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This supplementary material consists of seven sections. In Section S1, we introduce notations that are used
throughout this supplementary material. Section S2 contains our proof of Theorem 1. Section S3 studies

the large-sample properties of Bm,. In Section S4, we investigate the relationship between (Bau, Pau) and

(8,p). Section S5 contains our proof of Theorem 2. Additional simulation results are given in Section S6.

Section S7 studies the heterogeneity in covariate distribution and uncertainty in the auxiliary information.

S1 Notations

We give the specific forms of the ordinary and functional derivatives of I(3, g; O) and
U(B,p,g;Z). For any fixed function g € G, let {g, : n in a neighborhood of 0 € R}
be a smooth curve in G running through g at n = 0, that is, g,|,—0 = g. Define

_ ) _agn
H={h:h= on 77:O,gneg},

which is general enough to include G, for example, when g, = (1 +n)g, h =

09,/0n|n=0 = g. Define N;(t) = 6;1(log(X;) < t). The first and second ordinary
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and functional derivatives of I(f3, g; O) are

12(5.9:0) = 53 1(5.4:0)
——2{ [ 4t~ 2" mante) - [ 1008(x) = O exploe — 278))(e ~ 27 5)at)
——2{ [ swint.5 - / (1, 8) exp{g(t)} (1) |
ly(8,9; O)[h] = lim ™ {1(5, g + nh; O) = 1(8, 9 0)}
= [t - 278)aN () - [ 1008() = ) explglt - 27O}t — 27 p)s

= [n0an(e.5) - [ v (t.5)explgte)nie)ar

2

i} 9
5259 0) = p1(6.9:0) = 227 { [ i - 27N e

- [ 105(x) = O explo(t — 278)) (gle - 275) + (¢ - 278))at

= 227{ [N )~ [ ¥it.5) expla) i) + 320}t
l39(B, 93 O)[h] = lim 0~ {Is(8, g + nh: O) = la(5, 9: 0)}

——2{ [t~ 273)an() - [ 1005() = Dyexplglt - 273}

(h(t — Z7B)g(t — Z7B) + h(t — ZTB)}dt}

—-z{f h(t)dN(t,m - [ Y enlaOHnwa) + hv)ar},
lgs (8. 9: O)[h] = aﬁ ly(8,9: O[] = {138, g: O)M},
Log (8,93 O)[h, o] = limy ™ iy (3, g + 1ha; O) hn] = 1y(B, 93 O) ]}

. / I(log(X) > t) explg(t — Z7 )}t — 27 B)ha(t — 27 Bt
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—— [ Y9 explg®ImOhalt)dr

where h, hy, hy € H, g(-) and §(-) are the first and second derivatives of g(-), respec-

tively, h(-) is the first derivative of h(-). The ordinary and functional derivatives of

(B, p,g;Z) are

Us(8,p.9:Z) = (V1 5(B,p. 6 Z), ..., U15(B,p. g; Z)),
\Pp(ﬁapag; Z) - (\PLP(B7p7g; Z)? R \iIJ,p(ﬁapag; Z))Ta

V(8 p,9: Z)[h] = (V1,4(B, p, g5 Z) [N, ..., W ug(B, p, g: Z)[R]),

where

. o . . o .
U, 5(8,p,9:Z) = %‘I’j(ﬁ,p,g; Z), U, ,(8,p,9:Z) = a—p‘lfj(ﬂ,p,g; Z),

Uig(B,p,9: Z) 0] = T~ {W;(8, p g +nhi Z) = W5(8,p.g: Z)}, =100 .
When
V(B p,9:2) = 1(Z € Qj)[exp{ - /I(S <logtj — Z"p) exp{g(s)}ds} - C;/p},

we have

\i/j”g(ﬁ,p,g; 7) =1(Z € Q;)ZS(logt; — Z'B) exp{g(logt; — Z'B)},

U;,(8,p,9:2) =1(Z € Q)p2¢)" In(¢;),
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V08, p,9: 2)h) = — I(Z € Q)S(log t; — Z7B) /1(8 <logt; — Z7B)e’h(s)ds,

where S(-) = 1— F(:),j = 1,...,J. For a r-dimensional vector of functions h =
(izl, o ET)T € H" and a m-dimensional vector of functions h = (hy,. .., hy)" € H™,
denote

l4(8,9; 0)[h] =(lg(B,9; O)hal, ..., 14(8, g; O)[I,]) ",
lys(8, 9; O[] =(lys(B, 9 O) ], .. Ly (B, 9; O) ] "),
lag(B, 9 O)hs B) =(lyg (B, 95 O, 1, . Ly (B, 95 O) [he, 1)),
log(B,9; O)l, b =(lgg (B, 95 O) I, hal, - . gy (B, 9 O) [, ),

Uy(8, p,9; 2) W) =(Vy(B, p, g; Z) ], - ., Wy(B, p, g; Z)[1y]).-

S2 Proof of Theorem 1

S2.1 Lemmas

Before proving Theorem 1, we give two lemmas. For any function f(-), let Pf =
[ f()dP() and P, (f) = n* Y1, f(O;), where P is the probability measure of a

generic observation O and P, is the empirical measure of {Oy,...,0,}.

Lemma 1. For any 6, — 0, define Q, = {(B,p,9) € BXR X F : ||6 = bl <
s [0 = pol < 0n, |lg* = gillg < On with g* = g,§, and G}, where || - ||g denotes the

metric on G. For h € Ly(P), which is the space of square-integrable functions with
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respect to P, we have

up | V(B — P){i5(8..9: 0) ~ls(Bo 90: O)} = 04(1).

Sup V(B — P){ly(8. g: O)[] — ly(Bo, g0: O) M} | = 0,(1),
Sup V(P — PY{W (B, p, 9; Z) — ¥ (Bo, po, go; Z) }|| = 0p(1),
Sup IV/n(P, — PY{Va(B,p.g; Z) — Ws(Bo, po, go; Z) }| = 0p(1),
sup IVR(Bn = PY{W, (8, p,9; Z) — W, (Bo. pos go: Z) }|| = 0,(1),

sup IV/n(P,, — P){¥y (B, p, g: Z)[h] — Wy(Bo, po, go; Z)[A]}| = 0,(1).

Proof of Lemma : Note that exp(x) is a Lipschitz continuous function for z in a
bounded set, 1/x? is a Lipschitz continuous function for x in a bounded set away from
0, the functional spaces of indicator functions and bounded variation functions are
Donsker classes (van der Vaart and Wellner, 1996). We assume that the true parame-
ter of p, po, is bounded away from 0. According to the regularity conditions C3(a) and

C7, @, is uniformly bounded. By the permanence property of Donsker class, the func-

tion classes {l5(8,9;0), (B, p,9) € Qu}, {ig(B.g:0)[h], (B,p.g) € Qu,h € La(P)},

{(U(B,0,9:2), (B, p,9) € Qu}, {¥5(B. 0,9 Z), (B p: 9) € Qu}, {V,(B,p,9:2), (B, p, g) €
Qn}, and {¥,(B, p, g; Z)[h], (8. p, g) € @n, h € Ly(P)} are also Donsker. The desired

results follow from the equi-continuous property of the Donsker class.

Lemma 2. For any (3, p,9) € B x P x G satisfies |3 — fol| = Op(n~2), |p— po| =
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Op(n™'2), [lg" = G lloe = SUDse(r v 197 (2) — g5 (1)| = Op(n™"7?) with g* = g, g, and g,

and h € Ly(P), we have

1P{i5(8, 5 0) — I(Bo, 90; O) — Iss(Bo, 903 O) (B — fo)
~I59(B0, 90:O)lg — o}l = 0,(n™"/?),

1P{14(8. g O)[1] = Ly(Bo, g0; O)[h] — Lys(Bos 90; O)[R)(B — o)
~lyg(Bo, 90: O)[h, g — gol}| = o0p(n~"72),

IP{¥(B. p, 9: Z) — ¥(Bo, po, 9o; Z) — Ws(Bo, po, 905 Z)(B — Bo)

= y(B0: po, 90: 2)(p = po) = WS po, 90: O)lg = g}l = 0p(n"7%).

Proof of Lemma[9: We only prove the first equality because the proofs of the other

two equalities are similar. Applying Taylor expansion for lﬁ(ﬁ ,9;0) at (Bo, go) yields

15(8,9; 0) = I5(B0, 90; O) = L35(B3,3; O)(B — Bo) — lsy(B,3; O)lg — g0,

where (3,3) € B x G lies between (8, g) and (3o, go). Therefore, it suffices to show

that

P[{zﬁﬁ(ﬁ,g; 0) — zﬁﬂ(ﬁo,go; O)}(B — 50)} = Op(n_l/Q)a

and

P{isg(5,3: 0)lg — g0] — Iy (B0, 90: O)lg — 0]} = 0,0,
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Recall that

l1a(6.:0) =227 [ gt - 27 B)an(

- 277 /I(log(X) > t)exp{g(t — Z"B)Hg(t — Z7B) — §*(t — Z7 B) }dt.
This implies
Pligs(B,3;0) — (B, 90; O)] < L+ I + I,
where

I = P{ZZ"|3(log(X) — Z"B) — go(log(X) — Z" Bo)|},

L= P{zz7| [ {ewlot- 2B}l - 275) - explon(t — 2750)ialt ~ 27 A

3

L= P{2z7| [{ewlot— 2B}t - 275) - explonlt = 2780 gt — 270 e}
By Condition (C2)(b) and straightforward calculation, we have

L =0([18 = Boll + 1§ = gllee) = Op(n™"72).
Similarly, I, = O,(n~%/?) and I3 = O,(n~'/2). Thus,

Pl{i35(3,3;0) — I35(Bo, 90; 0)}(8 — Bo)] = 0p(n~ V).
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Similarly, we can show that

P{i3,(B,5:0)[g — go] — L34(Bo, 90: O)[g — go]} = 0,(n~/2).

