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Supplementary Material

The supplementary material contains tuning parameter selection, additional

simulation results, additional real data analysis, and details of all the proofs.

S1 Auxillary Properties

In this section, we present auxiliary properties of the eigenfunctions, which

greatly facilitate the theoretical analysis.

Given that these eigenfunctions {φkk′} constitute an orthonormal basis

of the L2 space, this foundation allows us to derive significant properties

and the explicit Fourier expansions for our newly defined kernel K̃u and

Wλφkk′ using this basis.
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Proposition S1. For any u ∈ U and k, k′ = 1, 2, . . ., we have

K̃u =
∞∑
k=1

∞∑
k′=1

φkk′(u)

1 + λ/τkk′
φkk′ and Wλφkk′ =

λ

λ+ τkk′
φkk′ . (S1.1)

Furthermore, Eu[K̃u ⊛ K̃u] +Wλ = id, where ⊛ denotes the outer product

between operators on H and id is an identity operator on H.

From the second-order Fréchet derivative of ℓn,m,λ(µ), we can find that

Eu[K̃u ⊛ K̃u] +Wλ is the expectation of the Hessian of the loss function,

greatly facilitating the theoretical analysis.

Furthermore, we introduce several definitions and notations that are

essential for our analysis. We define the functional

J(F , δ) :=
∫ δ

0

√
log(1 +N (F , ∥ · ∥sup, ϵ))dϵ+δ

√
log(1 +N (F , ∥ · ∥sup, δ)2),

(S1.2)

where N (F , ∥ · ∥sup, ϵ) represents the ϵ-covering number of the function

space F with respect to the supremum norm. The ϵ-covering number is

a measure of the complexity of a function space, which is the minimal

number of balls of radius ϵ required to cover the entire space F (Van der

Vaart, 2000).
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We then define

Q1 = {f ∈ Hz ⊗Hs : f(z, s) = zTγ(s) for z ∈ Z, γ ∈ Rp, ∥f∥sup ≤ 1,

∥f∥Hz⊗Hs ≤ (λd(λ))−1/2},

Q2 =
{
f ∈ Hx ⊗Hs : ∥f∥sup ≤ 1, ∥f∥Hx⊗Hs ≤ (λd(λ))−1/2

}
,

Q = {f = f1 + f2 : f1 ∈ Q1, f2 ∈ Q2, ∥f∥sup ≤ 1/2} .

S2 Tuning Parameter Selection

S2.1 Selection of Smoothing Parameters

Choosing appropriate tuning parameters is crucial for effectively fitting

the SVC model (1.1). This includes the regularization parameters λ =

λ(θ−1
1 , . . . , θ−1

p+1)
T and the kernel parameters ofKx(·, ·) andKs(·, ·). The reg-

ularization parameters λ control the trade-off between the fit of the model

and the variability of the estimated γ̂(·) and ĥ(·, ·). The GCV method is

used to select the regularization parameters, while the selection of kernel

parameters is discussed in Section S2.2.

The GCV method seeks λ by minimizing

V (λ) =
nmYT (K+ nmλI)−2Y

[tr(K+ nmλI)−1]2
. (S2.3)

Minimizing the function V (λ) with respect to λ using grid search on a

manually specified subset of the parameter space is computationally expen-
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sive. Even when using more efficient search techniques like golden section

and bisection search, minimizing the function can still be computationally

expensive, especially when the number of coefficient functions is large. To

overcome this issue, we modify the BFGS algorithm to optimize the crite-

rion scores with multiple regularization parameters.

The BFGS algorithm is one of the most popular quasi-Newton meth-

ods, which requires in each iteration only the evaluation of the gradient of

the objective function. The Hessian matrix of second derivatives is approx-

imated by a symmetric positive definite matrix B. Starting from an initial

value B0, we update B in each iteration by adding information about the

curvature of the objective function obtained in the previous iteration. In

fact, since we only need the inverse of B (denoted by H) in the algorithm,

we can start with H0 and update H instead in each iteration. This trick

not only saves more computational cost per iteration but also increases

numerical stability of the algorithm in practice.

In the SVC model (1.1), the regularization parameters λ are composed

of two parts: a main regularization parameter λ for the entire function

µ(x, z, s) and subsidiary regularization parameters θ = (θ1, . . . , θp+1) for

each of the component functions γ(s) = (γ1(s), . . . , γp(s)) and h(x, s). To

avoid dealing with a constrained optimization problem (θ ≥ 0), we use
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the log-transformation of θ, denoted by η, and re-write V (λ) as V (λ,η).

The proposed BFGS algorithm minimizes V (λ) with respect to λ and η by

alternatively performing the following two steps until convergence: (i) fix

η and minimize the objective function with respect to λ and (ii) update

η by performing an iteration of the BFGS algorithm. We summarize the

algorithm in Algorithm 1. Specifically, the initial value of η0 = (1, 1, . . . , 1),

and the initial value of H0 is the identity matrix, the tolerance level C̃ =

10−5 and the step size C = 10−4.

The convergence conditions in Algorithm 1 are directly inherited from

Gu and Wahba (1991). In addition, we follow their approach of choosing a

good starting value. We describe this procedure in the following algorithm.

S2.2 Selection of Kernel Parameters

We examine the kernel parameters of certain kernel functions. For example,

the γ-th order polynomial kernelK(x1,x2) = (xT1 x2+ρ)
γ specifies an RKHS

on Rp spanned by all monomials of the components of x with orders up to γ.

