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This supplement contains technical proofs for the manuscript “The Method of
Limits and Its Application to The Analysis of Count Data in Genome-wide Association

Studies”.

Overview

There are many theoretical results in this work, and some of the proofs have significant
similarities. Therefore, we only present the proofs that introduce new ideas or methods.
The rest of the proofs can be given by applying the proved results or similar arguments.

Specifically, the presented proofs include those of Lemma 2, Theorem 2 and Lemma 4.
Throughout the supplement, the manuscript, “The method of limits and its application

to the analysis of count data in genome-wide association studies”, is referred to as MS.

A.1 Proof of Lemma 2

Let us first assume that the entries of Z are N (0, 1); later we relax this assumption. It

can be shown that, given «, (y;, 2;),7 = 1,...,n are conditionally independent. We have
Ty =n"27 ) 2 ZiYinYis = N7 D g, UG Wiy, Where u; = y;z;. Write
ugluiz = E(uil‘a),E(ui2’a> + E(ui2|a)/5i1 + E(ui1 |O‘),5i2 + 5;25i17

where §; = u; — E(u;|«). Then, we have
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with the terms defined in obvious ways. It can be shown that

E(u;|or) = o3+ a/a)/2 (%) N.. (A.2)



It follows that

Ty, = o8+ 'ea (O‘ O‘) (N2 . ZN2> Ly N2woesttest (AL3)

D

Next, we have Ty = e(@6+7 @'0)/2(q ) /p)yn=2 377 _ 1 (324,20, Niz )0, - It follows that

B(T3|a) = %eawla’a (%) Z (g N,2> Var(u;, | ) (%) .

i1=1

Using the fact that for v ~ N (0, 1), we have E(v%e*) = (1 4 a?)e**/? for any constant a,

-1/

it can be shown that E(eM z;2|ar) = e /27 /e ([ 4 A2p~Taa/). Tt follows that

Var(u;|a) < E(uu|a)
—  N;e2E(e% 22l |a) + N2e*0E (e 2,2 av)

/ /
—  Nelottr a2 (Ip + %) + N2e2od+pte’a) (Ip + 40‘; )

/
2NZ2€2(U(2)+p71a’a) (Ip + 40405 ) (A4)
p
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(for symmetric matrices A, B, A < B means that B — A is nonnegative definite), hence
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E(Ty|a) < e\90? { p +4(—p = E E Ni, | N,
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using the Cauchy-Schwarz inequality for the last step. It is seen that E(T%|a) = op(1),

hence, by the dominated convergence theorem, it can be shown that
T12 = Op(l). (A5)

Finally, we can write » | 0,0, = 27 _y diy, where di, = (32, i, 0i,) 0iy» Fiy =

11712 12 i1

o(a,u;i < dp), 1 < 43 < nis a sequence of martingale differences. Thus, using the
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martingale property, and (A.4), we have

4 n
E(Thla) = — Y (@

i1=1

_ %iE{<Z 5z2> Var(us, |a) (Z 512)

i1=1 12<11 12<11

- % Z tr {Vaur(ui1 ) Z Var(ui2|a)}

i1:1 i2<i1

< geAled+rlaa) ) 8 (da 16 (a/a)\*| p N2 N2
< 8e +]—) » +? » ﬁz i1t Via

11#£12

It is seen that E(T%|«) = op(1); thus, by the dominated convergence theorem, we have
T13 = Op(l). (AG)

By (A.1), (A.3), (A.5) and (A.6), the result follows.

We now relax the normality assumption. What we do is to revisit the places in the
proof, where the normality assumption was used, and make appropriate changes under the
sub-Gaussian distribution. The first place is (A.2). Note that we can write E(u;|a) =

N;e8/2E (€% z;|a), and the jth component of E(e7 z]a) is

E(eVz;la) = B {exp <\/23 ) 2 }gE {exp (EZZ,C)

By Taylor series expansion, it can be shown that
o

e (%) )= z% (%)E()

By Lemma 2.3 of Jiang ef al. (2016), there is a constant K > 0 such that E(|z;]?) <

of.

