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S1. Proofs

Proof of Proposition ??. Since under P
(n)
θθθ,g , Sθθθ(X1), . . . ,Sθθθ(Xn) are i.i.d.

uniformly distributed over Sp−2, we have that

E[Sθθθ(Xi)] = 0 and E[Sθθθ(Xi)S
′
θθθ(Xi)] =

1

p− 1
Ip−1. (S1.1)

Therefore, we easily see that E[R
(n)
1d (θθθ)] = 0 and that

E[(R
(n)
1d (θθθ))2] =

1

n− 1

n∑
t,s=2

E[Sθθθ(Xt)
′Sθθθ(Xt−1)Sθθθ(Xs)

′Sθθθ(Xs−1)]

=
1

n− 1
{(n− 1)(p− 1)−1} = (p− 1)−1.

The central limit theorem for 2-dependent stationary processes then en-

tails that s
−1/2
n (θθθ)R

(n)
d (θθθ) converges weakly to a standard Gaussian random
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variable. Finally, the law of large numbers entails that

sn(θθθ) = tr[(n−1
n∑
i=1

Sθθθ(Xt)Sθθθ(Xt)
′)2]

= tr[((p− 1)−1Ip−1)
2] + oP(1) = (p− 1)−1 + oP(1)

as n→∞. The Slutsky Lemma concludes the proof. �

Proof of Theorem ??. Consider first the case with θθθ = θθθ0 := (1, 0, . . . , 0)′ ∈

Rp. Clearly, Xi = (Vi, (1 − V 2
i )1/2S′i)

′, with Vi := X′iθθθ0 = Xi1 and Si :=

Sθθθ0(Xi) = (Xi2, . . . , Xip)
′/
√

1−X2
i1, where we used the notation intro-

duced previously. The vectors S1, . . . ,Sn take their values in Sp−2, and

have joint density

(s1, . . . , sn)→ cλexp(λ(
n∑
t=2

s′tst−1))

with respect to the surface area measure. Therefore, conditionally on V1 =

v1, . . . , Vn = vn,

(1− V 2
1 )1/2S1, . . . , (1− V 2

n )1/2Sn,

take their values on the hyperspheres Sp−2(rv1), . . . ,Sp−2(rvn) with radii

rv1 := (1 − v21)1/2, . . . , rvn := (1 − v2n)1/2. Their joint density with respect

to the product of surface area measures on Sp−2(rv1) × . . . × Sp−2(rvn) is

(recall that the Vi’s and the Si’s are independent)

(w1, . . . ,wn)→ cλexp(λ(
n∑
t=2

w′twt−1

rvtrvt−1

))
n∏
t=1

r−(p−2)vt ,



S1. PROOFS

where r−(p−2) is the Jacobian of the radial projection of Sp−2(r) onto Sp−2.

Since, letting σp−2,r be the surface area measure over the hypersphere with

radius r, dσp−2,r = rp−2dσp−2, the joint density of (X1, . . . ,Xn) with re-

spect to the product measure (µ×σp−2)n (where µ stands for the Lebesgue

measure on [−1, 1]) is

(x, . . . ,xn) 7→ cλexp(λ(
n∑
t=2

S′θθθ0(xt)Sθθθ0(xt−1))) c
n
p,g

n∏
t=1

(1− v2θθθ0(xt))
(p−3)/2g(vθθθ0(xt)).

The result for θθθ = θθθ0 then follows from the fact that (see, e.g., page 44 of

Watson (1983))

d(µ× σp−2)
dσp−1

(x) = (1− v2θθθ0(x))(p−3)/2.

To obtain the result for an arbitrary value of θθθ, let (X1, . . . ,Xn) ∼ P
(n)
θθθ,λ,g

(i.i.d. with density (??)) and pick a p × p orthogonal matrix O such that

Oθθθ = θθθ0. Since OΓΓΓθθθ = ΓΓΓθθθ0 , we have that (OX1, . . . ,OXn) ∼ P
(n)
θθθ0,g,λ

.

