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This supplement consists of the detailed proofs of Lemma 1, Theorems 1, 2, 3, 5, and Corollary 3 in “Structural

Testing of High-Dimensional Correlation Matrices”. We also present the simulation results when the observations are

generated from the Gamma population.

S1 Detailed proof of Lemma 1

This section is devoted to presenting the detailed proof of Lemma 1. Let e` denote the `th

column of p× p dimensional identity matrix Ip, Γ = [diag(Σ)]−1/2Σ1/2, and C = (cij)
p
i,j=1 be

a p× p dimensional matrix with cij = 2r3ij + βwrij
p∑

k=1

(eTi Γek)
2(eTj Γek)

2. In order to simplify

the expressions of mean and variance-covariance functions in the CLT given by Lemma 1, we

define the following quantites

f1(R, i, j) = 2r2ij + βw

p∑
k=1

(eTi Γek)
2(eTj Γek)

2,

f2(R,D2) = 2tr(RD2)
2 + βw

p∑
k=1

eTkRD2RD2ek

p∑
`=1

(eTkΓe`)
4,

f3(R,D2) = 2tr(RD2) + βw

p∑
k=1

eTkRD2ek

p∑
`=1

(eTkΓe`)
4,

f4(R,D1, i) = 2eTi RD1Rei + βw

p∑
k=1

(eTi Γek)
2eTkΓTD1Γek,
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f5(R,D2) = 2tr(RD2)
3 + βw

p∑
k=1

eTkΓTD2RD2Γeke
T
kΓTD2Γek,

f6(R,D2, i) = 2eTi (RD2)
2Rei + βw

p∑
k=1

(eTi Γek)
2eTkΓTD2RD2Γek,

f7(R,D2, i) = 2eTi RD2Rei + βw

p∑
k=1

(eTi Γek)
2eTkΓTD2Γek,

f8(R,D1,D2) = 2tr(RD1(RD2)
2) + βw

p∑
k=1

eTkΓTD1Γeke
T
kΓTD2RD2Γek,

f9(R,D1,D2) = 2tr(RD1RD2) + βw

p∑
k=1

eTkΓTD1Γeke
T
kΓTD2Γek.

Lemma 1. Under Assumptions A-B-C, if the spectral norms of D1 and D2 are uniformly

bounded in p, then we have

[Λn(D1,D2)]
−1/2

 tr(R̂nD1)− ν1(D1)

tr(R̂nD2R̂nD2)− ν2(D2)

 d−→ N2

(
(0, 0)T , I2

)
,

where

ν1(D1) = tr(RD1)− n−1
[
2tr(RD1) + βw

p∑
k=1

p∑
`=1

(eTkΓe`)
3eTkD1Γe`

]
+

1

4n
tr(CD1) +

3

4n

[
2tr(RD1) + βw

p∑
k=1

eTkRD1ek

p∑
`=1

(eTkΓe`)
4
]
,

ν2(D2) =
n− 3

n2
tr2(RD2)− 4n−1

p∑
k=1

eTkRD2eke
T
kRD2Rek

+
n− 3

n
tr(RD2)

2 + βwn
−1

p∑
k=1

(eTkΓTD2Γek)
2

−2βwn
−1tr(RD2)n

−1
p∑

k=1

p∑
`=1

(eTkΓe`)
3eTkD2Γe`

−2βwn
−1

p∑
k=1

p∑
`=1

(eTkΓe`)
3eTkD2RD2Γe`

−2βwn
−1

p∑
k=1

p∑
`=1

(eTkΓe`)
2eTkD2Γe`e

T
kRD2Γe`

+
3

2n
f2(R,D2) +

3tr(RD2)

2n2
f3(R,D2)
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+
1

2n

p∑
i=1

p∑
j=1

eTi Reje
T
i D2RD2ejf1(R, i, j)

+
1

2n

p∑
i=1

p∑
j=1

eTi D2eje
T
i RD2Rejf1(R, i, j)

+
tr(RD2)

2n2

p∑
i=1

p∑
j=1

eTi D2eje
T
i Rejf1(R, i, j)

+
1

2n

p∑
i=1

p∑
j=1

eTi RD2eje
T
i D2Rejf1(R, i, j),

and Λn(D1,D2) =

 σ11(D1) σ12(D1,D2)

σ21(D1,D2) σ22(D2)

 with

σ11(D1) = n−1
[
2tr(RD1)

2 + βw

p∑
k=1

(eTkΓTD1Γek)
2
]

+n−1
p∑
i=1

p∑
j=1

eTi RD1eie
T
j RD1ejf1(R, i, j)

−2n−1
p∑
i=1

eTi RD1eif4(R,D1, i),

σ22(D2) = 4n−1
[
2tr(RD2)

4 + βw

p∑
k=1

(eTkΓTD2RD2Γek)
2
]

+4[n−1tr(RD2)]
2n−1

[
2tr(RD2)

2 + βw

p∑
k=1

(eTkΓTD2Γek)
2
]

+4
[
n−1tr(RD2)

2
]2

+ 8n−2tr(RD2)f5(R,D2)

+4n−1
p∑
i=1

p∑
j=1

eTi (RD2)
2eie

T
j (RD2)

2ejf1(R, i, j)

+8n−1tr(RD2)n
−1

p∑
i=1

p∑
j=1

eTi RD2eie
T
j (RD2)

2ejf1(R, i, j)

+4[n−1tr(RD2)]
2n−1

p∑
i=1

p∑
j=1

eTi RD2eie
T
j RD2ejf1(R, i, j)

−8n−1
p∑
i=1

eTi (RD2)
2eif6(R,D2, i)
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−8n−1tr(RD2)n
−1

p∑
i=1

eTi RD2eif6(R,D2, i)

−8n−1tr(RD2)n
−1

p∑
i=1

eTi (RD2)
2eif7(R,D2, i)

−8[n−1tr(RD2)]
2n−1

p∑
i=1

eTi RD2eif7(R,D2, i),

σ12(D1,D2) = 2n−1f8(R,D1,D2) + 2n−2tr(RD2)f9(R,D1,D2)

−2n−1
p∑
i=1

eTi (RD2)
2eif4(R,D1, i)

−2n−1tr(RD2)n
−1

p∑
i=1

eTi RD2eif4(R,D1, i)

−2n−1
p∑
i=1

eTi RD1eif6(R,D2, i)

−2n−1tr(RD2)n
−1

p∑
i=1

eTi RD1eif7(R,D2, i)

+2n−1
p∑
i=1

p∑
j=1

eTi RD1eie
T
j (RD2)

2ejf1(R, i, j)

+2n−1tr(RD2)n
−1

p∑
i=1

p∑
j=1

eTi RD1eie
T
j RD2ejf1(R, i, j),

σ21(D1,D2) = σ12(D1,D2).

Recall that the definitions of the sample covariance and correlation matrices are

Σ̂n = n−1
n∑
k=1

(xk − x̄)(xk − x̄)T , R̂n = [diag(Σ̂n)]−1/2Σ̂n[diag(Σ̂n)]−1/2.

Note that the correlation coefficient is invariant under shifting and positive scaling of random

variables. Let yk = Γwk, ȳ = n−1
∑n

k=1 yk, and

Σ̂∗n = n−1
n∑
k=1

(yk − ȳ)(yk − ȳ)T ,

then under Assumption A, that is, xk has the independent component structure, we have

R̂n = [diag(Σ̂∗n)]−1/2Σ̂∗n[diag(Σ̂∗n)]−1/2.
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Although a slight abuse of notions, for simplicity, in the following we still use Σ̂n to represent

the sample covariance matrix generated by y1, . . . ,yn, that is, we denote

Σ̂n = n−1
n∑
k=1

(yk − ȳ)(yk − ȳ)T .

in the following sections.

S1.1 Truncation, centralization and rescaling

For k = 1, . . . , n, denote w̌k = (w̌1k, . . . , w̌pk)
T with w̌`k = w`kI{|w`k| < ηn

√
n}, where

ηn = (log n)−(1+ε)/2, y̌k = Γw̌k, ¯̌y = n−1
∑n

k=1 y̌k,

Σ̌n = n−1
n∑
k=1

(y̌k − ¯̌y)(y̌k − ¯̌y)T and Řn = [diag(Σ̌n)]−1/2Σ̌n[diag(Σ̌n)]−1/2.

According to the truncation lemma (Lemma 2) in Noureddine (2009), we have

P(R̂n 6= Řn, i.o.) = 0.

Define w̃k = (w̃1k, . . . , w̃pk)
T with w̃`k = (w̌`k−Ew̌`k)/

√
E(w̌`k − Ew̌`k)2. Also define ỹk,

¯̃y, Σ̃n, and R̃n as the analogues of yk, ȳ, Σ̂n, and R̂n with wk replaced by w̃k. Based on

(1.6) in Yin et al. (2023), for any 1 ≤ ` ≤ p, 1 ≤ k ≤ n, we have

|Ew̌`k| = o(n−3/2), E(w̌`k − Ew̌`k)
2 − 1 = o(n−1), (S1.1)

(
√

E(w̌`k − Ew̌`k)2 − 1)/
√

E(w̌`k − Ew̌`k)2 = o(n−1). (S1.2)

Since R = ΓΓT , we have

‖Σ̌n − Σ̃n‖ = ‖Γ(n−1
n∑
k=1

w̌kw̌
T
k − n−1

n∑
k=1

w̃kw̃
T
k )ΓT − Γ( ¯̌w ¯̌wT − ¯̃w ¯̃wT )ΓT‖

≤ ‖R‖
(
‖n−1

n∑
k=1

w̌kw̌
T
k − n−1

n∑
k=1

w̃kw̃
T
k ‖+ ‖ ¯̌w ¯̌wT − ¯̃w ¯̃wT‖

)
,

5



where ‖ · ‖ denotes the spectral norm of a matrix. According to (1.7) in Yin et al. (2023),

‖n−1
∑n

k=1 w̌kw̌
T
k − n−1

∑n
k=1 w̃kw̃

T
k ‖ = oa.s.(n

−1). Note that

¯̃w =
1√

E(w̌`k − Ew̌`k)2
¯̌w − |Ew̌`k|√

E(w̌`k − Ew̌`k)2
1p,

¯̌w − ¯̃w =

√
E(w̌`k − Ew̌`k)2 − 1√

E(w̌`k − Ew̌`k)2
¯̌w +

|Ew̌`k|√
E(w̌`k − Ew̌`k)2

1p,

combining the above equations with (S1.1) and (S1.2), we obtain

‖ ¯̌w ¯̌wT − ¯̃w ¯̃wT‖ ≤ ‖ ¯̌w( ¯̌w − ¯̃w)T‖+ ‖( ¯̌w − ¯̃w) ¯̃wT‖ = op(n
−1),

the last equality follows from the fact that ¯̌wT ¯̌w = Op(1). Therefore, we have

‖Σ̌n − Σ̃n‖ = op(n
−1). (S1.3)

Let γ` be the transpose of the `th row of the matrix Γ, it can be verified that

max
`=1,...,p

‖eT` Σ̌ne` − eT` Σ̃ne`‖ ≤ max
`=1,...,p

(
‖γT` (n−1

n∑
k=1

w̌kw̌
T
k − n−1

n∑
k=1

w̃kw̃
T
k )γ`‖

+ ‖γT` ( ¯̌w ¯̌wT − ¯̃w ¯̃wT )γ`‖
)

= op(n
−1). (S1.4)

Combining (S1.3) and (S1.4), we get

‖Řn − R̃n‖ = ‖diag−1/2(Σ̌n)Σ̌ndiag−1/2(Σ̌n)− diag−1/2(Σ̃n)Σ̃ndiag−1/2(Σ̃n)‖

≤ ‖
(
diag−1/2(Σ̌n)− diag−1/2(Σ̃n)

)
Σ̌ndiag−1/2(Σ̌n)‖

+ ‖diag−1/2(Σ̃n)
(
Σ̌n − Σ̃n

)
diag−1/2(Σ̌n)‖

+ ‖diag−1/2(Σ̃n)Σ̃n

(
diag−1/2(Σ̌n)− diag−1/2(Σ̃n)

)
‖ = op(n

−1).

