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This supplement consists of the detailed proofs of Lemma 1, Theorems 1, 2, 3, 5, and Corollary 3 in “Structural
Testing of High-Dimensional Correlation Matrices”. We also present the simulation results when the observations are

generated from the Gamma population.

S1 Detailed proof of Lemma 1

This section is devoted to presenting the detailed proof of Lemma 1. Let e, denote the /th
column of p X p dimensional identity matrix I,, T' = [diag(X)]7/*X"2, and C = (¢;;)!,_; be

p
a p X p dimensional matrix with ¢;; = 213, + Buri; > (e/ Ter)*(e] I'ey)*. In order to simplify
k=1

the expressions of mean and variance-covariance functions in the CLT given by Lemma 1] we

define the following quantites

p

AR, j) =217 + Bu Y (] Tey)*(e] Tey)?,
k=1

p p
f2(R, D) = 2tr(RD,)” + B, Y _ e/ RD,RDse;, > (efTe,)*,

k=1 /=1
p p
f3(R, Dy) = 2tr(RDy) + B, Y _e{RDse; » (efTe,)*,
k=1 /=1
p
f4(R,Dy,i) = 22/ RD Re; + 8, ¥ (e[ Te;)’ef T D;Tey,
k=1



p
f5(R, D) = 2tr(RD>)* + B, Y _ e{ T"DyRD,Teref T D,Tey,
k=1
p
fs(R, Dy, i) = 2¢] (RD,)*Re; + B, Y _(e] Tey)’e{ T"DyRD, ey,
k=1
p

f2(R, Dy, i) = 2] RDyRe; + 8, Y (] Tey)’e{ T DyTey,
k=1

fs(R, Dy, Dy) = 2tr(RD; (RD,)?) + S, Ze I'"D,le,el TTD,RD, ey,

fo(R, Dy, Dy) = 2tr(RD;RD,) + 4, Z e TTDTe;el TTD,Te,.
k=1

Lemma 1. Under Assumptions A-B-C, if the spectral norms of Dy and Ds are uniformly

bounded in p, then we have

i tr(R,D;) — v1(D;) ] .
[An(D17 DQ)] . — N2 ((O’ O) 712) )

tI‘(RnDQﬁnD2> — VQ(DQ)

where
nu(D) = tr(RDy) —n- [m (RD,) +ﬁwzz TPe,)? ;‘:DlI‘eg}
k=1 (=1
1 3 2 2
T T 4
+-tr(CDy) + — [Qtr(RDl) s ; e’RD, ey, ;(ek Te) } ,
n(Dy) = "3u2mD,) - 4n-1Zp:eTRD exel RD,Re
2(D2 2 2 rDsepe; Doy key,

k=1

—3 L
r tI'(RDQ)Q + Bwn_l Z(eZI‘TDQFek)z

k=1
—2B,n tr(RDy) *ZZ I'Tey)el DyTe,
k=1 (=1
—2B,n *ZZ I'Te))’e’DyRD,Tey
k=1 (=1
—28,1n —IZZ I'Te))?el DyTeel RD,Te,
k=1 (=1
3 3tr(RD,)
+%f2<R7 D,) + Q—nzf?’(R’ D,)



1 p p o
‘I‘% Z Z e?Reje?DgRDgejfl (R, 1, ])

i=1 j=1
1 p p
+% ; ; G?Dgeje?RDQRejfl (Ra i) ])
tl"(R.DQ) & T T g
4+ — =z Z Z e, Dgejei Rejfl <R7 7, ])
i=1 j=1
1 p p
+% Zzl ]Zl eZRDgeje?DQRejfl (R., Z.7 .]))

011(D1) 012(D17D2)
and A, (Dy,Ds) = with

021(D17D2) 022(D2)

p

on(Dy) = nl [Qtr(RDl)Q + B Z(e{rTDlrek)Q]
k=1

p p
+n7'> ") "e/RDjee] RDie; fi(R, i, j)

i=1 j=1

p
—2n_1 Z eZ-TRDleif4(R, Dl, Z),
i=1
p

UQQ(DQ) = 4n_1 |:2tI'(RD2)4 + Bw Z(eerDQRDQI‘ek)Q]

k=1

4 r(RDy)]2n —1[2tr(RD2) +5wZ(e{rTD2rek)2]

+4[n  tr(RD,)?]” + 8 2tr(RDy) f5(R, Dy)

P P
+4n~' Y 0 el (RDy)’eie] (RDs)%e; f1(R, i, 5)

i=1 j=1

p P
+8n " 'tr(RDy)n 1ZZe RDgel (RD,)? e; f1(R,14,))

=1 j=1

S|

p

+4[ ltI' RD -1 Z Z e?RDQGie?RDerfI <R7 ia ])

i=1 j=1

—8n”"! Ze?(RDQFerG(R, D., i)

i=1



—8n " Ltr(RD,) _IZeTRDge fe(R, Dy, 1)

=1

—8n~ ltr(RD _lze RDQ) elf7<R DQ, )

8[ LCI'(RD ZGTRDQer7(R D27 )7

=1

012(D1, Dg) = 2n_1fg(R, Dl, Dg) + 2n_2tr(RD2)f9(R, Dl, DQ)
p
—Qn_l Z eiT(RD2)2eif4(R, Dl, l)
i=1

-~ ltr(RD _IZGTRDger4(R Dl, )

p
—27171 Z eiTRDle,;fG(R, D27 Z)

i=1

—2n~ 1'EI‘(]R,DQ Ze RDlezf7(R D27 )

=1

p p
+2n7" ) > "e/RDee] (RDy)%e; f1(R, i, )

i=1 j=1

P P
+2n " tr(RDy)n 1ZZe RDlele RDse; f1(R,1,j),

=1 j=1

021(D1,D2) = 012(D1,D2)-

Recall that the definitions of the sample covariance and correlation matrices are

n

i\]n - n_l Z(Xk - 5() (Xk - )_()Ta ﬁ'n = [dlag<§]n)]_1/2§n[dlag(§]n)]_l/2

k=1

Note that the correlation coefficient is invariant under shifting and positive scaling of random

variables. Let y, = Twy, y =n"'> 7 | ¥, and
n
=0 D) -9y -9
k=1
then under Assumption A, that is, x; has the independent component structure, we have

R, = [diag(Z)] /25 [diag(Z5)] V2.