Both γ and ρ are kernel parameters. The parameter γ controls the complex-

ity of the generated RKHS. A larger γ allows higher-order basis functions

and therefore leads to a more complex function space. The parameter ρ, on

the other hand, controls the influence of monomials with order lower than
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Algorithm 1 Smoothing parameters selection

Require: The response vector Y, the matrices Kν , ν = 1, . . . , p + 1, and the starting

values η0 and H0, a pre-determined tolerance level C̃, a constant C:

1: Initialization: Set ∆η = 0, η− = η0, H− = H = H0, V− = ∞ and g− = 0.

2: for V− − V < C̃(1 + V ) and ∥g∥∞ <
√
C̃(1 + V ), or ∥g∥∞ < C̃. do

3: For the current η = η− +∆η, compute K =
∑p+1

ν=1 θνKν .

4: Fix the current η and minimize V (λ,η) with respect to λ.

5: if V > V− + CgT
−∆η then

6: ∆η = ∆η/2, go back to step 3 .

7: end if

8: Set g− = g and update the gradient g = ∂V (λ,η)/∂η where λ is set to be the

minimizer obtained in the previous step. Calculate ∆g = g − g−.

9: if ∆η ̸= 0 then

10: H− = H and update H following the rule

H =

(
I− ∆η∆gT

∆ηT∆g

)
H−

(
I− ∆g∆ηT

∆ηT∆g

)
+

∆g∆gT

∆ηT∆g
. (S2.4)

11: Calculate the increment ∆η = −H−1g.

12: end if

13: Set η− = η, V− = V

14: end for

15: Calculate K =
∑p+1

ν=1 θνKν with the optimal θ and minimize V (λ,η) to obtain the

optimal λ.

Ensure: The optimal θ and optimal λ.
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Algorithm 2 Starting value

Require: Set θ̃ν = (tr(Kν))
−1 for ν = 1, . . . , p + 1 and then fit model (1.1) with λ

chosen by minimizing V (λ, θ̃). Calculate the estimate of the parameter matrix C.

Ensure: Set the starting values of Algorithm 1 to be θν = log(θ̃2νc
TKνc) for all ν.

γ on the approximation of the function. Another example is the Gaussian

kernel. The kernel function is defined as K(x1,x2) = exp[−∥x1 − x2∥22/ρ]

or K(x1,x2) = exp[−∥x1 − x2∥22/(2σ2
ρ)], where ρ and σρ are, respectively,

the kernel parameter and the spread parameter.

We focus on the selection of the two spread parameters, σx and σs,

of Kx(·, ·) and Ks(·, ·) below. As discussed in Chaudhuri and Marron

(2000) and Wang et al. (2003), there is a similarity between the spread

parameters of the Gaussian kernel in the curve estimation problem and

the aperture scale of the Gaussian function in the scale space theory. For

the SVC model, each design point uij = (xi, zi, sj) for i = 1, . . . , n and

j = 1, . . . ,m can be considered to be a single light point in the scale space,

whose distribution can be expressed as ∆(u − uij), where ∆ is the Dirac

delta function. The whole training data set has the light density function

P(u) =
∑n

i=1

∑m
j=1 yij∆(u− uij). Convoluting with the Gaussian function

g(u, ρ) = (πρ)−(p+q+1)/2 exp(−∥u∥22/ρ), we obtain the ρ-indexed image in
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scale space

I(u, ρ) = P(u) ∗ g(u, ρ) = (πρ)−(p+q+1)/2

n∑
i=1

m∑
j=1

yijK(u,uij), (S2.5)

where ∗ represents convolution. This is very similar to estimation equation

(2.4), which motivates the idea to investigate the influence of the spread

parameters on the SVC estimates through a scale space point of view.

Following the scale space theory, there is an appropriate stable region of

spread parameters in (0,∞)× (0,∞), in which any pair of (σx, σs), accom-

panied by suitable estimates of λ, will give a good estimate of unknown pa-

rameters in our SVC model. Denote MSEµ = (nm)−1
∑n

i=1

∑m
j=1{zTi γ̂(sj)+

ĥ(xi, sj)− yij}2. Based on the changing rule of generalization performance

with spread parameters, we can obtain suitable spread parameters by min-

imizing the MSEµ. We present a simulation example in the supplementary

material for illustration of the changing rule, but we propose the follow-

ing algorithm to select the appropriate kernel parameters on the standard

deviation scale.

Although the algorithm seems simple, scale space theory provides the

theoretical basis that we can obtain suitable spread parameters.
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Algorithm 3 Kernel parameters selection

Require: Initialization. Set MSE to be a large value L and σs = σx = σ0, where σ0 is

usually a very small value (e.g., σ0 = 0.0001). Set ∆σs = minj,j′=1,...,m ∥sj − sj′∥2

and ∆σx = mini,i′=1,...,n ∥xi − xi′∥2.

1: Train the SVC model and calculate MSEµ.

2: If MSEµ ≤ MSE, set MSE = MSEµ and σx = σx+∆σx and go to step 1. Otherwise,

continue.

3: Set σs = σs +∆σs, train the SVC model and calculate MSEµ.

4: If MSEµ ≤ MSE, set MSE = MSEµ and go to step 3. Otherwise, continue.

Ensure: Stop and output the current (σx, σs).

S3 Additional Simulation Results

In this section, we present additional simulation results to investigate the fi-

nite sample performance of the proposed method for the sensitivity analysis

of the kernel parameters.