(K\/q)% q = 1,2,.... Also, by Stirling’s approximation, there is a constant ¢ > 0 such



that (K,/q)?/q! < c(1/2)7, q = 3,4, . ... It follows that
(875 ’ak’
(oG] = 1o S (0
Lo (5 >
a3 c (|ak|>3
1+ 2+
2p 1 —|owl/2y/p \ 2D

= {OP STy (%)} o

using 1 + x < ¢e” for all x € R for the last step. On the other hand, on the set A =

{(maxi <<y |or])/\/P < 1A (2/c)}, we have |ay|/2,/p < 1/2, hence

‘1—\u:\/m(%)‘§2 O}l)“

It follows that the expression inside the exponential on the right side of (A.8) is nonnegative.

Then, using the inquality 1 + = > e*=2*/2 for > 0, we have, on A,
E{exp (ﬁzk) a} > 1+a—i—c§: (M)q
VP TR AN

2p  1—Joxl/2y/p \2\/D

> exp Oé_i_ ¢ <|ak|>3_u_%
- 2p  1—lal/2y/p \2\/P 2 [’

where u; denotes the expression before —u? /2 inside the latest exponential. It can be

shown that, on A, we have u} < o} /4p? + ¢*|ax|/16p>. Tt follows that, on A, we have

2 3 4 2.6
ap  clagl ap o Qg
exp| 2 ———= -5 ——=—=| < Elexp|—zi ||
Y (2p ¥ sp? 32p%) T P\
o, clowl

<
< exp (2]) + 4p3/2>

for any k # j. It follows that, on A, we have

1 ) c 3 1 4 c? 6
eXp 2_ ak_4 3/QZ| k| _WZO% 32 BZak
P i P Ly Ly
o 1
<16 [ (%) <00 (2 Yt 5 )
k#j k#j k#j




Note that the left side of the above inequalities can be written as e ®/?P~9 while the right

. . ! .
side can be written as e* */2*hi_where

¢ g, 1 ,, 6 O
g = 4p3/22|ak| +8_pQ ak+32_l)32ak+2_7
Py Py Py
2
¢ 3
Py

Write a; = Hk#j E{ e/ VP)zik

a}. Then, we have, on A,

4y — e'/2] < /% max {je% — 1] v |e — 1} = /2D,
1<j<p

with D; defined in an obvious way. It can be shown that D; < e"3/vP(D,/ \/P), where

p

p 2 p
c D, 1 4 c 6
:_Z‘O‘k’3+ , Dy= D3+ 322%—1— 5220%’
Ap = 2Vp 8p*/ k=1 32p°/ k=1

and Dy = max;<;<p a?. On the other hand, by similar arguments, it can be shown that

b =E {exp (%zj) 2 a} = \—;(1 +r;)

with |r;| < cla;[/2,/p. It follows that

b Oéj
J
\/ﬁ

Combining (A.7) and the above results, we have, on A,
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where D is defined in an obvious way. Thus, on A and for any 7; # i5, we have
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o
(e 24,0 B¢ 2]a) — e/ L

= ‘E(W”Zilﬂa) o

P
|
+ 0106/2]7 J E€712212Q ea a/2p_
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Combining the above results, we have, on A, that

e E E Yi Yi o/a/paﬂz
T = T+ F 6 120 E(@ 222}1‘2]"06) —e —

117102 p
= T+ Tuu,
where 171 is the same as the left side of (A.3), and 77;; is defined in an obvious way.
According to (A.3), we have 179 PN Qwa o0 twot, Furthermore, by (A.9), we have

/ Dy, D
‘Tllly S 60(2)D 2e” /2 [ 72 +—1.
p p

It can be shown that max; <<, |;| = Op(log p), hence Dy = (log p)*Op(1). It is then easy
to show that D = (log p)?Op(1). It follows that 711, = {(logp)*//p}Op(1) = op(1). It
follows that 77; converges in probability to the right side of (A.3).

Next, write T1p = 2e7/2n72 3" _ | d;,, where d;, = > inziy NinE(e¥22] |a)}d;, . For

i # i), 64y 61-/1 are conditionally independent given WW; thus, we have
E(6;, 03 [W) = E(6;, [W)E(05 [W) = v, v,

where v; = E(u;|W)—E(u;|a) = Nie™ z;—E(u;|a). Itis seen that, given a, v, , vy are con-
ditionally independent. It follows that E(J;, ¢, |a) E(v, V. Vir o) = (1/1-1|a)E(1// la) =0,
hence E(ds, iy a) = {54400 NuF(€7 2, [0) Y0, 8 ) {4y sy NosB(E¥2 25 10)} = 0.



