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1 Conditional expectations

We derive expressions for 11, p;; and E(¢;;) in Section 3 in the manuscript.
Each quantity is a conditional expectation given the observed data O; =
{(Yi, Xy, Z;j);i = 1,...,n, 7 = 1,...,J;} and current parameter values
B and £, but we do not emphasize this in the notation. Recall ,u;;
and [;; are conditional expectations of GG;; under the constraints G;; > 0
and Gj; < 0, respectively. To calculate these, we use the following known

result for truncated normal random variables.
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Result: If T is normally distributed with mean g and variance o2, then

E(W|W >1b) = u+%
EW|W<b) = u— OF{VW(ZE;))

where fy/(+) and Fyy(+) are the probability density function and the cumu-
lative distribution function of W, respectively.

Recall Gi; = an(X;5) + B' Z;; + 5, where €;; is a standard normal
random variable and aggregate observation times and covariates for the ith

pool into D; = {Xj;, Z;;, j = 1,...,J;}. From the result above, we have

B
= E[{B"Zj+ on(Xy) +ei} | B' Zij + an(Xij) + €15 > 0, D]

= B'Z;+ an(Xij) + Efeij | e > =B Zij — an(Xyy), Di}
o{ =B Zi; — an(Xyj)}

1= o{-B7Z;; — an(Xij)}

N e{B" Zij + an(X5y)}
P{B7Zij + cn(Xij)}

Ln T Ln
~ 877 41 b( X vlB Zi; +log{d " &b,(X@-j)}]’
B j T+ Og{;fl l( J)} + cp[,@TZz‘j +10g{2f:"1 flbl(Xij)}]

where () and ®(-) are the standard normal probability density function

= IBTsz + o, (Xiy) +

= ,BTZZ'j + Ozn(Xij)

and cumulative distribution function, respectively. This expression, when

evaluated at the current parameter estimates 8™ and &™), is

if(m)bl(X”)}—}—(p[Z;; (™) 1 log {37, & bi(Xi))}]
l ? m
e[z B+ log{> 0 &M b (X))

Y

pjj = Z;ﬁ(m)—l—log {
=1
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as given in Section 3. The quantity

T30m) 4 1, Ln ctm)y, i
Zfl h(X )} SO[Z[Uﬁ +log{> ;2 & bi(Xy5) }]

= Z[ 8™ +log {
O[ZT B +log{>/" &b (Xi5)}

=1

is derived similarly.

We now derive E(¢;;) = E(¢i; | Vi, D;). When Y; = 1, we have

E(¢ij ‘ Y;:LDi) = P(¢ij:1’Y;:17Di)

P(Yi=1]¢i; =1,D;) P(¢;; = 1| D;)
P(Y; =11 D;) '

Under our assumptions, the sensitivity v and specificity w are independent
of the observation times and covariates so that P(Y; = 1| ¢;; = 1,D;) =

P(Y; =1| ¢;; = 1) = v. Furthermore, under the assumed model,

Lnp
® (B7Z; + log {Zg,bl(xm)}] .
=1

Finally, because P(Y; = 1| D;) = v—~yP(A; =0 | D;), where vy = v+w—1,

gUC G

v @87 Zy; + log{30 &bi(Xiy)] '
v = T (1= @187 2y + log{ 17, Gbi (X))

An analogous calculation shows

(1= »)®[B" Zi; + log{>", &bi(X)}] |
1—v+yTII, (1 — O[BT Z; +log{> flbl(Xz‘j)}D

P(¢iy; =1|D;) = P(Ti; < X5 | Ds) =

and

::]&

P(A; =01 D)

it follows that

E(¢;; | Y;=1,D;) =
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Combining both conditional expectations and evaluating these at the cur-

rent parameter estimates B8 and €™ yields

E(i;) = 0 =
v =TT (1= @258 + log{ Sl € bi(X,)})

(1= ¥)(1 = Yi) RZTB™ + log{ S & hi(Xi)}]
1= vy IT (1 - oz 80 +1og{zl:'1am>bz<xij>}1)

as given in Section 3.

