}+ Cψp(r)/δp

:=εδ + Cψp(r)/δp.

Similarly, the covariance can also be lower bounded by −εδ − Cψp(r)/δp. Combine the two

parts, and we can bound (S.49) by

∑
s∈S0,m

 ∑
s′∈S0,m

dist(s,s′)≤r̃

1 +
∑

s′∈S0,m
dist(s,s′)>r̃

{εδ + Cψp(r)/δp}

 ≤ ∑
s∈S0,m

m(s) +m2
0εδ + Cm2

0ψ
p(r)/δp.

Choose a moderate large r̃ = (∆l(m0)a/K − 1)/4 for some 0 < a < 1. Then, the probability

(S.48) is bounded by

4

[
m
−(1−a)
0 + εδ + C

{
∆l(m

a/K
0 − 1)/8−Nnei∆u

}−λp
/δp
]
/ε2,

which can be arbitrarily small by choosing a δ > 0 such that εδ be small enough and let m0

tend to infinity. The proof is completed.

S.V Power Analysis

In this section, we establish the power enhancement of the 2d-SMT procedure as outlined in

Theorem 2 of the main paper and explore the factors contributing to power improvement.
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S.V.1 Proof of Theorem 2 of the Main Paper

Proof of Theorem 2 of the main paper. (i) Recall that

(t2d1 , t
2d
2 ) = arg max

(t1,t2)∈F2d
q,∞

K(t1, t2) and t1d2 = arg max
t2∈F1d

q,∞

K(−∞, t2),

where F2d
q,∞ = {(t1, t2) : FDP∞λ (t1, t2) ≤ q} and F1d

q,∞ = {t2 : FDP∞λ (−∞, t2) ≤ q}. The cor-

responding percentages of true discoveries in the asymptotic sense are PTD1d = K1(−∞, t1d2 )

and PTD2d = K1(t2d1 , t
2d
2 ), respectively.

According to the definition of F1d
q,∞ and F2d

q,∞, we have K(t2d1 , t
2d
2 ) ≥ K(−∞, t1d2 ). Note

that K(t1, t2) = π0K0(t1, t2) + (1− π0)K1(t1, t2). If K0(t2d1 , t
2d
2 ) < K0(−∞, t1d2 ), then we can

directly conclude PTD2d > PTD1d. Otherwise, in the case that K0(t2d1 , t
2d
2 ) ≥ K0(−∞, t1d2 ),

we begin by dividing the numerator and denominator of FDP∞λ (t1, t2) by K0(t1, t2) and

expressing K(t1, t2) in terms of K0(t1, t2) and K1(t1, t2) as follows

FDP∞λ (t1, t2) =
F (λ)

Φ(λ)

(
limm→∞

∫ ∑
s∈Sm L(t1, t2, x, ρ(s))dG0(x)/m

)
/K0(t1, t2)

π0 + (1− π0)K1(t1, t2)/K0(t1, t2)
.

According to Assumption 9, we have

limm→∞
∫ ∑

s∈Sm L(t1, t2, x, ρ(s))dG0(x)/m

K0(t1, t2)
≥ 1. (S.53)

Setting the first threshold as −∞, we find that

lim
m→∞

∫ ∑
s∈Sm

L(−∞, t2, x, ρ(s))dG0(x)/m = K0(−∞, t2)

for any t2 ∈ R. Therefore, we have

q = FDP∞λ
(
t2d1 , t

2d
2

)
≥ F (λ)

Φ(λ)

1

π0 + (1− π0)K1(t2d1 , t
2d
2 )/K0(t2d1 , t

2d
2 )

(S.54)
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and

q = FDP∞λ
(
−∞, t1d2

)
=
F (λ)

Φ(λ)

1

π0 + (1− π0)K1(−∞, t1d2 )/K0(−∞, t1d2 )

because FDP∞λ (t1, t2) is continuous. SinceK0(t2d1 , t
2d
2 ) ≥ K0(−∞, t1d2 ), we must have PTD2d =

K1(t2d1 , t
2d
2 ) ≥ K1(−∞, t1d2 ) = PTD1d.