Although a slight abuse of notions, for simplicity, in the following we still use f]n to represent

the sample covariance matrix generated by yi,...,y,, that is, we denote
To=n") (v -9y -y)"

k=1

in the following sections.

S1.1 Truncation, centralization and rescaling

For £k = 1,...,n, denote w; = ('Lblk,...,ﬁ]pk)T with wy, = wgkl{|lng| < nn\/ﬁ}, where

14+€)/2 4 z

1 = (logn)~ Ve =TWe, y =030 Vi,

n

So=n7) (e —¥)Fr-y)" and R, = [diag(E,)] 75, [diag(,)] 2.

k=1

According to the truncation lemma (Lemma 2) in |Noureddine| (2009), we have

P(R, # R,,i.0.) = 0.

Define Wy, = (W1, . . ., Wyr)" with W, = (e — Ewgk)/\/E(ngk — Ewyg)?. Also define yy,
y, 3., and R, as the analogues of yy, ¥y, in, and ﬁn with wy replaced by wy. Based on

(1.6) in [Yin et al. (2023)), for any 1 < ¢ <p,1 <k < n, we have

’E’Uv)gk‘ = 0(n73/2), E(Uv)gk — Euv}gk)Z —1= o(nfl), (Sll)

(\/E(l[)gk - E’LZJgk)2 - 1)/\/E(ﬂ)gk — E@ng)2 = O(?’L_l). (812)

Since R = I'T'?, we have

10 = Sull = [T wewi —n™' > Wiw] T = T(ww” —ww” )T
k=1 k=1

n n
< |R]| <an1 > wiwy =t Ww] || + [[Ww " — v:vv:vTH),
k=1 k=1



where || - || denotes the spectral norm of a matrix. According to (1.7) in [Yin et al| (2023),

[n=t > Wiewl —n >0 Wi Wi || = 045.(n7!). Note that

- 1 . | B
W = = = W — — = iz
VE(e, — Etg)? VE(ey, — Etbg)?
_ _ E(wy, — Ewg,)? — 1 - Ew
S \/ (Wi Wiy, ) % 4 B

VE(n — Ebg,)? VE@g — Ewg)?2 "
combining the above equations with (S1.1)) and (S1.2)), we obtain
W — ww | < [[W(W = W)T]| + [[(W = W)W = 0p(n"),
the last equality follows from the fact that w”w = O,(1). Therefore, we have

13, — 2,|| = o,(n7h). (51.3)

Let 4, be the transpose of the fth row of the matrix I', it can be verified that

..........

I (W™ =W pll) = op(n 7). (S1.4)

Combining (S1.3)) and (S1.4)), we get

||Rn — f{n” = ||diag_1/2(En)indiag_lm(ﬁn) — diag_l/Q(in)indiag_lﬂ(in)||
< ||(diag™"/(%,) — diag™/2(%,)) E,diag (3|
+ ||diag_1/2(§~]n)(§]n — f]n)diag_l/z(iln)ﬂ

+ [[ding™VA(S,) 8, (ding™V2(5,) — diag™2(E,)) | = 0,(n 7).
It follows that

[tr(R,D1) — t2(RuD1)[ = Y [Ae((Ri — Ra)D1)| < pl Ry = Rull[D1 ]| = 0,(1).

(=1



Similarly, we have |tr(R,DyR,Ds) — tr(f{anf{an)\ = 0,(1). Therefore, without loss of
generality, in the following proof, we assume that wy satisfies that |we| < 9,1, Ewg =0

and Ew?, = 1.

S1.2 Some primary steps

We decompose tr(f{nDl) and tr(f{anﬁnDz) into the sum of several terms in this section,

and then analyze the terms in the following sections. Since for £ =1,...,p,

n
Ow=mn" E TTw,)? — (nt E e/ T'w;)?,
k=1

then we have

n

nt Z(effwk)z -1

k=1

+ max

max |6y — 1| < max
1<0<p

1<¢<p 1<¢<p

n 2
n! E e/ T'w,
k=1

By Lemma 5.7 in [Yin and Ma/ (2022)), we have

n

n! z:(eETI‘wk)2 -1

k=1

= Op(n_l/Q).

max
1<¢<p

For any € > 0, by Markov’s inequality, we get

Z e I‘Wk

P | max n'/
1<(<p

4
>e| <e an/gE =o(1).

-1 Ze I'wy

It follows that

o (1/3
I%%JUM 1| = op(n=""). (S1.5)

Moreover, by the Taylor expansion, we have

. 1 . 3. 5
(Ge) =1~ 5(% —1)+ g(aze -1 - 1—6(%) T2 (6g0 — 1)°, (51.6)

where o, lies between 1 and 4. Since oj, > min(1, ) for all £, based on (S1.5), we have

max [(07,) (60 = 1) = 0,(n”"), (SL.7)



Combining (S1.6) and (S1.7)), we have

N 1 . 3. _
(O-ZK) 1/2 = 1 — §(O'gg — 1) + g(()‘gé — 1)2 + Op(TL 1), (Sl8>

where o0,(n™!) is uniform for all £ =1, ...,p. Since

-1/2

R, = [diag(S,)] S, [diag(E,)]

- 3 + [diag_l/z(in) — Ip} f]ndiag_l/Q(fln) +3, [diag_l/Q(in) — Ip},

where diag(in) = diag(611, ..., 0pp). Then by and -, we have

~

tr(R,Dy) = tr(Z,D) + tr[(diag™/*(2,) — L) =, diag~/*(2,) D] (S1.9)
+tr[S, (diag V4(E,) — 1,) D]
= tr(2,Dy) — tr[(diag(S,) — L) =,Di] + %tr[(diag(fln) ~1,)°%,D]