This completes the proof of Lemma 2.

S2.2 Proof of Theorem 1(i)

First, we show with probability tending to one, the maximum conditional likelihood
estimators § and F exist and are unique. Because F (+|B) is a smoothed version
of F(-|3), the existence and uniqueness of the former is guaranteed by those of the
latter. For each given f3, F (+|3) assigns positive probability masses on all censored and
uncensored residual points e;(3),j = 1,...,n, and the complete-data log conditional
likelihood function given the observed data is strictly concave in p;(5),j =1,...,n.
By arguments similar to those in [Vardi (1989)), we can show that, given § and
the supporting points e;(8),7 = 1,...,n, the maximizer of the complete-data log
conditional likelihood of p;(3)’s is unique, and that the first step of our expectation-
maximization Algorithm 1 produces the unique maximizer F'(-|3) since the set of all
feasible distributions F(z|8) = Y1, pi(8)I(e;(B) < z) is convex. Here p;(3)’s satisfy
pi(8) > 0and >, p;i(8) = 1. The existence of 3 follows from the compactness of
B and the continuity of £,(3, F(-|8)). It then follows from Condition (C6) that with
probability tending to one, B is unique. This also guarantees the uniqueness of F.

Second, we show the identifiability of (fy, Fy). Suppose we have Pz r = Py, g,
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almost everywhere under Py, g, where Ps g is the probability measure under (3, F').
Consider the densities on 6 = 0, we can see that S{log(t)—Z"5} = Sp{log(t)—Z " po}
for every t, where S(-) = 1 — F(-). Thus, there exists a monotone and differentiable
function o such that T exp{—Z"5} = o{T exp{—Z" 5y} }. Differentiating both sides
with respect to T yields Z7 (5 — fy) = — log{o'(e)}. It then follows from condition
(C5) that = [y, and thus F(-) = Fo(-).

Finally, we show the consistency of (B, F) It is sufficient to show every conver-
gent subsequence of (3, F') converges to the same limit (fy, Fy) for any t € [, 7).
Since (B F ) is bounded, according to Helly’s selection theorem, for any subsequence
of ( B, F ), there exists a further convergent subsequence. We show that any convergent
subsequence converges to (o, Fp). For any subsequence {(Bnk, Fnk) ck=1,2,...},

denote its limit as (8%, F*). It suffices to show (8*, F*) = (By, Fy). Choose 3 = o,

and define

n n

F() = - 575+ D00 )BT (o) = e (B} ey (o) < 1),

j=1 i=1

where [y is the expectation under (g, Fy). If (8o, Fy) was used as the initial val-
ue in our expectation-maximization algorithm, F' (t) is simply the one-step estima-
tor of F. Applying the Glivenko-Cantelli theorem and a standard argument of
Donsker class, we can show that F'(t) converges to Fy(t) almost surely and uniformly
in [7,7,]. Under Condition (C8), we have sup,e,, -] SUPges |E(u|B) — F(ulB)| =

o(1) and sup,e(, ] SUPges |dF (u|B8) — dF'(u|B)| = o(1) almost surely. This, com-
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bined with the strong law of large numbers for empirical processes, implies that
1. by (B Fn) — o, (B, F)} converges almost surely to the negative Kullback-
Leibler distance between Pg- g+ and Pg, ,. On the other hand, since /,,, is maximized
at (B, Fp,), we have €, (Bp,, Fn) — lny (B, F) > 0. Hence Pge p- = Ps, g, almost
surely. Thus by model identifiability, we have 5* = 3y, F* = Fy. The continuity and
monotonicity of Fy ensures the uniform convergence of F in [, 7,]. This completes

the proof of Theorem 1(i).

S2.3 Proof of Theorem 1(ii)

Let §(t) = log[{dF(t|8)/dt} /{1 — F(t|3)}]. We prove the asymptotic normality of
n'2(B — By, §— go) by applying the Z-theorem for the infinite-dimensional estimating
equations (Theorem 3.3.1 in [van der Vaart and Wellner (1996)). We would verify
the three main conditions: the Fréchet differentiability of the score functions, weak
convergence of estimating equations, and the stochastic approximation of estimating
equations.

The ordinary derivative of n=1¢, (3, g) with respect to /3 is Pn{lﬁ</8, g;0)}, where

i2(5.9:0) = ~2{ [ g0ane.) - [ vie.5)explgoaiar}.

To obtain the score equation for g, we consider a submodel defined by g,(u) =
g(u) + nhy(u), where hy(-) = I(- < t). Differentiating n='4,(3, g,) with respect

to n and evaluating the partial derivative at 7 = 0 give the partial derivative of
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n=1,(8, g,) with respect to g along the direction hy, i.e. P,{l,(8,g; O)[h]}, where

i0,g:O)iu) = [ aN(u.8) = [ ¥(u. ) explglu)du

—00 —00

Define Un(B, 9)(t) = (UL (8, 9), Uan(B,9)(1)) " with Usn(8,9) = Pa{ls(8,9; 0)} and
Uan(B, 9)(t) = Pufly (8. g; O)[he]}, and similarly define U (8, 9)(t) = (U} (8, 9), Ua(8, 9)(t))"
with Uy(8,9) = P{ls(8,9;0)} and Uy(B, g)(t) = P{i,(8,9;0)[h;]}. Both the score
function U,, and its expectation U are defined on B x G, where B is assumed to be
compact in R?, and G consists of functions of bounded variations.

We first show that U is Frechét differentiable at (/3y, go) and its Frechét deriva-
tive is continuously invertible. Consider submodels (8,,9,) = (8o + 15, g0 + n9),
the Gateaux derivative of U at (5, go) can be obtained by taking the derivative of
U(By, gy, t) with respect to n and evaluating at n = 0. Then, the Gateaux derivative
of U at (B, go) is given by

. o11(B) + o012
Eam=| MO

o91(B)(t) + 722(9) (t)

where

11 () %Ulwmgo)

=3 o= Pliss(Bo, 90:0)}8
—E[- 2z / Y, o) explao(0)} 2 (1)) B = o,

T

7a(a) = 5-Ui(6n )|, = Pn(60 0O,

n=
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~ B2 [ Y ela®ln0o),

T

on(B)(t) = - Va(Brog0t)| =

0
-2
_%wo,gn, _ / {1~ F(u)} exp{o(u)}g(u)du].

= [52#( +ZT/f ) exp{ golu )}du]

022(9)(t)

with F(-) and f(-) being the distribution and density functions, respectively, of
log(X) — Z7Bp. In deriving oq1(8) and o12(g), we use the fact E{dM(t,By)} =
E{dN(t, 5y) — Y (t, 5o) exp{go(t)}dt} = 0. In deriving o91(8) and o22(g), we have

used the fact that

Ux(5,9)(0) = E[5F(t + 27(8 — ) ~ [ (1= Plu+ 27(3 - Gu)) bexp{g(u)} -

The Gateaux derivative of U at (8, g) is continuous. By similar arguments to
those in the proof of Lemma 15.8 in [Kosorok (2008), we can show that U is Frechét
differentiable, and its derivative at (S, go) is UO. Note that the operator UO is a
linear continuous operator defined on the product space of RP and the Banach space
Lo[m, 7], where Lsy|m, T, is the space of functions on [7,7,] with finite L, norm.
By Banach’s continuous inverse theorem (Zeidler, [1995)), if the inverse operator Uy
exists, then it must be continuous. Therefore, to prove the continuous invertibility

of Uy, it suffices to show that the inverse operator of Uy exists. Actually, if 017 and
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D = g9y — agloﬂlalg are invertible, then the inverse of Uy is

~1 -1 -1 ~1 -1 -1
- o1; + 0170129 091077 —01, 0129
UO -

—(I)_lO'QlUﬁl q)—l

Under condition (C6), the matrix Jy in o7y is invertible, so is o1;. The operator &

has the following form:

B(9)0) = [ Quglwdu+ [ Rt wjgla)du,
where Q(u) = E[—{1 — F(u)} exp{go(u)}] and

Rit,u) =E[5277()+ 27 [ Flu) exp{on(u)}du] 5 EIZY s o) exp{gn(u) ol

Following |Qin et al.| (2011) and Huang et al.| (2015), it can be shown that ® has an

o (o)) = [ S [7( [ TEa) gt
where
H(u,v) = —% — /TTu H(u, S)RQ(i;;})ds

with R(t,u) = OR(t,u)/0t.
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Second, we show the weak convergence of n'/2U,, (B, go)(t),t € [1, 7). Write

Zﬁ(ﬂoygo; O)
Un(Bo, 90)(t) = Un(Bo; 90)(t) — U(Bo, 90)(t) = (Pn — P) ;

jg(ﬁo, go; O) [ilt])

which, up to a constant 1/n, is the sum of zero-mean independently and identically
distributed variables for each ¢, the multivariate central limit theorem implies that
n'2U,(Bo, go)(t) converges in finite-dimensional distribution to a zero-mean Gaussian
process for t € |1, 7,]. Since ig(ﬁg, go; O) does not depend on t, ig(ﬁg, 9o; O)[ﬁt] is the
difference of two increasing functions fjoo dN(u,3) and ffoo Y (u, B) exp{g(u)}du,
where the counting process N (u, #) and the integrand Y (u, 5) exp{g(u)} are nonneg-
ative and bounded above, it is easy to show that they are asymptotic equicontinuous
and are thus manageable (Pollard, 1990). Therefore, n'/2{U,, (B, 90)(:)—=U(Bo, go)(-)}
is tight and converges weakly to a Gaussian process W.