(ii) The proof is similar to that of part (i), except that (S.54) becomes strict inequal-

ity. Therefore, whether K0(t2d1 , t
2d
2 ) < K0(−∞, t1d2 ) or K0(t2d1 , t

2d
2 ) ≥ K0(−∞, t1d2 ), we have

PTD2d > PTD1d.

Theorem 2 part (ii) of the main paper suggests that if the expectations of auxiliary

statistics under the alternative are generally larger than those under the null, the 2d-SMT

procedure is more powerful than the 1d-SMT procedure even when they have the same

number of discoveries. This also means that the power improvement of the 2d-SMT proce-

dure is not just because of making more rejections by enlarging the searching ranges of the

cutoffs but also due to the auxiliary statistics’ ability to differentiate between the null and

alternative hypotheses.

S.V.2 An Example

In this section, we explicitly analyze the power improvement of the 2d-SMT in a specific

example.

Denote m = |Sm|, m0 = |S0,m|, m1 = |S1,m|, S0,m = {1, 2, · · · ,m0} and S1,m = {m0 +

11,m0 + 12, · · · ,m0 + m1 + 10}. Suppose that µ(s) = 0 for s ∈ S0,m and µ(s) = µ1 > 0

for s ∈ S1,m. Since N (s) is the κ-nearest neighbors, we notice N (s) ⊆ S0,m for all s ∈ S0,m

and N (s) ⊆ S1,m for all s ∈ S1,m for 0 < κ < 10. Given some ρX ∈ (0, 1), we let
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σ(s) ≡ 1, corr(X(s), X(v)) = ρX if |s− v| ≤ κ, and corr(X(s), X(v)) = 0 if |s− v| > κ. In

Section 2.1, we have shown that T1(s) = ξ(s) +V1(s) and T2(s) = σ−1(s)µ(s) +V2(s), where

ξ(s) = τ−1(s)
∑

v∈N (s) µ(v) and V1(s)

V2(s)

 ∼ N

 0

0

 ,

 1 ρ(s)

ρ(s) 1




with ρ(s) = {σ(s)τ(s)}−1
∑

v∈N (s) corr{ε(s), ε(v)}. We have ξ(s) = σ−1(s)µ(s) = 0 for

s ∈ S0,m, and ξ(s) = µ1/
√
ρX + (1− ρX)/κ

4
= ξ1 as well as σ−1(s)µ(s) = µ1 for s ∈ S1 by

calculation. Furthermore, locations s not on the boundary satisfy τ 2(s) = κ+(κ2−κ)ρX
4
= τ

and ρ(s) = ρX/
√
ρX + (1− ρX)/κ

4
= ρ. These conditions imply the expected proportions

of true and false rejections in Assumption 9 of the main paper are

K0(t1, t2) ≈ P {V1(s) ≥ t1, V2(s) ≥ t1} and K1(t1, t2) ≈ P {V1(s) + ξ1 ≥ t1, V2(s) + µ1 ≥ t1}

because only a minority of s deviate from τ and ρ.

We can explicitly confirm that F̂DPλ,S̃(t1, t2) in (2.7) of the main paper, with known pa-

rameters (σ(s), τ(s), ρ(s)), is a conservative estimator of FDP(t1, t2). As shown in (S.7),

FDP(t1, t2) uniformly converges to π0K0(t1, t2)/K(t1, t2). In 2d-SMT, the denominator

K(t1, t2) is estimated by the proportion of discoveries. The estimation of the numerator

consists of two components. The first component π0 can be conservatively estimated by π̂0∑
s∈S 1{T2(s) < λ}
|S|Φ(λ)

≈ π0 + (1− π0)
P (V2(s) + µ1 < λ)

Φ(λ)
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according to (2.6). The second component K0(t1, t2) is approximated by

lim
m→∞

∫
1

m

∑
s∈Sm

L(t1, t2, x, ρ(s))dG0(x)

≈ π0K0(t1, t2) + (1− π0)P {V1(s) + ξ1 ≥ t1, V2(s) ≥ t1} ,

which serves as a conservative estimator of K0(t1, t2) because ξ1 > 0.