It follows that E(T3%|a) = 4e%in=* 37 _ E(d? |a)

4QOZ{ZN E(e"2 2z, )} (g, u; o) {Z 1221-2\04)}

i1=1 \ia##i1 ioiy

8(2?”O "
Z { Z N, E(eY2z;, )} N7 E(e*1 2, 2 |a) { Z NiQE(eA’i?zmla)}
11=1 \idg#iy o741

863"0 -

Z > NZN,NyE(e2 2 |a)E(e* 2, 2, [a)E(e"% 2| )
11=1 49,0570y

n

8630(2) p -
= Z Z NleigNié ZE(e“’lziljzilkm)E(e%?zm]a)E(e 2zl ).

i1=1in,ih#iy Gk=1

By similar arguments, it can be shown that, on B = {max;<;<, [a;|/\/p < 1/2}, we have
logp\®
< OP 1 ) ] 7é k?
( VP ) W

log p
< Op(1),
= P p(1)

4,
’E(emzijzik]a) — —e?P lalo‘ajak
p

’E(e“z?j o) — e e

where, and hereafter, the Op(1)s do not depend on any of the indexes. Furthermore, by ear-

lier results, we have |E(e z;|a) — e**/?P(a;/\/P)| < {(log p)?/p}Op(1), which implies

3
v , 1 QO log p ,
E(eY2 2, :|a)E(eb 2y 1|a) — P @@ < ( ) Op(1), Vi, k.
(1) B 20l o)< (2
It can then be shown that, for j # k, we have
2 it 4 sl 2 o logp)”
E(e™ 2, 21, 1)E(€72 2, 5] ) E(e Zzzi5k|0z) — e P %gag| < Op(1),
VD
and, for 7 = k, we have
27; 2 72 Vil 1 3p~la'a, 2 logp ’
E(e 2;;|a)E(e™ zi,5| ) E(e 2 2y 5 |o) — —e aj| < /b Op(1)

Combining the above results, it follows that

oa\? o (logp)?® (logp)* | (n— 1
E(T%|a) < Op(1 ( >+ + - N? N,
(Tla) p<>{ . PR S g :




which is op (1) by the following fact, which follows from the assumptions:

V
PEESNTNENE 0 (A.10)

L
[a V b = max(a, b)]. This implies 715 = op(1).

Finally, let us consider 7}3. It follows by an earlier result (see the beginning of the proof;
note that this has nothing to do with the normality) that, given o, u; = y;2;,1 <7 < n are
conditionally independent. It follows that E(u;|F;_1) = E(u;|uy, ..., u;_,,a) = E(u]a),
hence E(6;|F;_1) = 0. Thus, ¢;, F;, 1 < i < nis still a sequence of martingale differences.

Thus, by earlier arguments, it can be shown that E(T3|a) <

8 4 2 _ .
ﬁe%o D ONZNE D CE(E 2,2kl 0) E(€212 24,5201 )
ik

i1£io
8 402 2 AT2
= e o ZNz‘lNiz <Z+Z)
1742 Jj#k Jj=k
8p 2 AT2
= —0e(1) > N2NZ,
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which is op(1) by (A.10). This implies 713 = op(1).

The proof is complete.

A.2 Proof of Theorem 2

Part (I): Similar to the proof of Lemma 2, given o, X, N, (y;,2;),i = 1,...,n are

conditionally independent. Furthermore, for any fixed vector a = (a;)1<j<, € RP?, define
: p
cp(a) = B(e”™) = [ [ Efexp(ajzn/vD)},
j=1

and dy,(a) = [dy(a;)]1<j<p With

E(z11 eXp(CLjZn/\/Z_?)}
E{exp(a;z11//pP)} '

dy(ay) =



where the expectations are taken with respect to the distribution of z;;. We have

E(yilaa X7 N) = Ni€u+jgé+gg/20p<05) = f(jw Ni7 O[),
E{yl(yl - ].)|Oé, X7 N} = (Ni€u+fgﬂ~+og)2cp(2a) = g('%la Nia Oé),

E(yizi|a, X, N) = Nieu+igg+08/2cp(a)dp(a) = h(z;, N;, o).