To depict the changing rule of MSE with kernel parameters ρx ad ρs, we

simulate an example based on the true functions γ1(s) = 10s3−15s2+5s+1,

γ2(s) = 10s6−30s5+25s4−5s2+5/21+sin(6πs), and h(x, s) = 2 cos(2π(x1−

s)) + s · sin(2π(x1 + x2)), an equally spaced design sj = j − 1/(m− 1) for

j = 1, . . . ,m = 10, and training data zi1 = 1, zi2 ∼ N(0, 1), (zi1, zi2)
T ∼

U [0, 1]2, and yij = zTi γ(sj) + h(xi, sj) + ϵij, where ϵij ∼ N(0, σ2
ϵ ) with σϵ =

0.1 for i = 1, . . . , n = 50 and j = 1, . . . , 10. We let both of the two spread
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Figure S3.1: Illustrations of the influence of the kernel parameter ρs on γ̂. One can

observe that when the kernel parameters are taken in a certain region, the estimation

performances remain unchanged.

parameters vary in a wide range and fit the SVC model. Figure S3.1 displays

the estimation results. The left column shows the true underlying functions

as the dashed lines and a family of SVC estimates as the colored solid lines.

The right column shows the corresponding empirical scale space surfaces.

The top row corresponds to γ1(s), while the bottom row corresponds to

γ2(s). It can be observed that when the kernel parameter ρs is taken in a

certain region, the estimates are very similar.

Based on R = 50 independent replications, we calculate the Mean



S3. ADDITIONAL SIMULATION RESULTS

Figure S3.2: Displays of the log10(MSE) of γ̂ (left) and ĥ (right) over (ρx, ρs). The

stable regions of kernel parameters are shown in dark blue colors.

Squared Errors (MSE) of γ̂, ĥ and µ, defined by

MSEγ := (Rmp)−1
R∑

r=1

m∑
j=1

p∑
ν=1

{γ̂(r)ν (sj)− γν(sj)}2, (S3.1)

MSEh := (Rmp)−1
R∑

r=1

n∑
i=1

m∑
j=1

{ĥ(r)(xi, sj)− h(xi, sj)}2, (S3.2)

MSEµ := (Rmp)−1
R∑

r=1

n∑
i=1

m∑
j=1

{zTi γ̂(sj) + ĥ(r)(xi, sj)− yij}2, (S3.3)

where the superscript (r) indicates the estimates from the r-th run. The

values of log10(MSEγ) and log10(MSEh) over (ρx, ρs) are shown in Figure

S3.2. Any spread parameter pair (ρx, ρs) in the dashed box is appropriate

for training the SVC model. We term this region as the stable region.

To investigate the influence of the spread parameters on the SVC esti-

mates through a scale space point of view, we plot a family of GCV-tuned

SVC estimates γ̂(s; ρs), indexed by ρs, and overlay them in Figures S3.1(a)

and S3.1(c). Figures S3.1(b) and S3.1(d) present the empirical scale space
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surfaces (Chaudhuri and Marron, 2000) of the same family of estimates,

arranged one behind the other in an increasing order of ρs. We can clearly

observe the existence of a certain range of ρs, within which the estimates

are stable. This corresponds to the stable region shown in Figure S3.2.

Figure S3.1 also demonstrates that as the kernel parameter increases,

the estimates become more simplified and structures disappear monoton-

ically. The relationship between this phenomenon and scale space is dis-

cussed in Chaudhuri and Marron (2000) for the kernel smoothers, such as

the Priestley-Chao estimate and the Gasser-Müller estimate. As noted in

Section 3.1 of Härdle (1990), the general form of the kernel smoother is

f̂(x) =
∑n

i=1Whi(x)yi, where
∑n

i=1Whi(x) = 1 and the explicit form de-

pends on the particular method. One major difference between the SVC

estimate and the kernel smoother is that the former is not a weighted aver-

age of {yi : 1 ≤ i ≤ n} as is the latter. As a result, we can observe that the

SVC estimates are shrunk to zero for small kernel parameters as illustrated

in Figures S3.1. To see why, notice that the SVC estimate can be written

in the form

f̂(x) =
n∑
i=1

W ′
ρi(x)yi =

n+1∑
i=1

W ′
ρi(x)yi (S3.4)

where yn+1 := 0 and
∑n

i=1W
′
ρi = C. Without loss of generality, we assume

C < 1 and W ′
ρ,n+1 = 1 − C. This indicates that the SVC estimate can be
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viewed as a weighted average of {yi : 1 ≤ i ≤ n} and 0, which explains the

shrinkage effect.

S4 Additional Real Data Analysis

In this section, we present additional results about the 27 significant blocks

for both the left and right hippocampi.

Figure S4.3 presents the median positions and p-values of the common

27 blocks and the range and p-values of the top 10 significant blocks for

the left and right hippocampi. It shows that the well-known block 19q13.32

region on the 19th chromosome is identified to be important for both the

left and right hippocampi. Among the 27 blocks, 21 blocks are associated

with cognitive performance such as age-related cognitive decline, language

ability, cognitive empathy and AD, 20 blocks are associated with education

attainment, 16 blocks contain SNPs associated with PHF tau protein, 15

blocks are associated with brain measurement such as brain morphology,

brain shape and brain volume, 12 blocks are associated with neurofibril-

lary tangles, 9 blocks are associated with Amyloid-beta, and 8 blocks are

associated with memory performance such as logical memory, memory de-

cline and immediate memory. For example, rs199852994 on chromosome 4,

rs1925531 on chromosome 10, rs58935614 on chromosome 11, rs8054299 on
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Figure S4.1: Age, Gender, Age·Gender, Age2, and Age2·Gender effects on the left (the

first row) and right (the second row) hippocampi.

Figure S4.2: Estimates of Handedness for the left hippocampus, and estimates of Edu-

cation and Never Married for the right hippocampus (from left to right).

chromosome 16, rs7519289 on chromosome 1, rs114545261 on chromosome

6, and rs12225836 on chromosome 11 have been found to be associated with

education attainment (Okbay et al., 2022).