We then numerically calculated the theoretical power improvement of the 2d-SMT over

the 1d-SMT, defined as (PTD2d−PTD1d)/PTD1d, and examined how it changes with the

magnitudes under the alternative µ1, the null proportion π0, the number of neighbors κ,

and the correlation ρX . The theoretical power improvement in Figures S.22–S.24 aligned

with our previous numerical simulations. First, Figure S.22 demonstrates that the power

increased alongside a growing number of neighbors. This tendency was also observed in

Setups I and II from Section S.I.4. Second, Figures S.23 and S.24 illustrate the significant

power enhancement in scenarios with sparse signals and weak correlation. Third, the power

improvement decreased as the PTD1d, which varied by altering µ1, increased across all

configurations in this section. The second and third observations were consistent with the

simulation of all setups in Section 5.

S.VI Covariance Estimation

We discuss the estimation of the covariance matrix. Suppose the error process has the

decomposition

ε(s) = ε1(s) + ε2(s),
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Figure S.22: The theoretical power improvement of the 2d-SMT procedure with κ ∈ {2, 3, · · · , 7}, µ1 ∈ [2, 5],
π0 ∈ {0.90, 0.93, 0.96, 0.99}, ρ ∈ {0, 0.5}.
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Figure S.24: The theoretical power improvement of the 2d-SMT procedure with κ = 4, µ1 ∈ [2, 5], π0 ∈
{0.90, 0.93, 0.96, 0.99}, ρ ∈ {0, 0.5}.

where ε1(s) is a spatial process modeling the spatial correlation and ε2(s) is an independent

error process, known as the nugget effect, modeling measurement error. It is common to

assume that (i) ε1(s) is a spatial Gaussian process with the covariance function c(·, ·); (ii)

ε2(s) independently follows the normal distribution with mean zero and variance γ2 at every

location. For example, a popular choice of the spatial correlation function is the Matérn

family of stationary correlation functions, i.e.,

ρ(s, s′; ν, φ) =
1

2ν−1Γ(ν)

{
2ν1/2dist(s, s′)

φ

}ν
Jν

(
2ν1/2dist(s, s′)

φ

)
, ν > 0, φ > 0,

where Γ is the Gamma function, Jν(·) is the modified Bessel function of the second kind

with order ν, and dist(·, ·) denotes the Euclidean distance. Here, ν controls the degree of

smoothness and φ is the range parameter.

Generally, we can specify c(·, ·) = σ2ρ(·, ·; θ) for a correlation function ρ parameterized by

θ, e.g., θ = (ν, φ) for the Matérn family. Recall that Sm = {s1, . . . , sm} and let Cm(θ, σ2) =
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(σ2ρ(si, sj; θ))
m
i,j=1. The log-likelihood function of X = (X(s1), . . . , X(sm))> is

lm(µ, θ, σ2, γ2) = −m
2

log(2π)− 1

2
log det{Cm(θ, σ2) + γ2Im}

− 1

2
(X− µ)>{Cm(θ, σ2) + γ2Im}−1(X− µ),

where µ = (µ1, . . . , µm)>. Jointly estimating (µ, θ, σ2, γ2) without special structure for µ is

challenging. Some constraints are typically needed to regularize the form of µ. For example,

when external covariates Z = (Z(s1), . . . ,Z(sm))> with Z(sj) = (Z1(sj), . . . , Zp(sj))
> is

available, we can model the signal by µ = Zβ for β ∈ Rp. Then, the parameters are

estimated by

arg min
β,θ,σ2,γ2

log det{Cm(θ, σ2) + γ2Im}+ (X− Zβ)>{Cm(θ, σ2) + γ2Im}−1(X− Zβ).

Profiling out β, we can obtain the estimates for the target parameters (θ, σ2, γ2) by solving

the following problem

arg min
θ,σ2,γ2

log det{Cm(θ, σ2) + γ2Im}+ {X− Zβ̂(θ, σ2, γ2)}>

× {Cm(θ, σ2) + γ2Im}−1{X− Zβ̂(θ, σ2, γ2)},

where β̂(θ, σ2, γ2) = arg minβ(X− Zβ)>{Cm(θ, σ2) + γ2Im}−1(X− Zβ).

