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S1 Asymptotic Properties of Estimation

In this section, we present the proofs of the theorems proposed in the main

text, as well as the asymptotic property of the Average Quantile Effect

(AQE).

S1.1 Proof of Theorems in the main text

In this section, we sketch technical arguments for proving the theorems.
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Proof of Theorem First, we consider the asymptotic distribution of
Va{BoT(rix,4) — BeT(rix,)}
= Vi {BoT(rix,An) = BoT(rix,3u) + B T(rix,4n) = AoT(rix,7)}
By |[Ma and He, (2016a) and Assumption (2.1), we have
Vn (5 ol'(r;x,7) — fo F(T;Xﬁ)) 5 5,

where X; is defined in Theorem [I] And by the nature of logistic regression,

we have

Vi ((7%,90) = T(rix,7)) V.
where V = {1 —T(r;x,7)}* {1 — 7(7,x)}" x" Dy x. Then, we have the
asymptotic distribution

Bol(rix,7) = BoT(r;x,7) S0
vn 4N
L(7:%,9) = T(75%,7) 0V
By delta method, we get the asymptotic distribution of Bo [(7;x,9,) — Bo

I(7;%,7):

Vi{Bo(rix4.) = BoT(rix,7) | % N(0,Z; + ),

where ¥; and X, are defined in Theorem [I]

Proof of Theorem [2] We prove this theorem under three scenarios: 7 <

1—m(y,x), 7>1—m(y,x), and 7 =1 — 7(v,x).
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If 7 < 1—m7(y,x), the consistency of the estimator can be shown as in
Ling et al.| (2022) Theorem 1.

Ifr>1-mn(y,x), P(Rs,,) = 1 and P(R;, U Rs,) — 0. We have

P (‘@\y(T | x) — Qy (7| x)‘ > e)

< P(Ry U Rsyp) + P (‘@m %) — Qy (7| x)‘ > e, Rg,n) .

By the definition of Qy (7 | x) in eq (2.9), we have

P([Qv(r %)= Qvir )] > € Ry
= P{ ‘Gr(r;x,y) (XTB o I'(1;x, 7))
-B <XTB o I'(1;x, &n)>T 0, <B o I'(T;x, ), (15 %, %)> ‘ > 6}.

For ease of notation, we adopt the definition of 7, = I'(7;x,v) and 75 =

['(7;x, %), and rewrite the above equation as below:

P(|0r(r 1% = Qu(r [%)] > € Ru)
— P{ G, (x"B.,)—B (XT@S)T 0, (&ﬁs))

We first define G, (u,3) as the 7,th quantile function given x' 3 = u,

> e}. (S1.1)

where 7, = I'(;x,7). Thus, we can rewrite G, (x'3,,) = G- (x" B, Br,).
Also, by Corollary 6.21 of Schumaker| (2007)), for any 7, € (0,1) and 5 € ©

there exists 6(s, 8), such that G2 (u, 8) = B(u) (7, 8), where G2 (u, )
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satisfies

sup |G, (u,B) — G2 (u,B)| < CJ,", (51.2)

’U,E[ao,bo]
C'is a constant, r refers to the same notation in Assumption (3.2), and J,
refers to the dimension of the B-spline function space.

We rewrite Qy (7 | x) — Qy (7 | x) by several parts

G, (x'B.,) - B <XTB+S)T 0 (stv ﬁ)
= G (7B 8) — B (xTB) 0 (e %)
= Gr (x"Br.Br) = GO (x" Br,. Br,)

~ N\ T~ ~
+ G0 (X" B Be) = B (xB) O (Be).
Then by eq , we have
é‘l’s (XTﬁTsa /87'5) - G?-S (XT/BTS7BTS) = 0P<1>- (Sl?))

