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Overview

There are many theoretical results in this work, and some of the proofs have significant

similarities. Therefore, we only present the proofs that introduce new ideas or methods.

The rest of the proofs can be given by applying the proved results or similar arguments.

Specifically, the presented proofs include those of Lemma 2, Theorem 2 and Lemma 4.

Throughout the supplement, the manuscript, “The method of limits and its application

to the analysis of count data in genome-wide association studies”, is referred to as MS.

A.1 Proof of Lemma 2

Let us first assume that the entries of Z are N(0, 1); later we relax this assumption. It

can be shown that, given α, (yi, zi), i = 1, . . . , n are conditionally independent. We have

T1 = n−2
∑

i1 ̸=i2
z′i1zi2yi1yi2 = n−2

∑
i1 ̸=i2

u′i1ui2 , where ui = yizi. Write

u′i1ui2 = E(ui1|α)′E(ui2|α) + E(ui2 |α)′δi1 + E(ui1|α)′δi2 + δ′i2δi1 ,

where δi = ui − E(ui|α). Then, we have

T1 =
1

n2

∑
i1 ̸=i2

E(ui1|α)′E(ui2 |α) +
2

n2

∑
i1 ̸=i2

E(ui2|α)′δi1 +
1

n2

∑
i1 ̸=i2

δ′i2δi1

= T11 + 2T12 + T13, (A.1)

with the terms defined in obvious ways. It can be shown that

E(ui|α) = e(σ
2
0+p−1α′α)/2

(
α
√
p

)
Ni. (A.2)



It follows that

T11 = eσ
2
0+p−1α′α

(
α′α

p

)(
N̄2 − 1

n2

n∑
i=1

N2
i

)
P−→ N2ωσ2

1e
σ2
0+ωσ2

1 . (A.3)

Next, we have T12 = e(σ
2
0+p−1α′α)/2(α/

√
p)′n−2

∑n
i1=1(

∑
i2 ̸=i1

Ni2)δi1 . It follows that

E(T 2
12|α) =

1

n4
eσ

2
0+p−1α′α

(
α
√
p

)′


n∑
i1=1

(∑
i2 ̸=i1

Ni2

)2

Var(ui1|α)


(
α
√
p

)
.

Using the fact that for ν ∼ N(0, 1), we have E(ν2eaν) = (1 + a2)ea
2/2 for any constant a,

it can be shown that E(eλγiziz′i|α) = e(λ
2/2)p−1α′α(Ip + λ2p−1αα′). It follows that

Var(ui|α) ≤ E(uiu
′
i|α)

= Nie
σ2
0/2E(eγiziz

′
i|α) +N2

i e
2σ2

0E(e2γiziz
′
i|α)

= Nie
(σ2

0+p−2α′α)/2

(
Ip +

αα′

p

)
+N2

i e
2(σ2

0+p−1α′α)

(
Ip + 4

αα′

p

)
≤ 2N2

i e
2(σ2

0+p−1α′α)

(
Ip + 4

αα′

p

)
(A.4)

(for symmetric matrices A,B, A ≤ B means that B − A is nonnegative definite), hence(
α
√
p

)′

Var(ui1|α)
(
α
√
p

)
≤ 2N2

i1
e2(σ

2
0+p−1α′α)

{
α′α

p
+ 4

(
α′α

p

)2
}
,

E(T 2
2 |α) ≤ e3(σ

2
0+p−1α′α)

{
α′α

p
+ 4

(
α′α

p

)2
}

2

n4

n∑
i1=1

(∑
j2 ̸=i1

Ni2

)2

N2
i1

≤ 2e3(σ
2
0+p−1α′α)

{
α′α

p
+ 4

(
α′α

p

)2
}

(n− 1)

n4

∑
i1 ̸=i2

N2
i1
N2

i2
,

using the Cauchy-Schwarz inequality for the last step. It is seen that E(T 2
12|α) = oP(1),

hence, by the dominated convergence theorem, it can be shown that

T12 = oP(1). (A.5)

Finally, we can write
∑

i1 ̸=i2
δ′i2δi1 = 2

∑n
i1=1 di1 , where di1 = (

∑
i2<i1

δi2)
′δi1 , Fi1 =

σ(α, ui, i ≤ i1), 1 ≤ i1 ≤ n is a sequence of martingale differences. Thus, using the
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martingale property, and (A.4), we have

E(T 2
13|α) =

4

n4

n∑
i1=1

E(d2i1|α)

=
4

n4

n∑
i1=1

E

{(∑
i2<i1

δi2

)′

Var(ui1|α)

(∑
i2<i1

δi2

)∣∣∣∣∣α
}

=
4

n4

n∑
i1=1

tr

{
Var(ui1|α)

∑
i2<i1

Var(ui2|α)

}

≤ 8e4(σ
2
0+p−1α′α)

{
1 +

8

p

(
α′α

p

)
+

16

p

(
α′α

p

)2
}

p

n4

∑
i1 ̸=i2

N2
i1
N2

i2
.

It is seen that E(T 2
13|α) = oP(1); thus, by the dominated convergence theorem, we have

T13 = oP(1). (A.6)

By (A.1), (A.3), (A.5) and (A.6), the result follows.

We now relax the normality assumption. What we do is to revisit the places in the

proof, where the normality assumption was used, and make appropriate changes under the

sub-Gaussian distribution. The first place is (A.2). Note that we can write E(ui|α) =

Nie
σ2
0/2E(eγizi|α), and the jth component of E(eγizi|α) is

E(eγizij|α) = E

{
exp

(
αj√
p
zij

)
zij

∣∣∣∣α}∏
k ̸=j

E

{
exp

(
αk√
p
zik

)∣∣∣∣α} . (A.7)

By Taylor series expansion, it can be shown that

E

{
exp

(
αk√
p
zik

)∣∣∣∣α} =
∞∑
q=0

1

q!

(
αk√
p

)q

E(zqik).