+itr[(diag(§n) — Ip) 3, (diag(in) - IP)DI} +op(1)
and

tr(R,D2R,,Dy) (S1.10)
- tr{ [33,D, + (diag /2(S,) — L) S, diag/2(S,)D, + 5, (diag /2(S,) — Ip)DQ]Z}
= tr(2,D,%,D,) + 2tr[(diag VA(E,) — L) =, diag V3(E,) Dy, D]
+2tr[(diag3(2,) — ) Dy, Dy %]
+tr[(diag3(E,) - L) E,diag3(E,) Dy (diag V2(2,) - L), diag /3 (2,) Dy
+2tr[(diagV3(E,) — L) Dy (diag *(2,) — L) E,diag /() Ds S,
+r[(diag™*(S,) — I,) Do, (diag /2(Z,) — L) D, 3]
= tr(2,D,%,D,) — 2tr[(diag(E,) — L) %,D,%,Dy]

ul(dine(®,) ~1,)°E,D,8, D]



1 ~ ~ ~ ~
+§tr[(diag(2n) —1,) 3, (diag(X,) — I,)DsX, D]
1 ~ ~ ~ ~
+§tr[(diag(2n) — I,) Dy (diag(X,) — I,) X, D3,

—i—%tr[(diag(in) ~1,) 3, D, (diag(in) ~1,) inDQ] + 0,(1).

S1.3 Analysis of the constant order terms

In this section, we prove that the last two terms in (S1.9)) and the last four terms in (S1.10))
converge in probability to their expectations, which are of the constant order. Let r; =

n~Y2w; for i = 1,...,n, then we have

Etr [(diag(in) - Ip)2§]nD1}

n n n P
= Z Z Z Z Ele,I'rir; T"Diey(e Irjr/ T e, —nt)
i=1 j=1 h=1 k=1
x(eiTr,riTh e, —n~ ') + o(1)
n n n P
- Z Z Z Elr;T"DiesefIr;(r] T epe/Tr; —n")
i=1 j=1 h=1 k=1
x(riT%epefTry, —n )] + o(1)
(n—1) - T -
= —— [Ztr(RDl) + By Z e, RDey Z TTereiTe) ]

n
k=1 /=1
n

P
- Z E[r/T"D,ee} Tr;i(r T erei Tr; — n')? + o(1)
i=1 k=1

= (n 1 [Ztr(RDl) + Bu Z e; RDey, Z(e;‘fl"eg)ﬂ +o(1),

k=1 /=1

where the last equality is from (9.9.6) of Bai and Silverstein| (2010)). We can also prove that
Var{tr[(diag(Z,) — L,)2Z,D1]} = o(1).
From Chebyshev’s inequality,

tr[(diag(2,) — L,)°S, D] (S1.11)



— (nn—2 1) [Qtr(RDl) 4 By Ep: e/ RD,e, zp:(efl“ek)ﬂ + 0p(1).
P o
Similarly,

tr[(diag(2,) — L) 2, (diag(E,) — L,)Dy] (S1.12)
_ mﬂ%”u«(cm) +0,(1),

tr[(diag(,) — 1,)°S,D,%, Dy (S1.13)
N 17)1 g" —2) [Qtr(RDQRDz) + B i e’RD,RDse;, i(effee)“]

k=1 (=1

= DR [y (D) 4 5, el RDaer Y (el Ter)!] + 0,(1),

n3
k=1 =1
tr[(diag(2,) — L) 2, (diag(E,) — 1,) Dy %, D;] (S1.14)
(n—1)(n—2) ~ T T T 2 - T 2/, T 2
= 3 Z Z e; Reje; DoRDse; [Q(ei Re;)” + By Z(ei Te;)"(e; Tey) ] + 0,(1),
i=1 j=1 k=1
tr[(diag(E,) — I,) Dy (diag(S,) — L), D55, ] (S1.15)
B (n_l)(n_Q)zp:zp:eTD »TRDR{ T \2 ~ 7 20T 2
= 5 - Doeje; 2Re;|2(e; Re;)” + By Z(ei Tey)"(e; I'ey)
" i=1 j=1 k=1
n — 1tr(RDs) <~ w a
+ (1= DRD:) §5 $ oDy 0,67 R [2(6 Ry + S (el Ten) (el Te)?] + 0,(1),
i=1 j=1 k=1
tr[(diag(S,) — I,) £,D2(diag(E,) — L) =,Ds] (S1.16)
(n—1)(n—2) < T T T 2 - T 2( T 2
= = Z Z e; RDseje; RDqe; [Q(ei Re;)” + B Z(ei Tey)*(e; Tey,) ] +0,(1),
i=1 j=1 k=1

where C = (c;;)7 j—; s a p X p dimensional matrix whose (7, j)th element is given by

p
¢y =2+ Buriy ) _(e] Ter)*(e] Tey)?,
(=1

and 75 is the (4, j)th element of the population correlation matrix R.

Combining (S1.9) and (S1.11))-(S1.12)), we have

N N N N 1
tr(R,D;) = tr(ZnDl) — tr[(dlag(En) - Ip)EnDl} + Etr(CDl) (S1.17)

10



3 p p
= [2tr(RD1) + 6. e/RDie, Z(egreg)‘i] +o0,(1).

k=1 /=1

Also combining (S1.10) and (S1.13))-(S1.16)), we obtain
tr(R, DR, D,) (S1.18)
= tr(2,D,%,D,) — 2tr[(diag(E,) — L,)%,D,%,Dy]

3 p p
- [Ztr(RDZRDQ) + > e'RD;RDye;, > (ef Feg)4]

k=1 /=1

3tr(RD,) ~ 7 ~ 7 4
+2—n2 [2tr(RD2) + Buw Z e, RDoey, Z(ek T'ey) ]

k=1 /=1
p p p

1
5, 2_ 2_ ¢ Reje/D:RDse; [2(83’Rej)2 +Bw > _(efTey)*(e] rek)ﬂ
i=1 j=1 1
p p p

1
> > el Dsejel RD;Re; | 2(e] Re;)* + (! Ter)*(e] Tey)?