By Lemma S.3 in Ma and He| (2016b)), for any 5 € ©, u € [ag, by, and

7 € (0,1), we have

Cronlw. ) = 2w B)| =B {6.(8,7) =0, O)}| (5149

~ J3Png M g2 — 60(1), (S1.5)

where @Ts,n(u, ) denotes the spline estimator of G, (u,3) given knowing

the real value of the quantile nominal 7,. Besides, since B oI'(1;%x,4,) is a
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consistent estimator of 8 o I'(7; x,7)(Theorem [1)), we have

Grom (X' B, B.) — B (XTBQT g, (5}3,@) — op(1). (S1.6)

From eq (S1.4) and (S1.6), we can deduce that

(B B) = B(x7B2) 0, (Broi) =op(). (SL)
By eq (S1.3) and , we have
P (‘@Y(T | x) — Qy (7 | X)‘ > €, R3,n> — 0.
Thus, we conclude that when 7 > 1 — (v, x),
P(|@v(r 1% = Qrlr Ix)] > €) >0
If r=1-—m(y,x), then we have

P(|Qv(r1%) - 0| > )
= P(|@v(r1%) = 0| > & Rin) + P (|0v(7 %) = 0] > € Ra)
+P (Qv (171 %) = 0 > €, Ry
< 0+ P(|Qv(r %) > € Ra) + P(Rs)

—p <‘@y(r | x)‘ > e, Rgﬁn) + P(Ry,). (S1.8)
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By the definition of Qy (7 | x) in eq (2.9), we have

P ] (7| x)] > RM)

~

anéfr(’yn,x)*l <XTBn*57r(%,x)*1) X n5{7r(:ymx) - W(’}/:X)}‘ > 6}

~ T . N
= P{ ‘B (XT/anéﬂp(:W“x)fl) 0, (ﬁnfaw(%,x)fl,nfaﬂ(?yn,x)*l)
xn® {7 (A, X) — W(y,x)}‘ > e}.

Then, by the proof for the part 7 > 1 — 7(7,x) in Theorem [2| and the

property of logistic regression, we have

A~ T . A 1
B (XTﬂn—aﬂ(&mx)q) 0, (ﬁn_a,r(%,x)_l,niéﬂ(%,x)*l) xn 20 = 0p<1),
and
VAT (i, x) — (7, %)} = Op(1).

Thus, we have P (@y(T | x), RM) — 0 holds. Note that the consistency
only depends on the fact that 6 < 0.5. Finally, with P(R3,) — 0, we

conclude that

P(‘@me)—o‘ >e) 0.

Proof of Theorem [3] We prove this theorem under three scenarios: 7 <

1—m(y,x), 7>1—m(y,x),and 7 =1 — 7(7,x).
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Proof of the convergence when 7 < 1—7(x;7) The proof of \/ﬁ{@(T | x,Y >

0) — 0} 2 0 is the same as in [Ling et al. (2022).

Proof of the asymptotic property when 7 > 1 —(x;v) To derive the conver-

gence rate of
~ T . ~
B(x78.) 0u(Bets) = Gris (X BoT(Tix,7))
we rewrite it in several parts:
AN T o~ o
B (XT6%5> en (57”'57 7A_s> - GF(T;X,’}/) (XTﬁ o F(T; X, 7))
~ T . ~
= B(x"3) On(Brs) — Gn (x785)
+G7A—s (XTB’FS) - GF(’T;X,’Y) (XTB © F(T7 X, ’7)) :

We further denote
A=B(xT5) 0, (Bu(r).7) — Cr (xT52).

B =G5, (XTB@) — Gr(rixy) (XT/B o I'(m;x, 7)) .
By Assumption (3.3), we have

B = G (x'B:) = Grimey (X' BoT(15%,7))

oG, (x'f3,
— % (7s = T(1;%,7)) + 0 (Fs — T(1;%,7))

= O(7 —I(1;x,7))

= O(Ts — 7).
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By the y/n-convergence of 7, — 7, as n — 0o, we have

B =0(3 —7,) = Op(n2). (S1.9)
Then, we rewrite A as A = A; + Ay, where

T2\ i (A T i

Ar=B(x"Ba) 0 (Bent) = B(x"8:) 0 (Br7).
and
T~ .
A, =18 (XTﬁfg) O (ﬁ%s, Ts) - G%S (XTﬁfg) .