Remark S.4. In some applications, we have multiple observations from the spatial random

field

Xi(s) = µ(s) + εi(s), i = 1, 2, . . . , n.

The joint log-likelihood function is given by

ln,m(µ, θ, σ2, γ2) = −mn
2

log(2π)− n

2
log det{Cm(θ, σ2) + γ2Im}
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− 1

2

n∑
i=1

(Xi − µ)>{Cm(θ, σ2) + γ2Im}−1(Xi − µ),

with Xi = (Xi(s1), . . . , Xi(sm))>. In this case, we can estimate the covariance parameters

by solving the problem

arg min
θ,σ2,γ2

n log det{Cm(θ, σ2) + γ2Im}+
n∑
i=1

(Xi − X̄)>{Cm(θ, σ2) + γ2Im}−1(Xi − X̄)

with X̄ = n−1
∑n

i=1 Xi.

S.VII Searching Algorithm

This section provides more details about Algorithm 1 in Section 3 of the main paper, and

examines its computational complexity through numerical studies. Finding the optimal

thresholds requires solving the constrained optimization problem (2.8) of the main paper.

Due to the discrete nature of the problem, the solution can be obtained if we replace Fq by

{(t1, t2) ∈ T : F̂DPλ,S̃(t1, t2) ≤ q},

where T = {(T̂1(s), T̂2(s′)) : s, s′ ∈ S} is the set of all candidate cutoff values. A naive

grid search algorithm would require evaluating F̂DPλ,S̃ at |S|2 different values, which is

computationally prohibitive for a large number of spatial locations. Interestingly, we show

that there exists a faster algorithm that retains an exact maximization of (2.8) shown in

the main paper. We derive our algorithm in three steps utilizing the specific structure of

the optimization problem. For ease of presentation, we assume that there is no tie among

{T̂j(s) : s ∈ S} for j = 1, 2.

Step 1. We partition the candidate set T into I subsets (say {Si}Ii=1) such that the

rejection set remains unchanged using the cutoffs within the same subset. For example, let
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D(t1, t2) = {s ∈ S : T̂1(s) ≥ t1, T̂2(s) ≥ t2} be the set of locations rejected using the cutoff

(t1, t2). Then we have D(t1, t2) = D(t′1, t
′
2) for (t1, t2), (t′1, t

′
2) ∈ Si. As L (t1, t2, x, ρ̂(s)) is a

non-increasing function of (t1, t2), we know that F̂DPλ,S̃(t1, t2) is a non-increasing function

within each Si (note that R̂(t1, t2) is a constant over Si). For (t1, t2) ∈ Si, F̂DPλ,S̃(t1, t2)

achieves its minimum value at (max(t1,t2)∈Si
t1,max(t1,t2)∈Si

t2). Thus we can reduce the

candidate set from T to

T ′ =
{(

max
(t1,t2)∈Si

t1, max
(t1,t2)∈Si

t2

)
: 1 ≤ i ≤ I

}
, (S.55)

where the maximum is defined to be infinity when Si = ∅. For each Si, we let Di ⊆ S be

the set of locations associated with the hypotheses being rejected. It is not hard to verify

that (
max

(t1,t2)∈Si

t1, max
(t1,t2)∈Si

t2

)
=

(
min
s∈Di

T̂1(s),min
s∈Di

T̂2(s)

)
. (S.56)

Below we derive an alternative expression for T ′ which facilitates the implementation of

our fast algorithm. Without loss of generality, let us assume that S = {s1, s2, · · · , sm} and

T̂2(s1) > T̂2(s2) > · · · > T̂2(sm). (S.57)

We claim that

T ′ =
{

(T̂1(sl), T̂2(sk)) : T̂1(sl) ≤ T̂1(sk) and l ≤ k, k = 1, 2, . . . ,m
}
∪ {(∞,∞)} . (S.58)

To prove the above result, let us consider any cutoff (T̂1(sl), T̂2(sk)) from the set defined in

the RHS of (S.58). There exists a 1 ≤ i ≤ I such that the corresponding set of rejected
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locations is given by Di. Then we have

min
s∈Di

T̂1(s) ≥ T̂1(sl) and min
s∈Di

T̂2(s) ≥ T̂2(sk). (S.59)