+_
2n £~ 4
=1 ]:1 k=1

tr(RD;) ~\ T T T 2 a T 9, T 5
o Z Z e; Doeje; Re; {Q(Gi Re;)” + Bu Z(ez Ley,)*(e; Tex) ]
i=1 j=1 =
1 <& p
+5->_ D e/ RDseje]RDoe; [Q(G?Rej)Q + Bu Z(e?Fek)Q(e]TPek)ﬂ +0,(1).

i=1 j=1 k=1

S1.4 Analysis of the main terms

In this section, we derive the CLT for

tr(2,D,) — tr[(diag(E,) — 1,)Z,D]

tr(2,D,8,D,) — 2tr[ (diag(E,) — L,) =, D,%, D]

According to the expression of f]n,

[1]

S n—1¢ 1
Y, =B, + A, = > Tryr/T" — =) T
+ n 2 r;r; n 2 ryr, ',

we have
tr(2,D;) — Etr(£,D;) = tr(£,D;) — Etr(£,D1) + 0,(1),

11



tr[(diag(=,) — I,)£,D;] — Etr[(diag(E,,) — 1,),D]

=tr[(diag(En) — L,)E,D1] — Etr[(diag(E,,) — I,)E,D1] + 0, (1),
tr(2,D:%,D5) — Etr(£,D,%,D5) = tr(E,D,8,D5) — Etr(E,D,E,D,) + 0,(1),
tr[(diag(2,) — L) £,D,%,D;,] — Etr[(diag(E,) - 1,) =,D,%, D]

=tr[(diag(E,) — I,)E,D2E,D,] — Etr[(diag(E,) — I,)E,D2E,Ds] + 0,(1).

Let (E; —E;_1)z = Ej(x) — E;_i(z), where z is a random variable and E;(-) denotes the

conditional expectation with respect to the o-field generated by ry,...,r;, then

n

tr(2,D1) — Btr(E,D) = Y (E; — E;_1)tr(E,Dy),

Jj=1

tr[(diag(E,) — I,)E,Dy] - Etr|(diag(E,) - L,)Z,Di]

=Y (E; — B;_y)tr[(diag(E,) — I,)E,D],

J=1
n

tr(EanEan) — Etr(EanEan) = Z(EJ — Ej,l)tr(EanEan),

Jj=1

tr[(diag(E,) — I,)E,D2E,D,] — Etr[(diag(E,,) — 1,)E,D2E,,Ds)]

—Z (B; — E;_)tr[(diag(E,) — I,)=,D,E,D,].

7=1

It is not difficult to prove that the martingale difference sequences
{(E] — Ej_l)tI‘(EnDl),j = 1, ...,n},
{(EJ — Ej_l)tr[(dlag(E.n) — Ip)EnDl],j = ]_, . n} s
{(EJ - Ejfl)tI'(EnDZEnDQ)uj = 17 ceey n} )

{(E; — E;_1)tr[(diag(E,) — L,)E,DE, Dy, j = 1,....,n}

12



satisfy the Lindeberg-type conditions, that is,

> E[(E; — B ) tr(EDa) 0w, -, irE.Dn>e) = 0,

j*l

ZE{
ZE

E;_1)tr[(diag(E,) — L,)EaD1]}04 (5, —E, 1 trl(ding(En)-1,)=D1] >} — O,

] 1 tr('—'nDQ'—‘nDQ)] 6{\(Ejij,l)tr(EnDQEan)\>€} — 0,

ZE{ E - E] 1)t1"[<d1ag<5 )_ Ip)EnD2‘—‘n ]} (5{| E;—E;_1)tr[(diag(En)—1p)EnD2E,D2]|>e} — 0,

J=1

where d;.y represents the indicator function, then the proof is omitted. We will calculate

011(D1) = 0110(D1) + 0220(D1) - 20120(D1),

022(D3) = 0330(D2) + 40440(D2) — 40349(D2),

012(D1,D3) = 0130(D1, D2) — 201490(D1, D3) — 0230(D1, D3) + 20240(D1, D),

where

0110 D1

0220 D1

0120 D1

0330 Dz

0440 D2

0310(D2) =

ZEJ
=Yk

7j=1

-5,

7j=1

ZEa
> B

7j=1

> B

7j=1

x [(E; —

| Bj1)tr(E,D1)],

{(B; — B;_y)tr[(diag(2,) — 1,)E,Dy]}’,

{18 — Ej)tr(EaD)][(E; — Bjy)tr[(diag(8,) — 1,)E,D1 ]},
| Bj 1)tr(2,D,2,D,)]”

(B = By )t [(diag(,) - 1,)2,D5E,D]}

{[(E; — Ej1)tr(E,DyE, Dy)]

E;- tr[(diag(Z,) — Ip)EnD2EnD2H}a

13



and
o130(D1, D3) = ZEJ HI(E) — Ejm)tr(E.D1)][(E; — Ej—1)tr(E,D28,D5)] },

o140(D1,Dg) = Z Ejfl{[(Ej — Ej1)tr(E,D1)]

J=1

x [(Ej — Ejy)tr[(diag(8,) — I,)2.D>E,Dy)]]

0230(D1, D2) = Z B {[(E; — Ej-1)tr[(diag(En) — I,)E.D1]]

=1

x [(E; — Ej_1)tr(E,D2E,D»)] },

—_—

o210(D1, Dy) = ZEJ B — Ej_)tr[(diag(E,) — L,)E,Dy]]