The order of A; is given by the y/n-convergence of B@. For the order of

the convergence rate of Ay, we further rewrite Ay by two parts:

Ag = Ay + Ag,
where
Aot = B (x7f5) 0 (Brn70) = G, (u, 52,
and

Am:G%QW%)—édmﬁy

By Corollary 6.21 of [Schumaker]| (2007)), for any given 8 € © and 7, € (0,1),

there exists 62 (8) € R, s.t. G2 (u, 8) = B(u)"02 (8) € X, and

sup |G, (u, 8) = G, (u. B)| < |Con(B)]

uE[ao,bo]




S1. ASYMPTOTIC PROPERTIES OF ESTIMATION

for some continuous function C,,(3) depending on m and Cp, where J,
denotes the dimension of B-spline function B(u) and Cj is defined in As-
sumption (3.4). Also, we assume C,, = supgeg Cm(B) < co. Thus, we

have
A22 = G'?_s <U, BTS> — éi's (U, 5) = Op(Jn_r) (8110)
Under Assumption 3, by Ma and He| (2016b) eq (S.4), as n — oo, we have

6:.(8:) — 62, (Bz)

1 el
O (P 407

2

By the condition regarding n and ng given in Assumption (2.1), we have

0:,(8z,) — 02 (Bz)

)2 — Op (Jnn—% + Jﬁ”%) . (S1.11)

Then, by eq (S1.11) and Cauchy-Schwarz inequality, under Assumption 3,

for Vu € [ag, by], we have

B {0(8.) - 62.(8-)}| < (ﬁf&wﬁx

Consequently,
sup | B(w)" {0 (8(7)) = 0, (8(2)) }| = Op (Jin~3 + J7) .(S1.12)
ue [ao ,bo]

By eq (S1.10)) and eq (S1.12), we have

Ay = Op (Jén—% + 7).
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Since Ay converges slower than than A, we have

A=A, +A=0p (Jén-% +J77).

Proof of the asymptotic property when 7 =1 —7(x;y) At the change point

T =1-—7(x;7), we have

V{0 y7'|Y>0,x)—O}

~

{@
= Va{Qv(r 1Y > 0.01(Ren) } + Vi {Qu(r | Y > 0.001(Ry,0) )
= \/H{Qy 7Y >0 X)[<R2,n)} +op(1)

N T . ~
= n(sB (XTﬁn—‘sﬂ(’yn,x)—l) On (5,1_5,7(%7,()—1,n_éﬁ(%,x)_1>
XA/ (A, X) — 7(7, %)} T (0 < (3, X) — (7, %) <n°) + 0p(1)
= n5@y (n"sw(%,x) | x,Y > 0)

XV AT (G, x) = 7(7, %)} (0 < 7(F, %) — 7(7,%) < n7°) + 0p(1).
The second equation above comes from the fact that, Ve > 0,
P{|va{r(r 1Y > 0.x)1(Rs0) }| > ¢} < P(Ry) = 0.

By |[Ling et al.| (2022), we have

VA (G, x) = (1, %)} (0 < 7(F, %) = 7(7,%) <n”°)

G (v, x) {1 = 7(y, X)} /X D1 xZ01 (Zo > 0),  (S1.13)
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where Zy ~ N(0,1). Then, we only need to prove that
n°Qy (n°7(4n,x) | x,Y > 0) 5 Qv (0] x,Y > 0)m(y,x)~1. (S1.14)

To ensure the y/n-convergence in the proof below, we set § < 0.250 based

on the lower and upper bounds for J,,:
max {(n log(n))Y/Gr=1/2), nl/(2”2)} < J, < n'*/(logn)>/*

as given in Theorem 2 of Ma and He| (2016a). Alternatively, one can also
choose 0 € (0.25,0.50), though the convergence rate at 7 = 1 — w(x; ) will
adjust accordingly. By the proof of Theorem |3| (i7i) and the bounds for .J,

above, when ¢ < 0.250, we can deduce that:
n’ {@y (n°7 ' (An,x) | %, Y > 0) = Qy (n 77 (1,x) | x,Y > 0)} 291.15)
Then, by Taylor expansion, we have:
Qv (n°77 (7,x) | x,Y >0) =Qy(0|x,Y > 0)4+Qy (0 | x,Y > 0)7 (7, x)n " 4o0p(n™?).
Thus, we have
n°Qy (n_‘;w_l(%x) | x,Y > 0) N Q/Y(O |x,Y > 0)7 *(y,x).