Finally, we establish the stochastic approximation ||\/n{U,(5,§)(-)=U(8, §)(-)} —
V1{Un(Bo, 90) () =U(Bo, 90)(+) }|| = 0,(1). The function is defined on Bx G, where B is
a compact set that contains 5y and G is a set of functions with bounded variation. Let
G be the closed linear space generated by G, endowed with the total variation norm
| -1|o. Define ||(8, 9)|lsxg = |5+ ||g]|, where || ]| is the Euclidean norm of 5. Write
9(B,9,t;,0) = (ig(ﬂ,g;O)T,fg(ﬂ,g; O)[ﬁt])) We show that the class of functions
{0(8,9,40)=0(Bo, 90,4, 0) : t € [, 7], 8 € B,g € G, [|(8,9) — (Bo, go)llBxg <t} is a

Donsker class, where ¢ is a fixed small number. We claim that B and G are Donsker
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classes because B is a compact subset of R? and G consists of functions with bounded
variation. The class of functions {¢#(53, g,t;O) — ¥(Bo, g0, t; O) : (B,9) € Bx G,t €
(71, 7.]} is a Donsker class, as the summation, production and Lipschitz transforma-
tions of Donsker classes are also Donsker. Furthermore, as ||(5, g9) — (8o, 90)|l58xg — 0,
we have sup;c,, .1 EIl9(5,9,t;0) — 9o, go, t; O)[I> — 0. By result (i) and con-
dition (C8), [1(5,3) — (Bo,g0)llsxg — 0. It follows from Lemma 3.3.5 of jvan der
Vaart and Wellner| (1996) that ||v/n{U.(3,3,t) — U(3,3,t)} — /n{Un(Bo, go. t) —
U(Bo, 90, t) I = 0p(1). According to Theorem 3.3.1 of jvan der Vaart and Wellner
(1996), n'/2{(5,3) — (Bo, go)} converges weakly to the mean zero Gaussian process
—U; Y(W).

Let v be the transformation from (3, g) to (5, F') with (8o, 90) = (Bo, Fo). 1t is
easy to check that the mapping is Hadamard differentiable. Following the functional
delta method, we can show that n'/2{(8, F) — (B, Fy)} converges weakly to a tight
mean zero Gaussian process ¥4 {—U; (W)}, where ¢}, is the Hadamard derivative of

¥ at (So, go). This completes the proof of Theorem 1(ii).

S2.4 Proof of Theorem 1(iii)

Without incorporating the auxiliary information, the estimator (3, §) satisfies
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for any h € Ly(P). It follows from Lemmas 1 and 2 and the consistency of (f, )

that

P {{3(Bo: 90 0) } =P{Is(B0, 90: 0)} (B = Bo) + P{iy (B0, 90: O)[G — o]} + 0(n~"/2),
~P.{i,(Bo, 90; O) 1]} =P{lys(Bo, 903 O) B3]} (B — Bo) + P{lse(Bos go; O) 13,5 — g0] }
+ 0,(n"1?)
=P{ly5(B0. 90: O) 1]} (B = Bo) + P{lsy(Bo. 90 0)[3 — 9]}

+ op(n_m),

where we have used equality (S3.6). The difference between the above two equations

yields

n2(8 = Bo) = 7 02 P{e(Bo, 90; O) } + 0,(1),
where

1(Bos 90; O) = I5(Bo, 90; O) — I4(Bo, go; O) [13], (S2.1)
because

2 = P{u(Bo, 90; 0)**} = P{ — I55(Bos go; O) + z.95(50790; O)[R3]},

which will be proved in the proof of Theorem 2(ii). Therefore, n'/2(3 — f3,) converges

in distribution to a normal distribution with mean 0 and variance %7!.
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S3  Asymptotic results of f,,

S3.1 Asymptotic properties of Bau

Theorem [S1| presents the consistency and asymptotic normality of Bau.

Theorem S1. Suppose that conditions (C1)-(C8) and (D1)-(D2) are satisfied. As
n — 00, (i) Bau is consistent to By, and (i) n'/2(Ba—Bo) converges to a normal distri-
bution with mean zero and covariance {S+BQ'BT—BQ'A(ATQ1A)ATQ' BT},
provided the matrices ¥ and ATQ A are nonsingular. (ii1) Bau is asymptotically

more efficient than 3.

S3.2 Proof of Theorem S1(i)

Our proof follows from the proof of Theorem 1 in|Qin and Lawless (1994). The differ-
ence is that Qin and Lawless (1994) handled finite-dimensional parameters whereas

we deal with the finite-dimensional parameters and infinite-dimensional nuisance

function simultaneously. Let gau(t) = log[{dFa(t)/dt}/{1 — Fy.(t)}] and define

i=1 i=1

where we write the Lagrangian multiplier v as a function of (3, p, ¢) to highlight its

dependence on the latter. Note that

(Baus Paus Gau) = argming , max, L(B, p, 9).
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Keep in mind that L(f, p, g) is continuous with respect to (5, p, g).

Let Sn = {(ﬁapa g) : H(ﬁ?p7 g) - (507p0790)HB><R+><g = n_1/3}' For (/87107 g) S Sna

as E{||V(8, p, 9; Z;)|I>} < oo, similar to the proof of Qin and Lawless| (1994)), we can

show that

> log {1+ v(8,p,9)" W (B,p,9; Z:)} = ¢-n'?
=1

for some positive constant ¢, and

Zlog {1 +v(Bo, po, 90) "W (Bo, po, go; Zz)} = O(loglog(n)).

Meanwhile

—Zl(ﬁ,g;Oi) = —Zlﬂo,go, Zlg (Bo, 905 O:) (B — Bo)
i=1

—Zl (Bo> 905 Oi)[g — go] + Op(n'/?)

v

- Z 1(Bo, go; i) + O, (n'73).
i=1
In summary, we have
L(ﬁ, P, g) Z L(BOv Lo, 90) + Op(n1/3).

It follows that as m is large, the minimizer (Bau, Paus Gau) should lie within the ball

S,,. This implies the consistency of (Bau, Paus Gau)-
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S3.3 Proof of Theorem S1(ii)

Define L, (8, p,v,9) = >0 UB,9;0:) — >0 log{l + v"V(B,p,g; Z;)}. For any

h € Ly(P), the estimator (Bau, Vau, Paus Jau) Satisfies

Vau\Ijﬁ(ﬁaua Paus Jaus £
1 + V;—U\Ij<5au7 palh gau’

-
P { Iy (B G O) 1] — 0o P i 2 }
) -
)

P { (B G0 O)

1 + ﬁ;—ulp(ﬁauapauvgaua
P { U (Bau, Paus Gau; Z
1+ ﬁT (B, Pans gau,

]P)n{ (ﬁauapauygauu
1+ Vau‘ll<ﬁau7 Paus Gaus £

By Lemmas 1 and 2 and the consistency of (B, faus Jan), We can show that iy, =
0p(1). Further, using first-order Taylor series approximations, we can rewrite the

above equations as

~Po{is(Bo, g0; O) } =P{is3(Bo, 903 O)(Bau — o) + Lsg(Bo; 903 O)[Gau — 90l }
— P{V5(Bo, po, 90; O) } au + 0, (n"/?), (S3.2)
P, {y(Bo- g0: O) 1]} =P{lga(Bo, 90: O)[AI} (Baw = Bo) + P{lsg (5o, go: O) B, G — g0l}
— P{T,(Bo, pos o; Z)[A]} Dau + 0p(n3), (S3.3)
—P{(Bo, po. 90: Z)} =P{¥5(Bo, po. 90; Z) } ' (Bau — Bo)
+ P{W4(Bo, po, 90; Z)[Gan — 901} — P{¥(Bo. po. 903 Z)** } D

+ P{\PP<507 Po, go; Z)}(Iaau - :00) + Op(n71/2>7 (834)
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0 :P{\Pp(ﬁoa Po; go; Z)}Tﬁau + Op(n_l/Q)‘ (835)

To derive an asymptotic representation of (Bau, Pau), we need to find the least fa-
vorable directions h} and hj, which can be used to profile out the infinite-dimensional

parameter g. Let hi = (h],...,h],)" be the direction that satisfies

P{1s4(Bo, 903 O)[h] = lgg(Bo, 903 O)[h3, h] } = 0 (S3.6)

for all h € H, where hj; € H,j=1,...,p. Let hy = (h3;,...,h3;)" be the direction

that satisfies

P{[gg(ﬁoago;o)[h;h]} = P{\i/g(ﬁﬂ’pOagO;Z)[h]} (S3.7)

for all h € H, where h3; € H,j=1,...,J. By direct calculation,

P{1s4(Bo, 903 O)h] = lyg(Bo, 90; O)[7, 1] }
—P{ = 2 [N i) + 2 [ ¥t 50 esplon®Hh(OR(0) + hie)
+ [ ¥t 0) exp{on(t) i Oh(e)
—P{ [ 2 (t: ) xplon(®} (Ot + [ V(0 6u) explan(t) (e it
—P{_ [ Y(t: 8 explaa}(0)(Zan(t) + hi(0)}at},
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where the second equality holds because

P{ly(Bo. 903 O)[]} = P{/h(t)dN(t;ﬁo) - /Y(t;ﬁo) exp{go(t)}h(t)dt} = 0.