It follows that

|tr(ŘnD1)− tr(R̃nD1)| =
p∑
`=1

|λ`
(
(Řn − R̃n)D1

)
| ≤ p‖Řn − R̃n‖‖D1‖ = op(1).
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Similarly, we have |tr(ŘnD2ŘnD2) − tr(R̃nD2R̃nD2)| = op(1). Therefore, without loss of

generality, in the following proof, we assume that w`k satisfies that |w`k| ≤ ηn
√
n, Ew`k = 0

and Ew2
`k = 1.

S1.2 Some primary steps

We decompose tr
(
R̂nD1

)
and tr

(
R̂nD2R̂nD2

)
into the sum of several terms in this section,

and then analyze the terms in the following sections. Since for ` = 1, . . . , p,

σ̂`` = n−1
n∑
k=1

(eT` Γwk)
2 − (n−1

n∑
k=1

eT` Γwk)
2,

then we have

max
1≤`≤p

|σ̂`` − 1| ≤ max
1≤`≤p

∣∣∣∣∣n−1
n∑
k=1

(eT` Γwk)
2 − 1

∣∣∣∣∣+ max
1≤`≤p

∣∣∣∣∣n−1
n∑
k=1

eT` Γwk

∣∣∣∣∣
2

.

By Lemma 5.7 in Yin and Ma (2022), we have

max
1≤`≤p

∣∣∣∣∣n−1
n∑
k=1

(eT` Γwk)
2 − 1

∣∣∣∣∣ = Op(n
−1/2).

For any ε > 0, by Markov’s inequality, we get

P

max
1≤`≤p

n1/3

∣∣∣∣∣n−1
n∑
k=1

eT` Γwk

∣∣∣∣∣
2

> ε

 ≤ ε−2
p∑
`=1

n2/3E

∣∣∣∣∣n−1
n∑
k=1

eT` Γwk

∣∣∣∣∣
4

= o(1).

It follows that

max
1≤`≤p

|σ̂`` − 1| = op(n
−1/3). (S1.5)

Moreover, by the Taylor expansion, we have

(σ̂``)
−1/2 = 1− 1

2
(σ̂`` − 1) +

3

8
(σ̂`` − 1)2 − 5

16
(σ∗``)

−7/2(σ̂`` − 1)3, (S1.6)

where σ∗`` lies between 1 and σ̂``. Since σ∗`` ≥ min(1, σ̂``) for all `, based on (S1.5), we have

max
1≤`≤p

|(σ∗``)−7/2(σ̂`` − 1)3| = op(n
−1). (S1.7)
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Combining (S1.6) and (S1.7), we have

(σ̂``)
−1/2 = 1− 1

2
(σ̂`` − 1) +

3

8
(σ̂`` − 1)2 + op(n

−1), (S1.8)

where op(n
−1) is uniform for all ` = 1, ..., p. Since

R̂n =
[
diag(Σ̂n)

]−1/2
Σ̂n

[
diag(Σ̂n)

]−1/2
= Σ̂n +

[
diag−1/2(Σ̂n)− Ip

]
Σ̂ndiag−1/2(Σ̂n) + Σ̂n

[
diag−1/2(Σ̂n)− Ip

]
,

where diag(Σ̂n) = diag(σ̂11, ..., σ̂pp). Then by (S1.5) and (S1.8), we have

tr
(
R̂nD1

)
= tr

(
Σ̂nD1

)
+ tr

[(
diag−1/2(Σ̂n)− Ip

)
Σ̂ndiag−1/2(Σ̂n)D1

]
(S1.9)

+tr
[
Σ̂n

(
diag−1/2(Σ̂n)− Ip

)
D1

]
= tr

(
Σ̂nD1

)
− tr

[(
diag(Σ̂n)− Ip

)
Σ̂nD1

]
+

3

4
tr
[(

diag(Σ̂n)− Ip
)2

Σ̂nD1

]
+

1

4
tr
[(

diag(Σ̂n)− Ip
)
Σ̂n

(
diag(Σ̂n)− Ip

)
D1

]
+ op(1)

and

tr
(
R̂nD2R̂nD2

)
(S1.10)

= tr
{[

Σ̂nD2 +
(
diag−1/2(Σ̂n)− Ip

)
Σ̂ndiag−1/2(Σ̂n)D2 + Σ̂n

(
diag−1/2(Σ̂n)− Ip

)
D2

]2}
= tr

(
Σ̂nD2Σ̂nD2

)
+ 2tr

[(
diag−1/2(Σ̂n)− Ip

)
Σ̂ndiag−1/2(Σ̂n)D2Σ̂nD2

]
+2tr

[(
diag−1/2(Σ̂n)− Ip

)
D2Σ̂nD2Σ̂n]

+tr
[(

diag−1/2(Σ̂n)− Ip
)
Σ̂ndiag−1/2(Σ̂n)D2

(
diag−1/2(Σ̂n)− Ip

)
Σ̂ndiag−1/2(Σ̂n)D2

]
+2tr

[(
diag−1/2(Σ̂n)− Ip

)
D2

(
diag−1/2(Σ̂n)− Ip

)
Σ̂ndiag−1/2(Σ̂n)D2Σ̂n

]
+tr
[(

diag−1/2(Σ̂n)− Ip
)
D2Σ̂n

(
diag−1/2(Σ̂n)− Ip

)
D2Σ̂n

]
= tr

(
Σ̂nD2Σ̂nD2

)
− 2tr

[(
diag(Σ̂n)− Ip

)
Σ̂nD2Σ̂nD2

]
+

3

2
tr
[(

diag(Σ̂n)− Ip
)2

Σ̂nD2Σ̂nD2

]
8



+
1

2
tr
[(

diag(Σ̂n)− Ip
)
Σ̂n

(
diag(Σ̂n)− Ip

)
D2Σ̂nD2

]
+

1

2
tr
[(

diag(Σ̂n)− Ip
)
D2

(
diag(Σ̂n)− Ip

)
Σ̂nD2Σ̂n

]
+

1

2
tr
[(

diag(Σ̂n)− Ip
)
Σ̂nD2

(
diag(Σ̂n)− Ip

)
Σ̂nD2

]
+ op(1).

S1.3 Analysis of the constant order terms

In this section, we prove that the last two terms in (S1.9) and the last four terms in (S1.10)

converge in probability to their expectations, which are of the constant order. Let ri =

n−1/2wi for i = 1, ..., n, then we have

Etr
[(

diag(Σ̂n)− Ip
)2

Σ̂nD1

]
=

n∑
i=1

n∑
j=1

n∑
h=1

p∑
k=1

E[eTkΓrir
T
i ΓTD1ek(e

T
kΓrjr

T
j ΓTek − n−1)

×(eTkΓrhr
T
hΓTek − n−1)] + o(1)

=
n∑
i=1

n∑
j=1

n∑
h=1

p∑
k=1

E[rTi ΓTD1eke
T
kΓri(r

T
j ΓTeke

T
kΓrj − n−1)

×(rThΓTeke
T
kΓrh − n−1)] + o(1)

=
(n− 1)

n2

[
2tr(RD1) + βw

p∑
k=1

eTkRD1ek

p∑
`=1

(eT` ΓTeke
T
kΓe`)

2
]

+
n∑
i=1

p∑
k=1

E[rTi ΓTD1eke
T
kΓri(r

T
i ΓTeke

T
kΓri − n−1)2] + o(1)

=
(n− 1)

n2

[
2tr(RD1) + βw

p∑
k=1

eTkRD1ek

p∑
`=1

(eTkΓe`)
4
]

+ o(1),

where the last equality is from (9.9.6) of Bai and Silverstein (2010). We can also prove that

Var{tr[(diag(Σ̂n)− Ip)
2Σ̂nD1]} = o(1).

From Chebyshev’s inequality,

tr
[(

diag(Σ̂n)− Ip
)2

Σ̂nD1

]
(S1.11)
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=
(n− 1)

n2

[
2tr(RD1) + βw

p∑
`=1

eT` RD1e`

p∑
k=1

(eT` Γek)
4
]

+ op(1).

Similarly,

tr
[(

diag(Σ̂n)− Ip
)
Σ̂n

(
diag(Σ̂n)− Ip

)
D1

]
(S1.12)

=
(n− 1)

n2
tr(CD1) + op(1),

tr
[(

diag(Σ̂n)− Ip
)2

Σ̂nD2Σ̂nD2

]
(S1.13)

=
(n− 1)(n− 2)

n3

[
2tr(RD2RD2) + βw

p∑
k=1

eTkRD2RD2ek

p∑
`=1

(eTkΓe`)
4
]

+
(n− 1)tr(RD2)

n3

[
2tr(RD2) + βw

p∑
k=1

eTkRD2ek

p∑
`=1

(eTkΓe`)
4
]

+ op(1),

tr
[(

diag(Σ̂n)− Ip
)
Σ̂n

(
diag(Σ̂n)− Ip

)
D2Σ̂nD2

]
(S1.14)

=
(n− 1)(n− 2)

n3

p∑
i=1

p∑
j=1

eTi Reje
T
i D2RD2ej

[
2(eTi Rej)

2 + βw

p∑
k=1

(eTi Γek)
2(eTj Γek)

2
]

+ op(1),

tr
[(

diag(Σ̂n)− Ip
)
D2

(
diag(Σ̂n)− Ip

)
Σ̂nD2Σ̂n

]
(S1.15)

=
(n− 1)(n− 2)

n3

p∑
i=1

p∑
j=1

eTi D2eje
T
i RD2Rej

[
2(eTi Rej)

2 + βw

p∑
k=1

(eTi Γek)
2(eTj Γek)

2
]

+
(n− 1)tr(RD2)

n3

p∑
i=1

p∑
j=1

eTi D2eje
T
i Rej

[
2(eTi Rej)

2 + βw

p∑
k=1

(eTi Γek)
2(eTj Γek)

2
]

+ op(1),

tr
[(

diag(Σ̂n)− Ip
)
Σ̂nD2

(
diag(Σ̂n)− Ip

)
Σ̂nD2

]
(S1.16)

=
(n− 1)(n− 2)

n3

p∑
i=1

p∑
j=1

eTi RD2eje
T
j RD2ei

[
2(eTi Rej)

2 + βw

p∑
k=1

(eTi Γek)
2(eTj Γek)

2
]

+ op(1),

where C = (cij)
p
i,j=1 is a p× p dimensional matrix whose (i, j)th element is given by

cij = 2r3ij + βwrij

p∑
`=1

(eTi Γe`)
2(eTj Γe`)

2,

and rij is the (i, j)th element of the population correlation matrix R.

Combining (S1.9) and (S1.11)-(S1.12), we have

tr(R̂nD1) = tr
(
Σ̂nD1

)
− tr

[(
diag(Σ̂n)− Ip

)
Σ̂nD1

]
+

1

4n
tr(CD1) (S1.17)
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+
3

4n

[
2tr(RD1) + βw

p∑
k=1

eTkRD1ek

p∑
`=1

(eTkΓe`)
4
]

+ op(1).