By the equations above, we can prove eq (S1.14)). Finally, by Slutsky’s

Theorem, we have

\/E{QY(T Y >0,x) — o} b (=73, X)X T D@L (0| x,Y > 0)Z01(Zy > 0).
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One can also set a larger ¢ such that 0.250 < ¢ < 0.5. For example,
1
one can select 6 = 0.499 and v > 0, s.t. n* = J, 2ns + J;. Consequently,

we have u < 9§ < 0.5. Now we show that
n {@Y(T Y > 0,%) — o} = 0p(1). (S1.16)
We have

nt {@Y(T Y > 0,x) — 0}
= 2 {Qr(r |V > 0,3)1(Bo) b+ n{Qu (7 | Y > 0,%)1(Ry,0)}
= Oy (7 |V > 0, %) ()} + 0p(1)
— 2B (XTBn—sm,xrl)T O (Bn—%mx)—lv”_%(%J)_l)
o {7 (G, ) — 73,30} (0 < 73, %) — 7(3,%) < 0°) + 0p(1)
n’ A <XTBn6w(an,x>l)T O (wamxrla”*‘Sﬂ%vx)*l)
AT {7 G %) = 71,0} (0 < 7 %) — 7(3,%) < 07°) + 0p(1)
— U2y (n%jy (07 (3, %) | X,V > o)) (S1.17)

x VAT (Fn, x) — 7(7, %)} (0 < 7(Fn,x) — (7, %) <n%) + op(1).

By the proof of Theorem [3| (i7i) and the fact that 6 < 1/2, we can prove

that

w2 G (7 G030 10 2 0) = Qe 7000 1Y > 0 = on)
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By Taylor expansion, we have

nd=124ue Q) (n_57r_1(fy,x) | x,Y > 0)

Lot =12QL(0 | x,Y > 0)m(y,x)7L (S1.18)
Due to the fact that n* = J; 2n3 + Jr < n'/? we know that
n“12Qy (n_‘sﬂ_l(%,x) | x,Y > 0) =op(1).
Similarly, we have

VAT (An,x) = 7(7, %)} (0 < 7(An,x) — w(7,x) <n™®)  (S1.19)
A (v, x) {1 —7(v,x)} \/x" D1 ,xZo1(Zy > 0),

where Zy ~ N(0,1). Using Slutsky’s Theorem and the fact § < 0.5, we

have
n {@Y(T Y >0,%x) — o} — 0p(1).

Hence, we conclude the proof of Theorem [3]

S1.2 Asymptotic Property of Average Quantile Effect

We provide the asymptotic convergence rate of the estimated AQE con-

structed in eq ([2.12)) based on Corollary [1]

Theorem S1. Given the assumption that the coefficient functions [ o

F(T;xj,w(_j),’y) are smooth functions of =7 with compact supports and
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the conditions in Theorem [1H3, as n — oo,

~

A (xju,v) — Ar(zj;u,v) = Op <Jn%n_% + Jn_7”> :

Of note, hypothesis testing on AQE is possible, but beyond the main
scope of this paper. Thus, we do not provide a detailed discussion of it. In
Ling et al| (2022)), though the asymptotic distribution of estimated AQE is
provided for the linear quantile regression model, paired bootstrap is rec-
ommended for hypothesis testing of the covariate effect as the asymptotic
variance of the estimated AQE is too complicated to calculate. We conjec-
ture that the bootstrap scheme would also work for our ZIQSI model. We
provide the proof of Theorem [S1 as below.

Proof of Theorem As stated in Ling et al| (2022), we deduce the

treatment effect of a binary covariate z;. By Theorem (3| we have:
@y(T | z; = 1,x9) — @y(T | z; = 0,x)
— [QY(T | ;= 1,x5) — Qy (7 | xj = O,X(’j))}
= {BT (L xM)BoT(r1,x9,5,)) du(Bo T, T(r 1,x7,4,)
—Qy(t|z; = 1,x(j))}f {7' >1—7(y, 1,x(*j))}
—{BT <(1,X(*j))ﬁA oI'(r; O,X(*j),%)) én(B o, T(7;0,x9 4,))
—Qy (T | z; = O,X(_j)) }] {7’ >1— W(’Y,O,X(_j))}