By Lemma 2.3 of Jiang et al. (2016), there is a constant K > 0 such that E(|zik|q) ≤

(K
√
q)q, q = 1, 2, . . . . Also, by Stirling’s approximation, there is a constant c > 0 such
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that (K
√
q)q/q! ≤ c(1/2)q, q = 3, 4, . . . . It follows that

E

{
exp

(
αk√
p
zik

)∣∣∣∣α} ≤ 1 +
α2
k

2p
+ c

∞∑
q=3

(
|αk|
2
√
p

)q

= 1 +
α2
k

2p
+

c

1− |αk|/2
√
p

(
|αk|
2
√
p

)3

≤ exp

{
α2
k

2p
+

c

1− |αk|/2
√
p

(
|αk|
2
√
p

)3
}
, (A.8)

using 1 + x ≤ ex for all x ∈ R for the last step. On the other hand, on the set A =

{(max1≤k≤p |αk|)/
√
p ≤ 1 ∧ (2/c)}, we have |αk|/2

√
p ≤ 1/2, hence∣∣∣∣ c

1− |uk|/2
√
p

(
|αk|
2
√
p

)∣∣∣∣ ≤ 2c

(
|αk|
2
√
p

)
≤ 2.

It follows that the expression inside the exponential on the right side of (A.8) is nonnegative.

Then, using the inquality 1 + x ≥ ex−x2/2 for x ≥ 0, we have, on A,

E

{
exp

(
αk√
p
zik

)∣∣∣∣α} ≥ 1 +
α2
k

2p
− c

∞∑
q=3

(
|αk|
2
√
p

)q

= 1 +
α2
k

2p
− c

1− |αk|/2
√
p

(
|αk|
2
√
p

)3

≥ exp

{
α2
k

2p
− c

1− |αk|/2
√
p

(
|αk|
2
√
p

)3

− u2k
2

}
,

where uk denotes the expression before −u2k/2 inside the latest exponential. It can be

shown that, on A, we have u2k ≤ α4
k/4p

2 + c2|αk|6/16p3. It follows that, on A, we have

exp

(
α2
k

2p
− c|αk|3

4p3/2
− α4

k

8p2
− c2α6

k

32p3

)
≤ E

{
exp

(
αk√
p
zik

)∣∣∣∣α}
≤ exp

(
α2
k

2p
+
c|αk|3

4p3/2

)
for any k ̸= j. It follows that, on A, we have

exp

(
1

2p

∑
k ̸=j

α2
k −

c

4p3/2

∑
k ̸=j

|αk|3 −
1

8p2

∑
k ̸=j

α4
k −

c2

32p3

∑
k ̸=j

α6
k

)

≤
∏
k ̸=j

E

{
exp

(
αk√
p
zik

)∣∣∣∣α} ≤ exp

(
1

2p

∑
k ̸=j

α2
k +

c

4p3/2

∑
k ̸=j

|αk|3
)
.
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Note that the left side of the above inequalities can be written as eα′α/2p−gj while the right

side can be written as eα′α/2p+hj , where

gj =
c

4p3/2

∑
k ̸=j

|αk|3 +
1

8p2

∑
k ̸=j

α4
k +

c2

32p3

∑
k ̸=j

α6
k +

α2
j

2p
,

hj =
c

4p3/2

∑
k ̸=j

|αk|3 −
α2
j

2p
.

Write aj =
∏

k ̸=j E{e(αk/
√
p)zik |α}. Then, we have, on A,

|aj − eα
′α/2p| ≤ eα

′α/2p max
1≤j≤p

{|e−gj − 1| ∨ |ehj − 1|} = eα
′α/2pD1,

with D1 defined in an obvious way. It can be shown that D1 ≤ eD3/
√
p(D4/

√
p), where

D3 =
c

4p

p∑
k=1

|αk|3 +
D2

2
√
p
, D4 = D3 +

1

8p3/2

p∑
k=1

α4
k +

c2

32p5/2

p∑
k=1

α6
k,

and D2 = max1≤j≤p α
2
j . On the other hand, by similar arguments, it can be shown that

bj = E

{
exp

(
αj√
p
zij

)
zij

∣∣∣∣α} =
αj√
p
(1 + rj)

with |rj| ≤ c|αj|/2
√
p. It follows that∣∣∣∣bj − αj√

p

∣∣∣∣ ≤ c

2p
α2
j ≤

c

2p
D2.

Combining (A.7) and the above results, we have, on A,∣∣∣∣E(eγizij|α)− eα
′α/2p αj√

p

∣∣∣∣
=

∣∣∣∣ajbj − eα
′α/2p αj√

p

∣∣∣∣
≤ |aj − eα

′α/2p| · |bj|+ eα
′α/2p

∣∣∣∣bj − αj√
p

∣∣∣∣
≤ eα

′α/2p

{√
D2

p
D1 +

c

2p
(1 +D1)D2

}

= eα
′α/2p

√
D2

p

{
c

2

(
1 + eD3/

√
pD4√

p

)√
D2 + eD3/

√
pD4

}
=

D

p
, 1 ≤ j ≤ p,
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where D is defined in an obvious way. Thus, on A and for any i1 ̸= i2, we have∣∣∣∣E(eγi1zi1j|α)E(eγi2zi2j|α)− eα
′α/p

α2
j

p

∣∣∣∣ ≤
∣∣∣∣E(eγi1zi1j|α)− eα

′α/2p αj√
p

∣∣∣∣E(eγi2zi2j|α)
+eα

′α/2p |αj|√
p

∣∣∣∣E(eγi2zi2j|α)− eα
′α/2p αj√

p

∣∣∣∣
≤ D

p

(
eα

′α/2p |αj|√
p
+
D

p

)
+ eα

′α/2p |αj|√
p
· D
p

≤ D

p

(
2eα

′α/2p

√
D2

p
+
D

p

)
. (A.9)

Combining the above results, we have, on A, that

T11 = T110 +
eσ

2
0

n2

∑
i1 ̸=i2

Ni1Ni2

p∑
j=1

{
E(eγi1zi1j|α)E(eγi2zi2j|α)− eα

′α/p
α2
j

p

}
= T110 + T111,

where T110 is the same as the left side of (A.3), and T111 is defined in an obvious way.