VY, ®[Z1 8 +log {3 & bi(Xi) ]
(

_|_

2 Proofs

We present proofs of Theorems 1-3 in Section 4. In what follows, for a
measurable function f and a random variable W with distribution P, we
define Pf = [ f(w)dP(w) and P, f =n~1Y"" | f(W;) so that v/n(P, — P)
is an empirical process. In the proofs below, K is a positive constant whose
value may change from place to place when it is used.

The observed data log-likelihood function for a single pool of size J is

10) =1(8,a) = Ylog<y—7H [1-@{a(X +ﬁTZ}}>

7j=1

+(1-Y)log (1—u+7H [1-@{a(X;)+B"Z, }})

7=1

Define ©,, = {6,, = (B,a,,) € B® A,} as in Section 4, let £, = {i(6,) :
0, € ©,}, and suppose € > 0. From Pollard (1984), we define the covering
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number of the class of functions £, denoted by N (e, £y, L1(P,,)), to be the

smallest integer M, for which there exists {97(11), . ,97(ZME)} such that
min }Pn|l(0n) — 10| < e,

for each 6, € ©,,, where 8" = (B™), oz%m)) €0, m=1...,M. We

define N(e, F, L1(P,)) = oo if no such M, exists.

Lemma: Under conditions (A1) — (A3) stated in Section 4, the covering
number of £; satisfies N(e, L1, L1(P,)) < Ke~®+n) where L, = ¢, + k is
the number of basis functions and p is the dimension of 3.

Proof. Recall a,,(t) = log{3_ 1" &bi(t)} and let A,(t) = Somm &bi(t).
For any 65 = (8D, o) and 6 = (8®,a?) € ©,, it follows that
|l(9 ) - l( )| < K(|BW - 83| + HQS) — 047(12)“00) by the Mean Value
Theorem, where || - || denotes the infinite norm and ||g1(x) — g2(2) |0 =

sup, |g1(x) — ga2(x)| for functions ¢;(-) and go(-). Let 5 ( ,...,gLn)

denote the coefficients corresponding to Ag ), for j = 1,2. It follows that

IAD = APl = sup Zg,”b Za bt

te T1 TQ]
2) (1) (2)
< < — .
K max & | <K& - &7
From the Mean Value Theorem again, we have ||oz£3) — 0P ||oe = || log AY -

og AP |l < K|AY — APl < K|IEW — ¢, from which it follows
1(6) —1(8)| < K[|BY — B+ K[[¢M) —¢@ | and P, [1(8,,) —1(8)] <

5
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K||B—BY|+K||&—¢9, for any 8, = (8, a,) € O, and & = (&1, 1,) ",
j = 1,2. From Lemma 2.5 in van de Geer (2000), one can show {3 €
R ||B|| < Mg} is covered by [bMg/{e/(2K)}]? balls with radius e/(2K),
where Mg is a large positive constant. Similarly, one can find the number of
balls with radius €/(2K) to cover {€ € Rf» M1 <& < M,,1=1,...,L,},

where M, is a large positive constant. Therefore,

€

Ly
) < Ke (ptln) O
€

10MgK\? /10M,K
N(e,ﬁl,wn»s(o ’ ) (0_

We now prove Theorems 1-3 in Section 4. Conditions (A1)—(A6) men-

tioned in the proofs are stated in the manuscript.

Theorem 1: Under conditions (A1)—(A4), the sieve estimator is strongly
consistent, that is, [|3, — Bo|| — 0 and SUDte(ry 7] |Gn(t) — 0 (t)| — 0 almost
surely as n — oo.