-~

+Qy (n”'7(3, 1,x"7) | 1L,x7,Y > 0)
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X [7(Am, 1,x) — 7(, 1,X(—j>)}+ I{r=1-7(y,1,x")}
_@Y (n_‘sw(%, O,X(_j)) | 0,x Y > 0)
% [ (3, 0, D) — w(,0,x0N)] T {r =1~ m(7,0,x9)}
+O0p (Jn%n_% + J;’”) .
Denote n = (67,77)T and 7, = (67,4,])7 given 7, we have
ho(n,x"7) = BT ((1,X(_j))ﬁof‘(7;1’X(—j),7)) . (8,7 (1, %) NI {r>1 —W(’y,l,x(_j))}

—BT ((o,x<—j>)5 oI'(7;0,x79, 7)) 0,(8,T(r;0,x) ANI{r > 1 — x(y,0,x)},

h(n,x(_j)) = Qy(7] 1,X(_j))] {7‘ > 1 —m(y, 1,X(_j))}
—Qy (7] 0,xN1 {r>1- W(W,O,X(’j))}
= Griixenq {(1,% NBoT(r; 1,x7, NPT >1=7(y,1, x ]))}
~Grirox-nm {0, x7)BoT(7;:0,x, )} T {r > 1 —7(y,0,x7)}.

Denote x%(=7) as the covariates from the current data excluding z;. x%(7)

has the same distribution P, ;) as the new covariates x(=9) defined in Sec-
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tion 2.3l We can write:
(SL’J,LO) AT(l’j;l,O)
PG, X)) — / B, X dP

{ P (s x> D) — (1, XDV AP, o)

Il
\\ =

T / B, X D)A(P oo — Pec). (51.20)
For the first part of eq , we write:
/ o (s XY — B, xCD)AP. )
_ 2 Z {BT ((LxB T 1,x7, 40 ) 6 (Bo D T(r 1,x 7,40 ) T{7 > 1= 7(3,1,x7) }
-BT ((0 xCMNB o D(r;0,x7 ,%))é (,@ I'(7;0,x ”,%)) {71 >1—7(%,0,x"9)} }
——Z{ xr oy LX) B T L b 17> 1= a1 5 )
_GF(’TOX( 0. {(07X(—j))5 oI'(7;0, x( ]),v)} ]{7’ >1-— W(V,O,Xg_j))} }

n

= S {FT X Do AT T A)

i=1

—_

Gy {1 o DL} L {75 1= (1,7

_% Z {BT ( (0, x(= )ﬁ oI'(7;0, x(= ),’AYn)> 0, <B o F,F(T;Q’X(*j)’;yw)
~Grtant 1y {07 o T 0:57)) }I{T > 1= (3,0,% ) } 4 0p(n )
= Op (Jn%n*% + J;T) :

The last equation above is deduced from Corollary [1 For the second part
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of eq (S1.20)), we can write
/h(%xo’(j))d(lpnxo,(j) — PX(—ﬂ)
1y (—5) (—5) ()
- E ZIGF(T;l,XEj),'y) {(1’Xi )ﬁOF(T;LXi 77)}1{7 >1 —7T<”)/,1,Xi )}

_GF

(1:0.%;

A 1L,0) (S1.21)
By the same strategy in Proof of Theorem 2 in Ling et al. (2022), we can

derive that the convergence rate of eq (S1.21)) is /n. Thus, we conclude

the proof of Theorem

S2 Additional Simulation Results

S2.1 Simulation Settings

Here, we represent the health-related covariates of 12 individuals, whose
quantile functions are estimated in Section in our main text.
In Figure [S2.1 we represent the taxon we simulated in Section [3} We

observe that the simulated data mimics the real data well.
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Table S2.1: The summary of covariates information for 12 individuals.