Also combining (S1.10) and (S1.13)-(S1.16), we obtain

tr
(
R̂nD2R̂nD2

)
(S1.18)

= tr
(
Σ̂nD2Σ̂nD2

)
− 2tr

[(
diag(Σ̂n)− Ip

)
Σ̂nD2Σ̂nD2

]
+

3

2n

[
2tr(RD2RD2) + βw

p∑
k=1

eTkRD2RD2ek

p∑
`=1

(eTkΓe`)
4
]

+
3tr(RD2)

2n2

[
2tr(RD2) + βw

p∑
k=1

eTkRD2ek

p∑
`=1

(eTkΓe`)
4
]

+
1

2n

p∑
i=1

p∑
j=1

eTi Reje
T
i D2RD2ej

[
2(eTi Rej)

2 + βw

p∑
k=1

(eTi Γek)
2(eTj Γek)

2
]

+
1

2n

p∑
i=1

p∑
j=1

eTi D2eje
T
i RD2Rej

[
2(eTi Rej)

2 + βw

p∑
k=1

(eTi Γek)
2(eTj Γek)

2
]

+
tr(RD2)

2n2

p∑
i=1

p∑
j=1

eTi D2eje
T
i Rej

[
2(eTi Rej)

2 + βw

p∑
k=1

(eTi Γek)
2(eTj Γek)

2
]

+
1

2n

p∑
i=1

p∑
j=1

eTi RD2eje
T
j RD2ei

[
2(eTi Rej)

2 + βw

p∑
k=1

(eTi Γek)
2(eTj Γek)

2
]

+ op(1).

S1.4 Analysis of the main terms

In this section, we derive the CLT for tr
(
Σ̂nD1

)
− tr

[(
diag(Σ̂n)− Ip

)
Σ̂nD1

]
tr
(
Σ̂nD2Σ̂nD2

)
− 2tr

[(
diag(Σ̂n)− Ip

)
Σ̂nD2Σ̂nD2

]
 .

According to the expression of Σ̂n,

Σ̂n = Ξn + ∆n =
n− 1

n

n∑
j=1

Γrjr
T
j ΓT − 1

n

∑
j 6=k

Γrjr
T
kΓT ,

we have

tr
(
Σ̂nD1

)
− Etr

(
Σ̂nD1

)
= tr(ΞnD1)− Etr(ΞnD1) + op(1),
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tr
[(

diag(Σ̂n)− Ip
)
Σ̂nD1

]
− Etr

[(
diag(Σ̂n)− Ip

)
Σ̂nD1

]
=tr[(diag(Ξn)− Ip)ΞnD1]− Etr[(diag(Ξn)− Ip)ΞnD1] + op(1),

tr
(
Σ̂nD2Σ̂nD2

)
− Etr

(
Σ̂nD2Σ̂nD2

)
= tr(ΞnD2ΞnD2)− Etr(ΞnD2ΞnD2) + op(1),

tr
[(

diag(Σ̂n)− Ip
)
Σ̂nD2Σ̂nD2

]
− Etr

[(
diag(Σ̂n)− Ip

)
Σ̂nD2Σ̂nD2

]
=tr[(diag(Ξn)− Ip)ΞnD2ΞnD2]− Etr[(diag(Ξn)− Ip)ΞnD2ΞnD2] + op(1).

Let (Ej −Ej−1)x = Ej(x)−Ej−1(x), where x is a random variable and Ej(·) denotes the

conditional expectation with respect to the σ-field generated by r1, . . . , rj, then

tr(ΞnD1)− Etr(ΞnD1) =
n∑
j=1

(Ej − Ej−1)tr(ΞnD1),

tr[(diag(Ξn)− Ip)ΞnD1]− Etr[(diag(Ξn)− Ip)ΞnD1]

=
n∑
j=1

(Ej − Ej−1)tr[(diag(Ξn)− Ip)ΞnD1],

tr(ΞnD2ΞnD2)− Etr(ΞnD2ΞnD2) =
n∑
j=1

(Ej − Ej−1)tr(ΞnD2ΞnD2),

tr[(diag(Ξn)− Ip)ΞnD2ΞnD2]− Etr[(diag(Ξn)− Ip)ΞnD2ΞnD2]

=
n∑
j=1

(Ej − Ej−1)tr[(diag(Ξn)− Ip)ΞnD2ΞnD2].

It is not difficult to prove that the martingale difference sequences

{(Ej − Ej−1)tr(ΞnD1), j = 1, ..., n} ,

{(Ej − Ej−1)tr[(diag(Ξn)− Ip)ΞnD1], j = 1, ..., n} ,

{(Ej − Ej−1)tr(ΞnD2ΞnD2), j = 1, ..., n} ,

{(Ej − Ej−1)tr[(diag(Ξn)− Ip)ΞnD2ΞnD2], j = 1, ..., n}
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satisfy the Lindeberg-type conditions, that is,

n∑
j=1

E[(Ej − Ej−1)tr(ΞnD1)]
2δ{|(Ej−Ej−1)tr(ΞnD1)|>ε} → 0,

n∑
j=1

E{(Ej − Ej−1)tr[(diag(Ξn)− Ip)ΞnD1]}2δ{|(Ej−Ej−1)tr[(diag(Ξn)−Ip)ΞnD1]|>ε} → 0,

n∑
j=1

E[(Ej − Ej−1)tr(ΞnD2ΞnD2)]
2δ{|(Ej−Ej−1)tr(ΞnD2ΞnD2)|>ε} → 0,

n∑
j=1

E{(Ej − Ej−1)tr[(diag(Ξn)− Ip)ΞnD2ΞnD2]}2δ{|(Ej−Ej−1)tr[(diag(Ξn)−Ip)ΞnD2ΞnD2]|>ε} → 0,

where δ{·} represents the indicator function, then the proof is omitted. We will calculate

σ11(D1) = σ110(D1) + σ220(D1)− 2σ120(D1),

σ22(D2) = σ330(D2) + 4σ440(D2)− 4σ340(D2),

σ12(D1,D2) = σ130(D1,D2)− 2σ140(D1,D2)− σ230(D1,D2) + 2σ240(D1,D2),

where

σ110(D1) =
n∑
j=1

Ej−1
[
(Ej − Ej−1)tr(ΞnD1)

]2
,

σ220(D1) =
n∑
j=1

Ej−1
{

(Ej − Ej−1)tr[(diag(Ξn)− Ip)ΞnD1]
}2
,

σ120(D1) =
n∑
j=1

Ej−1
{

[(Ej − Ej−1)tr(ΞnD1)][(Ej − Ej−1)tr[(diag(Ξn)− Ip)ΞnD1]]
}
,

σ330(D2) =
n∑
j=1

Ej−1
[
(Ej − Ej−1)tr(ΞnD2ΞnD2)

]2
σ440(D2) =

n∑
j=1

Ej−1
{

(Ej − Ej−1)tr[(diag(Ξn)− Ip)ΞnD2ΞnD2]
}2

σ340(D2) =
n∑
j=1

Ej−1
{

[(Ej − Ej−1)tr(ΞnD2ΞnD2)]

× [(Ej − Ej−1)tr[(diag(Ξn)− Ip)ΞnD2ΞnD2]]
}
,
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and

σ130(D1,D2) =
n∑
j=1

Ej−1
{

[(Ej − Ej−1)tr(ΞnD1)][(Ej − Ej−1)tr(ΞnD2ΞnD2)]
}
,

σ140(D1,D2) =
n∑
j=1

Ej−1
{

[(Ej − Ej−1)tr(ΞnD1)]

× [(Ej − Ej−1)tr[(diag(Ξn)− Ip)ΞnD2ΞnD2)]]
}
,

σ230(D1,D2) =
n∑
j=1

Ej−1
{

[(Ej − Ej−1)tr[(diag(Ξn)− Ip)ΞnD1]]

× [(Ej − Ej−1)tr(ΞnD2ΞnD2)]
}
,

σ240(D1,D2) =
n∑
j=1

Ej−1
{

[(Ej − Ej−1)tr[(diag(Ξn)− Ip)ΞnD1]]

× [(Ej − Ej−1)tr[(diag(Ξn)− Ip)ΞnD2ΞnD2)]]
}
.

Based on (1.15) of Bai and Silverstein (2004), after tedious calculations, we obtain

σ110(D1) =
n∑
j=1

Ej−1
[
(Ej − Ej−1)tr(ΞnD1)

]2
=

n∑
j=1

E[rTj ΓTD1Γrj − n−1tr(RD1)]
2 + op(1)

= n−1
[
2tr(RD1)

2 + βw

p∑
`=1

(eT` ΓTD1Γe`)
2
]

+ op(1),

σ220(D1) =
n∑
j=1

Ej−1
{

(Ej − Ej−1)tr[(diag(Ξn)− Ip)ΞnD1]
}2

=
n∑
j=1

Ej−1

[ p∑
`=1

j−1∑
i=1

rTi ΓTD1e`e
T
` Γri(r

T
j ΓTe`e

T
` Γrj − n−1)

+
n− j
n

p∑
`=1

eT` RD1e`(r
T
j ΓTe`e

T
` Γrj − n−1)

]2
+ op(1)

= n−1
p∑

`1=1

p∑
`2=1

eT`1RD1e`1e
T
`2

RD1e`2

[
2(eT`1Re`2)

2 + βw

p∑
k=1

(eT`1Γek)
2(eT`2Γek)

2
]

+ op(1),

σ120(D1) =
n∑
j=1

Ej−1
{

[(Ej − Ej−1)tr(ΞnD1)][(Ej − Ej−1)tr[(diag(Ξn)− Ip)ΞnD1]]
}
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=
n∑
j=1

Ej−1

{[ p∑
`=1

j−1∑
i=1

rTi ΓTD1e`e
T
` Γri(r

T
j ΓTe`e

T
` Γrj − n−1)

+
n− j
n

p∑
`=1

eT` RD1e`(r
T
j ΓTe`e

T
` Γrj − n−1)

][
rTj ΓTD1Γrj − n−1tr(RD1)

]}
+ op(1)

= n−1
p∑
`=1

eT` RD1e`

[
2eT` RD1Re` + βw

p∑
k=1

(eT` Γek)
2eTkΓTD1Γek

]
+ op(1).

Therefore, we have

σ11(D1) = n−1
[
2tr(RD1)

2 + βw

p∑
`=1

(eT` ΓTD1Γe`)
2
]

(S1.19)

+n−1
p∑

`1=1

p∑
`2=1

eT`1RD1e`1e
T
`2

RD1e`2

[
2(eT`1Re`2)

2 + βw

p∑
k=1

(eT`1Γek)
2(eT`2Γek)

2
]

−2n−1
p∑
`=1

eT` RD1e`

[
2eT` RD1Re` + βw

p∑
k=1

(eT` Γek)
2eTkΓTD1Γek

]
+ op(1).