S5 Auxillary Results

Let ∆µ = (∆g,∆h) and ∆µj = (∆gj,∆hj) for j = 1, 2. The first- and

second-order Fréchet derivatives of ℓn,m,λ(µ) with respect to µ are, respec-
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Figure S4.3: Manhattan plots of 27 significant common blocks for the left and right

hippocampi (the first row) and of top 10 significant blocks for the left(blue rectangle)

and right(orange triangle) hippocampi (the second row).
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tively, given by

Dℓn,m,λ(µ)∆µ = − 1

nm

n∑
i=1

m∑
j=1

[yi(sj)− µ(uij)]⟨K̃uij
,∆µ⟩H̃ + ⟨Wλµ,∆µ⟩H̃,

D2ℓn,m,λ(µ)∆µ1∆µ2 =
1

nm

n∑
i=1

m∑
j=1

⟨K̃uij
,∆µ1⟩H̃⟨K̃uij

,∆µ2⟩H̃ + ⟨Wλ∆µ1,∆µ2⟩H̃.

Denote T = (Y,X,Z, S) ∈ T as the data vector. Let ψn,m(T ; f) be a

function over T ×H. DefineHn,m(f) = (nm)−1/2
∑n

i=1

∑m
j=1[ψn,m(Tij; f)K̃uij

−

E{ψn,m(Tij; f)K̃uij
}]. The following lemma proves a concentration inequal-

ity as a preliminary step in obtaining the convergence rate.

Lemma 1. Suppose that Assumptions 1 and 2 hold, the function ψn,m(T ; f)

satisfies ψn,m(Tij; 0) = 0, and

|ψn,m(T ; f1)− ψn,m(T ; f2)| ≤ C−1
φ d(λ)−1/2∥f1 − f2∥sup for any f1, f2 ∈ Q .

Then as n,m→ ∞, we have

sup
f∈Q

∥Hn,m(f)∥H̃ = Op(
√

log log
(
nmJ(Q, 1)

)
(J(Q, 1) + (nm)−1/2)).

Proof. For any g, f ∈ Q, it follows directly from (S6.4) that

∥(ψn,m(T ; f)− ψn,m(T ; g))K̃u∥H̃ ≤ C−1
φ d(λ)−1/2Cφd(λ)

1/2∥f − g∥sup = ∥f − g∥sup.

By Theorem 3.5 of Pinelis (1994), for any t > 0,

P (∥Hn,m(f)−Hn,m(g)∥H̃ ≥ t) ≤ exp
(
− t2

8∥f − g∥2sup

)
.
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Then by Lemma 8.1 of Kosorok (2007), we have
∥∥∥Hn,m(f)−Hn,m(g)∥H̃

∥∥
ψ2

≤

8∥f − g∥, where ∥ · ∥ψ2 denotes the Orlicz norm associated with ψ2(s) =

exp(s2)− 1. It follows by Theorem 8.4 of Kosorok (2007) that for arbitrary

δ > 0, there exists a universal positive constant C > 0 that∥∥∥ sup
g,f∈Q,∥f−g∥sup≤δ

∥Hn,m(f)−Hn,m(g)∥H̃
∥∥∥
ψ2

≤ C
(∫ δ

0

√
log(1 +N (F , ∥ · ∥sup, ϵ))dϵ+ δ

√
log(1 +N (F , ∥ · ∥sup, δ)2)

)
= CJ(Q, δ).

Therefore, by Lemma 8.1 of Kosorok (2007),

P ( sup
f∈Q,∥f∥sup≤δ

∥Hn,m(f)∥H̃ ≥ t) ≤ 2 exp
(
− t2

C2J2(Q, δ)

)
.

Let δ = 1, ϵ−1 =
√
nmJ(Q, 1), Qϵ = − log ϵ−1 and Tnm =

√
log log(nmJ(Q, 1)).

Then we have

P
(
sup
f∈Q

√
nm∥Hn,m(f)∥H̃√
nmJ(Q, 1) + 1

≥ Tnm

)
≤ P

(
sup

∥f∥sup≤J(Q,1)−1(nm)−1/2

√
nm∥Hn,m(f)∥H̃√
nmJ(Q, 1) + 1

≥ Tnm

)
+

Qϵ∑
l=1

P
(

sup
J(Q,1)−1(nm)−1/2 exp(l+1)≤∥f∥sup≤J(Q,1)−1(nm)−1/2 exp(l+1)

√
nm∥Hn,m(f)∥H̃√
nmJ(Q, 1) + 1

≥ Tnm

)
≤ P

(
sup

∥f∥sup≤J(Q,1)−1(nm)−1/2

√
nm∥Hn,m(f)∥H̃ ≥ Tnm

)
+

Qϵ∑
l=1

P
(

sup
∥f∥sup≤J(Q,1)−1(nm)−1/2 exp(l+1)

√
nm∥Hn,m(f)∥H̃ ≥ Tnm(1 + exp(l))

)
≤ 2 exp(−T 2

nm/C
2) +

Qϵ∑
l=1

2 exp(−T 2
nm/(C

2 exp(2)))

≤ 2(Qϵ + 2) exp
(
− T 2

n

C2 exp(2)

)
→ 0.
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This completes the proof.

S6 Proofs

Proof of Proposition S1. Assuming that K̃u =
∑

k,k′ akk′φkk′ , we have

akk′ = ⟨K̃u, φkk′⟩L2 = ⟨K̃u, φkk′⟩H̃ − λ⟨K̃u, φkk′⟩H

= φkk′(u)− λakk′/τkk′

Solving for akk′ , it is easy to have akk′ = φkk′(u)(1 + λ/τkk′)
−1 and the

expansion of K̃u then follows.