ID | medicament BMI waist diastolic systolic
circumstance blood pressure blood pressure
1 0 26.65 83.73 71.91 111.52
2 1 26.65 83.73 71.91 111.52
3 0 28 92.5 80 124
4 1 28 92.5 80 124
5 0 29.68 103.44 90.10 139.57
6 1 29.68 103.44 90.10 139.57
7 0 26.32 81.56 90.10 139.57
8 1 26.32 81.56 90.10 139.57
9 0 28 92.5 69.90 108.43
10 1 28 92.5 69.90 108.43
11 0 28.51 95.79 73.71 114.30
12 1 28.51 95.79 73.71 114.30

S2.2 Average proportion of negative predicted counts over the

quantile process

We further report the average proportion of negative predicted counts over
the quantile process 7 € (0,1) for three methods. As none of them en-
force the constraint of positive prediction, it is possible to have negative

predicted counts. However, negative predictions are unreasonable in micro-
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Figure S2.1: The histogram of real taxon count and the taxon count of our simulation

setting.

biome studies. As shown in Table [S2.2] Quantile Single-index has nearly
20% negative predicted counts among all 7’s for every subject, whereas the
two-part modeling approaches (i.e., ZIQSI and ZIQ-linear) have a much

lower percentage of negative predictions.

S2.3 Additional simulation results for RIBIAS, RIVAR, and RIMSE

truncated at zero

As we did not impose a non-negativity constraint when optimizing the
quantile function , our method may produce negative values in the esti-
mated quantile curve. Table shows that this issue also arises with other
methods. In practice, one can impose truncation at zero if strictly non-

negativity is desired. Here, we present the RIBIAS, RIVAR, and RIMSE
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Table S2.2: Summary of the average proportion of negative predicted counts over the

quantile process 7 € (0,1).

ID | ZIQSI ZIQ-linear Quantile Single-index
1 0.04 0.05 0.23
2 0.04 0.04 0.23
3 0.03 0.00 0.17
4 0.06 0.00 0.17
5 0.07 0.00 0.21
6 0.04 0.00 0.21
7 0.03 0.05 0.19
8 0.04 0.05 0.19
9 0.04 0.04 0.22

10 0.04 0.03 0.22

11 0.04 0.00 0.19

12 0.03 0.00 0.18

for each method after truncating at zero in Table [S2.3| demonstrating that

our method retains its advantage even after truncation.

S2.4 Estimated quantile curves for other individuals

Here we present the average estimated quantile curves and their 95% con-

fidence intervals for other individuals in Figure —[S2.5], except subject
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Table S2.3: Summary of RIMSE(%), RIBIAS(%), RIVAR(%) of the estimated condi-
tional quantile functions truncated at zero by ZIQSI, ZIQ-linear(ZIQ), and Quantile

Single-index(QSI).

RIBIAS RIVAR RIMSE
1D ZIQST  7ZIQ QST | ZIQST ZIQ QST | ZIQST ~ ZIQ QSI
1 0.19 21.18 1.14 3.20 525 281 3.39 2643  3.95
2 0.07 2129 0.44 3.96 6.19 3.94 4.03 2748 4.38
3 0.24 4.07 1.10 1.54 1.63 1.49 1.78 570 2.59
4 0.04 417 0.13 1.68 1.66 1.82 172 583 195
5 0.10  2.53 0.76 3.31 1.02 3.62 3.41 355 4.38
6 0.04 234 0.13 3.80 1.20 3.80 3.84 354 393
7 034 123 084 3.09 2.00 295 343 323 3.79
8 0.12 127 0.65 3.54 227 3.55 3.66  3.54 4.20
9 0.13 19.12 1.01 1.57 4.30 2.36 2.70 2342 3.37
10 0.02 18.88 0.15 3.01 483 3.14 3.03 23.71 3.29
11 0.02 9.04 0.99 1.98 222 1.53 2.00 11.26 2.96
12 | 6.26e=>  9.93 0.12 225 2.55 242 2.25 1248 2.54

11, which has already been reported in the main text. For each individ-
ual, we based the results on the 500 estimations of its quantile curve. The
confidence interval is constructed based on the percentile of the empirical
distribution of @y(T | x) at a given 7. We observe that both ZIQ-linear

and Quantile Single-index have more prominent bias compared to ZIQSI.
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Figure S2.2: Estimated quantile curves based on 500 predictions for subjects 1 — 3 (from

top to bottom).
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Figure S2.3: Estimated quantile curves based on 500 predictions for subjects 4 — 6 (from

top to bottom).
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Figure S2.4: Estimated quantile curves based on 500 predictions for subjects 7— 8 (from

top to bottom).
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Figure S2.5: Estimated quantile curves based on 500 predictions for subjects 9, 10, and

12 (from top to bottom).
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S2.5 Model fitting results for our proposed ZIQSI method with

0 = 0.250

Here we present additional simulation results for 6 = 0.25. The results
suggest that using 6 = 0.25 will lead to a minor increase of bias and decrease
of variance (Table [52.4). However, compared to Table [I} the change of

results due to ¢ is negligible.