Proof. From the lemma above, the covering number of £; satisfies
N(e, Ly, Li(P,)) < Ke~ @+ From Inequality (31) on page 31 of Pollard

(1984) and the Borel-Cantelli lemma, it follows that almost surely

sup [P,(1(8,)) — P(1(8,))] — 0. (B.1)
0,0,

Let M<0) - _l(0)7 Cln = Ssup |]P>nM(0n) - PM(Gn)|, and C2n = PRM(00>_

PM(6y). Define K. = {0,, : d(0,,0,) > ¢€,0,, € ©,,,0, € O}, for any € > 0.
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We can conclude

inf PM(0,) = inf {PM(6,)—P,M(6,)+P,M(6,)}

0,€K. 0,cK.

< + inf P, M . .
< (i Bief o (0n> (B 2)
Furthermore, if 0, c K., we have

inf P,M(0) =P, M(0,) < P,M(0y) = Con + PM(8y). (B.3)

OcK.

Define 6, = Blnf{ {PM(6,,)—PM(6y)}. One can show d. > 0 when condition
n€
(A4) holds. In fact, if 6. = 0, it follows that [(8) = [(6). In particular, by

considering Y =1 or Y = 0, we have

H1—q>{a +5Tz}:H1—q>{a0 )+B Z;}] .  (B4)

For j # 1, letting X; — 0 in (B.4) leads to a(X1)+8" Z1 = ao(X1)+08, Z1.
By condition (A4), we have 8 = By and a(X;) = ag(X;), for X; € [1, .
Thus, model parameters are identifiable, and we can conclude §, > 0. It
follows from (B.2) and (B.3) that gienlge PM(0) < Cin + Con + PM(8)) so
that {én € K} C {Cn + Con = 9.} Combining (B.1) with the Strong

Law of Large Numbers, we have (3, = o(1) and (a3, = o(1) almost surely.

Therefore, because |J ({0 € K} € U ) {Cin+ Con > 6.}, we conclude
d=1n=d d=1n=d

A

d(6,,,8,) = o(1). O
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Theorem 2: Under conditions (A1)—(A5),

~

d(em 00) = Op (n* min{m,(lfﬁ)/Z}) .

Proof. We verify the conditions of Theorem 3.4.1 in van der Vaart
and Wellner (1996). Define ayo(t) = log Ano(t) = log{3 1" Enbi(t)} € An,
where & is the true value of &, for [ = 1,..., L,. Set Ag = exp(ap). From
condition (A5) and Lemma Al in Lu et al. (2007), there exists a A, with
order k > r+2 and knots 7, such that ||Ao(t) —Ao(f)]|cc = O(n~""). From

the Mean Value Theorem,

|ano(t) — ao(t)]|ee = [[1og Ano(t) —log Ao(t)]|c

= K|Aw(t) = Ao()]loo < O(n7"™).

Let 0,0 = (Bo,an0) € ©,. By the Triangle Inequality, it follows that
d(8,,0y) > d(6,,0,) — d(0y,0,0) > 0/2 — Kn~™ > K0, for large n and
0 > 0. Using arguments similar to those in Lemma 25.85 in van der Vaart
(1998), we obtain PI(0,) — PI(0y) < —Kd?*(0,,0y) < —K4?. In addition,
we can easily obtain PI(6y) — PI(0,0) < Kd*(0y,0,0) < Kn=2"". Thus,
PL(6,,) — PL(B,0) = PI(6,) — PL(6y) + PL(8) — Pl(0,) < —K§? + Kn~2"™,
which converges to —Kd? as n — oco. Define the class of functions £5(d) =
{1(6,) — 1(6,0) : 6, € ©,,0,, € O, and §/2 < d(0,,0,,) < §}. From
the method in Shen and Wong (1994), we show log Nj(e, £2(0), Lao(P)) <

8
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KL,log(d/€), for 0 < € < §. Furthermore, after algebra, we verify ||{(6,,) —