To guarantee ([S3.6)), we choose h} to be

E{ZI(log(X)—Z"5, > 1)}

hi(t, 50) = _go(t>E{Z|Y(t§ 50)} = _QO(t) ]E{I(log(X) _ ZTﬁo > t)} ’

When the aggregate information is the subgroup survival probabilities, one ob-

vious choice of h} is hi(t, B) = (h3, (¢, 8), ..., h3,;(t,5))" with

E[I(Z € Q)I(t <logt; — Z"Bo){1 — F(logt; — Z7 ) }]

hs;(t, Bo) = E(Y (0. 0)] =1,
It follows from (S3.6)) and (S3.7)) that

P{34(50, 90 O)[Gan — o] — log(Bos 903 O) [, Gaw — 0]} = 0, (53.8)

P{l46(Bo, 90: O) 5, Gaw — 90} = P{¥4(Bo, po, 90: Z)[Gau — 0] }- (S3.9)

And it follows from ([S3.3|) that

—Pn{ig(ﬁo,gos O)[hil} :P{Zgﬁ(ﬁo,go; O)[hﬂ}(ﬁau — Bo) + P{Zgg(ﬁo,go; O)[h1; Gan — 90]}
— P{,(Bo, po, 903 Z) (1]} + 0p(n711?), ($3.10)

—Pn{ig(507go; O)[hé]} :P{igﬁ(ﬁoago; O)[h;]}(Bau - 50) + P{Zgg(ﬁmgo; O)[h;gau - 90]}
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— P{Wy(Bo, pos Go; Z) W3]} aw + 0p(n ). (S3.11)

Subtracting (S3.2)) from (S3.10) and using (S3.8]), we have

P, {t(Bo, 90; 0)} =P{ — 155(Bos 9o; )"‘Zgﬁ(ﬁo,go;O)[hﬂ}(ﬁAau—50)

+ P{W5(Bo, po, 90: Z) = {F(Bo. po, 9o; Z)1]} T} Pun + 0p(n™H2),

(S3.12)

where (5, go; O) is defined in (S2.1). Subtracting (53.4) from (S3.11)) and using
(1S3.9), we have

Pn{X(ﬁO:ﬂOago; O)} :P{Zgﬁ(ﬂo,go; O)Wﬁ] - {‘1’5(50,,00:90; Z)}T}(Bau - 50)
+ P{‘I’wo, po, go; Z)** — {q]g(ﬁ(pragO; Z)[hZ]}T}’)au

- P{\PP<607 Po, 90; Z)}(ﬁau - pO) + Op(n_1/2>’ (8313)

where x(80, po, 90; O) = ¥(Bo, po, 90; Z) — l4(Bo, go; O)[h3].

We now show that

No= P{l’(507907 ®2} P{ lﬁﬁ Bo, o; )"‘i.gﬁ(ﬁo,go;O)[hT]}a (53.14)
Q = P{X(ﬁmpo,go;O)@} = P{q’(ﬁo,Po,go;Z)@Q - {\Pg(ﬁo,po,go;Z)[hé]}TG33~15>

-B' = P{[gg(ﬂo,go;O)[h;] - {‘Pﬁ(ﬂoapmgo;O)}T}- (S3.16)
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The property of the score function implies that

P{z.ﬁﬁ(ﬁt),go;o)} = —P{iﬁ(ﬁo7go;O)ig(ﬁoygo;O)},
P{[ﬁg(ﬁo,gosO)[hﬂ} = _P{iﬂ(ﬁo,gosO)i;(ﬁo,go;O)[hﬂ}a
P{igﬂ(ﬁmgo;O)[hﬂ} = —P{ig<50,90;O)[hﬂjg(ﬁo,go;o)h

P{lo(Bo, 90; O)[h3, b1} = —P{ly(Bo, 903 O)[3]ig (Bo, go; O) 1]}
This, together with the fact
P{i.ﬁg(ﬁoago; O)[hﬂ - Z.gg(ﬁo,go; O)[h? hT]} =0,

implies that

Y = P{Zﬁ(ﬁo,go;o) —jg(ﬂoago;O)[hT]}®2
= P{~ls5(B0, 90; O) + Lyp(Bo, go; O) 5] + Ig(Bo, go; O) 3] — lyg(Bo, go; O)[h7, hi]}

= P{—iﬁﬁ(ﬁo,go;o) +z;1,3(50,90;0)[hﬂ}-

The fact that

P{‘I’(ﬁojpoago;2)53(5079030)[@]} = P{‘Ij(ﬁOMO()agO; Z)E{i;(ﬁo,go;o)[h§]|z}} =0
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implies that

Q IP{‘I’(ﬁo,po,go; Z) - 59(50790; O)[h;]}m
:P{\D(ﬁo, Lo 4go; Z)®2 + (l'g(ﬁlh 9o0; O)[hz])@}
:P{\I/(ﬁo, Lo, 90; Z)®2 - z;yg(BO,gO; O)[h; h;]}

:P{‘I’(ﬁoapoago; Z)®2 - {‘1’9(507,00790; Z)[hz]}T}'

Since

P{z.gﬁ(ﬁo,go;O)[h;]} = P{Zﬁg(ﬁo,go; O)WQF]}T = P{Z.gg(ﬁmgo; O)[h; hZJ}T

:P{Z;zg(ﬁoago;O)[hzahﬂ} = P{‘i’g(ﬂoapmgo;o)[hﬂ};

we have

P{lys(Bo, 90; O)[h3] — {¥5(Bo, po, g0; 0)} '} = —B".

Recall that A = —P{lifp(ﬁo,po,go;Z)}. Therefore, it follows from (S3.12)),

(S3.13)), and (S3.5)) that

S B 0) (0B o) n'?P,{1(Bo, g0; O)}
-BT Q@ A n' 20, = | n'2P.{x(Bo, po, 90; 0)} | + o(1),

0 —AT 0 12 (paw — po) 0
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or equivalently,

N\ ([ 22(Ban — Bo) n'?P{u(Bo, 90; O)}
> B
o nt20,, = | 2P, {x(Bo po, 90; O)} | + p(1), (83.17)
_BT
nl/Z(ﬁau - pU) 0
where
) _ Q@ A
B=(B,0), Q=
-AT 0

Under the condition (D2)(iii) and the fact Q = P{¥ (B, po, go; Z)+(l,(Bo, go; O)[h3]) 2},

the matrix Q is positive definite. Suppose that ¥ and ATQ A are positive definite.

It follows from ([S3.17)) that

L[ 2P {u(Bo, 90; O)}

) ¥ B
nl/Q(Bau - /80) = (Ipo Op><(J+1)) B B nl/Z]P)n{)dﬂo, L0, 90, O)} + Op(1)7
— BT Q
0
where
-1
¥ B r ~-T'BQ™!
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with ' = (X + BQ'BT)~L. Straightforward algebra yields

-1

Q_l Q A Q—l _ Q—lA(ATQ—lA)—lATQ—l —Q_lA(ATQ_lA)_l
AT 0 (AR A ATQ (ArQ Ay
and
_ 0 Al _ _
BQ™! {Q} B =0,
—AT 0

S 00
r
(F —FBQ—l) 0 Q 0
—Q'BT
0 0 0
20 r
=<F —FBQ—l)
0 Q —Q7'B'T

=I'ST+TBQ 'B'T

=I"

S3.4 Proof of Theorem S1(iii)

Theorem 1 shows that the asymptotic variance of the maximum conditional likelihood

estimator § is ©~!. The asymptotic variance of f,, is T’ = (X + BQ'BT)~'. Since

r'-x — BO'B"
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-1

QR A BT
= <B7 O)

-AT 0 0
= B{Q' - QAATQ ' A)ATQT B,

and BQ~'BT7 is a nonnegative definition matrix, we conclude that ™' — ¥ is non-
negative definite, which implies that Bau is asymptotically more efficient than the

maximum conditional likelihood estimator 3.

S4 The relationship between (Bau, fpan) and (5, p)

We shall derive first-order linear approximations of (3,7) and (Bau, fau), and then
compare the approximations.

For (83, p,§), it satisfies

Pn{z'g(é,g; O)[h]} —0, forany he Ly(P),

It follows from Lemma [ that

VB, = P){i5(8,5:0) = 1s(5, 0:0) } = 0,(1),
VB = P){iy(3,3:0) (0] = Iy(Bo, 90; O] } = 0,(1),
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Vn(P, — P){llXJ\I'(B 0,9:Z) — LixsY(Bo, po, 9o; Z)} = 0,(1).