Let y(y — 1) and S denote the left sides of (2.10), (2.11), and by, s = 1,2, 3,4 the right

sides of (2.8)—(2.11) of the MS, respectively. The following expressions can be established:

Op(].)
\/ﬁ?
1 . 2byd;
noh = (1) g ¢ Z(Zh’2> b + 272

i2F11
- _ op(1
yly—1) —bs = 2bs P\)/(ﬁ)7

S—by = bA+E(fla){26'ds —E(fila)(8' D3+ 2d'3)}

2 <« o 1
+ﬁ Z (Z $i1$i2.fi2) 51i1 + OP—\/(E)’

i1=1 \iga#i1

b~
j—b = 51A+d1+51+

where A = p' Y0 Ay with A; = of — 023 dy = n7' Y7 duy 5 = 1,2,3,4 with
dii = fi — E(fila) and f; = f(Zi, Ni, @), dzi = v; — E(vi|er) and v; = Niei’gg, d3i =
9i—E(gila) and g; = g(Zi, Ni, ), dyi = t;—E(ti|), t; = fi(xi—b), and h; = h(Z;, N;, );
d = n_l Z?:l dz with dz = T — b, D = n_l Z?:l Dz with Dz = dzd; — B; (512' =
Yi —E(yila, X, N), 62 = yizi — E(yizilo, X, N), 030 = yi(yi — 1) = E{wi(y: — 1)|a, X, N'},
and 0, = n~' 3.1, 04, 5 = 1, 3. Note that E(f,|a) = e#T@+TI2E(N))e,(a).
From the first two expressions, and Taylor expansion, we have
v b
VA —a?) = Vi (— - b—)
Y 1

— _Qb—%z\/ﬁ(g —by) + \[j_;<T1 —ba) +op(1)

= M, + My + M3+ op(1),



where M, = ?:1 My;and M, =37 | My, s = 2,3 with

bo/10
T B
2b do; ;
A4Z - 2 2 2 _'QE' )
b%\/ﬁ er /2E(N1) b1
2 _
Ms, = (h/521;—<7§bl51¢),

bivn

where b = n~' 327" h;. It can be seen that dy; = #+73/2¢, () dy;. Thus, we have

2by{c,(a) — €7/} [ d,.
= — p _— = 1
M == c=mE) \vir) = 20

because, by the proof of Lemma 2, we have
cp() = €72 4 op(1), (A.11)

and dy.//n = n"Y23"" | dy; = Op(1). Thus, we can write
V(62 = 02) = My + Mz + op(1) = Y M + op(1), (A.12)
k=1

where M; = M;;,1 < j <pand M,; = Ms;,1 <i < n. Define F; = o(aj, 5 < j),
1<j<pand T, =0(o, X, N,yi,zy,7 <i),1 <i<n.Then, My, Fy,1 <k <p+n
is an array of martingale differences. Note that M}, J) depends on n, p, but the latter are
suppressed for notational simplicity. According to the martingale central limit theorem
(Hall and Heyde 1980, p. 58), to show that M = Zii’f M, BN N(0,0?), where o2 is a

positive constant, one needs to verify the following three conditions:

max M), — 0, (A.13)
1<k<p+n
ptn
YoM o (A.14)
k=1
E < max M,f) is bounded. (A.15)
1<k<p+n

(A.13): First, we have max; <<, |Mi;| < (v/n/p)(logp)*Op(1) = op(1).
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Next, we have E(yl|(1/, X, N) = 6“+U(2)/26p(04)1)i, hence maxj<i<n |511| S maxj<i<n yz+

2
ettoo/ 2¢, (@) max <;<,, v;. For any constant ¢ > 0, we have

1
<c+H+ -
c c

yi <c+

Thus, by first choosing c sufficiently large and then letting n — oo, it can be shown that
n~2maxi<j<, y; = op(1). By similar arguments, we have n~/2 max,<;<, v; = op(1).
Furthermore, write w,(a) = ¢,(a)d,() = [wyj()]1<j<p. By the arguments in the proof

of Lemma 2, it can be shown that we have the following expression:

2
0% Qay, Q;
wp;(a) = (—J + rm) [ ] (1 +o-+ spk) = (— + m-) Ryj,
VP oy 2p VP

with R,; defined in an obvious way, where

-<a—§0 1 < M 30 1);
|ij|— D p(1), |5pk|_ /P p(1);

hereafter, the Op(1)s do not depend on any indexes. It can then be shown that, with proba-
bility tending to one, one has
! Op(1
exp{aa _ el )} < Ry