[(6,0)]|3 < K& for any function in Ly(d). The bracketing integral

0
Jp1 (8, L2(8), Lo(P)) :/ \/1+logNH(e, L5(8), Ly(P) de < K LY.
0

Hence, by Lemma 3.4.2 of van der Vaart and Wellner (1996), we have

2 /n

) = O(L}/?6 + Ln/n'/?),

BV~ Bl < KJy(6, £209), L) 1.+ LOLLD 22O

KLY?5
62\/n

< KLY <1 +

where E* is the outer expectation. Let ¢,(8) = L0 + L,/n'/2. Tt is
easy to show ¢,(8)/d is decreasing with respect to §, n?*@,(1/n™) =
nt/2{pre=(1=r)/2 4 p2r=1=0Y “and n'=*¢, (1/n1=%)/2) = 2n1/2. Therefore,
r2¢,(1/1,) < Kn'/? when r,, = n™n{r=(1-%)/2}  Because Pl(én) —Pl(8,0) >
0 and d(én,eno) < d(én,Oo) + d(0o,0,0) — 0 in probability, we have
Tnd(6,,,010) = O,(1) by Theorem 3.4.1 in van der Vaart and Wellner (1996).

These facts lead to 7,,d(0,, 80) < T2d(0y, Ono) +Tnd(B0, 86) = O, (1), which

completes the proof. [

Theorem 3: Under conditions (A1)-(A6), if 1/2(1 +r) < k < 1/2r,
then /(8. — Bo) — N(0,17'(Bo)) in distribution as n — oo, where the
information matrix 1(8) is given in the Supplementary Material.

Proof. The form of the information matrix I(3y) is given in the proof
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below. The score function for a single pool of size J is

(B, «
(B.) = 2

Y (Z;]:l p{a(X)) + BT Z}Z; 1T, [1 — P{a(X3) + 5TZi}]>
) v =TI, [ - @{a(X,) + B7Z,}]
(1= Y) (S ela(x) + BTZ) 21T, [L - {a(X) + 87 Z)] )
L—v+7TIL [1 = o{a(X;) + BT Z;}] '

Consider the submodel a4 (t) = a(t) + eh(t), where b = (hy,...,h,)" is a

p-dimensional vector with all components in Ly([71, 72]). The score function

of a(+) along this submodel is

1a(8,0)[n) = X1:0en)

Y (S elalx) + BTZ3R() [T, [1 - o{a(X) + B7Z:}])
v =TI [1 - ®{a(X,) + 87 Z,}]
11 =Y) (S p{a(X) + BTZhOG) [T, [1 - o{a(x) + BT 2] )
L= v+ 7TT, (1 - @{a(X;) + 7 Z;)) |

For h € Ly([r, 7)), take h* = arg m}inE 115(8, @) — 1o(8, a)[h]||?, the so-

called least favorable direction. By the Lax-Milgram Theorem (Zeidler,
1995) and arguments similar to those in Zeng et al. (2016), it can be shown
that h* exists. From Bickel et al. (1993), the efficient score function for
B is I"(B,a) = lg(B,a) — l,(B,a)[h*]. The information matrix of 3 is
18) = B{I*(8,0)}** = F{is(8,0) — (B, a)[h*]}**, where a* = aa’
for the vector a.

10
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To establish asymptotic normality of Bn, it suffices to verify the follow-

ing three conditions of Theorem 8.1 in Huang et al. (2008):
(C1) Pula(Bn, dn) = 0p(n~2) and Pyly (B, an)[h*] = 0,(n~/?)
(C2) (P, - P){l*(,én, an) — (B, a0)} = 0,(n~"/?)

(C3) P{I*(Bn, &) — I"(Bo,c0)} = —1(Bo)(Bn — Bo) + 0,([lBn — Boll) +

0,(n=4/?).