By Lemma |2 and the consistency of (B , P, J), we have

“Pu{is(50.90:0)} = P{is(8.3:0) = I5(B0, 90 0) } + 0y (n~72)

= P{isa(60, 90:0) } (5 — o) + P{isg(Fo, 50 0)[3 — o] }

+o,(n71?), (S4.18)
P {180, 0,90 2) ) = P{10s¥(B. 5.5 2) = Ly ¥(Bos pos 90: Z) | + 0p(n ™)

= P{Tues{¥a5o, p0, 903 20} }(B — )
+P{ 11, (o, pos 90 Z) } (5 po)
+P{ 110y (8o, 0, 905 2)[3 — g0 } + 0, (n"1/%), (84.19)

~Po{ iy (50, 90:ONM} = PLig(B,5 O) () = iy (Bo, 503 O)[RI} + 0yl(n 1),
= P{iys(B0, 90 O) (B } (5 — o)

+P {11 (B, 90 Ol 5 — 0] | +0p(n™%), (34:20)

for any h € Ly(P). The definitions of h} and hj imply that

Pl 0. 507 0) 1.3 — a0l } = Py (. 0: 0)1a — ] .
P{[gg(ﬂo,go; O)[h3, g — 90]} = P{‘Pg(ﬁmpo,go; Z)|g - 90]}-
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Then, replacing h with h] in (S4.20)) and using (54.18]), we have

—Bu{ (B0, 90: 0) } = P{I35(B0, 901 0) = Iya(Bos 905 OIi] (B = Bo) + 0,(n™"7%).

(S4.21)

Replacing h by h3 in (S4.20)) and using (S4.19), we have

—Pn{hwx(ﬂo,ﬂo,go; O)} :P{11xJ\i’g(ﬁo’Po790; Z) = Lixslgs(Bo, 90 O)[@]}(B — Bo)

+ P{lli\ijp(Bm P05 90; Z)}(ﬁ — po) + Op(n_l/Q)-

(S4.22)
We have shown in the proof of Theorem S1(ii) that
5 = P{u(Bo, 90; 0)%*} = P{ = I35(Bo, 903 O) + Lys(Bo, 903 O) 3]}
Thus, combining (S4.21)) with m S54.22)) yields
)Y Opx1 B - B +(Bo, 90; O)
pX _ ]P)n + op(n_1/2).
—lgBT 1y A)] \p—ro LixsX (8o, po, 90; O)
This implies that
B -1 Pr{¢(Bo, 90; O)}
5 - 50 b Op><1 Ipxp Opr O10><1
= Pn{X(/BOap07907O>} +0p(n
P — po —1ixsB" LixsA Oixp  lixs 0

0

71/2)
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-1 X B 0
Z Ole Ipxp OpXJ OpX].
= -BT Q A
_11><JBT 11><JA 01><p 11><J 0
0 A" 0
-1
)Y B 0 P.{¢(B0, 90; O)}
-BT Q@ A P, {x(Bos o, 90 0)} | +n(n™"?)
0 —AT 0 0
Ipsp Y 'B Opx1

O1><p (11><JA)_111><J<BTZ_IB+Q) 1

-1

by B 0 P {t(Bo; 90; O) }
-BT QA P {X(Bo, po, 90; O)} | +ow(n™"%), (84.23)
0 —AT 0 0

where we have used

-1 Y B 0
b 0p><1 Ip><p OpXJ 0p><1
BT Q A
_11><JBT 11><JA 01><p 11><J 0
0 —AT 0
1
» 0pr ) B 0
—lixgB"T 11 A —1ixsBT 11xgQ 1A
w1l Opt » B 0
(11xgA) My BTE ! (11xsA)7! —LixsBT 11,,Q 1ixjA
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I S'B Opx1

pXp

(11><JA)_111><J(BT2_1B + Q) 1

lep

For (Bau; Paus Gau), We have shown in the proof of Theorem S1(ii) that

)Y B 0 Baw — Bo P {¢(Bo, 90; O)}
-B" Q A Vau = | Pu{x(Bo; 0, 90;O)} | + op(n1"%),
0 _AT 0 ﬁau — 0o 0

which implies that

~ Bau - /60
Bau - /80 [pxp 0p><J 0p><1
- Vau
ﬁau — Po O1><p 01><J 1
ﬁau — Po
-1

by B 0 Pn{b(ﬁo,go; O)}

]p><p 0p><J 0p><1 —1/2
= -B" Q A P,.{x(Bo, po, 90; 0)} | +op(n™%).

01><p 01><J 1

0 —-AT 0 0

(S4.24)

By comparing the approximations in (S4.23)) and (S4.24]), we have

/éau B 0p><p _EilB 0p><1

Pau p O1xp  —(l1xsA) 14y (BTES'B+ Q) 0
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-1

Y B 0 P {¢(Bo, go; O) }
X|-B" Q@ A | Pudx(Bos pos 90; O) } +op(n”'1?). (84.25)
0 —AT 0 0

S5 Proof of Theorem 2

S5.1 Proof of Theorem 2 (i)

Recall that p is the solution to > Z}I=1 U, (B, p.§: Z:) = 0, where

Vi(B,p.9:2) = 1(Z € Q) [exp{ -~ /I(s <logt; — Z78) exp{g(s )}ds} Up}

For fixed 8 and g, ¥;(5, p, g; Z) is a continuous and monotone function of p € (0, 00),

therefore, the solution to

n

J
Z\D]ﬁpmq’ _07

i=1 j=1

namely p, is unique and converges to pg, which is the solution of z;;l E{V; (B,p,G: 2)} =
0.

Recall that the one-step estimator is defined as

Bos B Op><p _2_13 0p><1

Pos p O1xp _(11><JA)7111><J(BT2713+Q) 0
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XA} B 0 n1 Z:'L:l L(B? ga Oz)
x | _B7 Q A n-1 2?21 X(@ 5,3:0:) | - (S5.26)
0 —A" 0 0

It follows from the strong law of large numbers that 3, B, Q, and A converge to
Y, B, Q, and A, respectively, and n=' 327 (5, ; 0;) and n=' S (8, p, §; O;) con-

verge to zeros. Therefore, the one-step estimator (AOTS, Pos)’ has the same limit as

A

(B7,5)T. As the limit of the latter is (5], po)”, the one-step estimator (3L, pos)™ also

0s?

T

converges to (3, po)" almost surely.

S5.2 Proof of Theorem 2 (ii)

By comparing the equalities in (S4.28) and (S5.26)), we arrive at (81, pos)” = (B, pan) +

0,(n~'/?) under the conditions in Theorem . This implies that B, has the same
limiting distribution as Bau. Hence, nt/ 2(5’05 — Bo) converges to a normal distribution
with mean zero and covariance {¥ + BQ !BT — BQ 'A(ATQ1A)tATQ BT},
and BOS is asymptotically more efficient than the maximum conditional likelihood

estimator B .

S5.3 Proof of Theorem 2 (iii)

Since the limiting distributions of BOS and Bau are the same, the proof of Theorem
2 (iii) follows from the proof of Theorem S1 (iii). More Specifically, the asymptotic

variance of fus is T = (X + BQ'B7)~!, where £! is the asymptotic variance of 3.
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Since

r'-x — BO'B"

—1
QO A BT
= (B, 0)
AT 0 0

= B{Q' - QAATQ'A)ATQT) B,

and BQ'B7 is a nonnegative definition matrix, we conclude that "' — ¥ is non-

negative definite, which implies that Bos is asymptotically more efficient than §.

S6 Additional simulation studies

S6.1 Simulation results under the homogeneous scenario

In Section 4 of the main paper, we consider two simulation settings: a heterogeneous
scenario (pg = 0.9 and unknown) and a homogeneous scenario (py = 1 and known).
We have reported the simulation results for the heterogeneous scenario in Table 1
of the main paper. Those for the homogeneous scenario are presented in Table [S1]

Our general findings from Table [S1| are the same as those from Table 1 of the main

paper.



S6. ADDITIONAL SIMULATION STUDIES

S6.2 Comparison of our estimator without auxiliary information and ex-

isting methods

We conducted simulations to compare our proposed estimator (Proposed for short) in
the absence of auxiliary aggregate information with Zeng and Lin| (2007)’s estimator
(ZL) and |Lin and Chen| (2013))’s estimator (LC) under the simulation configurations
(Cases I-1V) in the main paper. Our method involves a bandwidth o = csn™'/3,
where ¢ > 0 and s is the sample standard deviation of log(X)—Z"( (with § replaced
by an initial parameter value) among all subjects.

To investigate the sensitivity of the tuning parameter o, we allow the constant ¢
in o to vary from 0.1 to 3.5 with step length 0.2. Based on 1000 simulated samples of
size n = 100, we calculate the empirical biases, standard deviations, and computation
time of the three estimators (Proposed, ZL, LC) when data were generated from Cases
[-1V with different ¢. The corresponding simulation results are displayed in Figures
respectively. In each figure, the plots in the upper panel display empirical
biases and standard deviations of the three estimators (Proposed, ZL, LC) for g1, fs,
and 3 for different ¢ values, and the plot in the lower panel displays the computation
times of the three methods for different c.

From Figures [SIHSH, we draw the following two conclusions. First, in terms
of computational cost, the proposed estimator is slightly inferior to and comparable

with LC, and both of them are much better than ZL. Second, the proposed estimator

is insensitive to the tuning parameter ¢ or o, and it has smallest standard deviations
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among the three estimators under comparison and negligible biases. Therefore, the
proposed estimator is computationally efficient, insensitive to tuning parameters and

shows advantages in estimation accuracy.