SR Al

It follows that |R,; — e ®/?"| < Op(1)/,/p. Thus, we can write

IN

Q; Q;
wp@) = —Le¥ % = —L(R,; — ) 1y Ry,

VP VP
to get |wy; (@) — (a;//P)e¥/?| < p~'(Joy| 4+ a2)Op(1), 1 < j < p. On the other hand,

note that h; = e#76/2,w, (). Tt follows that

1 /
32 (Z hi/) O2;

i

< 6“”3/21771*1/2\%’,(04)524 <

where v = n_l Z:’L:l V; and w; = ]w;(@)égl\ Recall U; = Yiz; = (uij)lgjgp. It can be

11



shown that E(|u;;|*|a, X, N) < Op(1)(v} 4 1). Now, for any constant § > 0, we have

P(maxwl>5\/—

1<i<n

a, X, N) < Y P(w; > 6v/nla, X, N)
=1

3
a, X, N

IN

p
> wyi(a)da;
j=1

1 n
oy 2"

. 3/2
c
= 53n3/2ZE {Zwm 21]} a, X, N1,
i—1

using the Marcinkiewicz—Zygmund inequality [e.g., (5.71) of Jiang (2022)] for the last step,
where d02;; = u;; — E(ula, X, N). By an earlier result, it can be shown that w?;(a) <

Op(1)a7 /p, where the Op(1) € o(c). Thus, we have

3/2 L 3/2
252
{Zwm ZU} o, X,N| < 1)E <p2a52”> a, X, N
1 p
< {—Z\Oéj|3|52ij\3 OGX,N}
P
Op(1
< p(1) ¥ | *E(Jug]?|a, X, N)
p

j=1
< Op(D)(vi +1),

using Jensen’s inequality for the second step. Combining the above results, we have

P(maxj<jcn, w; > dy/n|a, X, N) < Op(1)/63\/n; thus, by the arbitrariness of J, and

the dominated convergence theorem, we have n~"/%? max; <i<n W; = op(1). Combining the

above results, we have max;<;<, |Ms;| = op(1). Thus, (A.13) has been verified.

(A.14): First, by the law of large numbers, it is easy to show that

p

> M= b404 ZAQ Ly yet 3y — 1),

j=1
where ) = w™!. Next, some tedious derivations show that
n P 4
Y B(M|Fpei1) — b—%{Ui(bl +b3) + 0,03} (A.16)
i=1

12



Furthermore, it can be shown that 37 {M2 — E(M2|F,.i_1)} — 0. Thus, S>7, M2
converges in probability to the same limit as the right side of (A.16).

(A.14) has now been verified with 0 = v, given more explicitly by (22) of MS.

(A.15): We have max;<j<, M7; < (bo/bi02)*(n/p?) 3-0_) A3. It follows that

by \’ n
2 2 ) 43— 1)=
E (£?§M1j> = (b%crg) 7a(3Y 1)p’

which is bounded. Similarly, we have
¢ — -
B (jmux M2) < 55 SO + B0
== =1

for some constant c. It can be shown that E{c,(a)} < (1—c,0%/p) /% — ¢191/2 for some
contant ¢; > 0, and similarly E{¢,(2a)} < (1 — 4¢,02/p)~?/? — ¢*2197, Furthermore, it

can be shown that E(0%,) < f; + e>(#t90)12¢,(2a). It follows that
E(52) < et 2B (N By (@)} + 2o B (N E ey (20)),
which is bounded, hence n=! >_"" | E(6%,) is bounded. Next, we have
E{(165)*|a, X, N} = h'Var(u|a, X, N)h < R'E(usul|a, X, N)h.

It can be further shown that

R'E(uuf|o, X, N)h < 63(“+”3/2)(ﬁ)Qviw;(a)E(ealgizizg]a, X, Nw,(a)
A (z?)%?wé(a)E(ezo‘/giziz§|0z, X, N)w,(a)
_ 63(“+03/2)(@)2vih +e4“+3”3(17)2vi2]2,

with [y, I defined in obvious ways. Note that

p
I = Z E(eo‘/zizijzik|a,X, N)wy,(a)wyr(a).