According to (A.3), we have T110
P−→ N2ωσ2

1e
σ2
0+ωσ2

1 . Furthermore, by (A.9), we have

|T111| ≤ eσ
2
0D

(
2eα

′α/2p

√
D2

p
+
D

p

)
.

It can be shown that max1≤j≤p |αj| = OP(log p), henceD2 = (log p)2OP(1). It is then easy

to show that D = (log p)2OP(1). It follows that T111 = {(log p)3/√p}OP(1) = oP(1). It

follows that T11 converges in probability to the right side of (A.3).

Next, write T12 = 2eσ
2
0/2n−2

∑n
i1=1 di1 , where di1 =

∑
i2 ̸=i1

Ni2E(e
γi2z′i2|α)}δi1 . For

i1 ̸= i′1, δi1 , δi′1 are conditionally independent given W ; thus, we have

E(δi1δ
′
i′1
|W ) = E(δi1 |W )E(δi′1|W ) = νi1ν

′
i′1
,

where νi = E(ui|W )−E(ui|α) = Nie
ηizi−E(ui|α). It is seen that, given α, νi1 , νi′1 are con-

ditionally independent. It follows that E(δi1δ
′
i′1
|α) = E(νi1ν

′
i′1
|α) = E(νi1 |α)E(ν ′i′1|α) = 0,

hence E(di1di′1 |α) = {
∑

i2 ̸=i1
Ni2E(e

γi2z′i2|α)}E(δi1δ
′
i′1
|α){

∑
i2 ̸=i′1

Ni2E(e
γi2zi2|α)} = 0.
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It follows that E(T 2
12|α) = 4eσ

2
0n−4

∑n
i1=1 E(d

2
i1
|α)

≤ 4eσ
2
0

n4

n∑
i1=1

{∑
i2 ̸=i1

Ni2E(e
γi2z′i2|α)

}
E(ui1u

′
i1
|α)

{∑
i2 ̸=i1

Ni2E(e
γi2zi2|α)

}

≤ 8e3σ
2
0

n4

n∑
i1=1

{∑
i2 ̸=i1

Ni2E(e
γi2z′i2|α)

}
N2

i1
E(e2γi1zi1z

′
i1
|α)

{∑
i2 ̸=i1

Ni2E(e
γi2zi2|α)

}

=
8e3σ

2
0

n4

n∑
i1=1

∑
i2,i′2 ̸=i1

N2
i1
Ni2Ni′2

E(eγi2z′i2 |α)E(e
2γi1zi1z

′
i1
|α)E(eγi′2zi′2|α)

=
8e3σ

2
0

n4

n∑
i1=1

∑
i2,i′2 ̸=i1

N2
i1
Ni2Ni′2

p∑
j,k=1

E(e2γi1zi1jzi1k|α)E(eγi2zi2j|α)E(e
γi′2zi′2k|α).

By similar arguments, it can be shown that, on B = {max1≤j≤p |αj|/
√
p ≤ 1/2}, we have∣∣∣∣E(e2γizijzik|α)− 4

p
e2p

−1α′ααjαk

∣∣∣∣ ≤ ( log p
√
p

)3

OP(1), j ̸= k,∣∣∣E(e2γiz2ij|α)− e2p
−1α′α

∣∣∣ ≤ log p
√
p
OP(1),

where, and hereafter, theOP(1)s do not depend on any of the indexes. Furthermore, by ear-

lier results, we have |E(eγizij|α)− eα
′α/2p(αj/

√
p)| ≤ {(log p)2/p}OP(1), which implies∣∣∣∣E(eγi2zi2j|α)E(eγi′2zi′2k|α)− ep

−1α′ααjαk

p

∣∣∣∣ ≤ ( log p
√
p

)3

OP(1), ∀j, k.

It can then be shown that, for j ̸= k, we have∣∣∣∣E(e2γi1zi1jzi1k)E(eγi2zi2j|α)E(eγi′2zi′2k|α)− 4

p2
e3p

−1α′αα2
jα

2
k

∣∣∣∣ ≤ ( log p
√
p

)5

OP(1),

and, for j = k, we have∣∣∣∣E(e2γiz2ij|α)E(eγ2zi2j|α)E(eγi′2zi′2j|α)− 1

p
e3p

−1α′αα2
j

∣∣∣∣ ≤ ( log p
√
p

)3

OP(1).

Combining the above results, it follows that

E(T 2
12|α) ≤ OP(1)

{(
α′α

p

)2

+
α′α

p
+

(log p)5
√
p

+
(log p)3
√
p

}
(n− 1)

n4

∑
i1 ̸=i2

N2
i1
N2

i2
,
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which is oP(1) by the following fact, which follows from the assumptions:

n ∨ p
n4

∑
i1 ̸=i2

N2
i1
N2

i2
→ 0 (A.10)

[a ∨ b = max(a, b)]. This implies T12 = oP(1).

Finally, let us consider T13. It follows by an earlier result (see the beginning of the proof;

note that this has nothing to do with the normality) that, given α, ui = yizi, 1 ≤ i ≤ n are

conditionally independent. It follows that E(ui|Fi−1) = E(ui|u1, . . . , ui−1 , α) = E(ui|α),

hence E(δi|Fi−1) = 0. Thus, δi,Fi, 1 ≤ i ≤ n is still a sequence of martingale differences.

Thus, by earlier arguments, it can be shown that E(T 2
13|α) ≤

8

n4
e4σ

2
0

∑
i1 ̸=i2

N2
i1
N2

i2

∑
j,k

E(e2γi1zi1jzi1k|α)E(e2γi2zi2jzi2k|α)

=
8

n4
e4σ

2
0

∑
i1 ̸=i2

N2
i1
N2

i2

(∑
j ̸=k

· · ·+
∑
j=k

· · ·

)

=
8p

n4
OP(1)

∑
i1 ̸=i2

N2
i1
N2

i2
,

which is oP(1) by (A.10). This implies T13 = oP(1).

The proof is complete.