S2.6 Simulation results for the average quantile effect (AQE)

In this section, we present simulation results comparing the point estimates
of the average quantile effect (AQE) of BMI across various methods. The
AQE is computed using equation , with z; as BMI and v = 23kg/ m?,
v = 28kg/m2. We generate samples (x;,y;) for i = 1,--- 500 as described
in Section [3.1] and measure AQE using the ZIQSI method, ZIQ-linear (ZIQ)
method, and Quantile Single-index (QSI) method at representative quantile
levels: 7 = 0.25,0.50,0.75. This procedure is repeated 500 times for each
quantile level. For each method, we calculate the trimmed relative bias
and trimmed relative standard deviation (sd) based on the 500 estimations.
To mitigate the impact of extreme estimations caused by large variance at
higher quantile levels (Figure to Figure , particularly at 7 = 0.50

and 7 = 0.75, we remove the largest and smallest 10% of estimated values
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Table S2.4: Summary of RIMSE(%), RIBIAS(%), RIVAR(%) of the estimated condi-

tional quantile function Qy (7 | x) using ZIQSI with § = 0.250.

ZIQST (proposed)
ID | RIMSE RIBIAS RIVAR
1 3.22 0.29 2.93
2 3.76 0.15 3.61
3 2.04 0.26 1.78
4 2.03 0.06 1.93
5 3.40 0.12 3.28
6 3.92 0.07 3.85
7 3.31 0.29 3.02
8 3.67 0.17 3.50
9 2.73 0.18 2.55
10 3.19 0.05 3.14
11 2.07 0.12 1.95
12 2.27 0.03 2.24

before analyzing relative bias and sd. Table shows that our method
yields the lowest bias at each quantile level compared to others. While the
Quantile Single-index method demonstrates a relatively smaller standard
deviation, it introduces significant bias, especially at 7 = 0.25 and 7 =

0.50, due to its failure to adjust the quantile level 7, which can distort the
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estimated impact of BMI on the response Y, as shown in Figure [6]

Table S2.5: The trimmed Relative Bias and trimmed Relative Standard deviation for
estimated AQE of BMI. “ZIQ” represents ZIQ-linear, and “QSI” represents Quantile

Single-index method.

T true AQE | measure Z1QST  Z1Q QSI
Estimate 2.59 2.64 -0.46
0.25 | 2.39 Relative Bias 0.08 0.10 -1.19

Relative Sd 2.06 1.97 1.03

Estimate 15.30 16.24  -5.95

0.5 15.56 Relative Bias 0.02 0.06 -1.38

Relative Sd 2.25 2.85 1.55

Estimate -27.83  -42.24  -38.27

0.75 | -24.56 Relative Bias 0.13 0.72 0.56

Relative Sd 2.65 4.48 2.62

S2.7 Additional Simulation results with linear G,

In this section, we assess the performance of all methods using a linear
function G,(x) = 7z, a simpler case compared to the non-linear functions
considered in Section [3] We continue to use the data generation scheme
for covariates from Section [3.1I} and we conduct prediction regarding in-

dividuals presented in Table [S2.1] From Table [S2.6] we observe that our
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method achieves a RIBIAS comparable to the ZIQ-linear method but shows
a slightly higher RIVAR. This is expected, as the ZIQ-linear method takes
advantage of the model’s linearity, which matches the true model, leading

to more efficient estimation.

Table S2.6: Summary of RIMSE(%), RIBIAS(%), RIVAR(%) of the estimated condi-
tional quantile functions under the linear setting by ZIQSI, ZIQ-linear(ZI1Q), and Quan-

tile Single-index(QSI).