Gk=1
Recall wy,; = E(z11e%%/VP) [T, E(e®#i/VP); similarly, we have
E(ealéizijziﬂa, X,N) = E(Z11ea-jzll/\/ﬁ)E(ZnGakzn/‘/ﬁ) H E(ealzn/‘/ﬁ%
[y

13



where the expectations are taken with respect to z;;. It follows that

E(ealgiZijZik|a;X7 N)wyj()wpr(e) = Ap(oy)Ap(ax) H (),
I#,k

where \,(a) = {E(z1,e%1"/VP)}2E(e**11/VP) and j1,(a) = {E(e®*11/vP)}2. Thus, we have

E{E(e" 2zl a, X, N)wpy(a)wpr(a)} = [E{A () }P[E{py(01) 12

Using Jensen’s inequality, properties of normal and sub-Gaussian [e.g., Lemma 2.3 of Jiang

et al. (2016)] distributions, and Stirling’s approximation, we have

E{ (1)} < B(e Beaz /vy = B{E (3 E# VP by 211)} = E{G(Q/Qp)ofblzfl}

< B{ORR E{HZ(%%) zn} +Z<901) <zfg)

2p ) ¢
<l+c 2(901> m@j 1+c Z(—eale) <1+§

for large p, where K is a positive constant, and c is a generic constant, whose value may

be different at different places (same hereafter). Thus, we have

p—2
_ c .
) R
On the other hand, it is easy to show that

B8 = S 3 () B = St
z16 = — — | /2 =—+r(m),
11 NG 2 NG 4/ N 1

with r(aq ) defined in an obvious way. Furthermore, we have

-2 3
| (a1)| < —E{| 11| Z (|CY1211|) }S %E(|211’36|Q1Z11/ﬁ)-

Similarly, we have E(e®#1/vP) = 1 + s(a;) with |s(a;)| < (a?/2p)E(z3 elosnl/vp),
It follows that \,(c) = {a1/\/p + r(a1)}*{1 + s(a1)} = ai/p + R(a1), and, by the

Cauchy-Schwarz inequality, it can be shown that

S vV DE( i)

’R(a1)| < p3/2

Salad v DB} <

14



using Jensen’s inequality for the last step. Thus, by similar arguments, we have
2
o
E{Ap(an)} < ==

9 , ¢ 6larz11]/v/P\11/2
= B P2,

where the last expectation is with respect to both a; and z1;. Furthermore, we have
E<66\a1z11|/\/17) -1+ f: (i)q E(’al‘q)E(‘le‘Q)
VP q!

<1 —i—c; (%)q w%%l((ﬁf)q <1 +c§: (M)q <14+,

=\ VP VP
where K, K5 are positive constants.

q=1

Combining the above results, we have E(I;) < p?(c/p?)

c. Similarly, it can be
shown that E(73) < ¢. Therefore, we have

1 > CE{(165)?} < HTOE@) E(L) + eMPIE{(0)202}E(L) < ¢
n
=1

Note that it can be seen that /;, /5 depend only on «, hence are independent with the v;s.
Also, it is easy to show that E(7)? < €97 /2E(N?) and E{(7)%1?} < 8" E(NY).
(A.15) has now been verified, hence the proof for part (I) is complete.
Part (II): Because S, . B>0 (positive definite), there is a constant a > 0 such that
Amin(Sz) > a with probability tending to one. By similar arguments, it can be shown that
Vn(G5

—09) = My + Mz +op(1) = Y~ My + op(1), (A.17)
k=1

where M2 = Z?:l MQZ‘, M3 = Z?:l Mgi with

My, l {a2d2‘ + @ - (ﬂ) B'dy; + CLQd,ﬂ + a—%ﬁlD‘B
‘ Vn " 2bs by ! 1 2 !
N; —E(Ni) N} - E(VP)

TR 2E(N?) } |

B 2

by
where a; = E(f1|a) /b1, az = {(62 + 7% — 1)c,(a) — 03603/2}/{6(”3+72)/2E(N1)}, W=

My = ﬁlum(sz)zcd {<0§+TQ -1- ) -2 D }

n~t3"  w; and w; = fidy; and My = Moy, M, = Mz, 1 < i < n. Note that the

15



M notations are re-defined [after proving Part (I)] to avoid notation complexity. Similarly,
re-define F; = o(«o,xy, Ny,i' < i), Fppy = o(a, X, Ny, zp,i’ < i), 1 < i < n.
Then, My, Fr, 1 < k < 2n is an array of martingale differences. Thus, again, to show
iil M, -4 N (0, 0?) we need to verify (A.13)—(A.15) with p + n replaced by 2n.