Since the martingale differences of tr(ΞnD2ΞnD2) and tr[(diag(Ξn)− Ip)ΞnD2ΞnD2] are

(Ej − Ej−1)tr(ΞnD2ΞnD2) (S1.20)

=
2(n− j)

n

(
rTj ΓTD2RD2Γrj − n−1tr(RD2RD2)

)
+2n−1tr(RD2)

(
rTj ΓTD2Γrj − n−1tr(RD2)

)
+2

j−1∑
k=1

(
rTj ΓTD2Γrkr

T
kΓTD2Γrj − n−1rTkΓTD2RD2Γrk

)
+ op(1)

and

(Ej − Ej−1)tr[(diag(Ξn)− Ip)ΞnD2ΞnD2] (S1.21)

=

p∑
`=1

j−1∑
i=1

j−1∑
h=1

eT` Γrir
T
i ΓTD2Γrhr

T
hΓTD2e`(r

T
j ΓTe`e

T
` Γrj − n−1)

+
(n− j)(n− j − 1)

n2

p∑
`=1

eT` RD2RD2e`(r
T
j ΓTe`e

T
` Γrj − n−1)

+
(n− j)tr(RD2)

n2

p∑
`=1

eT` RD2e`(r
T
j ΓTe`e

T
` Γrj − n−1)

+
(n− j)
n

p∑
`=1

j−1∑
h=1

rThΓTD2RD2e`e
T
` Γrh(r

T
j ΓTe`e

T
` Γrj − n−1)
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+
(n− j)
n

p∑
`=1

j−1∑
h=1

rThΓTD2e`e
T
` RD2Γrh(r

T
j ΓTe`e

T
` Γrj − n−1) + op(1),

respectively, then we have

σ330(D2) =
n∑
j=1

Ej−1
[
(Ej − Ej−1)tr(ΞnD2ΞnD2)

]2
= 4n−1

[
2tr(RD2)

4 + βw

p∑
`=1

(eT` ΓTD2RD2Γe`)
2
]

+4[n−1tr(RD2)]
2n−1

[
2tr(RD2)

2 + βw

p∑
`=1

(eT` ΓTD2Γe`)
2
]

+4
[
n−1tr(RD2)

2
]2

+ 8n−1tr(RD2)n
−1
[
2tr(RD2)

3

+βw

p∑
`=1

eT` ΓTD2RD2Γe`e
T
` ΓTD2Γe`

]
+ op(1),

σ440(D2) =
n∑
j=1

Ej−1
{

(Ej − Ej−1)tr[(diag(Ξn)− Ip)ΞnD2ΞnD2]
}2

= n−1
p∑

`1=1

p∑
`2=1

eT`1(RD2)
2e`1e

T
`2

(RD2)
2e`2

×
[
2(eT`1Re`2)

2 + βw

p∑
k=1

(eT`1Γek)
2(eT`2Γek)

2
]

+2n−1tr(RD2)n
−1

p∑
`1=1

p∑
`2=1

eT`1RD2e`1e
T
`2

(RD2)
2e`2

×
[
2(eT`1Re`2)

2 + βw

p∑
k=1

(eT`1Γek)
2(eT`2Γek)

2
]

+[n−1tr(RD2)]
2n−1

p∑
`1=1

p∑
`2=1

eT`1RD2e`1e
T
`2

RD2e`2

×
[
2(eT`1Re`2)

2 + βw

p∑
k=1

(eT`1Γek)
2(eT`2Γek)

2
]

+ op(1),

σ340(D2) =
n∑
j=1

Ej−1
{

[(Ej − Ej−1)tr(ΞnD2ΞnD2)]

×[(Ej − Ej−1)tr[(diag(Ξn)− Ip)ΞnD2ΞnD2]]
}

= 2n−1
p∑
`=1

eT` (RD2)
2e`
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×
[
2eT` (RD2)

2Re` + βw

p∑
k=1

(eT` Γek)
2eTkΓTD2RD2Γek

]
+2n−1tr(RD2)n

−1
p∑
`=1

eT` RD2e`

×
[
2eT` (RD2)

2Re` + βw

p∑
k=1

(eT` Γek)
2eTkΓTD2RD2Γek

]
+2n−1tr(RD2)n

−1
p∑
`=1

eT` (RD2)
2e`

×
[
2eT` RD2Re` + βw

p∑
k=1

(eT` Γek)
2eTkΓTD2Γek

]
+2[n−1tr(RD2)]

2n−1
p∑
`=1

eT` RD2e`

×
[
2eT` RD2Re` + βw

p∑
k=1

(eT` Γek)
2eTkΓTD2Γek

]
+ op(1).

Therefore, we have

σ22(D2) = 4n−1
[
2tr(RD2)

4 + βw

p∑
`=1

(eT` ΓTD2RD2Γe`)
2
]

(S1.22)

+4[n−1tr(RD2)]
2n−1

[
2tr(RD2)

2 + βw

p∑
`=1

(eT` ΓTD2Γe`)
2
]

+4
[
n−1tr(RD2)

2
]2

+ 8n−1tr(RD2)n
−1
[
2tr(RD2)

3

+βw

p∑
`=1

eT` ΓTD2RD2Γe`e
T
` ΓTD2Γe`

]
+4n−1

p∑
`1=1

p∑
`2=1

eT`1(RD2)
2e`1e

T
`2

(RD2)
2e`2

×
[
2(eT`1Re`2)

2 + βw

p∑
k=1

(eT`1Γek)
2(eT`2Γek)

2
]

+8n−1tr(RD2)n
−1

p∑
`1=1

p∑
`2=1

eT`1RD2e`1e
T
`2

(RD2)
2e`2

×
[
2(eT`1Re`2)

2 + βw

p∑
k=1

(eT`1Γek)
2(eT`2Γek)

2
]

+4[n−1tr(RD2)]
2n−1

p∑
`1=1

p∑
`2=1

eT`1RD2e`1e
T
`2

RD2e`2
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×
[
2(eT`1Re`2)

2 + βw

p∑
k=1

(eT`1Γek)
2(eT`2Γek)

2
]

−8n−1
p∑
`=1

eT` (RD2)
2e`

×
[
2eT` (RD2)

2Re` + βw

p∑
k=1

(eT` Γek)
2eTkΓTD2RD2Γek

]
−8n−1tr(RD2)n

−1
p∑
`=1

eT` RD2e`

×
[
2eT` (RD2)

2Re` + βw

p∑
k=1

(eT` Γek)
2eTkΓTD2RD2Γek

]
−8n−1tr(RD2)n

−1
p∑
`=1

eT` (RD2)
2e`

×
[
2eT` RD2Re` + βw

p∑
k=1

(eT` Γek)
2eTkΓTD2Γek

]
−8[n−1tr(RD2)]

2n−1
p∑
`=1

eT` RD2e`

×
[
2eT` RD2Re` + βw

p∑
k=1

(eT` Γek)
2eTkΓTD2Γek

]
+ op(1).

Based on (S1.20) and (S1.21), after complicated calculation, we get

σ130(D1,D2) =
n∑
j=1

Ej−1
{

[(Ej − Ej−1)tr(ΞnD1)][(Ej − Ej−1)tr(ΞnD2ΞnD2)]
}

= 2n−1
[
2tr(RD1(RD2)

2) + βw

p∑
`=1

eT` ΓTD1Γe`e
T
` ΓTD2RD2Γe`

]
+2n−1tr(RD2)n

−1
[
2tr(RD1RD2) + βw

p∑
`=1

eT` ΓTD1Γe`e
T
` ΓTD2Γe`

]
+ op(1),

σ140(D1,D2) =
n∑
j=1

Ej−1
{

[(Ej − Ej−1)tr(ΞnD1)]

×[(Ej − Ej−1)tr[(diag(Ξn)− Ip)ΞnD2ΞnD2)]]
}

= n−1
p∑
`=1

eT` (RD2)
2e`

[
2eT` RD1Re` + βw

p∑
k=1

(eT` Γek)
2eTkΓTD1Γek

]
+n−1tr(RD2)n

−1
p∑
`=1

eT` RD2e`

[
2eT` RD1Re` + βw

p∑
k=1

(eT` Γek)
2eTkΓTD1Γek

]
+ op(1),
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σ230(D1,D2) =
n∑
j=1

Ej−1
{

[(Ej − Ej−1)tr[(diag(Ξn)− Ip)ΞnD1]]

×[(Ej − Ej−1)tr(ΞnD2ΞnD2)]
}

= 2n−1
p∑
`=1

eT` RD1e`

[
2eT` (RD2)

2Re` + βw

p∑
k=1

(eT` Γek)
2eTkΓTD2RD2Γek

]
+2n−1tr(RD2)n

−1
p∑
`=1

eT` RD1e`

×
[
2eT` RD2Re` + βw

p∑
k=1

(eT` Γek)
2eTkΓTD2Γek

]
+ op(1),

σ240(D1,D2) =
n∑
j=1

Ej−1
{

[(Ej − Ej−1)tr[(diag(Ξn)− Ip)ΞnD1]]

×[(Ej − Ej−1)tr[(diag(Ξn)− Ip)ΞnD2ΞnD2)]]
}

= n−1
p∑

`1=1

p∑
`2=1

eT`1RD1e`1e
T
`2

(RD2)
2e`2

×
[
2(eT`1Re`2)

2 + βw

p∑
k=1

(eT`1Γek)
2(eT`2Γek)

2
]

+n−1tr(RD2)n
−1

p∑
`1=1

p∑
`2=1

eT`1RD1e`1e
T
`2

RD2e`2

×
[
2(eT`1Re`2)

2 + βw

p∑
k=1

(eT`1Γek)
2(eT`2Γek)

2
]

+ op(1).

Thus, we have

σ12(D1,D2) = 2n−1
[
2tr(RD1(RD2)

2) + βw

p∑
`=1

eT` ΓTD1Γe`e
T
` ΓTD2RD2Γe`

]
(S1.23)

+2n−1tr(RD2)n
−1
[
2tr(RD1RD2) + βw

p∑
`=1

eT` ΓTD1Γe`e
T
` ΓTD2Γe`

]
−2n−1

p∑
`=1

eT` (RD2)
2e`

[
2eT` RD1Re` + βw

p∑
k=1

(eT` Γek)
2eTkΓTD1Γek

]
−2n−1

p∑
`=1

eT` RD1e`

[
2eT` (RD2)

2Re` + βw

p∑
k=1

(eT` Γek)
2eTkΓTD2RD2Γek

]
−2n−1tr(RD2)n

−1
p∑
`=1

eT` RD2e`
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×
[
2eT` RD1Re` + βw

p∑
k=1

(eT` Γek)
2eTkΓTD1Γek

]
−2n−1tr(RD2)n

−1
p∑
`=1

eT` RD1e`

×
[
2eT` RD2Re` + βw

p∑
k=1

(eT` Γek)
2eTkΓTD2Γek

]
+2n−1

p∑
`1=1

p∑
`2=1

eT`1RD1e`1e
T
`2

(RD2)
2e`2

×
[
2(eT`1Re`2)

2 + βw

p∑
k=1

(eT`1Γek)
2(eT`2Γek)

2
]

+2n−1tr(RD2)n
−1

p∑
`1=1

p∑
`2=1

eT`1RD1e`1e
T
`2

RD2e`2

×
[
2(eT`1Re`2)

2 + βw

p∑
k=1

(eT`1Γek)
2(eT`2Γek)

2
]

+ op(1).

According to the CLT for martingale difference sequence, we obtain that

Λ−1/2n

 tr
(
Σ̂nD1

)
− tr

[(
diag(Σ̂n)− Ip

)
Σ̂nD1

]
− µ01(D1)

tr
(
Σ̂nD2Σ̂nD2

)
− 2tr

[(
diag(Σ̂n)− Ip

)
Σ̂nD2Σ̂nD2

]
− µ02(D2)

 (S1.24)

is asymptotically distributed as the standard bivariate normal distribution with

Λn =

 σ11(D1) σ12(D1,D2)

σ21(D1,D2) σ22(D2)

 ,

where σ11(D1), σ22(D2), σ12(D1,D2) are given in (S1.19)-(S1.22)-(S1.23) and

µ01(D1) = Etr
(
Σ̂nD1

)
− Etr

[(
diag(Σ̂n)− Ip

)
Σ̂nD1

]
,

µ02(D2) = Etr
(
Σ̂nD2Σ̂nD2

)
− 2Etr

[(
diag(Σ̂n)− Ip

)
Σ̂nD2Σ̂nD2

]
.