To obtain the form of Wλφℓℓ′ , notice that, for any µ, µ̃ ∈ H,

⟨Wλµ, µ̃⟩H̃ = λ⟨µ, µ̃⟩H, ⟨Wλµ, µ̃⟩H̃ = ⟨Wλµ, µ̃⟩L2 + λ⟨Wλµ, µ̃⟩H.

Combining the above two equations gives us

⟨Wλµ, µ̃⟩L2 = λ⟨(id−Wλ)µ, µ̃⟩H. (S6.1)

Assuming that Wλφℓℓ′ =
∑

k,k′ bkk′φkk′ , we have

bℓℓ′ = ⟨Wλφℓℓ′ , φℓℓ′⟩L2 = λ⟨(id−Wλ)φℓℓ′ , φℓℓ′⟩H = λ/τℓℓ′ − λbℓℓ′/τℓℓ′ .

Solving for wℓℓ′ gives us bℓℓ′ = λ/(λ+τℓℓ′). For an index pair (k, k′) ̸= (ℓ, ℓ′),

we can similarly obtain

bkk′ = ⟨Wλφℓℓ′ , φkk′⟩L2 = λ⟨(id−Wλ)φℓℓ′ , φkk′⟩H = 0.
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Therefore Wλφℓℓ′ =
λ

λ+τℓℓ′
φℓℓ′ holds.

Meanwhile, for any arbitrarily chosen µ, µ̃ ∈ H, we have

⟨(Eu[K̃u ⊛ K̃u] +Wλ)µ, µ̃⟩H̃ = ⟨Eu[K̃u ⊛ K̃u]µ, µ̃⟩H̃ + ⟨Wλµ, µ̃⟩H̃

= Eu[µ(u)µ̃(u)] + λ⟨µ, µ̃⟩H

= ⟨µ, µ̃⟩H̃

Proof of Theorem 1. Let ⟨·, ·⟩ denote the inner product on H and

uij = (xi, zi, sj). We can decompose µ into a sum of two orthogonal func-

tions, one lying in span{K(uij, ·) : i = 1, . . . , n; j = 1, . . . ,m} and the

other one, v(u), lying in the orthogonal complement:

µ(u) =
n∑
i=1

m∑
j=1

cijK(uij,u) + v(u). (S6.2)

At each training data point ui′j′ , we have

µ(ui′j′) =

〈
n∑
i=1

m∑
j=1

cijK(uij, ·), K(ui′j′ , ·)

〉
H

=
n∑
i=1

m∑
j=1

cijK(uij,ui′j′)

(S6.3)

which is independent of v. Therefore the empirical risk term in (2.3) is

independent of v as well.

For the penalty term, we can write

∥P νµ∥2H =

∥∥∥∥∥
n∑
i=1

m∑
j=1

θνcijKν((ziν , sj), ·) + P νv

∥∥∥∥∥
2

H

=

∥∥∥∥∥
n∑
i=1

m∑
j=1

θνcijKν((ziν , sj), ·)

∥∥∥∥∥
2

H

+ ∥P νv∥2H

≥

∥∥∥∥∥
n∑
i=1

m∑
j=1

θνcijKν((ziν , sj), ·)

∥∥∥∥∥
2

H

,
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which implies that the penalty term is minimized when v = 0. Therefore,

any minimizer of (2.3) must have the form of (2.4).

Proof of Proposition 1. By the reproducing property,

∥K̃u∥2H̃ = ⟨K̃u, K̃u⟩H̃ = K̃(u,u) =
∑
kk′

φ2
kk′(u)

(1 + λ/τkk′)
≤ C2

φd(λ). (S6.4)

Hence, for all µ ∈ H,

|µ(u)| = |⟨µ, K̃u⟩H̃| ≤ ∥µ∥H̃∥K̃u∥H̃ ≤ Cφd(λ)
1/2∥µ∥H̃ (S6.5)

where the first inequality holds by Cauchy-Schwarz inequality. Taking

suprema on both sides yields ∥µ∥sup ≤ Cφd(λ)
1/2∥µ∥H̃.

Proof of Lemma 2. Denote µ̃ = µ̂n,m,λ − µ0. By Taylor’s expansion,

we have

ℓn,m,λ(µ0 + µ̃)− ℓn,m,λ(µ0) = Sn,m,λ(µ0)µ̃+
1

2
DSn,m,λ(µ0)µ̃µ̃ ≤ 0, (S6.6)

We will study the rates of the above two terms respectively.

Recall that Sn,m,λ(µ0) = − 1
nm

∑n
i=1

∑m
j=1 K̃uij

ϵi(sj) +Wλµ0, direct cal-

culations lead to

∥Wλµ0∥H̃ = sup
∥µ∥H̃=1

|⟨Wλµ0, µ⟩H̃| = sup
∥µ∥H̃=1

λ|⟨µ0, µ⟩H| ≤ sup
∥µ∥H̃=1

√
λ∥µ0∥H

√
λ∥µ∥H

≤
√
λ∥µ0∥H = O(

√
λ). (S6.7)

Meanwhile, by the definition of K̃uij
in Proposition S1 and Assumption 2,
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it is easy to find that

E
(
∥

n∑
i=1

m∑
j=1

K̃uij
ϵi(sj)∥2H̃

)
= nE

(
∥

m∑
j=1

K̃uij
ϵi(sj)∥2H̃

)
+ nm(m− 1)E

[
⟨K̃uij

ϵi(sj), K̃uij′
ϵi(sj′)⟩

]
(S6.8)

= Op(nmd(λ)) +Op(nm(m− 1)).