Therefore, the result for θθθ = θθθ0 implies that the density of X with respect

to σp−1 is

(x1, . . . ,xn) 7→ |det O| cλexp(λ(
n∑
t=2

S′θθθ0(Oxt)Sθθθ0(Oxt−1)))c
n
p,g

n∏
t=1

g(vθθθ0(Oxt))

= cλexp(λ(
n∑
t=2

S′θθθ(xt)Sθθθ(xt−1)))c
n
p,g

n∏
t=1

g(vθθθ(xt)),

as was to be proved. �
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Proof of Theorem ??. Letting θθθn := θθθ + n−1/2τττn, first note that

Λ(n) = log
dP

(n)

θθθ+n−1/2τττn,n−1/2`n,g

dP
(n)
θθθ,0,g

= log
dP

(n)

θθθ+n−1/2τττn,n−1/2`n,g

dP
(n)

θθθ+n−1/2τττn,0,g

+ log
dP

(n)

θθθ+n−1/2τττn,0,g

dP
(n)
θθθ,0,g

,

so that following Ley et al. (2013), we have that (ΓΓΓθθθ := Jp(g)Ip−1)

Λ(n) = n(log(cn−1/2`n)− log(c0)) + n−1/2`n

n∑
t=2

S′θθθn(Xt)Sθθθn(Xt−1) + τττ ′n∆∆∆
(n)
θθθ −

1

2
τττ ′nΓΓΓθθθτττn + oP(1),

where

∆∆∆
(n)
θθθ = n−1/2

n∑
t=1

ϕg(vθθθ(Xt))(1− v2θθθ(Xt))
1/2Sθθθ(Xt)

is the central sequence for the location parameter obtained in Ley et al.

(2013). Now it follows directly from Cutting et al. (2017) that

n(log(cn−1/2`n)− log(c0)) = − 1

2(p− 1)
+ oP(1)

as n→∞. Therefore to obtain the result, we have to show that

Sn := n−1/2
n∑
t=2

S′θθθn(Xt)Sθθθn(Xt−1)− S′θθθ(Xt)Sθθθ(Xt−1) (S1.2)

is oP(1) as n→∞ under P
(n)
θθθ,0,g. Note that under P

(n)
θθθn,0,g

, we have that

(n−1/2
n∑
t=2

S′θθθn(Xt)Sθθθn(Xt−1),∆∆∆
(n)
θθθn

)′

is asymptotically normal with mean zero and covariance matrix diag( 1
p−1 ,ΓΓΓθθθ).

The Le Cam third Lemma therefore entails that under P
(n)
θθθ,0,g, n

−1/2∑n
t=2 S

′
θθθn

(Xt)Sθθθn(Xt−1)
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is asymptotically normal with mean zero and variance 1
p−1 . On the other

hand, the central limit theorem entails that under P
(n)
θθθ,0,g,

n−1/2
n∑
t=2

S′θθθn(Xt)Sθθθn(Xt−1)− E[S′θθθn(Xt)Sθθθn(Xt−1)]

is asymptotically normal with mean zero and variance 1
p−1 . Therefore, under

P
(n)
θθθ,0,g,

n−1/2
n∑
t=2

E[S′θθθn(Xt)Sθθθn(Xt−1)] = o(1) (S1.3)

as n→∞. Now, letting

Tn := n−1/2
n∑
t=2

S′θθθn(Xt)Sθθθn(Xt−1)−S′θθθ(Xt)Sθθθ(Xt−1)−E[S′θθθn(Xt)Sθθθn(Xt−1)] =: n−1/2
n∑
t=2

S
(n)
t ,

we have that under P
(n)
θθθ,0,g

E[T 2
n ] = n−1

n∑
t,s=2

E[S
(n)
t S(n)

s ]

= n−1
n∑
t=2

E[(S
(n)
t )2] + 2n−1

n−1∑
t=2

E[S
(n)
t S

(n)
t+1]