Because

Etr(Σ̂nD1)− Etr[(diag(Σ̂n)− Ip)Σ̂nD1]

= tr(RD1)− n−1
[
2tr(RD1) + βw

p∑
k=1

p∑
`=1

eTkD1Γe`(e
T
kΓe`)

3
]

+ o(1),
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Etr(Σ̂nD2Σ̂nD2)

=
(n− 1)

n2
tr2(RD2) +

(n− 1)

n
tr(RD2)

2 + βwn
−1

p∑
k=1

(eTkΓTD2Γek)
2 + o(1),

Etr[(diag(Σ̂n)− Ip)Σ̂nD2Σ̂nD2]

= n−2tr2(RD2) + n−1tr(RD2)
2 + 2n−1

p∑
k=1

eTkRD2eke
T
kRD2Rek

+βwn
−1tr(RD2)n

−1
p∑

k=1

p∑
`=1

(eTkΓe`)
3eTkD2Γe`

+βwn
−1

p∑
k=1

p∑
`=1

(eTkΓe`)
3eTkD2RD2Γe`

+βwn
−1

p∑
k=1

p∑
`=1

(eTkΓe`)
2eTkD2Γe`e

T
kRD2Γe` + o(1),

then we have

µ01(D1) = tr(RD1)− n−1
[
2tr(RD1) + βwn

−1
p∑

k=1

p∑
`=1

eTkD1Γe`(e
T
kΓe`)

3
]

+ o(1),

µ02(D2) =
n− 3

n2
tr2(RD2)− 4n−1

p∑
k=1

eTkRD2eke
T
kRD2Rek

+
n− 3

n
tr(RD2)

2 + βwn
−1

p∑
k=1

(eTkΓTD2Γek)
2

−2βwn
−1tr(RD2)n

−1
p∑

k=1

p∑
`=1

(eTkΓe`)
3eTkD2Γe`

−2βwn
−1

p∑
k=1

p∑
`=1

(eTkΓe`)
3eTkD2RD2Γe`

−2βwn
−1

p∑
k=1

p∑
`=1

(eTkΓe`)
2eTkD2Γe`e

T
kRD2Γe` + o(1).

By (S1.17)-(S1.18)-(S1.24), we obtain that σ11(D1) σ12(D1,D2)

σ21(D1,D2) σ22(D2)


−1/2 tr

(
R̂nD1

)
− ν1(D1)

tr
(
R̂nD2R̂nD2

)
− ν2(D2)

 d−→ N (02, I2) ,
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where 02 = (0, 0)T , I2 is the 2× 2 dimensional identity matrix,

ν1(D1) = tr(RD1)− n−1
[
2tr(RD1) + βw

p∑
k=1

p∑
`=1

eTkD1Γe`(e
T
kΓe`)

3
]

+
1

4n
tr(CD1) +

3

4n

[
2tr(RD1) + βw

p∑
`=1

eT` RD1e`

p∑
k=1

(eT` Γek)
4
]
,

ν2(D2) =
n− 3

n2
tr2(RD2)− 4n−1

p∑
k=1

eTkRD2eke
T
kRD2Rek

+
n− 3

n
tr(RD2)

2 + βwn
−1

p∑
k=1

(eTkΓTD2Γek)
2

−2βwn
−1tr(RD2)n

−1
p∑

k=1

p∑
`=1

(eTkΓe`)
3eTkD2Γe`

−2βwn
−1

p∑
k=1

p∑
`=1

(eTkΓe`)
3eTkD2RD2Γe`

−2βwn
−1

p∑
k=1

p∑
`=1

(eTkΓe`)
2eTkD2Γe`e

T
kRD2Γe`

+
3

2n

[
2tr(RD2RD2) + βw

p∑
k=1

eTkRD2RD2ek

p∑
`=1

(eTkΓe`)
4
]

+
3tr(RD2)

2n2

[
2tr(RD2) + βw

p∑
k=1

eTkRD2ek

p∑
`=1

(eTkΓe`)
4
]

+
1

2n

p∑
i=1

p∑
j=1

eTi Reje
T
i D2RD2ej

[
2(eTi Rej)

2 + βw

p∑
k=1

(eTi Γek)
2(eTj Γek)

2
]

+
1

2n

p∑
i=1

p∑
j=1

eTi D2eje
T
i RD2Rej

[
2(eTi Rej)

2 + βw

p∑
k=1

(eTi Γek)
2(eTj Γek)

2
]

+
tr(RD2)

2n2

p∑
i=1

p∑
j=1

eTi D2eje
T
i Rej

[
2(eTi Rej)

2 + βw

p∑
k=1

(eTi Γek)
2(eTj Γek)

2
]

+
1

2n

p∑
i=1

p∑
j=1

eTi RD2eje
T
j RD2ei

[
2(eTi Rej)

2 + βw

p∑
k=1

(eTi Γek)
2(eTj Γek)

2
]
.
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S2 Proof of Theorem 1

Note that under H0, θ = A−1a with a = (tr[(R− J0)J1], . . . , tr[(R− J0)JK ])T . By Lemma

1, for k = 1, . . . , K, we have

tr(R̂nJk)− tr(RJk) = Op(1).

Since âk = tr[(R̂n − J0)Jk] and ak = tr[(R − J0)Jk], then we have p−1(âk − ak) = op(1). It

follows that

θ̂ − θ = A−1(â− a) =
(
p−1A

)−1
p−1(â− a) = Op(n

−1) = op(1).

Then the proof of Theorem 1 is completed.

S3 Proof of Theorem 2

In this section, we derive the limiting distributions of T1n and T2n. Let

RP = J0 + θ1PJ1 + · · ·+ θKPJK ,

where θP = (θ1P , ..., θKP )T = A−1aP and aP = (a1P , ..., aKP )T with akP = tr[(R− J0)Jk] for

k = 1, . . . , K. After simple calculation, we obtain

R̂−10 = R−1P −
K∑
k=1

(θ̂k − θkP )R̂−10 JkR
−1
P (S3.25)

= R−1P −
K∑
k=1

(θ̂k − θkP )(R̂−10 −R−1P + R−1P )JkR
−1
P

= R−1P −
K∑
k=1

(θ̂k − θkP )R−1P JkR
−1
P −

K∑
k=1

(θ̂k − θkP )(R̂−10 −R−1P )JkR
−1
P

= R−1P −
K∑
k=1

(θ̂k − θkP )R−1P JkR
−1
P +

K∑
k1=1

K∑
k2=1

(θ̂k1 − θk1P )(θ̂k2 − θk2P )R̂−10 Jk1R
−1
P Jk2R

−1
P .
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By (S3.25) and θ̂k = θkP +Op(n
−1) for k = 1, . . . , K, we have

T1n = tr[(R̂nR̂
−1
0 − Ip)

2]

= tr
{

[R̂nR
−1
P − Ip + R̂n(R̂−10 −R−1P )]2

}
= tr[(R̂nR

−1
P − Ip)

2] + 2tr[(R̂nR
−1
P − Ip)R̂n(R̂−10 −R−1P )]

+tr[R̂n(R̂−10 −R−1P )R̂n(R̂−10 −R−1P )]

= tr[(R̂nR
−1
P − Ip)

2] + 2
K∑
k=1

(θ̂k − θkP )tr(R̂nR
−1
P JkR

−1
P )

−2
K∑
k=1

(θ̂k − θkP )tr(R̂nR
−1
P R̂nR

−1
P JkR

−1
P )

+2
K∑

k1=1

K∑
k2=1

(θ̂k1 − θk1P )(θ̂k2 − θk2P )tr(R̂nR
−1
P R̂nR̂

−1
0 Jk1R

−1
P Jk2R

−1
P )

−2
K∑

k1=1

K∑
k2=1

(θ̂k1 − θk1P )(θ̂k2 − θk2P )tr(R̂nR̂
−1
0 Jk1R

−1
P Jk2R

−1
P )

+
K∑

k1=1

K∑
k2=1

(θ̂k1 − θk1P )(θ̂k2 − θk2P )tr(R̂nR
−1
P Jk1R

−1
P R̂nR

−1
P Jk2R

−1
P )

−2
K∑

k1,k2,k3=1

3∏
`=1

(θ̂k` − θk`P )tr(R̂nR
−1
P Jk1R

−1
P R̂nR̂

−1
0 Jk2R

−1
P Jk3R

−1
P )

+
K∑

k1,k2,k3,k4=1

4∏
`=1

(θ̂k` − θk`P )tr(R̂nR̂
−1
0 Jk1R

−1
P Jk2R

−1
P R̂nR̂

−1
0 Jk3R

−1
P Jk4R

−1
P )

= tr[(R̂nR
−1
P − Ip)

2] + 2
K∑
k=1

p(θ̂k − θkP )p−1tr(R̂nR
−1
P JkR

−1
P )

−2
K∑
k=1

p(θ̂k − θkP )p−1tr(R̂nR
−1
P R̂nR

−1
P JkR

−1
P ) + op(1).

From the proof of Lemma 1, we get

p−1tr(R̂nM1) = p−1tr(RM1) + op(1),

p−1tr(R̂nM1R̂nM2) = ynp
−1tr(RM1)p

−1tr(RM2) + p−1tr(RM1RM2) + op(1),
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where M1 and M2 are p × p dimensional non-random symmetric matrices with uniformly

bounded spectral norms. Hence, we have

T1n = tr[(R̂nR
−1
P − Ip)

2] + 2
K∑
k=1

(θ̂k − θkP )tr(RR−1P JkR
−1
P ) (S3.26)

−2
K∑
k=1

(θ̂k − θkP )
[
n−1tr(RR−1P )tr(RR−1P JkR

−1
P ) + tr(RR−1P RR−1P JkR

−1
P )
]

+ op(1)

= tr[(R̂nR
−1
P − Ip)

2]− 2n−1tr(RR−1P )tr(R̂0R
−1
P RR−1P ) + 2n−1tr2(RR−1P )

−2tr[R̂0R
−1
P RR−1P (RR−1P − Ip)] + 2tr[RR−1P (RR−1P − Ip)] + op(1)

= tr[(R̂nR
−1
P − Ip)

2]− 2tr(R̂0H) + 2n−1tr2(RR−1P ) + 2tr[RR−1P (RR−1P − Ip)] + op(1)

= tr(R̂nR
−1
P )2 − 2tr(R̂nR

−1
P ) + p− 2tr(J0H)− 2tr(R̂nBP )

+2tr(J0BP ) + 2n−1tr2(RR−1P ) + 2tr[RR−1P (RR−1P − Ip)] + op(1),

where

H = n−1tr(RR−1P )R−1P RR−1P + R−1P RR−1P (RR−1P − Ip),

BP =
K∑
k=1

hkPJk, hkP = (tr(J1H), . . . , tr(JKH))A−1ek,

and ek denotes the kth column of the identity matrix IK . Due to the fact that

tr(J0H) = tr(RPH)− tr(RBP ) + tr(J0BP ),

tr(RPH) = n−1tr2(RR−1P ) + tr[RR−1P (RR−1P − Ip)],

we obtain

T1n = tr(R̂nR
−1
P )2 − 2tr[R̂n(R−1P + BP )] + 2tr(RBP ) + p+ op(1).

By Lemma 1 and the Delta method, we have

σ−11n (T1n − µ1n)
d−→ N(0, 1),
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where

µ1n = ν2(R
−1
P )− 2ν1(R

−1
P + BP ) + 2tr(RBP ) + p,

σ2
1n = σ22(R

−1
P ) + 4σ11(R

−1
P + BP )− 4σ12(R

−1
P + BP ,R

−1
P ).