We first establish (C1). Because Bn is a sieve maximum likelihood estimate,
P.ls(B,, é) = 0. Thus, we need to show P,la(Bn, dn)[h*] = 0,(n~1/2).
This can be done by showing P,ls(Bn, an)[h] = 0,(n~1/?), where h* is
the sth component of h*, for s = 1,...,p. Suppose condition (A5) holds.
From Jackson’s Theorem in De Boor (2001), there exists a spline function
h:, € A, of order & > r + 2 and knots 7, such that [|h}, — hi[e. =
O(n~) < O(n~*). Moreover, we can conclude P,l,(3,, an)[h;,] =0 and
P{lo(Bo, o) [P =N ,]} = 0. Therefore, Ppla(Bn, é)[h?] can be decomposed

as Pnla(Bn, ay)[hE] = L1, + 1o, for each s, where
Il,n = (Pn - P){la(am dn)[h: - h:,n]}

and

[2,11 = ]P){la(/é,“ dn)[h: - h:,n] - la(1807 050)[]1: - h:,n]}

11
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Define £35 = {lo(8,an)[h; — h},] : (B,an) € O, 0%, € A,,d(0,,0) <
0, |y = hiplle < 0}, for s = 1,...,p. From Shen and Wong (1994),
we obtain Njj(e, £5, Lo(P)) < Ny(e, L5, ] + [|o) < K(6/€)EnP, and by
Theorem 19.5 in van der Vaart (1998), we conclude L5 is a Donsker class.
Furthermore, for any l,(8, an)[h; — h%,| € L3, we have P{l,(8, o) [h} —
Wiy < K[ — hi,lle, which converges to 0 as n — oo. Therefore,
following the arguments in Corollary 2.13.12 in van der Vaart and Wellner

(1996), we have I, ,, = 0,(n"'/2). Under conditions (A1)-(A3) and by using

the Cauchy-Schwartz Inequality, we obtain

]2,71 < Kd(énva()) ”h: - h:,nHOO

<0, (n— min{rx,(1-x)/2} n—n) =0, (n— min{n(r+1),(1+n)/2}) =0, (n_1/2) .

Therefore, Pl (0., éy)[hY] = L+ I, =0,(n"1/?), for s = 1,...,p. This
establishes (C1).

We next establish (C2). It follows similarly that £4(6) = {(*(0,) —
I*(6y) : 0, € ©, and d(6,,,6y) < d} is a Donsker class. Moreover, for any
1*(0,) — 1*(6y) € L4(5), we have P{I*(0,) — I*(6y)}* < K d*(0,,60,), which
converges to 0 as n — oo. Thus, by Corollary 2.3.12 in van der Vaart and
Wellner (1996), condition (C2) holds.

Finally, we show that condition (C3) holds. First note that

12
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P{I"(Ba, ) — I"(Bo, 0)}
= P{lﬁ(Bna dn) - lB(ﬁO? 040)} - P{la(Bm dn)[h’*] - lOé(BOv aO)[h*]}'

We now write lﬁ(/én, Gp,) and [, (Bn, &y, )[R*] in their Taylor series expansions

about (B, ag). Doing so gives

P{ls(Bn, &n) — 15(Bo, o) }

= P{lss(Bo, 20)(Bn — Bo) + lga(Bo, o) [dn — aol}

+ Op ({n— min{rn,(l—/@)/Q}}Z) (B5)

and

]P{la (Bm é‘n)[h’*] - la (507 Oéo) [h*]}

= P{la(Bo, 20)[P"](Brn — Bo) + laa(Bo; a0)[R", G — ]}

+0,([1B0 — Boll) + O ({n~ ™ r=C=m232) - (B.6)

where lgg is the second derivative of (8, ) with respect to 3, lg,[h*] is
the derivative of g along the submodel ap+, loglh*] is the derivative of
lo[h*] with respect to B, and l,o|h*, &, — ] is the derivative of [,[h*]
along the submodel ag + €(&, — o). Note the last terms of (B.5) and (B.6)
are both o,(n"1/2) if k satisfies 1/2(1 + 1) < k < 1/2r. Because h* is the

least favorable direction, h* satisfies l&*)llg = l((f)la, where l&*) is the adjoint