A.2 Proof of Theorem 2

Part (I): Similar to the proof of Lemma 2, given α,X,N , (yi, zi), i = 1, . . . , n are

conditionally independent. Furthermore, for any fixed vector a = (aj)1≤j≤p ∈ Rp, define

cp(a) = E(ea
′z̃1) =

p∏
j=1

E{exp(ajz11/
√
p)},

and dp(a) = [dp(aj)]1≤j≤p with

dp(aj) =
E(z11 exp(ajz11/

√
p)}

E{exp(ajz11/
√
p)}

,

8



where the expectations are taken with respect to the distribution of z11. We have

E(yi|α,X,N) = Nie
µ+x̃′

iβ̃+σ2
0/2cp(α) ≡ f(x̃i, Ni, α),

E{yi(yi − 1)|α,X,N} = (Nie
µ+x̃′

iβ̃+σ2
0)2cp(2α) ≡ g(x̃i, Ni, α),

E(yizi|α,X,N) = Nie
µ+x̃′

iβ̃+σ2
0/2cp(α)dp(α) ≡ h(x̃i, Ni, α).

Let y(y − 1) and S denote the left sides of (2.10), (2.11), and bs, s = 1, 2, 3, 4 the right

sides of (2.8)–(2.11) of the MS, respectively. The following expressions can be established:

ȳ − b1 =
b1
2
∆̄ + d̄1 + δ̄1 +

oP(1)√
n
,

T1 − b2 =

(
1 +

1

σ2
α

)
b2∆̄ +

2b2d̄2
eτ2/2E(N1)

+
2

n2

n∑
i1=1

(∑
i2 ̸=i1

hi2

)′

δ2i1 +
oP(1)√
n
,

y(y − 1)− b3 = 2b3∆̄ + d̄3 + δ̄3 +
oP(1)√
n
,

S − b4 = b4∆̄ + E(f1|α){2β′d̄4 − E(f1|α)(β′D̄β + 2d̄′β)}

+
2

n2

n∑
i1=1

(∑
i2 ̸=i1

x̂′i1x̂i2fi2

)
δ1i1 +

oP(1)√
n
,

where ∆ = p−1
∑p

j=1∆j with ∆j = α2
j − σ2

α; d̄s = n−1
∑n

i=1 dsi, s = 1, 2, 3, 4 with

d1i = fi − E(fi|α) and fi = f(x̃i, Ni, α), d2i = vi − E(vi|α) and vi = Nie
x̃′
iβ̃ , d3i =

gi−E(gi|α) and gi = g(x̃i, Ni, α), d4i = ti−E(ti|α), ti = fi(xi−b), and hi = h(x̃i, Ni, α);

d̄ = n−1
∑n

i=1 di with di = xi − b, D̄ = n−1
∑n

i=1Di with Di = did
′
i − B; δ1i =

yi−E(yi|α,X,N), δ2i = yizi−E(yizi|α,X,N), δ3i = yi(yi−1)−E{yi(yi−1)|α,X,N},

and δ̄s = n−1
∑n

i=1 δsi, s = 1, 3. Note that E(f1|α) = eµ+(σ2
0+τ2)/2E(N1)cp(α).

From the first two expressions, and Taylor expansion, we have

√
n(σ̂2

α − σ2
α) =

√
n

(
T1
ȳ2

− b2
b21

)
= −2b2

b31

√
n(ȳ − b1) +

√
n

b21
(T1 − b2) + oP(1)

= M1 +M2 +M3 + oP(1),

9



where M1 =
∑p

j=1M1j and Ms =
∑n

i=1Msi, s = 2, 3 with

M1j =
b2
√
n

b21σ
2
αp

∆j,

M2i =
2b2
b21
√
n

{
d2i

eτ2/2E(N1)
− d1i
b1

}
,

M3i =
2

b21
√
n
(h̄′δ2i − σ2

αb1δ1i),

where h̄ = n−1
∑n

i=1 hi. It can be seen that d1i = eµ+σ2
0/2cp(α)d2i. Thus, we have

M2 = −2b2{cp(α)− eσ
2
α/2}

b21e
(σ2

α+τ2)/2E(N1)

(
d2·√
n

)
= oP(1),

because, by the proof of Lemma 2, we have

cp(α) = eσ
2
α/2 + oP(1), (A.11)

and d2·/
√
n = n−1/2

∑n
i=1 d2i = OP(1). Thus, we can write

√
n(σ̂2

α − σ2
α) =M1 +M3 + oP(1) =

p+n∑
k=1

Mk + oP(1), (A.12)

where Mj = M1j, 1 ≤ j ≤ p and Mp+i = M3i, 1 ≤ i ≤ n. Define Fj = σ(αj′ , j
′ ≤ j),

1 ≤ j ≤ p and Fp+i = σ(α,X,N, yi′ , zi′ , i
′ ≤ i), 1 ≤ i ≤ n. Then, Mk,Fk, 1 ≤ k ≤ p+ n

is an array of martingale differences. Note that Mk,Fk depends on n, p, but the latter are

suppressed for notational simplicity. According to the martingale central limit theorem

(Hall and Heyde 1980, p. 58), to show that M =
∑p+n

k=1 Mk
d−→ N(0, σ2), where σ2 is a

positive constant, one needs to verify the following three conditions:

max
1≤k≤p+n

Mk
P−→ 0, (A.13)

p+n∑
k=1

M2
k

P−→ σ2, (A.14)

E

(
max

1≤k≤p+n
M2

k

)
is bounded. (A.15)

(A.13): First, we have max1≤j≤p |M1j| ≤ (
√
n/p)(log p)2OP(1) = oP(1).

10



Next, we have E(yi|α,X,N) = eµ+σ2
0/2cp(α)vi, hence max1≤i≤n |δ1i| ≤ max1≤i≤n yi+

eµ+σ2
0/2cp(α)max1≤i≤n vi. For any constant c > 0, we have

yi ≤ c+
y2i
c

≤ c+
1

c

√√√√ n∑
i′=1

y4i′ ⇒ max
1≤i≤n

yi√
n
≤ c√

n
+

1

c

√√√√ 1

n

n∑
i′=1

y4i′ =
c√
n
+
OP(1)

c
.

Thus, by first choosing c sufficiently large and then letting n → ∞, it can be shown that

n−1/2max1≤i≤n yi = oP(1). By similar arguments, we have n−1/2max1≤i≤n vi = oP(1).