1 2 3
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Figure S1: Simulation results when data were generated from Case I, where the error term follows
a norm distribution. The three plots (from left to right) in the upper panel display empirical biases
and standard deviations of the estimators for 81, 82, and (3, respectively, when c¢ varies. The lower
panel displays computation times of the three methods.
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Figure S2: Simulation results when data were generated from Case II, where the error term follows
a generalized extreme value distribution. The three plots (from left to right) in the upper panel
display empirical biases and standard deviations of the estimators for 51, 82, and (3, respectively,
when c¢ varies. The lower panel displays computation times of the three methods.
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Figure S3: Empirical results when data were generated from Case III, where the error term follows
a Weibull distribution. The three plots (from left to right) in the upper panel display empirical
biases and standard deviations of the estimators for 51, B2, and (3, respectively, when ¢ varies. The
lower panel displays computation times of the three methods.
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Figure S4: Simulation results when data were generated from Case IV, where the error term follows
a log-normal distribution. The three plots (from left to right) in the upper panel display empirical
biases and standard deviations of the estimators for 51, B2, and (3, respectively, when ¢ varies. The
lower panel displays computation times of the three methods.
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Table S1: Simulation results under the homogeneous scenario

B B2 B3
Case Est Bias SD SE CP Bias SD SE CP Bias SD SE CP
I Bos -5 60 59 934 8 105 99 91.7 -3 87 82 926
B -3 63 63 938 5 128 120 925 30092 92 941
,@L -1 60 53 91.1 -1 120 110 925 -4 87 75  89.7
Ben -11 60 48 88.8 1 98 83 89.2 14 91 59 1794
Bao -10 63 51 894 9 121 105 89.8 18 99 67 81.2
I1 Bos -5 65 61 922 8 109 104 925 6 8 85 93.6
B -4 67 66 91.9 5 130 129 93.2 6 92 96 94.6
B -1 86 74 90.2 -7 175 158 921 3 122 106 904
Ba -7 65 53 89.0 -12 105 90 89.3 5 8 68 857
Bao -1 Tl 56 89.5 2 130 115 91.6 16 102 77 875
111 BOS -4 48 47 91.9 7 90 86 91.7 0 69 69 93.9
8 -3 48 49 922 79 95 922 1 71 74 94.5
B -3 74 60 884 -7 148 129 90.7 2 102 87 89.2
Ba -7 61 43 88.2 -7 107 72 80.8 -2 90 55 820
BGO -6 60 45 88.3 3 104 91 924 12 85 61 86.6
v Bos -4 45 45 915 7 8 95 949 -1 75 76 934
B -3 45 47 922 8 90 102 94.6 3 T4 78 941
B 0 9 79 933 -1 178 168 94.8 -1 133 118 923
BG1 -7 62 43 86.4 -3 125 74 80.6 -6 109 63 81.5
BGO -9 66 45 88.3 6 109 92  92.0 15 93 66 86.7
A% Bos -4 39 43 96.6 21 88 75 96.5 9 47 61 98.0
B -3 39 44 96.7 6 95 95 974 4 47 67 978
BL 3 117 126 96.9 -10 231 243  98.0 1 161 172 964
Bar 12 117 44  89.6 29 136 67 86.7 3 161 57 83.7
Bco -22 153 50 915 1 158 94 939 39 223 71 881

Est, estimator; BOS, the proposed one-step estimator incorporating auxiliary information; 5, the
maximum conditional likelihood estimator without auxiliary information; BL, the weighted log-
rank estimator with unit weight: BGl, the generalized method of moments estimator incorporating
the auxiliary information (Sheng et al.l 2020)); Bao, the generalized method of moments estimator
without the auxiliary information (Sheng et al., 2020); Bias, empirical bias (x1000); SD, empir-
ical standard deviation (x1000); SE, estimated standard error (x1000); CP, empirical coverage
probability.
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Figure S5: Simulation results when data were generated from Case V, where the error term follows
a Chi-squared distribution. The three plots (from left to right) in the upper panel display empirical
biases and standard deviations of the estimators for 31, 2, and B3, respectively, when ¢ varies. The
lower panel displays computation times of the three methods.

S6.3 Bias and variance trade-off of BOS

To study the bias and variance trade-off of Bos in the presence/absence of population
heterogeneity, we focus on Case I and allow p varying from 0.1 to 3.5 with step length
0.1. The empirical biases (Bias) and standard deviations (SD) of Bos,homo and BAOS?hete
for different values of p are displayed in Figure [S6l We see that when p is equal

to or near 1, Bos,homo and Bos’hete have nearly the same biases and SDs. As p goes
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away from 1, Bos,hete has an almost unchanged bias, however the bias of Bos,homo gets
larger. In terms of SD, in the estimation of By and fs, Bos’hete outperforms Bos’homo
when p < 1, and Bos7h0m0 outperforms BOS’hete when p > 1. For the estimation of f,
Bosmete outperforms Bos,homo when p > 1, and they are comparable when p < 1. Thus
the two estimators Bos,hete and Bos,homo have comparable estimation performance.
When p # 1, the heterogeneous model is correct, BOS,hete should be asymptotically
unbiased, and BOS,homo should be asymptotically biased. However, Bos’homo may have
less fluctuation because the homogeneous model involves one less unknown parameter

(p) than the heterogeneous model.

B1 B2 Bs

Bias Bias Bias

0.000
N 0.00 /’"“N M
-0.0025-

-0.003;

-0.0050-

-0.006
Method

o= Bos nete
-0.009 Bos homo

-0.03 ~0.0075-

-0.0100:

Sb SD SD

0.06275:

0.084-
0.06250 01175

0.06225: 0.083
0.1150
0.06200
0.082
0.1125,
0.06175:

T 0.081

0 1 2 3 0 i 2 3 0 1 2 3
P P P

Figure S6: Simulated empirical bias (Bias) and standard deviation (SD) of Bos homo and Bos hete
when p varies from 0.1 to 3.5.
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S6.4 Simulations for different values of p

In this subsection, we consider simulation studies for p =0.5, 0.8, 1.1, and 1.2. Simu-
lation results for the estimator with auxiliary information (BOS’ hete) and that without
auxiliary information () under these different scenarios are presented in Table .
From Table , we can see that the proposed estimator BOS, hete Maintains a desirable
finite-sample performance, with little variation in Bias, SD, SE, and CP, indicating
that our method is robust to different values of p. These results are quite similar to

those obtained when p = 0.9.

S6.5 Robustness of our method to the nonconstancy of p

To demonstrate the robustness of our method to the non-constancy of p, we conduct
simulations in the simulation settings where the auxiliary information (; and (s are
calculated from p; and po respectively (p1 # p2). The values of p;, (;, 7 = 1,2, and
simulation results under Cases I-V are shown in Table [S3| where the sample size is
set to n = 100 and the experiments are repeated 1000 times. Compared to 3, the
initial estimator without auxiliary information, the impact of the varying form of p
on Bos,hete is mainly reflected in a slight increase in bias. However, the bias remains
small and does not affect the conclusion of the unbiasedness of Bos,hete. The finite
sample performance of Bos,hete in terms of SD, SE, and CP remains as good as that
under a constant p. Thus, the proposed estimation method incorporating auxiliary

information does have certain robustness to the nonconstancy of p.
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Table S2: Simulation results for 8 under different heterogeneous scenarios.

Est

B

@os,hete
@os,hete
@os,hete

os,hete

B

@os,hete
@os,hete
gos,hete
Bos,hete

B

@os,hete
@os,hctc
@os,hete
ﬁos,hete
B

@os,hete
@os,hete

@os,hete

ﬁos,hete

B

@os,hete
gos,hete
@os,hete

ﬁos,hete

p

0.5
0.8
1.1
1.2

0.5
0.8
1.1
1.2

0.5
0.8
1.1
1.2

0.5
0.8
1.1
1.2

0.5
0.8
1.1
1.2

Bias

0

o O OO

SD

63
63
62
62
62

64
64
63
63
63

48
47
47
47
47

41
41
41
41
41

38
39
38
38
38

B

1
SE

67
65
65
65
65

72
68
68
67
67

52
51
o1
o1
51

47
46
46
46
46

38
38
38
38
37

CP Bias

94.5
94.0
94.1
94.1
93.9

93.5
93.1
93.3
93.5
93.5

93.6
93.7
93.7
93.5
93.5

92.6
92.3
92.3
92.3
92.3

94.1
93.7
93.7
93.7
93.6

AUt Dk W w oo

S OO

16

sp'” sp
Case I
125 129
111 108
111 109
112 109
112 109
Case II
131 139
112 114
114 116
116 117
117 118
Case III
86 100
83 91
83 90
83 91
83 91
Case IV
77T 98
76 91
76 90
76 90
76 90
Case V
112 82
100 70
101 70
101 70
101 70

CP

95.3
94.0
94.1
94.5
94.3

94.9
94.6
94.5
94.6
94.4

96.3
95.7
95.6
95.7
95.8

96.7
96.0
96.0
96.0
96.0

94.5
94.7
94.7
94.7
94.7

Bias

-1
-1

SD

84
82
83
83
83

90
90
90
90
90

67
67
67
67
67

62
63
63
63
62

o4
54
54
o4
54

Bs

SE

97
93
93
94
94

103
101
102
102
102

78
7
7
7
7

[0)
74
74
74
74

59
56
57
57
57

CP

96.4
96.2
96.1
96.0
96.1

95.9
95.6
95.7
95.8
95.9

95.4
96.0
96.0
95.6
95.6

95.4
95.2
95.2
95.1
95.1

95.8
95.8
95.8
95.9
95.9

Bias, SD, and SE represents the corresponding one multiplies 1000.
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Table S3: Simulation results for § under heterogeneous scenarios with varying p.