RIBIAS RIVAR RIMSE
ID | ZIQST ZIQ QST | ZIQST ZIQ QST | ZIQST  ZIQ QSI
1 0.11 0.04 1.30 224 141 2.39 235 145 3.69
2 0.02 0.06 0.24 251 174 3.06 253 1.80 3.30
3 0.07 0.02 0.73 1.35 0.65 1.34 142 0.67 2.07
4 0.01 0.02 0.23 1.50 0.68 1.65 1.51 0.70 1.88
5 0.06 0.01 0.61 235 086 2.93 240 0.87 3.54
6 0.06 0.02 0.19 254 1.08 3.28 259 110 347
7 0.11 0.02 0.50 2.15 1.21 1.96 226 1.23 2.46
8 0.06 0.02 0.73 255 1.56 2.36 2.60 1.58 3.09
9 0.11 0.02 091 1.88 1.07 1.84 1.99 1.09 275
10 0.01 0.03 0.19 212 135 2.33 213 1.38 2.52
11 0.06 0.02 1.78 1.29 0.78 4.84 1.35 0.80 5.62
12 0.01 0.03 0.20 1.51 1.01 4.78 1.52 1.04 5.02
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S3 Additional Results for Applications

S3.1 Results for ZIQSI estimation with 6 = 0.25

In this section, we present the results of taxon Slackia with § = 0.25. A
smaller § represents a larger region for interpolation. Compared to Figure
[l Figure [ and Figure [7] results suggest that the value of 6 do not affect

the model fitting with noticeable change (Figure [S3.6)).
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_ 1 q
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(a) Histogram of the observed (b) Change of predicted counts (c) Predicted quantile curve

and fitted taxon counts. regarding systolic bp(mmHg). of subject X11993.MI385H.

Figure S3.6: Fitted results for the taxon Slackia using ZIQSI with § = 0.250.

S3.2 Model fitting results for other taxa

In Figure[S3.7] — [S3.§ we represent the histogram of 5 taxa whose probability
of observing zero is around respectively 0.3, 0.4, 0.5, 0.6, and 0.7, fitted by

three methods. We observe similar patterns as shown in the main text.
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Our proposed ZIQSI fits the data much better than the other two methods.
Z1Q-linear commonly has a small proportion of negative predicted counts,
but it could be as small as —500 (Top figure of Figure . Quantile
Single-index often provides a large proportion of negative predicted counts,

consistent with the simulation results.

S3.3 Average Quantile effects

In this section, we present the average quantile effects of the taxon Slackia.
Though the estimated quantile curve is individual-specific, one can assess
the quantile effect of a covariate through the AQE by integrating all possi-
ble values of the covariate of interest (Section [2.3)). We again use the taxon
Slackia as an example. As reported in De la Cuesta-Zuluaga et al. (2018]),
“Adiponectin” has a statistically significant negative effect on the abun-
dance of Prevotella, while “Insulin” has not been detected as significantly
associated with Prevotella. As Prevotella is the co-abundance group that
the taxon Slackia belongs to, we expect to observe consistent AQE as re-
ported in De la Cuesta-Zuluaga et al.| (2018]). For “Adiponectin”, we com-
pare the two levels, namely 15ug/ml and 2ug/ml, as the normal and the
low adiponectin levels (Cleveland Clinic|, 2023)). For “Insulin”, we compare

the two levels, namely 10ug/ml and 25pug/ml, as the normal and the high
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Figure S3.7: Top: Coprococcus (observed zero proportion: 30%); Middle: Prevotella

(observed zero proportion: 40%); Bottom: Clostridiales (observed zero proportion:

50%)
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Figure S3.8: Top: RF39 (observed zero proportion: 60%); Low: Ruminococcaceae

(observed zero proportion: 70%)

insulin levels (Uttekar, 2021). These two variables are closely associated
with the host’s health and represent how the estimated AQE given three
methods perform under two different circumstances where the variable has
or does not have a significant effect on the abundance of the taxon.

The results of ZIQSI and ZIQ-linear show that the average quantile
effect of adiponectin on the count of Slackia is much more prominent than
that of insulin, whereas Quantile Single-index does not show any evidence of

the quantile effect of adiponectin (Figure [S3.9)). Further, ZIQST and ZIQ-
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linear suggest that adiponectin has a negative effect on the taxa count,

which is consistent with the results in De la Cuesta-Zuluaga et al| (2018).
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Figure S3.9: Estimated AQEs of selected covariates by three methods.
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