Furthermore, write wp(α) = cp(α)dp(α) = [wpj(α)]1≤j≤p. By the arguments in the proof

of Lemma 2, it can be shown that we have the following expression:

wpj(α) =

(
αj√
p
+ rpj

)∏
k ̸=j

(
1 +

α2
k

2p
+ spk

)
=

(
αj√
p
+ rpj

)
Rpj,

with Rpj defined in an obvious way, where

|rpj| ≤
α2
j

p
OP(1), |spk| ≤

(
|αk|√
p

)3

OP(1);

hereafter, the OP(1)s do not depend on any indexes. It can then be shown that, with proba-

bility tending to one, one has

exp

{
α′α

2p
− OP(1)√

p

}
≤ Rpj ≤ exp

{
α′α

2p
+
OP(1)√

p

}
.

It follows that |Rpj − eα
′α/2p| ≤ OP(1)/

√
p. Thus, we can write

wpj(α)−
αj√
p
eα

′α/2p =
αj√
p
(Rpj − eα

′α/2p) + rpjRpj

to get |wpj(α)− (αj/
√
p)eα

′α/2p| ≤ p−1(|αj| + α2
j )OP(1), 1 ≤ j ≤ p. On the other hand,

note that hi = eµ+σ2
0/2viwp(α). It follows that∣∣∣∣∣ 1

n3/2

(∑
i′ ̸=i

hi′

)′

δ2i

∣∣∣∣∣ ≤ eµ+σ2
0/2v̄n−1/2|w′

p(α)δ2i| ≤
OP(1)√

n
max
1≤i≤n

wi,

where v̄ = n−1
∑n

i=1 vi and wi = |w′
p(α)δ2i|. Recall ui = yizi = (uij)1≤j≤p. It can be

11



shown that E(|uij|3|α,X,N) ≤ OP(1)(v
3
i + 1). Now, for any constant δ > 0, we have

P

(
max
1≤i≤n

wi > δ
√
n

∣∣∣∣α,X,N) ≤
n∑

i=1

P(wi > δ
√
n|α,X,N)

≤ 1

(δ
√
n)3

n∑
i=1

E

∣∣∣∣∣
p∑

j=1

wpj(α)δ2ij

∣∣∣∣∣
3
∣∣∣∣∣∣α,X,N


≤ c

δ3n3/2

n∑
i=1

E

{ p∑
j=1

w2
pj(α)δ

2
2ij

}3/2
∣∣∣∣∣∣α,X,N

 ,
using the Marcinkiewicz–Zygmund inequality [e.g., (5.71) of Jiang (2022)] for the last step,

where δ2ij = uij − E(uij|α,X,N). By an earlier result, it can be shown that w2
pj(α) ≤

OP(1)α
2
j/p, where the OP(1) ∈ σ(α). Thus, we have

E

{ p∑
j=1

w2
pj(α)δ

2
2ij

}3/2
∣∣∣∣∣∣α,X,N

 ≤ OP(1)E


(
1

p

p∑
j=1

α2
jδ

2
2ij

)3/2
∣∣∣∣∣∣α,X,N


≤ OP(1)E

{
1

p

p∑
j=1

|αj|3|δ2ij|3
∣∣∣∣∣α,X,N

}

≤ OP(1)

p

p∑
j=1

|αj|3E(|uij|3|α,X,N)

≤ OP(1)(v
3
i + 1),

using Jensen’s inequality for the second step. Combining the above results, we have

P(max1≤i≤nwi > δ
√
n|α,X,N) ≤ OP(1)/δ

3
√
n; thus, by the arbitrariness of δ, and

the dominated convergence theorem, we have n−1/2max1≤i≤nwi = oP(1). Combining the

above results, we have max1≤i≤n |M3i| = oP(1). Thus, (A.13) has been verified.

(A.14): First, by the law of large numbers, it is easy to show that

p∑
j=1

M2
1j =

b22n

b41σ
4
αp

2

p∑
j=1

∆2
j

P−→ γσ4
α(3ψ − 1),

where ψ = ω−1. Next, some tedious derivations show that

n∑
i=1

E(M2
3i|Fp+i−1)

P−→ 4

b21
{σ2

α(b1 + b3) + σ4
αb3}. (A.16)
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Furthermore, it can be shown that
∑n

i=1{M2
3i − E(M2

3i|Fp+i−1)}
P−→ 0. Thus,

∑n
i=1M

2
3i

converges in probability to the same limit as the right side of (A.16).

(A.14) has now been verified with σ2 = v21 , given more explicitly by (22) of MS.

(A.15): We have max1≤j≤pM
2
1j ≤ (b2/b

2
1σ

2
α)

2(n/p2)
∑p

j=1 ∆
2
j . It follows that

E

(
max
1≤j≤p

M2
1j

)
≤
(

b2
b21σ

2
α

)2

σ4
α(3ψ − 1)

n

p
,

which is bounded. Similarly, we have

E

(
max
1≤i≤n

M2
3i

)
≤ c

b41n

n∑
i=1

{E(δ21i) + E(h̄′δ2i)
2}

for some constant c. It can be shown that E{cp(α)} ≤ (1−c1σ2
1/p)

−p/2 → ec1σ
2
1/2 for some

contant c1 > 0, and similarly E{cp(2α)} ≤ (1 − 4c1σ
2
1/p)

−p/2 → e2c1σ
2
1 . Furthermore, it

can be shown that E(δ21i) ≤ fi + e2(µ+σ2
0)v2i cp(2α). It follows that

E(δ21i) ≤ eµ+(σ2
0+τ2)/2E(N1)E{cp(α)}+ e2(µ+σ2

0+τ2)E(N2
1 )E{cp(2α)},

which is bounded, hence n−1
∑n

i=1 E(δ
2
1i) is bounded. Next, we have

E{(h̄′δ2i)2|α,X,N} = h̄′Var(ui|α,X,N)h̄ ≤ h̄′E(uiu
′
i|α,X,N)h̄.