This follows from the fact that E
(
∥
∑m

j=1 K̃uij
ϵi(sj)∥2H̃

)
< nmd(λ), and for

the second term in (S6.8), one can verify by taking conditional expectation,

E
[
⟨K̃uij

ϵi(sj), K̃uij′
ϵi(sj′)⟩

]
=

∑
k,k′

E[φkk′(uij)φkk′(uij′)ϵi(sj)ϵi(sj′)]

(1 + λ/τkk′)2

≤
∑
k,k′

E
{∫

φkk′(u)ϵi(s)ds

∫
φkk′(u

′)ϵi(s
′)ds′

}
<∞,

where the last inequality follows from Assumption 2 and the condition

infs P (s) ≥ c0 > 0. Hence, combining (S6.7) and (S6.8), we can have

∥Sn,m,λ(µ0)∥2H̃ = Op

(d(λ)
nm

+
1

n
+ λ

)
. (S6.9)

Let ψn,m,λ(Tij, f) = d(λ)−1/2K̃uij
f = C−1

φ d(λ)−1/2f(uij), then we have

|ψn,m(T ; f1)− ψn,m(T ; f2)| ≤ C−1d(λ)−1/2∥f1 − f2∥sup for any f1, f2 ∈ Q .

Denote f ∗ = d(λ)−1/2f , then it is easy to verify that f ∗ ∈ Q. According to

Lemma 1, it is easy to find that

∣∣[DSn,m,λ(µ0)− E{DSn,m,λ(µ0)}]µ̃∗µ̃∗∣∣
≤ (nm)−1/2d(λ)1/2

√
log log

(
nmJ(F , 1)

)
(J(F , 1) + (nm)−1/2))∥µ̃∗∥H̃.
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Meanwhile, for any f1, f2 ∈ Q, by Proposition S1, we have

⟨E{DSn,m,λ(µ0)}f1, f2⟩H̃ = ⟨f1, f2⟩H̃.

Hence, we can directly find that

DSn,m,λ(µ0)µ̃µ̃

≤ ∥µ̃∥2H̃ + (nm)−1/2d(λ)
√

log log
(
nmJ(F , 1)

)
(J(F , 1) + (nm)−1/2))∥µ̃∥H̃

= ∥µ̃∥2H̃ + op(1)∥µ̃∥H̃ (S6.10)

where the last inequality follows from the condition that
√
log log

(
nmJ(F , 1)

)
J(F , 1) =

op((nm)1/2d(λ)−1).

Plugging (S6.7), (S6.9) and (S6.10) into (S6.10), it is easy to derive that

(1 + op(1))∥µ̃∥H̃ ≤
√
d(λ)/(nm) + n−1/2 + λ1/2,

leading to ∥µ̃∥H̃ = ∥µ̂− µ0∥H̃ = Op(
√
d(λ)/(nm) + n−1/2 + λ1/2).

Proof of Theorem 3. By Taylor’s expansion and Sn,m,λ(µ̂) and Propo-

sition S1, we have

∥Sn,m,λ(µ̃+ µ0)− Sλ(µ̃+ µ0)−
(
Sn,m,λ(µ0)− Sλ(µ0)

)
∥H̃

= ∥Sλ(µ̃+ µ0) + Sn,m,λ(µ0)− Sλ(µ0)∥H̃ = ∥µ̃+ Sn,m,λ(µ0)∥H̃,
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where Sλ(µ) = E(Sn,m,λ(µ)). It can be easily verify that

∥Sn,m,λ(µ̃+ µ0)− Sλ(µ̃+ µ0)−
(
Sn,m,λ(µ0)− Sλ(µ0)

)
∥H̃

= ∥Sn,m(µ̃+ µ0)− S(µ̃+ µ0)−
(
Sn,m(µ0)− S(µ0)

)
∥H̃

= ∥DSn,m(µ0)µ̃− E(DSn,m(µ0))µ̃∥H̃

=
∥∥∥ 1

nm

∑
i=1

∑
j=1

[ψ(Tij; µ̃)K̃uij
− E{ψ(Tij; µ̃)K̃uij

}]
∥∥∥
H̃
,

where ψ(Tij; µ̃) = C−1
φ d(λ)−1/2µ̃(uij). Denote r

2
n = d(λ)/(nm)+n−1+λ and

µ̃∗ = r−1
n d(λ)−1/2µ̃, then ∥µ̃∗∥sup ≤ 1 and ∥µ̃∗∥2H ≤= r−2

n d(λ)−1λ−1λJ(µ̃, µ̃) ≤

Cr−2
n d(λ)−1λ−1r2n = Cd(λ)−1λ−1 by observing that λJ(µ̃, µ̃) ≤ ∥µ̃∥H̃ =

Op(rn). Hence µ̃∗ ∈ Q and |ψ(Tij; µ̃∗
1) − ψ(Tij; µ̃

∗
2)| ≤ C−1

φ d(λ)−1/2∥µ̃∗
1 −

µ̃∗
2∥sup. By Lemma 1 and using an argument similar to the proof of S6.10,

it is easy to derive that there exist constants C,C ′ > 0 such that

∥Sn,m,λ(µ̃+ µ0)− Sλ(µ̃+ µ0)−
(
Sn,m,λ(µ0)− Sλ(µ0)

)
∥H̃

≤ C(nm)−1/2d(λ)
√

log log
(
nmJ(Q, 1)

)
(J(Q, 1) + (nm)−1/2))rn

≤ C ′(nm)−1/2d(λ)
√
log log

(
nmJ(Q, 1)

)
J(Q, 1)rn.

This completes the proof.