Also note that Hsl and Hsk are both rejected as T̂2(sl) ≥ T̂2(sk) for l ≤ k and T̂1(sl) ≤ T̂1(sk)

by the requirement in (S.58). Hence, both inequalities in (S.59) become equalities, i.e.,

mins∈Di T̂1(s) = T̂1(sl) and mins∈Di T̂2(s) = T̂2(sk), which shows the RHS of (S.58) belongs

to T ′. To show the other direction, we note that for any 1 ≤ i ≤ I, there exist 1 ≤ k, l ≤ m

such that sk, sl ∈ Di, T̂1(sl) = mins∈Di T̂1(s) and T̂2(sk) = mins∈Di T̂2(s). Therefore, we

get T̂1(sl) ≤ T̂1(sk) and T̂2(sk) ≤ T̂2(sl). In view of (S.57), we must have l ≤ k and thus

(T̂1(sl), T̂2(sk)) is an element of the set in the RHS of (S.58).

To understand the complexity of T ′, we point out two extreme cases. In the first case,

we assume that T̂1(s1) > T̂1(s2) > · · · > T̂1(sm). Then we have T ′ = {(T̂1(sk), T̂2(sk)) :

k = 1, 2, . . . ,m} ∪ {(∞,∞)} and hence |T ′| = m+ 1. In the second case, suppose T̂1(s1) <

T̂1(s2) < · · · < T̂1(sm). Then T ′ =
{

(T̂1(sl), T̂2(sk)) : l ≤ k, k = 1, 2, . . . ,m
}
∪ {(∞,∞)}

and |T ′| = m(m+ 1)/2 + 1. In general, the cardinality of T ′ is between these extreme cases.

See Figure S.25 for an illustration about T ′ in the intermediate case.

Step 2. Suppose that we have found some cutoff (t1, t2) ∈ R2 such that F̂DPλ,S̃(t1, t2) ≤

q. Then we can reduce the candidate set by removing those cutoffs whose rejection numbers

are less than R̂(t1, t2). For example, let

t̃#2 = min arg max
t2:F̂DP

λ,S̃(−∞,t2)≤q
R̂(−∞, t2),

which can be efficiently computed using the BH procedure. Clearly, R̂(t1, t2) ≤ R̂(−∞, t̃#2 )

for t2 > t̃#2 . Thus we can further reduce T ′ to T ′′ =
{

(t1, t2) ∈ T ′ : t2 ≤ t̃#2
}

.
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Figure S.25: The black points denote the values of the test statistics. The blue squares in Panel A denote
all the candidate cutoffs in T . The red circles in Panel B correspond to the cutoffs in T ′ \ {(∞,∞)}.

Step 3. Searching over T ′′ can still be computationally expensive. Here we show that

pruning can be used to increase the computational efficiency whilst still ensuring that the

method finds a global optimum of (2.8) of the main paper. The essence of pruning in this

context is to remove those cutoffs that can never deliver the best number of rejections.

To introduce pruning, we denote the elements in T ′′ by (t1,i,j, t2,i) for i = 1, 2 . . . , m̆ and

1 ≤ j ≤ mi, where m̆ is the number of T̂2(s)’s that are no larger than t̃#2 . Suppose the points

are sorted in the following way: (1) t2,1 > t2,2 > · · · > t2,m̆; (2) t1,i,1 > t1,i,2 > · · · > t1,i,mi

for all 1 ≤ i ≤ m̆. We then examine the candidate cutoffs in a sequential way. In the outer

loop of Algorithm 1 of the main paper below, we consider t2,i for i running from 1 to m̆. In

the inner loop, for a given i, we consider t1,i,j for j running from 1 to mi. Let (tC1 , t
C
2 ) be the

best cutoff value we have found so far that delivers the largest number of rejections while

controlling F̂DPλ,S̃ at the desired level q. We skip all the remaining cutoffs whose rejection
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numbers are less than R̂(tC1 , t
C
2 ). We replace (tC1 , t

C
2 ) by (t1,i,j, t2,i) if one of the following two

conditions is satisfied:

1. R̂(t1,i,j, t2,i) = R̂(tC1 , t
C
2 ) and F̂DPλ,S̃(t1,i,j, t2,i) < F̂DPλ,S̃(tC1 , t

C
2 ) ≤ q;

2. R̂(t1,i,j, t2,i) > R̂(tC1 , t
C
2 ) and F̂DPλ,S̃(t1,i,j, t2,i) ≤ q.

When the cutoff (t1,i,j, t2,i) being examined satisfies neither condition, instead of moving di-

rectly to the next cutoff on the list, we can use the statistics we have computed in the current

step to decide the minimum number of rejections required for the next cutoff. Specifically,

note that∫
L (t1,i,j, t2,i, x, ρ̂(s)) dĜS̃(x)

R̂(t1,i,j′ , t2,i)
≤
∫
L (t1,i,j′ , t2,i, x, ρ̂(s)) dĜS̃(x)

R̂(t1,i,j′ , t2,i)
= F̂DPλ,S̃(t1,i,j′ , t2,i).

For a cutoff to be valid, we need F̂DP(t1,i,j′ , t2,i) ≤ q, which implies that

R̂(t1,i,j′ , t2,i) ≥
⌈

1

q

∫
L (t1,i,j, t2,i, x, ρ̂(s)) dĜS̃(x)

⌉
=

⌈
1

q
F̂DPλ,S̃(t1,i,j, t2,i)R̂(t1,i,j, t2,i)

⌉
:= Rreq,

where d·e denotes the ceiling function. When there is no tie, increasing j by k brings k more

rejections. Thus we must have

j′ − j ≥ max
{

1, Rreq − R̂(t1,i,j, t2,i)
}
. (S.60)

This observation is used to prune the candidate set, which improves efficiency. Combining

the insights from the above discussions, we propose Algorithm 1 of the main paper, the fast

searching algorithm.

Step 4.(Optional) We notice that iterating i from 1 to m̆ in the outer loop is overly
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time-consuming. To address this, we set mstop ≥ 0 and terminate our searching pro-

cedure if we encounter an i? such that F̂DPλ,S̃(t1,i?,j, t2,i?) ≤ q for some j ∈ [m?
i ] and

F̂DPλ,S̃(t1,i?+i,j, t2,i?+i) > q for all j ∈ [mi?+i] and i = 1, · · · ,mstop. Although this approach

limits iterations in the outer loop and lacks a theoretical guarantee of identifying the optimal

cutoff, forthcoming numerical results illustrate that the cutoffs identified after Step 3 and

Step 4 are always the same.

Remark S.5. Algorithm 1 of the main paper can be modified to find the optimal cutoffs

for the 2d procedure coupled with various weighted BH procedures (wBH) as discussed in

Section 2.7 of the main paper. Recall that the rejection rule for the hypothesis at location

s is given by p1(s) ≤ min{τ, w(s)t1} and p2(s) ≤ min{τ, w(s)t2} (or equivalently p1(s) ≤ τ ,

p2(s) ≤ τ , p1(s)/w(s) ≤ t1, and p2(s)/w(s) ≤ t2), where pj(s) = 1 − Φ(T̂j(s)) for j = 1, 2.

Thus the set of all candidate cutoff values is{(
p1(s)/w(s), p2(s)/w(s)

)
: p1(s) ≤ τ, p2(s) ≤ τ, s ∈ S

}
.

Algorithm 1 of the main paper can be modified to find the optimal thresholds (t1, t2) for the

weighted p-values.

Remark S.6. When there exist ties among {T̂j(s) : s ∈ S} for j = 1, 2, Algorithm 1 of the

main paper still manages to find the target threshold. The key here is to argue that line 11

of Algorithm 1 of the main paper does not skip any cutoff whose rejection number is no less

than Rreq. To see this, suppose

t1,i,1 = · · · = t1,i,j1 > t1,i,j1+1 = · · · = t1,i,j2 > · · · > t1,i,jm′
i
−1+1 = · · · = t1,i,jm′

i

,

where j0 = 0 and jm′i = mi. Obviously, the rejection numbers of the nearby cutoffs satisfy
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that R̂(t1,i,j, t2,i) = R̂(t1,i,jk , t2,i) for jk−1 < j ≤ jk and R̂(t1,i,jk , t2,i) − R̂(t1,i,jk−1
, t2,i) =

jk − jk−1 for all 0 < k ≤ m′i. For non-nearby cutoffs, suppose they locate between jk−1 <

j = jk − l ≤ jk and jk′−1 < j′ = jk′ − l′ ≤ jk′ for some j < j′ and 0 < k, k′ ≤ m′i. Then,