(A.13) can be shown similarly using the results or arguments from the proof of part (I).
It follows, by the dominated convergence theorem (e.g., Jiang 2022, Theorem 2.16), that
the convergence in probability also holds conditional on X = o(z;,i = 1,2,...).

(A.14): First consider ) ;" | M3,. It is easy to show that Y . {M3, — E(M3,|F,_1} =
op(1). Next, write U = agdy; + d3;/2by — (a1 /b1)B'dy, V = aid.B + (a3/2)5'D;f3, and
W = {N; — E(N,)}/E(N,) — {N? — E(N?)}/2E(N?). Then, we have

E{(U+V +W)?*|a) = E(U?*|a) + 2{E(UV|a) + E(UW|a)} + E(V?|a) + E(W?).

We have E(W?2) = var[(Ny).] — cov[(Ny)., (N?).] + var[(N?).] /4, where for any random
variable ¢ with finite, nonzero mean, (, is defined as (/E((). Also, it can be shown that
E(V?|a) = (72/2)(7? + 2)aj. Furthermore, some tedious derivations show that

2 2

E(UV]a) = %(72 +2)e” PE(Ny)dag + T3 (72 + 1)62(“+"3+T2)E(N12)cp(2a)%
3
7'2 2.2 CL“;)
—3(7'4 + 472 4 2)eitloatT )/2E(N1)cp(a)b—;
1

16



2
E(UW|a) = e/ {a2 _ (%) Tzewg/ch(a)} {var(Nl) ~ cov(NNy, Nl)}
1

E(N) 2E(N?)
+cp(2a)€2(“+ag+72) cov(Ny, NY)  var(N?) .
2bs E(N1) 2BE(NY) |
B(U%a) = e [ B(N?) — {B(N)}?] o3

2 2 2 2

~rmaart e ) 20" B (V) — {(E(V)Y]
2
+ (%) R RCARE () [(472 +1)e” E(N}) — 72{E(N1)}2]
1

+%62(N+03)+572/26p(2a) {627‘2E(Ni3) . E(Nl)E<N12)}

3

2
_(111—263“+(5/2)(08+T2)Cp(Oé)Cp(QOz) {3627—2E(N13) . E(NI)E(NIQ)}
1V3

2 2a
+ Zéwg) {64T2E(N12)i - 1} :

It is seen that all of the above expectations do not depend on any index. Furthermore,
it can be shown that —E(UV|«a) and E(V?|a) converge in probability to 72(7% + 2)/2;

—E(UW|a) N E(W?), whose expression is given above; and

E(U%la) — (74437 + 1)e” E{(N1)2} = (27 + 1)e? B{(M).(N]).}

1
o [ B2y - 1]

It can then be shown that ) | E(M3;|«) converges in probability to

w2, = M 372+ )" — IE{(N))?} — 4{(272 + 1)e¥” — 1}E{(]V}).(N?),}
+(e™ = 1E{(N})?}

= E[2(N){(1 = 7)(€"). + T2(Yae"). — 1} = (ND){(e*). — 1}]°,  (A.18)

where Y; is defined above (2.19) of MS. Combining the results, we have 37 M2 — v2,.
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: o p
More tedious derivation shows that Y7 | M3, — v3,, where

vgy = 4 |{(c2+7T*+1)*+ 02+ 7'2}(3"2 — (r* 4312 + 1)672} E{(N1)?}
44 (202 +27% +1)e* — (272 + 1)62T2} E{(N1).(N?),}
+ (e =) B{VD)
4 { -2 B(N1)E(N?)
by {E(N?)}?

2
— E{b—(a§+¢2—1—y2—Y3)Y
1

+‘Y(};3_ : +2{(1 = 7)(e7)u + T2 (Yae™).} — (72) (VD). | (A.19)

2
—(03+72+1)] + -
bs

where, in addition to Y3, Y7, Y5, Y are defined above (2.19) of MS. Note that v3, +v2, = vZ,
which is equal to the right side of (2.18) as well as (2.19) of MS, because the random
variables inside the expected squares on the right sides of (A.18) and (A.19) are orthogonal
to each other (i.e., the mean of their product is zero; hence, v% is equal to the mean squared
difference of those two random variables).

Combining the above results, (A.14) has been verified with 0% = v2.