13
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operator of [,. It follows that
P{laalh”, d — agl} = —=P{la[h*]la[dn — agl} = —P{I1.[R*][Gn — o]}
= —P{IW15[d, — ag]} = P{lgaldn — aql}. (B.7)

By the definition of h* and Theorem 11.1 in van der Vaart (1998), we have

1(Bo) = P{I*(Bo, a0)}** = P[{ls(Bo, ) — la(Bo. o) [R*]}{1s(Bo, )} ]
— P{la(Bo; ) — lap(Bo, o) [R7]}.  (B.8)

Combining (B.5)-(B.8), it follows that

B{I" (B ) = 1" (Bo: 20)} = ~1(B0) (B — Bo) + 0,18 — Boll) + 0p(n /%),
which establishes (C3).

Finally, we show (8) is nonsingular. If I(8,) is singular, then there

exists a nonzero vector u such that

u' E [{15(80, @0) — la(Bo, @0)[R*1Hls(Bo, a0) — la(Bo, o) [A*]} '] w = 0.

This implies ||u" {l5(Bo, @) —la(Bo, a0)[h*]}]|3 = 0 and thus u " {l5(B, o) —

lo(Bo, a0)[h*]} = 0. By considering Y =1 or Y = 0, we have

J J
> ola(X)+8"Z} [[[1 - o{a(X) +B'Z}] (u'Z; —u"h") =0.
=1 i

Because p{a(X;) + B"Z;} > 0 and H;;j[l — ®{a(X;)+B7Z;}] > 0 for
any j and X; € [1y, 72|, it must be true that u = 0 by condition (A6). This

is a contradiction and hence I(3y) is nonsingular. [J

14
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3 Second simulation study

We performed a second simulation to evaluate the finite-sample properties
of our regression methods. All settings are the same as the first study

except for as follows.

e We use 5 covariates Z;ji, ..., Z;j5; each follows a Bernoulli(0.5) dis-
tribution. The true B8 = (B4, ..., 35)" = (0.5,0.5,—0.5, —0.5, —0.5)".
These configurations provide an average right censoring rate of ap-

proximately 92%.

e We use pool sizes 1, 2, 3 or 4. These are selected according to a
discrete uniform distribution with probability 0.25 for each pool size

(after selection, they are regarded to be fixed).

Table S.1 (page 17) shows the results for three configurations of the as-
say sensitivity and specificity: (v,w) = (1,1), (0.90,0.95), and (0.85,0.85).
Figure S.1 (page 18) shows averaged estimates of the baseline survival func-
tion S(t) for (v,w) = (1,1) and (v,w) = (0.85,0.85). The results for this
study are in agreement with those from the first study. Estimating the
probit model and the large-sample covariance matrix took approximately 8

minutes on average for each group testing data set.

(continued on the next page)
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4 PH analysis of Iowa data

For comparison purposes, we also estimated the Cox proportional hazards
(PH) model

S(t| Zi;) = exp{—A(t) exp(Z;;8)},

with the Iowa data using the approach in Li et al. (2024). In this model,
Zii = (Zij1, Zij2) ", B = (B1,B2) ", and A(t) is the unknown cumulative base-
line hazard function. The covariates Z;;; and Z;;, are indicator variables
for race as defined in Section 6 in the manuscript. Here are the relevant

results:

e the sieve ML estimate of $; is 0.336 with estimated standard error

0.104 (p-value = 0.001)

e the sieve ML estimate of (5 is 0.216 with estimated standard error

0.150 (p-value = 0.150).

As in the probit analysis, the time to chlamydial disease onset is stochas-
tically smaller for African American subjects when compared to Caucasian
subjects. When making the same comparison with subjects of other races,
the difference is not statistically significant. We note that estimating the
PH model and the large-sample covariance matrix of the regression param-

eter estimators took approximately 2 hours.
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