7j=1

x [(E; — Ej_1)tr[(diag(8,) — L,)2,D.&,D,)]] }.
Based on (1.15) of Bai and Silverstein| (2004), after tedious calculations, we obtain

o1o(D1) = ZEJA[(EJ'_EJ‘%)U"(EnDl)}2

j=1

- Z E[rJTI‘TDlI‘rj —n"1tr(RDy)]? + 0,(1)

j=1
— n! [Qtr(RDl)Q + B Z(e{rTDmeﬁ] +o0,(1),
(=1
0'220(D1) = ZEJ 1{ J 1 tI‘ (dlag(_.n) -1 ).-.nDl]}z

— Z E; 1 [Z Z r'TTD,esel I‘rz-(r]TI‘TegegTI‘rj —n1)

f=1 i=1

n—j

2
Z e/ RDiey(r/ T ee/I'r; — n_l)] + 0,(1)
=1

p p p
= n! Z Z eeTlRDleglez;RDleg2 [2(eéTlReg2)2 + B Z(engI‘ek)Q(ez;Fek)Q} + 0,(1),
Gi=1 =1 k=1
o0(D1) = Y Eja{[(E; — B )te(E.D)][(E; — Ej-1)trf(diag(En) — 1,)E.Du]l}

Jj=1

14



p j-1

= Z { [ Z r;T"Dyese; I'r;(r T e, Tr; —n~")
j=1

(=1 =1

n-J Z e?RDleg(r;FFTegefI‘rj — n_l)] [r]TI‘TDlI‘rj —n~'tr(RD;)] } + 0,(1)
=1
p p
— n'Y e/RDje, [Qe{ RDRe; + 6, Y (el Tey)’el I‘TDlI‘ek] +0,(1).
=1 k=1
Therefore, we have
p
ou(D) = n! [2tr(RD1)2 + B> (] rTDlreg)ﬂ (S1.19)
=1
PP P
+nt Z Z e; RD;es e; RDsey, [Q(eeTlRegz)2 + Bu Z(eETIFek)Q(eZI‘ek)ﬂ
l1=1/42=1 k=1
p p
—2n7'Y e/RD,e [2e{ RD,Re; + ., Y (e} Te,)’ef FTDlrek} +0,(1).
=1 k=1

Since the martingale differences of tr(2,DE,D5) and tr[(diag(Z,) — I,)E,D2E,D,] are

(Ej — Ej_l)tr(EanEan) (SlQO)

o _ i
= W—J)(roPTDQRDQPrj —n~'tr(RD,RD,))

n

+2n~'tr(RDy) (r] T Dol'r; — n” 'tr(RDy))

j—1
+2) " (eI T DyCryr{ T Dol'r; — n”'rf T"DoRDLTry) + 0,(1)
k=1
and
(E; — E;_1)tr[(diag(E,) — I,)E,D2E,D,] (S1.21)
p -1 5—-1
— Z Z e, I'r;rl TTDyI'r,r) T Doey( ]TI‘TegeE I'r;—n -1
=1 i=1 h=1
n—j)(n—
—i—< j)<n2 Z egRDQRDQeE(r‘?FTGEee Tr; —n ")
=1
n — j)tr(RDy) < _
+< j)nQ( 2) Z e%RDQeg(rfFTegeZFrj —nt)
=1

p Jj-l
T T TPT AT -1
g r;, T"DyRDsese; Iry(r; T ee; I'r; —n')
=1 h=1

15



-1
ry " Dyese; RDoIry, (r) T ee, Try — n™') + 0,(1),
(=1 h=1

S
m

respectively, then we have

o330(D2) = Y B [(B — By tr(E,D2E,Dy)]”
j=1
p
— ap! [Qtr(Rsz + 80 (ef FTDQRDgFeg)Z]
/=1
p

4 te(RD,)2n [2tr(RD2)2 + By Z(e%FTDQFeZ)Q]

/=1
+4[n"'2(RD,)?]” + 80~ Ltr(RDy)n ! [Qtr(RD2)3

p
" egTrTD2RD2regeeTrTD2re4 +o,(1),
/=1

oa0(Ds) = ZE] H(Bj — Ejy)tr[(diag(E,) — 1,)E,D,E,D,) }*

7=1
p p
= n7' ) ) el (RDy)%eyef, (RDy)’y,
(=1 0=1
p
X [Q(eZRegz)Q + Buw Z(eZI‘ekf(eiI‘ek)Q}
k=1
p p
+2n " 'tr(RDg)n Z Z e; RDseq e;, (RDs)’ey,
(=1 b,=1
p
[ (e Rey,)? + Bu Z(engI‘ekf(egTQI‘ek)ﬂ
k=1
p p
+n 'tr(RDL)Pn " Y > ef RDsey,ef, RDoey,
l1=1/42=1
p
[ (el Rew,)* + B, Y (el Ter)*(ef, re,ﬂ +o,(1),
k=1

os0D2) = Y E 1 {[(E; - E_)tr(E,D.E,Dy)]

j=1
[(E —Ej- tr[(diag(Z,,) — Ip)EnD2EnD2H}
p
= Zn’IZeZT(RDg)Qeg
=1

16



p
X [2e$(RD2)QReg + B0y (e Tey)%ef I‘TDQRDQI‘ek}

k=1

p
+2n ' tr(RD2)n ™" >~ e RDsey
/=1
p
X [Qe?(RD2)2Reg + B> (el Tey)%el I‘TDQRDQI‘ek}
k=1

+2nLtr(RD,) —lzeg (RD,)?

p
X [Qe?RDgReg + Buw Z(e{I‘ekfe;fI‘TDQI‘ek]
=1

p
+2[n " 1tr(RDy)])*n ! Z e/ RDse,

p

X [QeeTRDQReg + Buw Z(eéTFek)QezI‘TDQI‘ek] + 0,(1).

k=1
Therefore, we have
p
oon(Dy) = 4dn~! [Qtr(RD2)4 + 60y (ef I‘TDQRDZI‘eg)Q] (S1.22)
/=1