The verification of (A.15) is similar to that in Part (I). The indicator 1, . (s,)>q Plays

an important role to make sure that (A.15) holds. The proof of part (II) is complete.

A.3 Proof of Lemma 4

First introduce some notation. Denote i = (iy,12,1%3,%4). For any quantity indexed
by i, say, ¢;, ¢; is defined as ¢;, - - - ¢;,; similarly, for a quantity indexed by ¢, j, say, g;;,
Gij = Gij- - Giuy- Letd = {i : 1 < i, < n,r = 1,234 and iy,1is,13,14 distinct}.
For any i,7’ € J,:N4,4\ ¢, and 7 \ i denote the subsets of indexes that appear in both
¢ and ¢/, in ¢ but not in ¢, and in ¢’ but not in i, respectively. Recall u;; = z;;1;. Let
w; = E(y;[W, X, N) = el N;e%ib+Hrite with v = 'Z, and pi; = 2.

First, it can be shown that E(Ty|a) = e t2(@o+p™ o/atr®) (N )14y)=1 dSh_jaf +
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{(log p)®//D}Op (1) = 31b3. Thus, it suffices to show that var(Ty|a) = op(1).
Let( = (n—1)(n—2)(n—3)Ty = > 0_, >,y uij. We have

j=1
p
var(C|a) = Z Z cov(uij, upg|a). (A.20)
jk=1i4'€I
Note that cov(u;;, upgla) = E(ugupk|a) — E(pij|a)E(u|a). IfiN i = 0, it is easy to
see that E(u;uyi|a) = E(pij|o)E(pik|or), hence cov(u;j, upgla) = 0 for all j, k. Now

suppose ¢ N ¢’ # (). By earlier results (see the proof of Lemma 2), we have

E(uyla) = BN} {E(z¢7 o)}

4 5

_ o3 et ) (g N A (logp)
e + Op(1).
{EV)F 3 7 p(1)

Furthermore, we have E(u;;uyk|o) = E{E(u;juyi|W, X, N)|a} and

Blugguan W, X, N) = T zejzontar +022) T prg 1T s1ev

reing’ rei\i’ rei’\i

Thus, we have E(u;;uix|o) =

T Edzzmlie + i)} T Blunsla) ] Elprle)
rein rei\d rei\i
Jind’|

= et BTIRE(N) B (2 26 ) + 2B TIB(NDE (2121067 ) |

8—2[iNd’|

% {eu+(03+72)/2E(N1)} {E(leem’a)}li\ﬂ\ {E(Zlke'nm)}\i\ﬂ .
By earlier results, we have E(z1;¢™ |a) = ¢”'*'*/%(a;/\/p) + (log p/+/P)*Op(1), hence
{E(zy;e" ’a)}lz'\ﬂ\ {E(Zlke*yl'a)}\i,’\il
a; AVl o [4"\d] log p 9—2[iNd’|
=0p(l) | —= — + Op(1 ( ) )
(%) () o0

On the other hand, if j # k, we have, again by earlier results,

e AT RE(N) (2120067 [0) + 2070 TR (N E (2121067 )
3
iy log p
o () + () |
P(){ p 7
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It follows that, when j # k, cov(u;;, uy|a) is bounded in absolute value by

o (52) + (%) )

therefore, 3~ ;. >~z [cOV(uij, uig|ar)| is bounded by

2
11 log p)°
Op(1)n7 —(-Za§> +(;§};) = Op(1)n°

2
P’ \p 3

If j = k, then, by earlier result, we have
TR (N E(27,€7 ) + 20T TIB(ND)E(21,6%7 [a) = Op(1).

Thus, considering | N 7| = s (1 < s < 4), it is seen that cov(u,;, uy;|a) is bounded in

absolute value by Op (1){(c;/\/p)* % + (log p/\/P)? **}; therefore, we have

- (logp)*~*
Z Z |cov (uj, uyjla)| < Op(1)n Z T

J=1l]ini’|=s

4 (”)48 { 1 zp: 8-2s | (Ing)g_%} Op(1)n*
=pn* | — - Qs — ¢ =Up(l)np
p pig VD

In conclusion, we have shown that the right side of (A.20) is bounded Op(1)n*(n + p).

Thus, we have var(Ty|a) < O(1)n~%var(¢|a) = n~'Op(1). The proof is complete.
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