It can be further shown that

h̄′E(uiu
′
i|α,X,N)h̄ ≤ e3(µ+σ2

0/2)(v̄)2viw
′
p(α)E(e

α′z̃iziz
′
i|α,X,N)wp(α)

+e4µ+3σ2
0(v̄)2v2iw

′
p(α)E(e

2α′z̃iziz
′
i|α,X,N)wp(α)

= e3(µ+σ2
0/2)(v̄)2viI1 + e4µ+3σ2

0(v̄)2v2i I2,

with I1, I2 defined in obvious ways. Note that

I1 =

p∑
j,k=1

E(eα
′z̃izijzik|α,X,N)wpj(α)wpk(α).

Recall wpj = E(z11e
αjzii/

√
p)
∏

l ̸=j E(e
αlzii/

√
p); similarly, we have

E(eα
′z̃izijzik|α,X,N) = E(z11e

αjz11/
√
p)E(z11e

αkz11/
√
p)
∏
l ̸=j,k

E(eαlz11/
√
p),

13



where the expectations are taken with respect to z11. It follows that

E(eα
′z̃izijzik|α,X,N)wpj(α)wpk(α) = λp(αj)λp(αk)

∏
l ̸=j,k

µp(αl),

where λp(a) = {E(z11eaz11/
√
p)}2E(eaz11/

√
p) and µp(a) = {E(eaz11/

√
p)}3. Thus, we have

E{E(eα′z̃izijzik|α,X,N)wpj(α)wpk(α)} = [E{λp(α1)}]2[E{µp(α1)}]p−2.

Using Jensen’s inequality, properties of normal and sub-Gaussian [e.g., Lemma 2.3 of Jiang

et al. (2016)] distributions, and Stirling’s approximation, we have

E{µp(α1)} ≤ E(e3α1z11/
√
n) = E{E(e3b1ξ1z11/

√
p|b1, z11)} = E{e(9/2p)σ2

1b1z
2
11}

≤ E{e(9σ2
1/2p)z

2
11} = E

{
1 +

∞∑
q=1

(
9σ2

1

2p

)q
z2q11
q!

}
= 1 +

∞∑
q=1

(
9σ2

1

2p

)q
E(z2q11)

q!

≤ 1 + c
∞∑
q=1

(
9σ2

1

2p

)q
(K2

√
2q)2q√

2πq(q/e)q
= 1 + c

∞∑
q=1

(
9

p
eσ2

1K
2
2

)q

≤ 1 +
c

p

for large p, where K2 is a positive constant, and c is a generic constant, whose value may

be different at different places (same hereafter). Thus, we have

[E{µp(α1)}]p−2 ≤
(
1 +

c

p

)p−2

→ ec.

On the other hand, it is easy to show that

E(z11e
α1z11/

√
p) =

α1√
p
+

∞∑
q=2

(
α1√
p

)q
E(zq+1

11 )

q!
=

α1√
p
+ r(α1),

with r(α1) defined in an obvious way. Furthermore, we have

|r(α1)| ≤
α2
1

p
E

{
|z11|3

∞∑
q=2

1

q!

(
|α1z11|√

p

)q−2
}

≤ |α1|3

2p
E(|z11|3e|α1z11|/

√
p).

Similarly, we have E(eα1z11/
√
p) = 1 + s(α1) with |s(α1)| ≤ (α2

1/2p)E(z
2
11e

|α1z11|/
√
p).

It follows that λp(α1) = {α1/
√
p + r(α1)}2{1 + s(α1)} = α2

1/p + R(α1), and, by the

Cauchy-Schwarz inequality, it can be shown that

|R(α1)| ≤
c

p3/2
(α8

1 ∨ 1){E(e2|α1z11|/
√
p)}3/2 ≤ c

p3/2
(α8

1 ∨ 1)E(e3|α1z11|/
√
p),
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using Jensen’s inequality for the last step. Thus, by similar arguments, we have

E{λp(α1)} ≤ σ2
α

p
+

c

p3/2
{E(e6|α1z11|/

√
p)}1/2,

where the last expectation is with respect to both α1 and z11. Furthermore, we have

E(e6|α1z11|/
√
p) = 1 +

∞∑
q=1

(
6
√
p

)q
E(|α1|q)E(|z11|q)

q!

≤ 1 + c
∞∑
q=1

(
6
√
p

)q (K1
√
q)q(K2

√
q)q

√
2πq(q/e)q

≤ 1 + c
∞∑
q=1

(
6eK1K2√

p

)q

≤ 1 +
c
√
p
,

where K1, K2 are positive constants.

Combining the above results, we have E(I1) ≤ p2(c/p2) = c. Similarly, it can be

shown that E(I2) ≤ c. Therefore, we have

1

n

n∑
i=1

E{(h̄′δ2i)2} ≤ e3(µ+σ2
0)E(v̄)3E(I1) + e4µ+3σ2

0E{(v̄)2v2}E(I2) ≤ c.

Note that it can be seen that I1, I2 depend only on α, hence are independent with the vis.

Also, it is easy to show that E(v̄)3 ≤ e9τ
2/2E(N3

1 ) and E{(v̄)2v2} ≤ e8τ
2
E(N4

1 ).

(A.15) has now been verified, hence the proof for part (I) is complete.

Part (II): Because Sx
P−→ B > 0 (positive definite), there is a constant a > 0 such that

λmin(Sx) ≥ a with probability tending to one. By similar arguments, it can be shown that

√
n(σ̂2

0 − σ2
0) =M2 +M3 + oP(1) =

2n∑
k=1

Mk + oP(1), (A.17)

where M2 =
∑n

i=1M2i, M3 =
∑n

i=1M3i with

M2i =
2√
n

{
a2d2i +

d3i
2b3

−
(
a1
b1

)
β′d4i + a21d

′
iβ +

a21
2
β′Diβ

+
Ni − E(N1)

E(N1)
− N2

i − E(N2
1 )

2E(N2
1 )

}
,

M3i =
2√
n
1[λmin(Sx)≥a]

{(
σ2
α + τ 2 − 1− w̄′x̂i

b1

)
δ1i
b1

− h̄′δ2i
b21

+
δ3i
2b3

}
,

where a1 = E(f1|α)/b1, a2 = {(σ2
α + τ 2 − 1)cp(α) − σ2

αe
σ2
α/2}/{e(σ2

α+τ2)/2E(N1)}, w̄ =

n−1
∑n

i=1wi and wi = fix̂i; and Mi = M2i, Mn+i = M3i, 1 ≤ i ≤ n. Note that the
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M notations are re-defined [after proving Part (I)] to avoid notation complexity. Similarly,

re-define Fi = σ(α, xi′ , Ni′ , i
′ ≤ i), Fn+i = σ(α,X,N, yi′ , zi′ , i

′ ≤ i), 1 ≤ i ≤ n.