=
(n− 1)

n
E[(S

(n)
1 )2] +

2(n− 2)

n
E[S

(n)
2 S

(n)
3 ] (S1.4)

Now writing s
(n)
t := Sθθθn(Xt) and st := Sθθθ(Xt), the Cauchy-Schwarz in-
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equality entails that

E[(S
(n)
1 )2] = Var[S

(n)
1 ]

= Var[(s
(n)
2 )′s

(n)
1 − s′2s1]

≤ E[((s
(n)
2 )′s

(n)
1 − s′2s1)

2]

= E[((s
(n)
2 − s2)

′s
(n)
1 − s′2(s1 − s

(n)
1 ))2]

≤ 2{E[((s
(n)
2 − s2)

′s
(n)
1 )2] + E[(s′2(s1 − s

(n)
1 ))2]}

≤ 2(E[‖s(n)2 − s2‖2] + E[‖s1 − s
(n)
1 ‖2])

= 4E[‖s(n)1 − s1‖2],

which is o(1) as n→∞ using the same arguments as the ones used in the

proof of Lemma C2 in Garćıa-Portugués et al. (2020). Now using (S1.3) we

have that

E[S
(n)
2 S

(n)
3 ] = E[((s

(n)
1 )′s

(n)
2 − E[(s

(n)
1 )′s

(n)
2 ])(((s

(n)
3 )′s

(n)
2 − E[(s

(n)
3 )′s

(n)
2 ]))]

= E[(s
(n)
1 )′s

(n)
2 (s

(n)
2 )′s

(n)
3 ] + o(1)

= E[(s
(n)
1 − s1)

′s
(n)
2 (s

(n)
2 )′(s

(n)
3 − s3)] + o(1)

≤ E2[‖(s(n)1 − s1)‖] + o(1),

which is o(1) as n→∞ using the same arguments as the ones used in the

proof of Lemma C2 in Garćıa-Portugués et al. (2020). It therefore follows

from (S1.4) that Tn is oP(1) as n → ∞ under P
(n)
θθθ,0,g. Combining this with
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(S1.3), we obtain that Sn in (S1.2) is oP(1) as n→∞. The result follows.

�

Proof of Proposition ??. First note that letting

T
(n)
H := (p− 1)1/2(R

(n)
1d (θθθ), R

(n)
2d (θθθ), . . . , R

(n)
Hd(θθθ)),

we directly have from the central limit theorem that T
(n)
H converges weakly

under P
(n)
θθθ,g to a Gaussian random vector with mean zero and covariance

matrix IH . Point (i) follows. Theorem ?? can be used to apply the third

Le Cam Lemma and directly obtain that T
(n)
H converges weakly under

P
(n)

θθθ,n−1/2`(n),g
to a Gaussian random vector with mean

((p− 1)−1/2`, 0, . . . , 0)′

and covariance matrix IH . The result then follows readily using (??). �

S2. Complements to the real data illustration

In Figure 10 we provide plots of the sunspots locations for solar cycles 16

to 24.

In Figures 11 and 12 we provide the partial autocorrelation functions of

(i) the absolute values |X′i1θθθ|, . . . , |X′ini
θθθ| of the latitudes for various solar

cycles; (ii) the latitudes X′i1θθθ, . . . ,X
′
ini
θθθ for various solar cycles and (iii) the
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Figure 10: Plots of the locations of sunspots for solar cycles 16 to 24. The locations

are colored with a red-yellow gradient according to the relative position of the sunspot

appearance date within the solar cycle in order to visualize the Spörer’s law.
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angle associated with the longitudes for various solar cycles (each longitude

or meridian is a bivariate unit vector and is therefore characterized by an

angle).

Figure 11: Partial autocorrelation functions of (i) the latitudes, (ii) the absolute values

of the latitudes and (iii) the angles associated with the longitudes for various solar cycles

(cycles 19 to 21).
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Figure 12: Partial autocorrelation functions of (i) the latitudes, (ii) the absolute values

of the latitudes and (iii) the angles associated with the longitudes for various solar cycles

(cycles 22 to 24).
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