Note that R̂0 −RP =
K∑
k=1

(θ̂k − θkP )Jk. From θ̂k − θkP = Op(n
−1), we get

T2n = tr[(R̂n − R̂0)
2]

= tr[(R̂n −RP )2]− 2tr[(R̂n −RP )(R̂0 −RP )] + tr[(R̂0 −RP )2]

= tr[(R̂n −RP )2]− 2
K∑
k=1

(θ̂k − θkP )tr[(R̂n −RP )Jk] + op(1)

= tr[(R̂n −RP )2]− 2
K∑
k=1

(θ̂k − θkP )tr[(R−RP )Jk] + op(1)

= tr[(R̂n −RP )2]− 2tr(R̂nB̃P ) + 2tr[(R−RP )RP ]

−2tr[(R−RP )J0] + 2tr(J0B̃P ) + op(1),

where B̃P =
K∑
k=1

h̃kPJk and h̃kP =
(
tr[(R−RP )J1], . . . , tr[(R−RP )JK ]

)
A−1ek. Due to the

fact that tr[(R−RP )(RP − J0)] = tr(RB̃P )− tr(J0B̃P ), we have

T2n = tr[(R̂n −RP )2]− 2tr(R̂nB̃P ) + 2tr(RB̃P ) + op(1) (S3.27)

= tr(R̂2
n)− 2tr[R̂n(RP + B̃P )] + tr(R2

P ) + 2tr(RB̃P ) + op(1).

By Lemma 1 and the Delta method, we have

σ−12n (T2n − µ2n)
d−→ N(0, 1),

where

µ2n = ν2(Ip)− 2ν1(RP + B̃P ) + tr(R2
P ) + 2tr(RB̃P ),

σ2
2n = σ22(Ip) + 4σ11(RP + B̃P )− 4σ12(RP + B̃P , Ip).
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S4 Proof of Theorem 3

Note that under the null hypothesis H0, RP degenerates to R0, in this case, H = ynR
−1
0 and

BP = ynB, where B =
K∑
k=1

hkJk and hk = (tr(J1R
−1
0 ), . . . , tr(JKR−10 ))A−1ek. Based on the

conclusion (a) in Theorem 2, we have σ−110 (T1n − µ10)
d−→ N(0, 1), where

µ10 = ν2(R
−1
0 )− 2ν1(C1) + 2yntr(R0B) + p,

σ2
10 = σ22(R

−1
0 ) + 4σ11(C1)− 4σ12(C1,R

−1
0 ),

C1 = R−10 + ynB and ν1(·), ν2(·), σ11(·), σ12(·, ·), σ22(·) are defined in Lemma 1. After calcu-

lation and simplification, we get

µ10 = pyn − 3y2n − 7yn + βwyn − 0.5n−1tr(C0C1)

−(2yn + 4)βwn
−1

p∑
k=1

p∑
`=1

(eTkΓe`)
3eTkR−10 Γe`

+
(

1.5yn + 2
)
n−1
[
2p+ βw

p∑
k=1

p∑
`=1

(eTkΓe`)
4
]

+
(

0.5yn + 1
)
n−1

p∑
i=1

p∑
j=1

eTi R0eje
T
i R−10 ej

×
[
2(eTi R0ej)

2 + βw

p∑
k=1

(eTi Γek)
2(eTj Γek)

2
]

+2n−1
[
2tr(R0C1) + βw

p∑
k=1

p∑
`=1

(eTkΓe`)
3eTkC1Γe`

]
−1.5n−1

[
2tr(R0C1) + βw

p∑
k=1

eTkR0C1ek

p∑
`=1

(eTkΓe`)
4
]
,

and

σ2
10 = 4y2n − 4(2 + βw)yn(1 + yn)2

+4(1 + yn)2n−1
[
2tr(R2

0) + βw

p∑
k=1

(eTkΓTΓek)
2
]
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+4n−1
[
2tr(R0C1)

2 + βw

p∑
k=1

(eTkΓTC1Γek)
2
]

+4n−1
p∑
i=1

p∑
j=1

eTi R0C1eie
T
j R0C1ej

[
2(eTi R0ej)

2 + βw

p∑
k=1

(eTi Γek)
2(eTj Γek)

2
]

−8n−1
p∑
i=1

eTi R0C1ei

[
2eTi R0C1R0ei + βw

p∑
k=1

(eTi Γek)
2eTkΓTC1Γek

]
+8(1 + yn)n−1

[
2tr(R2

0C1) + βw

p∑
k=1

eTkΓTΓeke
T
kΓTC1Γek

]
−8(1 + yn)n−1

p∑
i=1

eTi R0C1ei

[
2eTi R2

0ei + βw

p∑
k=1

(eTi Γek)
2eTkΓTΓek

]
,

where C0 is a p×pmatrix with (i, j)th element being c0ij = 2r30ij+βwr0ij
∑p

`=1(e
T
i Γe`)

2(eTj Γe`)
2.

Similarly, under the null hypothesis H0, we have B̃P = 0p×p. By the conclusion (b) in

Theorem 2, we get σ−120 (T2n − µ20)
d−→ N(0, 1), where

µ20 = ν2(Ip)− 2ν1(R0) + tr(R2
0),

σ2
20 = σ22(Ip) + 4σ11(R0)− 4σ12(R0, Ip).

After calculation and simplification, we obtain that

µ20 = pyn + y2n + n−1tr(R2
0) + βwn

−1
p∑

k=1

(eTkΓTΓek)
2 − 0.5n−1tr(C0R0)

−2n−1
[
2tr(R2

0) + βw

p∑
k=1

p∑
`=1

(eTkΓe`)
3eTkR0Γe`

]
+0.5n−1

[
2tr(R2

0) + βw

p∑
k=1

eTkR2
0ek

p∑
`=1

(eTkΓe`)
4
]

+n−1
p∑
i=1

p∑
j=1

(eTi R0ej)
2
[
2(eTi R0ej)

2 + βw

p∑
k=1

(eTi Γek)
2(eTj Γek)

2
]
,

and σ2
20 = 4[n−1tr(R2

0)]
2.
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S5 Proof of Theorem 5

The proof of Theorem 5 is similar to those of Theorem 1 in Cai et al. (2013) and Theorem

2.1 in Yang (2020). Throughout this section, we denote the constants that do not depend on

p, n by C and may vary from one expression to the next. Before presenting the proof, we list

some technical lemmas that will be used.

S5.1 Technical lemmas

The first lemma is on the large deviations for η̂ij.

Lemma 2 (Lemma 4.3 of Yang (2020)). Under assumptions F or F*, there exists some

constant C > 0 such that for any M > 0 and ε > 0,

P

(
max

1≤i<j≤p
|η̂ij − ηij| ≥ C

εn
log p

)
= O(p−M + n−ε/8),

where εn = (log p)3/2/n1/2 if assumption F holds and εn = (log p)−1 if assumption F* holds.

The second lemma is an extension of the Bernstein inequality.

Lemma 3 (Lemma 8 of Xiao and Wu (2013)). Let X,X1, . . . , Xn be i.i.d. random variables

with mean zero and unit variance. Assume that for some 0 < α < 1,

E
(
|X|3(1−α)et|X|α

)
≤ A, for all 0 ≤ t < T.

Let Sn = X1 + · · ·+Xn. If x1−α ≥ 2A/T 2, then we have

P (Sn ≥ x) ≤ exp

{
− x2

2(n+ x2−α/T )

}
+ nP (X ≥ x).

The next lemma is the classical Bonferroni’s inequality.
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Lemma 4 (Lemma 1 of Cai et al. (2013)). Let B =
p⋃
t=1

Bt. For any k < [p/2], we have

2k∑
t=1

(−1)t−1Et ≤ P (B) ≤
2k−1∑
t=1

(−1)t−1Et,

where Et =
∑

1≤i1<···<it≤p
P (Bi1 ∩ · · · ∩Bit).

Suppose that (Ni)i∈In is a Gaussian random vector whose entries have zero mean and

unit variance, where In is an index set with cardinality |In| = sn. Let Σn = (σij)i,j∈In be

the covariance matrix of (Ni)i∈In . Assume that sn →∞ as n→∞.

Consider either of the following two conditions.

(C1) For any sequence {bn} such that bn →∞, γ(n, bn) = o(1/ log bn);

and lim sup
n→∞

γn < 1.

(C2) For any sequence {bn} such that bn →∞, γ(n, bn) = o(1);∑
i 6=j∈In

σ2
ij = O

(
s2−δn

)
for some δ > 0; and lim sup

n→∞
γn < 1,

where

γ(n, bn) := sup
i∈In

sup
A⊂In,|A|=bn

inf
j∈A
|σij| and γn := sup

i,j∈In;i 6=j
|σij|.

Lemma 5 (Lemma 7 of Xiao and Wu (2013)). Assume that either (C1) or (C2) holds. For

a fixed z ∈ R and a sequence {zn} satisfying z2n = 2 log sn − log log sn − log π + 2z + o(1),

denote

A′i = {|Ni| > zn} and Q′d =
∑

A⊂In,|A|=d

P

(⋂
i∈A

A′i

)
,

then for all d ≥ 1, it holds that

lim
n→∞

Q′d =
e−dz

d!
.

30



S5.2 The detailed proof

Without loss of generality, we assume that µ = 0 and σii = 1 for i = 1, . . . , p. We divide the

proof of Theorem 5 into two steps:

Step 1: Effects of estimated variances and means. Denote

M̃n,1 = max
1≤i<j≤p

n(r̂ij − rij)2

ηij
.

Under the event {|η̂ij/ηij − 1| ≤ Cεn/ log p}, we have

|M̃n − M̃n,1| ≤ CM̃n
εn

log p
.

Thus, by Lemma 2, it suffices to show that for any t ∈ R,

P
(
M̃n,1 − 4 log p+ log log p ≤ t

)
→ exp

(
− 1√

8π
exp

(
− t

2

))
.

Let Σ̃n be the non-centralized sample covariance matrix, that is, Σ̃n = (σ̃ij)
p
i,j=1 =

n−1
n∑
k=1

xkx
T
k , and R̃n = (r̃ij)

p
i,j=1 be the sample correlation matrix corresponding to Σ̃n.

Denote

M̃n,2 = max
1≤i<j≤p

n(r̃ij − rij)2

ηij
.

Using Lemma 3 and the Bernstein inequality, we can show that

max
1≤i≤p

|x̄i| = Op

(√
log p/n

)
, (S5.28)

max
1≤i≤j≤p

|σ̃ij − σij| = Op

(√
log p/n

)
. (S5.29)

From (S5.28), (S5.29), and the first order Taylor expansion of the 3 variate function x(yz)−1/2

for x ∈ R and y, z > 0 (see equation (5) in Cai and Zhang (2016)),

x̂

(ŷẑ)1/2
=

x

(yz)1/2
+

x̂− x
(yz)1/2

− x

(yz)1/2

(
ŷ − y

2y
+
ẑ − z

2z

)
+ o(x̂− x) + o(ŷ − y) + o(ẑ − z),
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we get

r̃ij − rij =
1

n

n∑
k=1

[
xikxjk −

rij
2

(
x2ik + x2jk

)]
+ op(n

−1/2), (S5.30)

r̂ij − rij =
1

n

n∑
k=1

[
(xik − x̄i)(xjk − x̄j)−

rij
2

(
(xik − x̄i)2 + (xjk − x̄j)2

)]
+ op(n

−1/2).