e Ba Bs
Case  (p1,p2) (¢1,¢2) Est Bias SD SE CP Bias SD SE CP Bias SD SE CP
I (1.51,1.31) (0.58,0.78) 3 0 64 65 93.7 2 127 125 93.6 -1 86 94 95.7
Bos,hete 3 64 63 929 15 114 107 93.2 0 85 92 94.6
I (1.551.38) (0.4,04) B 4 64 72 935 4 131 139 949 4 90 103 95.9
Bos,hete -1 63 67 93.6 15 118 120 948 3 90 102 959
I (1.78,1.52) (0.55,0.55) 3 3 48 52 936 4 86 100 963 1 67 78 954
Bos}hete -1 48 51 93.0 14 83 91 95.8 1 68 77 954
IV (1.10,1.39) (0.65,0.45) j 1 41 47 926 5 77 98 967 0 62 75 954
Bos,hete -6 40 46 923 -11 77 90 96.0 0O 63 T4 949
vV (1.14,1.79) (0.6,0.6) B -2 38 38 941 10 112 82 945 4 54 59 958

Boshete -7 37 37 94.2 -16 105 71 94.2
Bias, SD, and SE represents the corresponding one multiplies 1000.

1
[\

55 57 95.7

S7 Heterogeneity in covariate distribution and uncertainty

in auxiliary information

In the main paper, we assume that the internal and external data may have different
error distributions, and assume that the auxiliary information comes from a large
database where the sample size of the external study, denoted by m, is much larger
than that of the internal study. In this case, the variability in the external aggregated
information can be ignored when compared with the variability of Bau. In practice,
the internal and external data may have different covariate distributions, and the
auxiliary information may be derived from the external study whose sample size is
of the same order as n (Sheng et all 2021). Hence, it is desired to account for
heterogeneity in covariate distribution and uncertainty in the auxiliary information
under the proposed estimation procedure.

Let d*(z) and d(z) denote the density functions of Z in the external and internal
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studies, respectively. To account for heterogeneity in covariate distributions, we
postulated a semiparametric density ratio model on the density functions of covariate

Z in external and internal studies

d*(z) = exp(ag + agw)d(z), (S7.27)

where w is a ¢-dimensional sub-vector of z and accounts for the predictor distri-
butional heterogeneity. The parameter vector (aj,as) characterizes the degree of
heterogeneity and as; = 0 indicates that the homogeneity assumption holds. We
study the impact of uncertainty in the auxiliary information on the efficiency gain,
and write the function of auxiliary information depending on (. We investigate the
large-sample properties of our estimators as n — oo and n/m converges to a positive
constant k. Denote by é the root-m consistent estimator of the population parameter
(o using the external data and assume that CA is asymptotically normal. Suppose that
as m — 0o, \/ﬁ(é — (p) converges in distribution to a mean zero normal distribution
with covariance matrix .

Let a = (o, a9)". All constraints can be summarized as

E{¥(8,a,(,9:2)} =0,

where W(53,a, ¢, 9;Z) = (exp(ar + a; W) — 1, exp(an + g W)W (B,¢,9: 2)")". The
first constraint E{exp(a;+ajw)} = 1 reflects the fact that d*(z) and d(z) are proper

density functions. Define D, = E{0¥ (5o, 2, ¢, g0; Z)/OC|c=¢, }-
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After replacing ¢ with its estimate ¢, one can estimate (8, a, g) by

(Bag, ¢, P, Goc) = arg maxmin {£,(8, g) — > log(1 +v"W(8,,C, 0 Z) }.

e v
Prong i=1

In Theorem we establish the asymptotic normality of Bac and derive a one-step
estimator of (3, a) that has the same limiting distribution as (B, d¢).

An initial estimator &, for « is needed in the implementation of this method. We
choose @, to be the solution to the estimating equations P, {exp(a; +agW)—1} =0
and P, {W 1, exp(ai4ad W)U (B, ¢, G Z)} = 0, or equivalently P, { F¥(5, a, ¢, G Z)} =

0, where F' = diag(1, W1l;yy).

Theorem S2. Assume that the regularity conditions (C1)-(C8) are satisfied and that
model is correctly specified. Let QQ., B, and A, be those defined in —
(S7.41), respectively. Also suppose that the matrices E{¥ (S, o, Co, go; Z)®*} and ©
are positive definite, the matriz C' = Qu + £D¢X D/ is nonsingular, and the vector
Aq is monzero. Then as n — oo, we have (i) n*/?(Bac — Bo) converges in distribu-

tion to a mean zero normal distribution with covariance Ty = {3 + B,C™'B] —

B,C'AL(AICTYA,)PATC Bl Yt (i) The following estimator

B n 0p><;o _i_léa 0p><(Q+1)

2 Ba + Qo + “Dcicﬁg) 015 (q+1)
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with X(B, a, é,g; 0) = \II(B, Q, ﬁ,g; Z)—fg(ﬁ,g; O)[ﬁ’z‘] is a one-step estimator of (3, «)

that has the same limiting distribution as (Bag, Qe).

Theorem [S2|indicates that the asymptotic variance of Bag isTye = {X+B,C'B]—
B,C'AL(AIC1A,)PAIC B}t We have shown in Theorem 1 in the main
paper that Y~! is the asymptotic variance of the maximum conditional likelihood

estimator 8 that does not utilize the auxiliary information. Because

[l =% = B0 HC - AL(ALCT'AL) T TALICTIB,

and it can be verified that C'— A, (A C™'A,)A, is nonnegative definite, we conclude
that Bac is asymptotically more efficient than B. Let Ba denote Bag in the case of
k = 0. Thus, Ba is an estimator of 5 when the heterogeneity in covariate distribution
exists and the uncertainty in auxiliary information can be ignored. In this situation,

C = @, and the asymptotic variance of Ba is

Toci = {E+ BaQ,' By — BaQ, ' Aa(ALQ Ay) TALQL B
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It can be verified that

-1 TN 1
B, C A, B,
Foe =< X+ ,
0 AT 0 0
and
-1 T —1
Ba Qa Aa Ba
Foz(,l =492+
0 AL 0 0

(07

Because €' — Qo = £DXcD} > 0 (meaning that C' — @, is nonnegative definite), it

follows that

Consequently, we have

FocC,l S FaCa

which implies that Bag is asymptotically less efficient than By
Proof of Theorem[S9: We prove result (i) first. For any h € Ly(P), the estimator

(Bac, Vacs G, Jac) satisfies

Dac V5 (Bac, ¢, €, Jac; Z) L=
) Y

Pn{l.[?(BaCagaCO) - . S ~ 2 A
1 + VJC\II(BQQ O‘C) C?gocC; A
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B o O] - el 06 G 2,
1+ VaC\IJ(BaQaC?CJgaC;Z)
]Pn{ \I’(BOCC’AOA‘CvéagaAC; Z) } o,
14 0¥ (Bagy ¢, €5 Jacs Z)
Pn{ ’)aT(\i/a@aACaé‘Ca&lgac; Z) } _o.
L+ D0 ¥ (Bac, @¢, €, Gac; Z)

By Lemmas 1 and 2 and the consistency of (Ba{» ag, f . Jac), We can show that U, =
0p(1). Further, using first-order Taylor series approximations, we can rewrite the

above equations as

—P,{i5(B0, 90; 0) } =P{i35(Bo: 90; O)(Bac — Bo) + lag(Bo, 903 O)[dac — 90] }
— P{W3(Bo, @0, o, 903 O) } P + 0p(n~1?), (S7.28)
—P.{iy(Bo, go; O) 1]} =P{ly5(Bo. 903 O) ]} (Bac — Bo) + P{lgg(Bo, 90: O)[h, Gac — g0]}
— P{0,(Bo, @0, Co, 9o; Z)[h]} Tac + 0p(n"3),  (ST.29)
~Pu{ ¥ (6o, 00,C, 90: Z)} =P{¥5(fo, a0, G0, 90 2)} (Bac — fo)
+ P{¥, (8o, a0, Cos 903 Z)[gac — 9]}
+ P{W.(fo, a0, G0, 90; Z) } (G — )
— P{U(Bo, 20, C, 90; Z)%* }ac + 0p(n~1?), (S7.30)

0 :P{qja(ﬁm Qp, CO) 9o, Z)}TﬁocC + Op(n_l/Q)' (8731)
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The least favorable direction hj is defined as before, but A is defined as

P{z.gg(ﬁo,go;O)[h;h]} = P{W,(Bo, a0, Co» go; Z)[h] } (S7.32)

for all h € H, where h3; € H,j5 = 1,...,J. When the aggregate information is the

T

subgroup survival probabilities, one obvious choice of h} is hi(t, 3) = (h3,(t, 5), ..., hd;(t,5))

with

_ _ Elexp(an + agW)I(Z € Q) I(t <logt; — Z7o){1 — F(logt; — Z"fy)}]
uh /) = EDV (1, ) |

j=1,....J.