Then, Mk,Fk, 1 ≤ k ≤ 2n is an array of martingale differences. Thus, again, to show∑2n
k=1Mk

d−→ N(0, σ2) we need to verify (A.13)–(A.15) with p+ n replaced by 2n.

(A.13) can be shown similarly using the results or arguments from the proof of part (I).

It follows, by the dominated convergence theorem (e.g., Jiang 2022, Theorem 2.16), that

the convergence in probability also holds conditional on X = σ(xi, i = 1, 2, . . . ).

(A.14): First consider
∑n

i=1M
2
2i. It is easy to show that

∑n
i=1{M2

2i − E(M2
2i|Fi−1} =

oP(1). Next, write U = a2d2i + d3i/2b3 − (a1/b1)β
′d4i, V = a21d

′
iβ + (a21/2)β

′Diβ, and

W = {Ni − E(N1)}/E(N1)− {N2
i − E(N2

1 )}/2E(N2
1 ). Then, we have

E{(U + V +W )2|α) = E(U2|α) + 2{E(UV |α) + E(UW |α)}+ E(V 2|α) + E(W 2).

We have E(W 2) = var[(N1)∗]− cov[(N1)∗, (N
2
1 )∗] + var[(N2

1 )∗]/4, where for any random

variable ζ with finite, nonzero mean, ζ∗ is defined as ζ/E(ζ). Also, it can be shown that

E(V 2|α) = (τ 2/2)(τ 2 + 2)a41. Furthermore, some tedious derivations show that

E(UV |α) =
τ 2

2
(τ 2 + 2)eτ

2/2E(N1)a
2
1a2 + τ 2(τ 2 + 1)e2(µ+σ2

0+τ2)E(N2
1 )cp(2α)

a21
b3

−τ
2

2
(τ 4 + 4τ 2 + 2)eµ+(σ2

0+τ2)/2E(N1)cp(α)
a31
b1
;
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E(UW |α) = eτ
2/2

{
a2 −

(
a1
b1

)
τ 2eµ+σ2

0/2cp(α)

}{
var(N1)

E(N1)
− cov(N1, N

2
1 )

2E(N2
1 )

}
+
cp(2α)

2b3
e2(µ+σ2

0+τ2)

{
cov(N1, N

2
1 )

E(N1)
− var(N2

1 )

2E(N2
1 )

}
;

E(U2|α) = eτ
2
[
eτ

2

E(N2
1 )− {E(N1)}2

]
a22

− 2

b1
a1a2τ

2eµ+σ2
0/2+τ2cp(α)

[
2eτ

2

E(N2
1 )− {E(N1)}2

]
+

(
a1
b1

)2

τ 2e2µ+σ2
0+τ2c2p(α)

[
(4τ 2 + 1)eτ

2

E(N2
1 )− τ 2{E(N1)}2

]
+
a2
b3
e2(µ+σ2

0)+5τ2/2cp(2α)
{
e2τ

2

E(N3
1 )− E(N1)E(N

2
1 )
}

−a1τ
2

b1b3
e3µ+(5/2)(σ2

0+τ2)cp(α)cp(2α)
{
3e2τ

2

E(N3
1 )− E(N1)E(N

2
1 )
}

+
c2p(2α)

4e4σ2
α

{
e4τ

2

E(N2
1 )

2
∗ − 1

}
.

It is seen that all of the above expectations do not depend on any index. Furthermore,

it can be shown that −E(UV |α) and E(V 2|α) converge in probability to τ 2(τ 2 + 2)/2;

−E(UW |α) P−→ E(W 2), whose expression is given above; and

E(U2|α) P−→ (τ 4 + 3τ 2 + 1)eτ
2

E{(N1)
2
∗} − (2τ 2 + 1)e2τ

2

E{(N1)∗(N
2
1 )∗}

+
1

4

[
e4τ

2

E{(N2
1 )

2
∗} − 1

]
.

It can then be shown that
∑n

i=1 E(M
2
2i|α) converges in probability to

v201 = 4{(τ 4 + 3τ 2 + 1)eτ
2 − 1}E{(N1)

2
∗} − 4{(2τ 2 + 1)e2τ

2 − 1}E{(N1)∗(N
2
1 )∗}

+(e4τ
2 − 1)E{(N2

1 )
2
∗}

= E
[
2(N1)∗{(1− τ 2)(eY3)∗ + τ 2(Y3e

Y3)∗ − 1} − (N2
1 )∗{(e2Y3)∗ − 1}

]2
, (A.18)

where Y3 is defined above (2.19) of MS. Combining the results, we have
∑n

i=1M
2
2i

P−→ v201.
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More tedious derivation shows that
∑n

i=1M
2
3i

P−→ v202, where

v202 = 4
[
{(σ2

α + τ 2 + 1)2 + σ2
α + τ 2}eσ2 − (τ 4 + 3τ 2 + 1)eτ

2
]
E{(N1)

2
∗}

−4
{
(2σ2

α + 2τ 2 + 1)e2σ
2 − (2τ 2 + 1)e2τ

2
}
E{(N1)∗(N

2
1 )∗}

+
(
e4σ

2 − e4τ
2
)
E{(N2

1 )
2
∗}

+
4

b1

[
eσ

2E(N1)E(N
3
1 )

{E(N2
1 )}2

− (σ2
α + τ 2 + 1)

]
+

2

b3

= E

[
2

b1
(σ2

α + τ 2 − 1− Y2 − Y3)Y

+
Y (Y − 1)

b3
+ 2{(1− τ 2)(eY3)∗ + τ 2(Y3e

Y3)∗} − (e2Y3)∗(N
2
1 )∗

]2
, (A.19)

where, in addition to Y3, Y1, Y2, Y are defined above (2.19) of MS. Note that v201+v
2
02 = v20 ,

which is equal to the right side of (2.18) as well as (2.19) of MS, because the random

variables inside the expected squares on the right sides of (A.18) and (A.19) are orthogonal

to each other (i.e., the mean of their product is zero; hence, v20 is equal to the mean squared

difference of those two random variables).