4 tre(RD,)2n [Qtr(RD2)2 + By Z(eg’rTDgreg)?]
/=1

+4[n r(RD,)?]” + 80 tr(RDy)n " [Qtr(RD2)3

p
+6, Y e/ T"D,;RD,Tese] T DQI‘eg}

(=1

p p
dn"tY ) el (RDy)’eyef, (RDy)%ey,
(=1 lo=1
p
[ (ef,Res,)” + B Z(eZI‘ek)Q(e};I‘ek)Q}
k=1
p

p
+8n ttr(RDy)n* Z Z e; RDsey e, (RDs) ey,

l1=142=1
p
X [Q(eZRe@)Q + Buw Z(eﬁTIFeR)Q(eZFek)Q}
k=1

p

p
+4[n~'tr(RD2)’n™" ) ) ef RDsey,ef, RDoey,

l1=14l2=1

17



p

X [Q(eeTlRe@)2 + Bu Z(eKTlI‘ek)Q(eKTQFek)Q}

k=1

p
—8n~! Z e/ (RD;)%e,
/=1
p
X [2e£T (RD,)’Re; + 6, Y (el Tey)%e] I‘TDQRDQI‘ek}
k=1

—8n " Ltr(RD,) —lzeg RD.e,
/=1
p

X [ze,{ (RD2)’Re; + B, Y (el Tey)?el I‘TDQRDQI‘ek}
k=1

p
—8n'tr(RDy)n 1Ze (RD,)?
=1

p
X [2e2 RD:Re; + 5, > (e Tey)% I‘TDQI‘ek}
k=1

p
—8[n'tr(RDy)]*n ! Y el RDsey
=1
p
X [QeZTRDQReg + Buw Z(egfek)Qe{I‘TDQI‘ek} + 0,(1).

k=1

Based on (S1.20]) and (S1.21)), after complicated calculation, we get

o10(D1, D) = Y By 1 {[(E; — Ejo)r(ED)][(E; — B 1)tr(E,D:E,D,)]}

j=1

p
— op! [2tr(RD1(RD2)2) + 0. el I‘TDlI‘egegI‘TDgRDgI‘eg]
/=1

p
+2n Hr(RDg)n ! [2tr(RD1RD2) +Buw Y e{rTDlrege{rTDQFee} + 0,(1),
(=1

o10(D1,D2) = Y By {[(E; — Ej-1)tr(E,Dy)]
j=1
<[(B; — By p)tr{(diag(E,) — 1,)E,D,,D,)]]}
p
= n! Z e; (RD,)% [QefTRDlReg + Bw Z(eeTFek)QegI‘TDlFek]
= k=1
p

0 ttr(RDy) —1Zeg RDse, [Qeg RD,Re; + 8, > (] rek)2e§rTD1rek] +0,(1),
(=1 k=1
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0230(D1,D2)

0240(D1,D2)

Thus, we have

012(D17 D2)

ZE] HI(E; — Ej)tr[(diag(E,) — L)E,Dy]|

x[(Ej — Ej1)tr(E,D2E,Dy)] }
p p
2n Z e/RD,e, [Qef(RDg)zReg + Buw Z(effek)Qe;‘fI‘TDgRDgI‘ek]

(=1 k=1

+2n " Ltr(RDy)n 1Ze£ RD; e,
/=1
p

x|2¢/RD;Re; + B, Y (ef Tey)?el T"DyTex | + 0, (1),

k=1

ZE] HI(E; — Bj_1)tr[(diag(E,) — L,)E,D1]]

x[(E; — Ej1)tr[(diag(8,) — I,)E,D2E,D2)]] }

p
-1 T T 2
n E geglRDlegle&(RDg) ey,
0=106=1
p

X [Z(eeTlReg2)2 + Bu Z(eZI‘ekf(ez;I‘ek)Q}

k=1

+n Hr(RDy)n Z Z e/, RD e, el RDyey,
l1=14l2=1
p

X [Z(eZRegg)2 + Bu Z(eZI‘ek)Q(eZFek)z} + 0,(1).

k=1

p
2! [m(RDl(RDQ)?) + 0> el TTD Tese] I‘TDQRDQI‘eg} (S1.23)
/=1

P
+2n_1tr(RD2)n_1 [Qtr(RDlRDQ) + Buw Z e%I‘TDlI‘efe?I‘TDQI‘ee]
=1
Ld P
—2n71 ) " ef (RD,)%e [ZeZTRDlReg + Bu Z(egrek)%ngDlrek]
=1 k=1
P

p
—2n7") " e/ RD1e; [Qef(RDg)QReg +Bu Y _(efTey)’e{T" DQRD2I‘ek}
= k=1

—2n " tr(RDy)n~ Zeg RDse,
=1
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p
X [QegRDlReg + B Z(e{f‘ek)QegI‘TDlI‘ek]
k=1

p
—2n"'tr(RDy)n™"' > e/ RD;ey
=1
p
X [Qe%RDQReg + Buw Z(eZTI‘ekfegI‘TDQI‘ek]
k=1
p p
+2n~! Z Z e; RD1e e, (RDs)’ey,
(=1 6r=1
p
X |:2(6£Regz)2 + Bu Z(eZI‘ek)z(e;ng‘ek)Q}

k=1

p p
+2n " 'tr(RDg)n* Z Z eZRDlegle;?gRDQeg2

l1=1/42=1
p
x[2(ef Res,)? + B Y (ef Ter)*(ef,Tex)? | + 0, (1),
k=1

According to the CLT for martingale difference sequence, we obtain that

A2 tr(f]nDl) — tr[(diag(in) — Ip)f]nDl] — p101(Dy)

n

tr(ianinDQ) — Qtr[(dlag(in) — Ip) ianinDz] — MOZ(DZ)

is asymptotically distributed as the standard bivariate normal distribution with

A 011(D1) 012(D17 D2)

021(D1;D2) 022(D2)

where o11(D1), 092(Ds), 012(D1, Dg) are given in (S1.19)-(S1.22)-(S1.23]) and

poi(Dy) = Etr(2,D,) — Etr[(diag(E,) — L) E,Di],

poa(Dy) = Etr(E,D,5,D,) — 2Etr[(diag(E,) — 1,),D,%,D,].