It follows that

r̂ij − r̃ij = x̄ix̄j −
rij
2

(
x̄2i + x̄2j

)
+ op(n

−1/2).

Thus, from (S5.29), we get∣∣∣M̃n,1 − M̃n,2

∣∣∣ ≤ Cn max
1≤i≤p

|x̄i|4 + Cn1/2M̃
1/2
n,2 max

1≤i≤p
|x̄i|2 + op(1),

which together with (S5.28) implies that we only need to prove that for any t ∈ R,

P
(
M̃n,2 − 4 log p+ log log p ≤ t

)
→ exp

(
− 1√

8π
exp

(
− t

2

))
.

Step 2: Truncation. From (S5.29) and (S5.30), we get M̃n,2 = max
α∈In

Q2
α + op(1), where

Qα =
1

√
nηij

n∑
k=1

Vkα,

and

Vkα = xikxjk −
rij
2

(
x2ik + x2jk

)
.

Let V̂kα = VkαI{|Vkα| ≤ τn} − EVkαI{|Vkα| ≤ τn}, where τn = η−18 log(p + n) if assumption

F holds and τn =
√
n/(log p)8 if assumption F* holds. Denote

Q̂α =
1

√
nηij

n∑
k=1

V̂kα.

Note that |Vkα| ≤ x2ik + x2jk for k = 1, . . . , n. If assumption F holds, then we have

max
α∈In

1
√
nηij

n∑
k=1

E|Vkα|I{|Vkα| ≥ τn} ≤ C
√
nmax
α∈In

E|V1α|I{|V1α| ≥ τn}

≤C
√
n(p+ n)−2 max

α∈In
E|V1α| exp(η|V1α|/4) ≤ C

√
n(p+ n)−2,
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and if assumption F* holds, then we have

max
α∈In

1
√
nηij

n∑
k=1

E|Vkα|I{|Vkα| ≥ τn} ≤ C
√
nmax
α∈In

E|V1α|I{|V1α| ≥ τn}

≤C
√
nmax
α∈In

E|V1α|2+2γ0+ε/2/τ 1+2γ0+ε/2
n ≤ Cn−γ0−ε/8.

Thus, we get

P

(
max
α∈In

∣∣∣Q̂α − Q̂α

∣∣∣ ≥ (log p)−1
)

≤P

(
max
α∈In

1
√
nηij

n∑
k=1

|VkαI{|Vkα| ≥ τn} − EVkαI{|Vkα| ≥ τn}| ≥ (log p)−1

)

≤P
(

max
α∈In

max
1≤k≤n

|Vkα| ≥ τn

)
≤

n∑
k=1

P

(
max
α∈In
|Vkα| ≥ τn

)
=nP

(
max
α∈In
|V1α| ≥ τn

)
≤ np max

1≤i≤p
P
(
x2i1 ≥ τn/2

)
=O(p−1 + n−ε/8). (S5.31)

Note that∣∣∣∣max
α∈In

Q2
α −max

α∈In
Q̂2
α

∣∣∣∣ ≤ 2 max
α∈In

∣∣∣Q̂α

∣∣∣max
α∈In

∣∣∣Qα − Q̂α

∣∣∣+ max
α∈In

∣∣∣Qα − Q̂α

∣∣∣2 . (S5.32)

Based on (S5.31) and (S5.32), it suffices to prove that for any t ∈ R,

P

(
max
α∈In

Q̂2
α − 4 log p+ log log p ≤ t

)
→ exp

(
− 1√

8π
exp

(
− t

2

))
. (S5.33)

Let q be the cardinality of In and yp = t + 4 log p − log log p. We arrange the two

dimensional indices {(i, j) : 1 ≤ i < j ≤ p} in any ordering and set them as {(im, jm) : 1 ≤

m ≤ q}. Denote Vkm = ximkxjmk −
rimjm

2

(
x2imk + x2jmk

)
, ηm = ηimjm , and Qm = 1√

nηm

n∑
k=1

Vkm.

By Lemma 4, for any integer s with 0 < s < q/2, we have

2s∑
d=1

(−1)d−1
∑

1≤m1<···<md≤q

P

(
d⋂
j=1

Emj

)
≤ P

(
max
1≤m≤q

Q̂2
m ≥ yp

)

≤
2s−1∑
d=1

(−1)d−1
∑

1≤m1<···<md≤q

P

(
d⋂
j=1

Emj

)
, (S5.34)
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where Emj = {Q̂2
mj
≥ yp}. Let Ṽkm = V̂km/(ηm)1/2 for 1 ≤ m ≤ q and Vk = (Ṽkm1 , . . . , Ṽkmd)

for 1 ≤ k ≤ n. Denote |a|min = min
1≤i≤d

|ai| for any vector a ∈ Rd. Then we have

P

(
d⋂
j=1

Emj

)
= P

(∣∣∣∣∣n−1/2
n∑
k=1

Vk

∣∣∣∣∣
min

≥ y1/2p

)
.

By Lemma 9 in Xiao and Wu (2013), we get

P

(∣∣∣∣∣n−1/2
n∑
k=1

Vk

∣∣∣∣∣
min

≥ y1/2p

)
≤P

(
|Nd|min ≥ y1/2p − εn(log p)−1/2

)
+ c1,d exp

(
− n1/2εn
c2,dτn(log p)1/2

)
, (S5.35)

where cj,d = cjd
5/2, j = 1, 2, cj > 0 are constants, Nd = (Nm1 , . . . , Nmd) is a d-dimensional

Gaussian vector with zero mean and Cov(Nd) = Cov(V1). Let

εn =


(log p)3/2/n3/10, if assumption F holds,

(log p)−1/2, if assumption F* holds,

then we have εn → 0 and for any M > 0,

c1,d exp

(
− n1/2εn
c2,dτn(log p)1/2

)
= O(p−M). (S5.36)

It follows from (S5.34), (S5.35), and (S5.36) that

P

(
max
1≤m≤q

Q̂2
m ≥ yp

)
≤

2s−1∑
d=1

(−1)d−1
∑

1≤m1<···<md≤q

P
(
|Nd|min ≥ y1/2p − εn(log p)−1/2

)
+ o(1).

(S5.37)

Similarly, we also have

P

(
max
1≤m≤q

Q̂2
m ≥ yp

)
≥

2s∑
d=1

(−1)d−1
∑

1≤m1<···<md≤q

P
(
|Nd|min ≥ y1/2p + εn(log p)−1/2

)
− o(1).

(S5.38)

For 0 < k, ` < q, denote Ck` = 1/(ηmkηm`)
1/2. By some elementary calculations, we get if

assumptions F holds,

max
k,`
|Cov(Nmk , Nm`)− Ck`Cov(V1mk , V1m`)| ≤ C(p+ n)−1, (S5.39)

34



and if assumption F* holds,

max
k,`
|Cov(Nmk , Nm`)− Ck`Cov(V1mk , V1m`)| ≤ Cτ−2γ0−ε/2n . (S5.40)

Based on assumption E (or E*), (S5.39), and (S5.40), we know that the covariance matrix

of (N1, · · · , Nq) satisfies assumption E (or E*). Thus, by Lemma 5, we get

lim
n→∞

∑
1≤m1<···<md≤q

P
(
|Nd|min ≥ y1/2p ± εn(log p)−1/2

)
=

1

d!

(
1√
8π

exp

(
− t

2

))d
. (S5.41)

Submitting (S5.41) into (S5.37) and (S5.38), we get

lim sup
n→∞

P

(
max
1≤m≤q

Q̂2
m ≥ yp

)
≤

2s−1∑
d=1

(−1)d−1
1

d!

(
1√
8π

exp

(
− t

2

))d
and

lim inf
n→∞

P

(
max
1≤m≤q

Q̂2
m ≥ yp

)
≥

2s∑
d=1

(−1)d−1
1

d!

(
1√
8π

exp

(
− t

2

))d
for any positive integer s. Letting s→∞, we prove that (S5.33) holds.

S6 Proof of Corollary 3

Note that R0 = (r0ij)
p
i,j=1 represents the structured population correlation matrix under the

null hypothesis H0. Let

Mn,1 = max
1≤i<j≤p

n(r̂ij − r0ij)2

η̂ij
.

By Theorem 5, we get for any t ∈ R,

P (Mn,1 − 4 log p+ log log p ≤ t)→ exp

(
− 1√

8π
exp

(
− t

2

))
.

Under the null hypothesis H0, we have

ηij = Var

(
(xi1 − µi)(xj1 − µj)

(σiiσjj)
1/2

− r0ij
2

(
(xi1 − µi)2

σii
+

(xj1 − µj)2

σjj

))
,
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and

n−1
n∑
k=1

(xik − x̄i)(xjk − x̄j)
(σ̂iiσ̂jj)

1/2
− r̂0ij

2

(
(x̂ik − x̄i)2

σ̂ii
+

(xjk − x̄j)2

σ̂jj

)
= r̂ij − r̂0ij,

then ηij can be estimated by

η̂0ij = n−1
n∑
k=1

[
(xik − x̄i)(xjk − x̄j)

(σ̂iiσ̂jj)1/2
− r̂0ij

2

(
(xik − x̄i)2

σ̂ii
+

(xjk − x̄j)2

σ̂jj

)
− (r̂ij − r̂0ij)

]2
.

Next, we prove that max
1≤i<j≤p

|η̂0ij − η̂ij| = op(1). After some elementary calculations, we get

η̂0ij = n−1
n∑
k=1

[Tkij + (r̂ij − r̂0ij)Rkij]
2 ,

where

Tkij =
(xik − x̄i)(xjk − x̄j)

(σ̂iiσ̂jj)1/2
− r̂ij

2

(
(xik − x̄i)2

σ̂ii
+

(xjk − x̄j)2

σ̂jj

)
,

Rkij =
(xik − x̄i)2

2σ̂ii
+

(xjk − x̄j)2

2σ̂jj
− 1.

Thus, we have

η̂0ij − η̂ij = 2(r̂ij − r̂0ij)n−1
n∑
k=1

TkijRkij + (r̂ij − r̂0ij)2n−1
n∑
k=1

R2
kij. (S6.42)

Note that n−1
n∑
k=1

R2
kij ≤ max

1≤i≤p
ϑ̂ii/σ̂

2
ii, where ϑ̂ii = n−1

n∑
k=1

((xik − x̄i)2 − σ̂ii)2. By Lemma 3

of Cai et al. (2013), we have

P

(
max
i
|ϑ̂ii − ϑii|/σ2

ii ≥ C
εn

log p

)
= O(p−1 + n−ε/8),

where εn = max
(
(log p)1/6/n1/2, (log p)−1

)
. Therefore, we get

max
1≤i<j≤p

n−1
n∑
k=1

R2
kij = Op(1). (S6.43)

Due to the conclusion that θ̂k = θk +Op(n
−1) in the proof of Theorem 2, we have

max
1≤i<j≤p

|r̂0ij − r0ij| ≤ ‖R̂0 −R0‖ = op(n
−1/2). (S6.44)
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From (S5.28) and (S5.29), we get max
1≤i<j≤p

|r̂ij − r0ij| = op(1). It follows that

max
1≤i<j≤p

|r̂ij − r̂0ij| = op(1). (S6.45)

Denote

Mn,2 = max
1≤i<j≤p

n(r̂ij − r0ij)2

η̂0ij
.

Combining (S6.42), (S6.43), and (S6.45), we have max
1≤i<j≤p

|η̂0ij − η̂ij| = op(1). It follows that

|Mn,1 −Mn,2| ≤Mn,1 max
1≤i<j≤p

|η̂ij/η̂0ij − 1| = op(1).