Combining the above results, (A.14) has been verified with σ2 = v20 .

The verification of (A.15) is similar to that in Part (I). The indicator 1[λmin(Sx)≥a] plays

an important role to make sure that (A.15) holds. The proof of part (II) is complete.

A.3 Proof of Lemma 4

First introduce some notation. Denote i = (i1, i2, i3, i4). For any quantity indexed

by i, say, qi, qi is defined as qi1 · · · qi4; similarly, for a quantity indexed by i, j, say, qij ,

qij = qi1j · · · qi4j . Let I = {i : 1 ≤ ir ≤ n, r = 1, 2, 3, 4 and i1, i2, i3, i4 distinct}.

For any i, i′ ∈ I, i ∩ i′, i \ i′, and i′ \ i denote the subsets of indexes that appear in both

i and i′, in i but not in i′, and in i′ but not in i, respectively. Recall uij = zijyi. Let

µi = E(yi|W,X,N) = eµNie
x̃′
iβ̃+γi+ϵi with γi = α′z̃i, and µij = zijµi.

First, it can be shown that E(T2|α) = e4µ+2(σ2
0+p−1α′α+τ2){E(N1)}4p−1

∑p
j=1 α

4
j +
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{(log p)5/√p}OP(1)
P−→ 3ψb22. Thus, it suffices to show that var(T2|α) = oP(1).

Let ζ = (n− 1)(n− 2)(n− 3)T2 =
∑p

j=1

∑
i∈I uij . We have

var(ζ|α) =
p∑

j,k=1

∑
i,i′∈I

cov(uij, ui′k|α). (A.20)

Note that cov(uij, ui′k|α) = E(uijui′k|α) − E(µij|α)E(µi′k|α). If i ∩ i′ = ∅, it is easy to

see that E(uijui′k|α) = E(µij|α)E(µi′k|α), hence cov(uij, ui′k|α) = 0 for all j, k. Now

suppose i ∩ i′ ̸= ∅. By earlier results (see the proof of Lemma 2), we have

E(µij|α) = e4µ+2(σ2
0+τ2){E(N1)}4{E(z1jeγ1|α)}4

= e4µ+2(σ2
0+p−1α′α+τ2){E(N1)}4

α4
j

p2
+

(
log p
√
p

)5

OP(1).

Furthermore, we have E(uijui′k|α) = E{E(uijui′k|W,X,N)|α} and

E(uijui′k|W,X,N) =
∏

r∈i∩i′
zrjzrk(µr + µ2

r)
∏
r∈i\i′

µrj

∏
r∈i′\i

µrk.

Thus, we have E(uijui′k|α) =∏
r∈i∩i′

E{zrjzrk(µr + µ2
r)|α}

∏
r∈i\i′

E(µrj|α)
∏
r∈i′\i

E(µrk|α)

=
{
eµ+(σ2

0+τ2)/2E(N1)E(z1jz1ke
γ1|α) + e2(µ+σ2

0+τ2)E(N2
1 )E(z1jz1ke

2γ1|α)
}|i∩i′|

×
{
eµ+(σ2

0+τ2)/2E(N1)
}8−2|i∩i′|

{E(z1jeγ1 |α)}|i\i
′| {E(z1keγ1|α)}|i

′\i| .

By earlier results, we have E(z1je
γ1|α) = ep

−1α′α/2(αj/
√
p) + (log p/

√
p)2OP(1), hence

{E(z1jeγ1 |α)}|i\i
′| {E(z1keγ1|α)}|i

′\i|

= OP(1)

(
αj√
p

)|i\i′|(
αk√
p

)|i′\i|

+OP(1)

(
log p
√
p

)9−2|i∩i′|

.

On the other hand, if j ̸= k, we have, again by earlier results,

eµ+(σ2
0+τ2)/2E(N1)E(z1jz1ke

γ1|α) + e2(µ+σ2
0+τ2)E(N2

1 )E(z1jz1ke
2γ1 |α)

= OP(1)

{(
αjαk

p

)
+

(
log p
√
p

)3
}
.
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It follows that, when j ̸= k, cov(uij, ui′k|α) is bounded in absolute value by

OP(1)

{(
αjαk

p

)4

+

(
log p
√
p

)9
}
;

therefore,
∑

j ̸=k

∑
i∩i′ ̸=∅ |cov(uij, ui′k|α)| is bounded by

OP(1)n
7

 1

p2

(
1

p

p∑
j=1

α4
j

)2

+
(log p)9

p5/2

 = OP(1)n
5.

If j = k, then, by earlier result, we have

eµ+(σ2
0+τ2)/2E(N1)E(z

2
1je

γ1 |α) + e2(µ+σ2
0+τ2)E(N2

1 )E(z
2
1je

2γ1 |α) = OP(1).

Thus, considering |i ∩ i′| = s (1 ≤ s ≤ 4), it is seen that cov(uij, ui′k|α) is bounded in

absolute value by OP(1){(αj/
√
p)8−2s + (log p/

√
p)9−2s}; therefore, we have

p∑
j=1

∑
|i∩i′|=s

|cov(uij, ui′j|α)| ≤ OP(1)n
8−s

{
1

p4−s

p∑
j=1

α8−2s
j +

(log p)9−2s

p7/2−s

}

= pn4

(
n

p

)4−s
{
1

p

p∑
j=1

α8−2s
j +

(log p)9−2s

√
p

}
= OP(1)n

4p.

In conclusion, we have shown that the right side of (A.20) is bounded OP(1)n
4(n+ p).

Thus, we have var(T2|α) ≤ O(1)n−6var(ζ|α) = n−1OP(1). The proof is complete.
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