Because

Etr(2,D,) — Etr[(diag(Z,) — L,)2,D1]
p p
= tr(RD;) —n* [2tr(RD1) + Bu Z ZeleI‘eg(egI‘eZ)g +o(1),
k=1 ¢=1

20
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Etr(Z,D,%,D>)

= " Yiempy) + " Da®Dy)? 4 gt (e[ T DaTe) + o),

n2
k=1

Etr[(diag(E,) — L) 2,D,3, D,]

p
= n 7’ (RDy) + n”'tr(RDy)* + 207" ) ~ ef RDyeref RD,Rey

k=1
+Pun” ' tr(RDy) *ZZ 1Te,)’e DoTey
k=1 ¢=1
+Bun *ZZ TTe,)’el D,RD,Tey
k=1 ¢=1
+Bun *ZZ TTe,)%el Dylejel RDoTe; 4 o(1),
k=1 (=1

then we have

p p
po1(Dy) = tr(RD;) —n! [2tr(RD1) + Bpn Z ZefDlFeg(egI‘eg)g +o(1),

k=1 (=1
n—3 e
pe(Dz) = — tr’(RDy) — 4n~" ) ~efRDyere{ RD;Rey
k=1
n—3 2 ~1 - T 2
+ tf(RDg) —l—ﬂwn Z(ekl" DQI‘ek)
k=1

—2B,n Mtr(RDy) —122 I'Tey)el DyTe,

k=1 ¢=1
—2B,n —122 I'Tes)’el DyRD, ey
k=1 (=1
—28,n *ZZ TTe;) e} DoTe,ef RDyTe, + o(1).
k=1 (=1

By (S1.17)-(S1.18)-(S1.24)), we obtain that

—-1/2

o11(Dy) o12(Dy,Dy) tr(R,D1) — 11 (Dy)
( ) L5 N (0,,1,),

A~

091(D1,D2)  022(Dy) tr<RnD2ﬁnD2) — 15(Dy)
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where 0, = (0,0)7, I, is the 2 x 2 dimensional identity matrix,

p p
(D) = te(RDy) —n! [2tr(RD1) 6.3y e{Dlree(egregﬂ
k=1 (=1
1 3 ¢ T ¢ T 4
+7-t(CDy) + [2tr(RD1) +5,> elRDie; Y (el Tey) ] ,
/=1 k=1
-3 P
1(Dy) = u?(RDy) —dn' Y el RDserel RDsRey
n
k=1
n—3 u
+—"tr(RDy)” + Byn " Y (efT"D,Tey)?
k=1
—28,n 'tr(RD,) *122 I'Te))el D,y
k=1 (=1
—2ﬁwn_1zz 'Tey)’el D,RD,Tey
k=1 (=1
—QBwn_lzZ I'Tey)?el DyTeel RD,T e,
k=1 ¢=1

3 p p
- [Qtr(RDgRDg) + 60 e/ RD;RDye; Z(e{regﬂ

k=1 =1
3tr(RD»)

P P
T T V4
277,2 [2131‘(RD2) + Bw kZ:; ek: RDgek ;(ek I‘eg) }
1 &K P
to- ; ; e/ Reje/ D;RDye; [2(eiTRej)2 + B ;(effek)Q(e?I‘ek)Q}
p

1 p p
+% Z Z e/ Dyeje; RD:Re; [Q(G?Rea’)z + Buw Z(G?I’ek)Q(eJTI‘ek)Q}

i=1 j=1 k=1

) 53 el Duejel Re, [2(6/Re,)? + A, 3 (eI Tey (el Tey )]
i=1 j=1 k=1
p

! I T T 2 T 2/ T 2
Ton 33" e RD.ee RDse,[2(eTRe,? + 5, > (el Te (el Ty .

i=1 j=1 k=1
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S2 Proof of Theorem 1

Note that under Hy, 8 = A~'a with a = (tr[(R — Jo)J4], ..., tr[(R — Jo)Jk])?. By Lemma

1, for k=1,..., K, we have

tr(R,J;) — tr(RJy) = O,(1).

A~

Since ay, = tr[(R,, — Jo)J¢] and a = tr[(R — Jo)Ji], then we have p~!(ax — ax) = 0,(1). It

follows that
0-6=A"a—a)=(p'A) pla—a)=0,(n") =o,(1).

Then the proof of Theorem 1 is completed.

S3 Proof of Theorem 2

In this section, we derive the limiting distributions of 77,, and T5,. Let

Rp=Jo+bipdi+ -+ 0kpIk,

where Op = (01p, ...,0kp)T = A7'ap and ap = (ayp, ..., axp)’ with app = tr[(R — Jo)Jy] for

k=1,..., K. After simple calculation, we obtain
o~ K A~ —~
Ry' = Rp' =) (0 — bur)Ry ' IR
k=1
K A A~
= Rp' =) (6 —p) Ry —Rp' + RDHIRS!
k=1
K . K ) N
= Rp' =) (0 — Op) R IR = > (0 — 6kp) Ry — RpHIR,!
k=1 k=1

K

(S3.25)

K K
= Rp' =) (0 = 0p)RTRE + > D (b, — 04,0) (Or, — 1) Ry " T RS TR

k=1 k1=1ko=1
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By {) and 0 = Op + Op(n~t) for k=1,..., K, we have

T = tr(R,Rg" — 1)

K K
-2 Z Z(9k1 - ek’lp)(ekQ - ek‘zp)tr(RnRgthRI_DlezRI_Dl)