Proof of Theorem 4. Recall that Sn,m,λ(µ0) = − 1
nm

∑n
i=1

∑m
j=1 K̃uij

ϵi(sj)+

Wλµ0, and (nm)1/2(µ̂(u0)− µ∗
0(u0)) = (nm)1/2⟨K̃u0 , µ̂− µ∗

0⟩H̃, where µ∗
0 =

µ0 −Wλµ0. By Theorem 3 and the condition a2nd(λ) = op((nm)−1(d2(λ) +
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m)), we have

(nm)1/2|⟨K̃u0 , µ̂− µ∗
0 −

1

nm

n∑
i=1

m∑
j=1

K̃uij
ϵi(sj)⟩H̃|

≤ (nm)1/2∥K̃u0∥H̃∥µ̂− µ0 + Sn,m,λ(µ0)∥H̃ = op([d2(λ) +m]1/2).

Note that σ2
u0

= Op(d2(λ)) and r
2
u0

= Op(1) according to Assumption 2, we

only need to find the limiting distribution of

√
nm

σ2
u0

+mr2u0

⟨K̃u0 ,
1

nm

n∑
i=1

m∑
j=1

K̃uij
ϵi(sj)⟩H̃ =

n∑
i=1

m∑
j=1

K̃uij
(u0)ϵi(sj)/[(nm)σ2

u0
+ (nm2)r2u0

]1/2.

Direct calculations lead to

V ar(
n∑
i=1

m∑
j=1

K̃uij
(u0)ϵi(sj))

= (nm)σ2
ϵE(K̃uij

(u0)
2) + (nm(m− 1))E[K̃uij

(u0)ϵi(sj)K̃uij′
(u0)ϵi(sj′)]

= (nm)σ2
u0

+ (nm(m− 1))r2u0
≍ (nm)σ2

u0
+ (nm2)r2u0

.

Hence, according to the central limit theorem, we can obtain that

n∑
i=1

m∑
j=1

K̃uij
(u0)ϵi(sj)/[(nm)σ2

u0
+ (nm2)r2u0

]1/2
d−→ N(0, 1).

Next we show that the bias converges to zero. It is easy to verify that

√
nm

σ2
u0

+mr2u0

Wλµ0(u0) =

√
nmλ

σ2
u0

+mr2u0

∞∑
k=1

∞∑
k′=1

µkk′/(τkk′)
1/2 (λ/τkk′)

1/2

λ/τkk′ + 1
φkk′(u0) → 0.

By the condition nmλ
σ2
u0

+mr2u0

≍ (nmλ)/(d2(λ)+m) = Op(1),
∑∞

k=1

∑∞
k′=1 µkk′/(τkk′)

1/2 <

∞, supx≥0
x

1+x2
<∞ and the dominated convergence theorem, as n,m→ 0,
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we have √
nm

σ2
u0

+mr2u0

Wλµ0(u0) → 0.

This completes the proof.

Proof of Theorem 5. (i) It is easy to derive that Sν(ϕ
0,Σϵ,ρν)

d→∑
ℓ λℓx

2
ℓ as n→ ∞.

(ii) Under the alternative hypothesis such that for any sequence cn →

∞, τν ≥ cn
∑

ℓ λℓ/
∑

ℓ λ
2
ℓ ,

Sν(ϕ
0,Σ,ρν) =

1

2
YT Ṽ −1KνṼ

−1Y +
1

2
YT (V −1KνV

−1 − Ṽ −1KνṼ
−1)Y,(S6.11)

where Ṽ = V + τνKν .We can derive that

1

2
YT Ṽ −1KνṼ

−1Y
d→
∑
ℓ

λ̃ℓx
2
ℓ

with {λ̃ℓ} being eigenvalues of Ṽ −1Kν/2 and xℓ ∼ N(0, 1). The second

term in (S6.11) can be rewritten as

1

2
YT Ṽ −1/2(Ṽ 1/2V −1KνV

−1Ṽ −1/2 − Ṽ −/2KνṼ
−1/2)Ṽ −1/2Y

d→
∑
ℓ

λ∗ℓx
2
ℓ ,

where {λ∗ℓ} are eigenvalues of (Ṽ V −1KνV
−1− Ṽ −1Kν)/2. Notice that Ṽ =

V + τνKν , we can derive that

Ṽ V −1KνV
−1 −KνṼ

−1 = KνV
−1 + τνKνV

−1KνV
−1 −KνṼ

−1,

leading to

tr(Ṽ V −1KνV
−1 −KνṼ

−1) = tr(KνV
−1(1 + τνKνV

−1))− tr(KνṼ
−1)).
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Hence, under the alternative,

Sν(ϕ
0,Σ,ρν)

d→
∑
ℓ

(λℓ + τνλ
2
ℓ)x

2
ℓ .

It then can be obtained that when choose sufficient large M > 0, τν ≥

M
∑

ℓ λℓ/
∑

ℓ λ
2
ℓ , Sν(ϕ

0,Σ,ρν) can be larger than the cutoff value the power

approaches to one.

(iii) We now show that Sν(ϕ̂, Σ̂ϵ,ρν)
d→ Sν(ϕ

0,Σϵ,ρν). Recall that

V = τK + Σϵ =
∑p+1

ν=1 τνKν + Σϵ with τν = 0 under the null. Direct

calculations lead to

Sν(ϕ̂, Σ̂ϵ,ρν)− Sν(ϕ
0,Σ,ρν) =

1

2
YT

(
V̂ −1KνV̂

−1 − V −1KνV
−1
)
Y.

Denote Jnm = ntr(Ks), it is easy to see that tr(V −1Kν/2) = Op(ntr(Ks)).