From (S6.44), we get

|Mn,2 −Mn| ≤ Cn max
1≤i<j≤p

|r̂0ij − r0ij|2 + Cn1/2M
1/2
n,2 max

1≤i<j≤p
|r̂0ij − r0ij| = op(1).

Based on the Slutsky’s theorem, we derive that Mn converges to the Type I extreme value

distribution under the null hypothesis H0. Thus, the proof of Corollary 3 is completed.
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Table S1: Key notations used in the paper

Notation Definition

p the dimension

n the sample size

yn the dimension-versus-sample-size ratio, defined as p/n

x1, · · · ,xn the i.i.d. sample

Σ = (σij)
p
i,j=1 the population covariance matrix

R = (rij)
p
i,j=1 the population correlation matrix

diag(Σ) the diagonal matrix formed by the diagonal elements of Σ

Γ a p× p matrix, defined as [diag(Σ)]−1/2Σ1/2

Σ̂n = (σ̂ij)
p
i,j=1 the sample covariance matrix

R̂n = (r̂ij)
p
i,j=1 the sample correlation matrix

βw the kurtosis, defined in Assumption A

J0,J1, · · · ,JK the basis matrices involved in H0

R0 = (r0ij)
p
i,j=1 the population correlation matrix specified under H0

R̂0 = (r̂0ij)
p
i,j=1 the structured estimator of R under H0

A a K ×K matrix with the (i, j)th entry being tr(JiJj)

Ip the p× p identity matrix

ei

the ith column of the identity matrix, and its

dimension is determined by the matrix it multiplies

C0 = (c0ij)
p
i,j=1 a matrix with c0ij = 2r30ij + βwr0ij

p∑
k=1

(eT
i Γek)2(eT

j Γek)2

hk a quantity, defined as (tr(J1R
−1
0 ), . . . , tr(JKR−1

0 ))A−1ek

B a p× p matrix, defined as
K∑

k=1

hkJk

C1 a p× p matrix, defined as R−1
0 + ynB
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Table S2: Empirical size and power for the test statistics based on infinite norm (Mn), ratio-based quadrat-

ic norm (T1n) and distance-based quadratic norm (T2n) under scenarios 1–4, where n observations with

dimension p are generated from the Gamma population.

Scenario 1 Scenario 2 Scenario 3 Scenario 4

n p Mn T1n T2n Mn T1n T2n Mn T1n T2n Mn T1n T2n

Empirical size (%)

100

50 4.1 5.1 3.8 3.6 4.9 3.7 3.9 4.5 4.3 3.7 4.6 4.7

100 3.4 5.4 4.4 3.3 5.1 4.5 3.1 5.0 4.7 3.1 4.6 4.8

300 3.2 5.7 4.6 3.1 5.1 4.6 2.6 5.3 4.8 2.2 4.6 4.6

500 2.6 6.0 5.1 2.7 5.3 4.7 2.9 5.4 5.1 2.7 4.9 4.8

1000 2.6 6.3 4.6 2.9 5.9 5.0 2.5 5.8 4.5 2.4 4.5 4.7

300

50 3.6 5.5 4.2 3.7 5.4 3.8 3.8 5.2 4.4 3.7 4.9 4.8

100 3.5 5.3 4.7 3.5 5.2 4.3 3.3 5.2 4.6 3.6 4.8 5.0

300 3.3 5.2 4.7 3.3 5.2 4.6 3.3 4.9 4.5 3.2 4.7 4.5

500 3.1 5.3 4.4 2.8 4.8 4.7 2.9 5.0 4.4 3.1 4.7 4.6

1000 3.0 5.7 5.1 2.7 5.7 5.0 2.7 5.2 4.9 2.4 5.2 5.2

Empirical power (%)

100

50 5.6 100.0 11.6 6.8 19.3 54.4 73.6 4.9 9.1 5.0 22.4 14.1

100 4.5 100.0 11.5 7.0 62.6 89.3 58.7 4.8 6.8 4.5 28.9 15.0

300 3.2 100.0 11.5 7.4 99.9 100.0 35.0 5.9 4.9 2.7 57.2 15.3

500 3.1 100.0 11.9 7.8 100.0 100.0 26.7 5.9 5.3 3.0 80.3 16.4

1000 2.7 100.0 11.8 8.3 100.0 100.0 17.4 5.9 4.9 2.5 99.4 16.3

300

50 11.4 100.0 30.5 10.2 8.0 90.6 99.7 15.3 21.9 9.9 57.8 42.1

100 8.4 100.0 31.1 11.2 35.1 99.8 99.3 6.2 11.9 7.4 67.0 43.5

300 5.2 100.0 32.0 12.7 98.4 100.0 96.6 5.0 5.5 5.0 88.7 46.5

500 4.7 100.0 31.5 12.6 100.0 100.0 93.9 5.3 5.1 4.3 97.1 46.5

1000 3.9 100.0 32.5 12.8 100.0 100.0 89.0 5.9 5.1 3.2 100.0 47.9
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Table S3: Empirical size and power for the test statistics based on infinite norm (Mn), ratio-based quadrat-

ic norm (T1n) and distance-based quadratic norm (T2n) under scenarios 5–8, where n observations with

dimension p are generated from the Gamma population.

Scenario 5 Scenario 6 Scenario 7 Scenario 8

n p Mn T1n T2n Mn T1n T2n Mn T1n T2n Mn T1n T2n

Empirical size (%)

100

50 3.7 5.1 3.9 3.8 4.3 4.3 3.3 5.2 4.0 2.9 6.3 2.3

100 3.2 5.0 4.6 3.2 4.5 4.4 3.6 5.3 4.4 2.9 5.6 3.1

300 2.7 4.9 4.6 2.6 4.8 4.8 2.9 4.7 4.4 2.7 5.0 3.4

500 2.9 5.3 4.9 2.9 4.8 4.9 2.9 5.3 5.1 2.7 5.3 3.3

1000 2.3 4.9 4.7 2.6 4.5 4.6 2.8 4.9 5.2 2.7 5.1 2.7

300

50 3.5 5.3 4.0 3.7 4.9 4.9 3.6 5.5 4.0 2.8 6.1 2.6

100 3.4 5.0 4.4 3.7 4.8 4.8 3.2 4.7 3.9 3.0 5.5 3.3

300 3.2 4.8 4.4 3.2 5.0 4.9 3.0 5.1 4.7 2.9 5.1 3.7

500 2.9 5.1 4.7 3.0 4.9 4.7 2.7 5.0 4.8 2.6 5.1 3.6

1000 2.5 5.1 4.9 2.6 4.9 4.8 2.6 4.9 5.3 2.4 5.0 3.0

Empirical power (%)

100

50 87.1 35.1 50.0 57.1 46.0 40.5 3.7 26.6 4.4 45.3 26.4 2.9

100 75.3 46.7 75.8 56.6 42.8 36.3 3.6 44.9 4.7 34.2 23.4 3.2

300 50.9 95.5 99.8 54.3 44.8 33.2 3.0 95.2 4.6 26.9 40.6 3.1

500 39.8 99.8 100.0 52.7 48.0 32.2 3.0 100.0 5.4 25.7 60.6 3.0

1000 27.1 100.0 100.0 48.8 59.7 32.0 2.7 100.0 5.5 24.8 91.2 2.1

300

50 99.9 83.9 94.1 98.4 94.5 91.8 4.0 45.9 4.9 97.5 61.2 5.6

100 99.8 91.8 99.4 98.5 93.1 88.8 3.5 68.9 4.9 95.4 51.2 3.6

300 99.4 100.0 100.0 98.0 92.4 85.4 3.1 99.3 5.9 93.1 65.3 2.7

500 98.7 100.0 100.0 97.5 93.4 84.0 2.9 100.0 5.8 92.8 83.0 2.6

1000 97.4 100.0 100.0 97.5 96.0 83.7 2.7 100.0 6.2 93.2 98.6 2.1

40



Table S4: Empirical size and power for the Tippett’s minimum p-value test Ttn and the Cauchy combina-

tion test Tcn under scenarios 1–8, where n observations with dimension p are generated from the Gamma

population.

Scenario 1 2 3 4 5 6 7 8

n p Ttn Tcn Ttn Tcn Ttn Tcn Ttn Tcn Ttn Tcn Ttn Tcn Ttn Tcn Ttn Tcn

Empirical size (%)

100

50 4.0 4.3 3.4 3.9 3.5 4.3 3.1 4.3 3.8 4.2 2.6 4.0 3.7 4.1 3.8 3.8

100 4.1 4.3 3.9 4.1 3.8 4.3 2.7 4.1 3.8 4.3 2.4 3.7 4.0 4.4 3.4 3.6

300 4.3 4.4 4.3 4.3 3.7 4.1 2.6 3.6 3.8 4.1 2.5 3.8 3.7 3.8 3.8 3.6

500 4.4 4.3 4.1 4.1 4.0 4.3 3.1 4.1 3.8 4.0 2.9 4.0 3.9 4.1 3.7 3.7

1000 4.5 4.5 4.6 4.5 4.4 4.2 2.6 3.6 3.9 3.9 2.5 3.8 4.1 4.1 3.1 3.0

300

50 4.0 4.4 3.8 4.1 3.7 4.3 3.2 4.3 3.7 4.2 3.0 4.2 3.8 4.2 3.8 3.9

100 4.0 4.6 4.3 4.5 3.8 4.4 3.2 4.3 3.8 4.2 2.9 4.3 3.3 3.7 3.7 3.7

300 3.9 4.1 4.0 4.0 3.6 4.0 2.9 4.0 3.6 4.0 2.7 4.0 3.8 4.2 3.7 3.4

500 3.9 4.1 4.0 4.1 3.7 4.0 3.0 3.9 3.6 3.8 2.5 3.9 3.5 3.8 3.4 3.2

1000 4.4 4.5 4.5 4.2 4.0 4.1 2.9 3.9 3.9 4.1 2.6 4.0 4.0 4.2 3.3 3.2

Empirical power (%)

100

50 99.9 99.9 51.7 53.7 61.4 61.7 14.2 17.2 84.4 86.8 59.9 66.2 18.3 18.7 41.2 42.4

100 100.0 100.0 94.3 95.0 46.7 47.0 18.0 20.5 86.4 88.4 59.0 64.9 33.6 33.2 33.2 34.2

300 100.0 100.0 100.0 100.0 26.6 26.9 40.9 41.4 99.7 99.8 59.0 64.0 90.7 90.2 39.9 40.7

500 100.0 100.0 100.0 100.0 20.4 21.0 67.6 66.4 100.0 100.0 60.1 65.1 99.8 99.8 55.5 56.3

1000 100.0 100.0 100.0 100.0 13.9 14.0 98.7 98.4 100.0 100.0 65.5 68.6 100.0 100.0 86.4 86.7

300

50 100.0 100.0 87.7 88.4 99.4 99.4 44.4 49.7 100.0 100.0 99.6 99.8 34.3 34.0 96.8 97.1

100 100.0 100.0 99.9 100.0 98.2 98.2 52.2 56.7 100.0 100.0 99.6 99.8 55.5 55.1 94.0 94.4

300 100.0 100.0 100.0 100.0 93.8 93.6 79.4 80.0 100.0 100.0 99.5 99.6 98.4 98.3 94.5 95.3

500 100.0 100.0 100.0 100.0 90.2 90.1 93.3 92.9 100.0 100.0 99.5 99.7 100.0 100.0 96.7 97.2

1000 100.0 100.0 100.0 100.0 83.7 83.6 99.9 99.9 100.0 100.0 99.6 99.8 100.0 100.0 99.7 99.8
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