R̂(t1,i,j′ , t2,i)− R̂(t1,i,j, t2,i) = R̂(t1,i,jk′ , t2,i)− R̂(t1,i,jk , t2,i)

=
k′−1∑
l=k

(jl+1 − jl)

= jk′ − jk.

We now show that the rejection numbers of the skipped cutoffs are no more than Rreq.

Start with an arbitrary cutoff (t1,i,j, t2,i) whose rejection number is less than Rreq, i.e.,

R̂(t1,i,j, t2,i) < Rreq. Line 11 in Algorithm 1 suggests j′ = j + Rreq − R̂(t1,i,j, t2,i). As

j = jk − l, j′ = jk′ − l′ and R̂(t1,i,j′ , t2,i)− R̂(t1,i,j, t2,i) = jk′ − jk, we have

R̂(t1,i,j′ , t2,i)− R̂(t1,i,j, t2,i) = jk′ − jk = l′ − l +Rreq − R̂(t1,i,j, t2,i),

which implies that

R̂(t1,i,j′ , t2,i) = Rreq + l′ − l.

We thus only need to verify that the rejection number of (t1,i,jk′−1
, t2,i) is less than Rreq.

Indeed, when l′ ≤ l,

R̂(t1,i,jk′−1
, t2,i) < R̂(t1,i,j′ , t2,i) ≤ Rreq.

When l < l′,

R̂(t1,i,jk′−1
, t2,i) = Rreq + l′ − l − (jk′ − jk′−1) < Rreq − l ≤ Rreq.

In both cases, the skipped cutoffs induce no more than Rreq rejections.
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We briefly analyze the computational complexity of our fast searching algorithm. The

computational complexity of estimating the FDP in (2.7) of the main paper for a single cutoff

is O(m) because the number of supporting points of ĜS̃(x) is fixed in practice. The total

computational complexity primarily depends on the number of candidate cutoffs required for

the FDP estimation. Considering the stochastic nature of primary and auxiliary statistics,

we numerically investigated the relationship between the number of candidate cutoffs and

the number of locations. This analysis was conducted within the framework of Setup I in

Section 5 of the main paper, focusing on scenarios with medium signal strength, medium

correlation, and γ = 2. We varied the location size m from 100 to 2000 and defined the

associated domain as S = [0,m/30].

Figure S.26 displays the number of candidate cutoffs for different searching strategies:

the naive grid search (S0, m2), after Step 1 (S1, |T ′|); after Step 2 (S2, |T ′′|); after Step 3

(S3), and after Step 4 (S4). The number of candidate cutoffs for strategies S0, S1, and S2

appeared to scale quadratically with the number of locations. The difference between S0 and

S1 highlighted the efficiency gains from implementing Step 1. In contrast, the nearly identical

performances of S1 and S2 suggested that Step 2 did not significantly enhance computational

speed. However, for strategies S3 and S4, the number of candidate cutoffs increased linearly

with the number of locations, indicating substantial computational acceleration due to Step

3. Finally, the cutoffs determined after executing Steps 1–3 were identical to those obtained

after completing Steps 1–4, which showcases that Step 4 could accelerate searching without

sacrificing accuracy. To sum up, Step 3 in our fast searching algorithm can drastically reduce

the computational complexity and be further improved by Step 4.
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Figure S.26: The number of candidate cutoffs for Setup I with the medium signal, medium dependency,
γ = 2, and m locations. Different colors represent the number of candidate cutoffs for the naive grid search
(S0, m2), after Step 1 (S1, |T ′|); after Step 2 (S2, |T ′′|); after Step 3 (S3), and after Step 4 (S4).
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