It is enough to show that ∥V̂ −1KνV̂
−1/Jnm−V −1KνV

−1/Jnm∥s = op(1) to

obtain Sν(ϕ̂, Σ̂ϵ,ρν)
d→ Sν(ϕ

0,Σϵ,ρν) by using Sν(ϕ
0,Σϵ,ρν) = Op(Jnm).

LetK = UU⊤,Kν = UνU
⊤
ν , A = V −1Uν/

√
Jnm and Â = V̂ −1Uν/

√
Jnm,

then

∥ V̂
−1KνV̂

−1

Jnm
− V −1KνV

−1

Jnm
∥s = ∥ V̂

−1UνU
⊤
ν V̂

−1

Jnm
− V −1UνU

⊤
ν V

−1

Jnm
∥s

= ∥ÂÂ⊤ − AA⊤∥s ≤ ∥Â∥s∥Â⊤ − A⊤∥s + ∥A∥s∥Â⊤ − A⊤∥s.

We next show that ∥Â∥s and ∥A∥s are bounded and ∥Â⊤ − A⊤∥s = op(1),

which implies that ∥V̂ −1KνV̂
−1/Jnm − V −1KνV

−1/Jnm∥s = op(1).
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For ν = 1, . . . , p, there exists a universal constant C > 0 such that

tr(Kν/Jnm) = tr(ZνZ
⊤
ν /n)tr(Ks)/tr(Ks) < C because EZ(ZZ

⊤) is positive

definite. Similarly, for ν = p+ 1, tr(Kν/Jnm) = tr(Kx/n)tr(Ks)/tr(Ks) <

C for some constant C. By simple calculations using Woodbury matrix

identity, we have

Â⊤ = U⊤
ν V̂

−1 =
U⊤
ν Σ̂

−1
ϵ√

Jnm
− τ̂

(U⊤
ν Σ̂

−1
ϵ U

Jnm

)(I + τ̂U⊤Σ̂−1
ϵ U

Jnm

)−1(U⊤Σ̂−1
ϵ√

Jnm

)
.(S6.12)

Notice that ∥U⊤
ν Σ̂

−1
ϵ /

√
Jnm∥F ≤ ∥Σ̂−1

ϵ ∥F
√
tr(U⊤

ν Uν/Jnm) = ∥Σ̂−1
ϵ ∥F

√
tr(Kν/Jnm) <

C for some constant C > 0, where ∥ · ∥F denotes the Frobenius norm. It

follows that ∥Â∥s ≤ ∥U⊤
ν Σ̂

−1
ϵ /

√
Jnm∥s ≤ ∥U⊤

ν Σ̂
−1
ϵ /

√
Jnm∥F ≤ C. We can

conclude that ∥Â∥s is bounded. Similarly, we can have ∥A∥s is bounded.

To show ∥Â⊤−A⊤∥s = op(1), we next show that each term converges to

the counterpart with τ0 and Σ in place of τ̂ and Σ̂ϵ. Specifically, according

to the condition ∥Σ̂−1
ϵ − Σ−1∥s = op(1), one can directly have

∥∥∥U⊤
ν Σ̂

−1
ϵ√

Jnm
− U⊤

ν Σ
−1
ϵ√

Jnm

∥∥∥
s

≤
√
tr(Kν/Jnm)∥Σ̂−1

ϵ −Σ−1
ϵ ∥s = op(1),∥∥∥U⊤

ν Σ̂
−1
ϵ U

Jnm
− U⊤

ν Σ
−1
ϵ U

Jnm

∥∥∥
s

≤
√
tr(Kν/Jnm)

√
tr(K/Jnm)∥Σ̂−1

ϵ −Σ−1
ϵ ∥s = op(1).

Meanwhile, it can be seen that

∥∥∥(I + τ̂U⊤Σ̂−1
ϵ U

Jnm

)−1

−
(I + τ0U

⊤Σ−1
ϵ U

Jnm

)−1∥∥∥
s

≤
∥∥∥(I + τ̂U⊤Σ̂−1

ϵ U

Jnm

)−1∥∥∥
s

∥∥∥ τ̂U⊤Σ̂−1
ϵ U− τ0U

⊤Σ−1
ϵ U

Jnm

∥∥∥
s

∥∥∥(I + τ0U
⊤Σ−1

ϵ U

Jnm

)−1∥∥∥
s
.
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By observing that the eigenvalues of (I+τ̂U⊤Σ̂−1
ϵ U)/Jnm and (I+τ0U

⊤Σ−1
ϵ U)/Jnm

are positive, we have ∥((I+τ̂U⊤Σ̂−1
ϵ U)/Jnm)

−1∥s and ∥((I+τ0U⊤Σ−1
ϵ U)/Jnm)

−1∥s

are bounded. Furthermore,

∥∥∥ τ̂U⊤Σ̂−1
ϵ U− τ0U

⊤Σ−1
ϵ U

Jnm

∥∥∥
s
≤ |τ̂ − τ0|

∥∥∥U⊤Σ̂−1
ϵ U

Jnm

∥∥∥
s
+ |τ0|

∥∥∥U⊤Σ̂−1
ϵ U−U⊤Σ−1

ϵ U

Jnm

∥∥∥
s

≤ |τ̂ − τ0|∥Σ̂−1
ϵ ∥str(K/Jnm) + |τ0|∥Σ̂−1

ϵ −Σ−1
ϵ ∥str(K/Jnm) = op(1).

Hence, we obtain ∥Â⊤−A⊤∥s = op(1), then ∥V̂ −1KνV̂
−1/Jnm−V −1KνV

−1/Jnm∥s =

op(1). This completes the proof.
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