It follows from (S3.6)) and (S7.32) that

P{Zﬂg(ﬁo,go; O)[Gac — 90 — Lyg(Bo, 90; O) 1}, Gac — 9]} =0, (57.33)

P{lyy(Bo, 90: O)[13, Gac — 90} = P{4(Bo, a0, o, 90; Z)[Gac — g0 }- (S7.34)
And it follows from (S7.29) that

_Pn{jg(ﬁo,gos O)[hﬂ} :P{i:«yﬁ(ﬁo,gm O)[hﬂ}(ﬁac - 50) + P{igg(ﬁo,go; O)[hf,f]ag - 90]}
— P{U,(Bo, 0, Co, go; Z)[15]} D + 0p(n~1/?), (S7.35)
—Pn{ig(507go; 0)[h§]} :P{[gﬂ(ﬁ& gos O)[@]}(Bac - 50) + P{Zgg<50790; 0)[h§,§ac - 90]}

B P{\Pg(ﬁm Qo, COa go; Z)[h;] }Tﬁag + Op(nil/Q)' (8736)
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Subtracting (S7.28)) from (S7.35)) and using (S7.33)), we have

{ (8o, 90; O } P{ lﬁﬁ Bo, 9o; )"‘Zgﬁ(ﬁo,go;O)[hﬂ}(ﬁAac—50)

+ P{\Pﬁ’(BO, ap, Co, 90; Z) — {‘ilg(BOa g, Co, go; Z)[hﬂ}T}ﬁaC + op(n”

(S7.37)

where (5o, go; O) is defined in ((S2.1)). Subtracting (S7.30) from (S7.36) and using

(S7.34)), we have

]P’n{X(ﬁmOéo, &90% O)} :P{Z‘gﬁ(ﬂo,go;O)[h;] - {\i’ﬁ(ﬁm@m Co, 9o; Z)}T}(Bag — fo)
+ P{¥(Bo, 0, ¢, go; Z)%* = {Ty(Bo, 0, o, 90; Z) [15)} " }oac

— P{W.(Bo, a0, Co, go; Z) } (& — ) + 0p(n~/?), (S7.38)

where X(ﬂo: Qo, CA) 9o, O) = \Ij(ﬁm Qo, éa go; Z) - l.g(/607 9o, O)[h;]

Define
Qo = P{\I’(ﬁoy @0, Co, 9o; Z)®2 - {\Pg(ﬁ[): @0; o Yo; Z)[hé]}T}, (S7.39)
—-B, = P{Z.gﬁ(ﬁmgm O)[h3] — N’ﬁ(@oaaoyfoﬂo; O)}T}v (57.40)
Ay = —P{Ta(Bo, a0, o, 90: Z) }. (S7.41)
Note that

P{\Ij(ﬁo, Oy, 6790; Z)®2 - {\PQ(B(J? o, CO?gO; Z)[h;]}T}
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:P{\I’(ﬁo,ao,@,go; Z)®2 - {‘Pg(ﬁmao,fo,go; Z)[h;]}T}
+ P{{¥ (B0, a0, Co. 90; Z) + (B0, cxo, ¢, 90, 7)
- \Ij(ﬁ(% Qo, COagO; Z)}®2 o ‘Ij<507 Qo, 40790; Z)®2}

:Qa + KD(Z(DE + Op<1).

Therefore, it follows from (S7.37)), (S7.38), and (S7.31)) that

) B, 0\ [ n*(Bac — o)
—B; Qa + FLDCZCDCT Aa nl/QI;ac
0 —Al 0 n2(a¢ — ap)

nl/zpn{b(ﬁoa 90;0)}

- nl/ZPn{X(ﬁovaC’)é?gO;O)} + OP(l)’

0
which implies that
~ Ba{ - BO
Bac — Bo Ipxp  Opxs Opx(g+1)
= Dot
@g — O1xp O1x.7 11><(q+1)
OAJC — Q)
-1
b B, 0

Toxp  Opxs Opx(gt1)

= —B; Qa—l—/ﬁDCZCDZ A,
01><p O1x.s 11><(q-‘,-1)

0 —Al 0

(67
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Pn{t(Bo, 90; O)}
]P)TL{X(BM Q, 65 90; O)} + Op(nil/Q)' (8742)

0

Because the internal individual data and the external aggregate data are independent

of each other, the asymptotic variance of

VP {x(Bo, a0, €, g0; O)} = \/ﬁPn{\I}(BmaOJéagO; Z;) — ly(Bo, 90 O)[h3]}

is Qo+ “DCECDCT- Then, the asymptotic distribution of n1/2(/3’a< — Bo) can be proved
by a similar proof to that of n'/2(3,, — 8,) in the proof of Theorem S1.

Next, we prove result (ii). We need to derive an asymptotic representation of

(B, éc). Tt follows from Lemma (1| that
V(P — PY{FY(3,d¢,C,3: Z) — FU(Bo, a0, C. go; Z)} = 0,(1).
By Lemma [2 and the consistency of (3, g, &), we have

—]P’n{F‘If(ﬂo, Q, 57903 Z)} :P{F‘i’ﬁ(ﬂo, g, Co, go; Z)}(B - 50)
+ P{F¥ (B, a0, o, 90; Z)[G — g0]}

+ P{F‘i’a(ﬁo, Qp, C:o, 4qo; Z)}(&C — ao) —+ OP(n_1/2).
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Similar to the proofs in Section S4, we can show that

by OpX(q+1)
—FB] A,
This implies that
B — By
O~é< — Oy
1
B by OpX(qH) ]pxp
—FB, FA, O1xp
+ op(n_l/Q)
-1
B by OpX(qH) [pxp
—FB, FA, O1xp
by B, 0

—B; Qa‘f'liDCZCDg Aa
0 A7 0

I

pXp

Oixp  (FAL)'F(BIS By + Qu + kDS DY)

B~ Bo

554—0[0

¥ 1B,

¢(Bo, 90; O)

+ op(n_l/z).

FX(BU) Q, éa 9o; O)

Opx.s OpX(qH)
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0 AT 0 0

(S7.43)

By comparing the approximations in (S7.43)) and (S7.42|), we found that the following

estimator
B Opxp _i_léa 0px(‘1+1)

+
ac O1xp —(FA,) 'F(BJY By 4+ Qo + HDQECDD O1x(g+1)

-1

)9 B, 0 P, {u(3,5;0)}
X _B; Qa+/€ﬁ<2<ﬁg Aa X Pn{X<B7&C7é7§7 O)}

0 —A) 0 0

is a one-step estimator of (3, ) that has the same limiting distribution as (Bao Q).

This finished the proof.

S7.1 Heterogeneity in covariate distribution

In this subsection, we consider the special case where the internal and external data
may have different covariate distributions, but the uncertainty of auxiliary informa-
tion can be ignored. The conclusions in Theorem S2 remain valid upon substituting
r with 0 and substituting é’ with (p. Since ( is always a constant (; in this subsec-

tion, the auxiliary information function ¥ (g3, «, ¢, g; Z) and the proposed estimator
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Bac are irrelevant to ¢, we write them as ¥ (g, «, g; Z) and Ba instead. We have the

following corollary.

Corollary 1. Assume that the regularity conditions (C1)-(C8) are satisfied and that
model 1s correctly specified. Let Qn, By, and A, be those defined in -
(S7.41), respectively. Also suppose that the matrices E{¥ (S, o, Co, go; Z)®*} and ©
are positive definite, the matriz Q. is nonsingular, and the vector A, is nonzero.
Then as n — 0o, we have (i) nl/Q(BCY — Bo) converges to a mean zero normal distri-
bution with covariance Ty = (X + BoQ, Bl — BoQL Ao (ATQ T AL)TATQ B~

(ii) The following estimator

s

Opxp _2_131 OpX(q+1)

[N

01><p _(FAa)ilF(B;igléa + Qa) 01><(q+1)

is a one-step estimator of (3, ), that has the same limiting distribution as (Ba, Q).

Corollary |1f implies that Ba is asymptotically more efficient than the maximum
conditional likelihood estimator 8 that does not utilize the auxiliary information,
and that Ba is less efficient than Bao, which is the maximum likelihood estimator of

£ when the true parameter value «q is known.
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S7.2 Uncertainty of auxiliary information

In this subsection, we consider the special case where the uncertainty of auxiliary
information can not be ignored, but the internal and external data have the same co-
variate distributions. The conclusions in Theorem S2 remain valid upon substituting
& with ag = 0. Since « is always a constant ag = 0 in this subsection, the auxiliary
information function ¥(53,«,(,g; Z) and the proposed estimator Bac are irrelevant

to «, we write them as W(f,(, g; Z) and @C instead. We have the following corollary.

Corollary 2. Suppose the conditions specified in Theorem 2 hold. As n — oo and
n/m — &, (i) /n(Be — Bo) converges to a mean zero normal distribution with covari-

ance {X + B(Q + kDX¢DJ )BT}~ (ii) The following estimator

-1

~ A ~

" .2 B Pnf{u(8,5:0)}

15 a one-step estimator of B that has the same first-order limiting distribution as BC'

Corollary [2| shows that BC is asymptotically more efficient than the maximum
conditional likelihood estimator 3 without incorporating the auxiliary information.
The efficiency gain decreases with k. When & is a very small constant that close to
0, that is, m > n, B(Q + /{DCECDCT)ABT is close to BQ™'BT, and thus ﬁAC enjoys
substantial efficiency gain. When « is very large, that is, n > m, the efficiency gain

is negligible.
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