K K
+ Z (le - 0k1P)(0k2 - 0k2P)tr(RnR]_31Jk1 R]_DIRHR]_I’IJk2RI_91)

ki=1k

—_

[V

K
+ > 110k = bkp)r(RR I R TR R R T4 RS T4, R
k1,k2,k3,ka=1 £=1

K
= t[(R.Rp' = L)Y +2)  plb — Opp)p 'tr(R,Rp TR
k=1
K ~ A~ A~
=2 " p(b) — Okp)p tr(RuRp'R.RE TR + 0, (1),
k=1

From the proof of Lemma [} we get

ptr(R, M) = p~Htr(RMy) + 0,(1),

p (R, MR, M) = y,p tr(RMy )p~ 'tr(RM) + p~'tr(RM; RM,) + op(1),
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where M; and M, are p x p dimensional non-random symmetric matrices with uniformly

bounded spectral norms. Hence, we have

(0x — Orp)tr(RR5' IR (S3.26)

M)~

Ty, = tr[(R.Rp' — L)% +2
k=1

K
—2 (6 — Okp) [n " tr(RRtr(RRG' IR + tr(RRE'RRE TR + 0,(1)
k=1
= t[(R,Rp' —1,)%] — 2n tr(RR)tr(RoR'RR:) + 2n ' tr*(RR;))
—2tr[RoRp'RR;(RR; — L)] + 2tr[RR;HRR — L)] + 0,(1)
= tr[R,Rp —1,)%] — 2tr(RoH) + 2n 'tr*(RR;') + 2tr[RR;HRR! — 1) + 0, (1)

= tr(R,R3")? — 2tr(R,R3Y) + p — 2tr(JoH) — 2tr(R,Bp)

+2tr(JoBp) + 2n tr*(RR;Y) + 2tr[RR; (RRE' — L)] + 0,(1),
where

H=n""tr(RR;")R;'RR;' + R;'RR;' (RR,' — 1),

K
Bp = Z hepdi, e = (tr(JH), .. tr(JcH))A ey,
=1

and ey denotes the kth column of the identity matrix Ix. Due to the fact that

tr(JoH) = tl"(RpH) — tr(RBp) + tr(JDBp),

tr(RpH) = n 'tr*(RRp') + trf[RR;' (RRp — L)),
we obtain
Tiy = tr(R,R5)? — 2tr[R, (R + Bp)] + 2tr(RBp) + p + 0,(1).
By Lemma 1 and the Delta method, we have

O-l_nl(Tln - ,uln) i> N(07 1)7
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where

Hip = VQ(R]_Dl) - 21/1(R]§1 + Bp) + 2tr(RBp) + p,

o1, = o0nRp') +401 (R +Bp) — 4R + Bp, Rp).

~ K A
Note that Rg — Rp = Y (0x — Oxp)Jx. From 6 — Opp = O,(n 1), we get
=1

T2n - tr[<ﬁn - ﬁ0>2]
= tr[(R, — Rp)? — 2tr[(R, — Rp)(Ro — Rp)] + tr[(Ro — Rp)?]

= tr[(R, — Rp)? =2 (0 — Op)tr[(R, — Rp)Ji] + 0,(1)

=

= tr[(Rn —Rp)] =2 (6 — Orp)tr[(R — Rp)Ji] + 0,(1)

o

= tr[(R, — Rp)? — 2tr(R.Bp) + 2tr[(R — Rp)Rp]

—2tr[(R - RP)J()} + 2tI‘(J0]~3p) + Op(1)7

- K . -
where Bp = > hypJy and hyp = (tr[(R —Rp)Jy],..., tr[(R— Rp)JK])A_lek. Due to the

k=1

fact that tr[(R — Rp)(Rp — Jy)] = tr(RBp) — tr(JoBp), we have
Ty, = tr[(R, — Rp)? — 2tr(R,Bp) 4 2tr(RBp) + 0,(1) (S3.27)
= tr(R2) — 2tr[Ru(Rp + Bp)] + tr(R2) + 2tr(RBp) + 0,(1).
By Lemma 1 and the Delta method, we have
O3 (Ton = i) == N(0,1),
where

pian = (L) — 201 (Rp + Bp) + tr(R3) + 2tr(RBp),
O'gn = 0'22(11,) + 40’11(RP + BP) — 40’12(RP + Bp, Ip)
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S4 Proof of Theorem 3

Note that under the null hypothesis Hy, Rp degenerates to Ry, in this case, H = y,Ry " and
K

Bp = 4,B, where B = Y htJy, and by = (tr(J1Rg1), ..., tr(JxkRy'))A~te,. Based on the
k=1

conclusion (a) in Theorem 2, we have o5 (11, — f10) N N(0,1), where

Hio = I/Q(Ral> — 21/1(01) + 2yntr(R0B) +p,

U%O = 022(R61)+4O'11(C1>—4012<C1,Ral),

Ci =Ry +v,B and vi(-), 1a(-), 011(-), 012(+, -), 022(+) are defined in Lemma [1} After calcu-

lation and simplification, we get

Hi0o = PYn — 3y721 - 7yn + 6wyn - O'5n_1tr(COC1)
P
(efTe;)’ef Ry 'Tey

=1

2+ Bu Y Z(efreﬂl]

k=1 (=1

NE

—(2y, +4)Bynt

T
R
~

1

+(1.5yn + 2>n—1

p

+ (O.Syn + 1>n’1 Z e/ Roeje! Ry 'e;

=1 j=

hS]

ST

< [2(e] Roe,)? + (el Tey)*(e] Tey )7
k=1

+2n~ [Ztl" R.o + ﬁw Z Z Feg ek C Feg]

k=1 (=1

p p
~1.5n71 [2tr(RoCl) + 80 el RoCiey Z(egregﬂ ,
k=1 /=1
and

U%O = 4?/721 - 4(2 + 5w)yn(1 + yn)2
p

AL+ y)?n [ 2t0(R2) + B Z(engrek)Q]
k=1
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p
+4n~! [Qtr(Rocl)Q + Bu Z(GZFTCIFek)Q]
k=1
p p P
+an! Z Z e; RoCieiej RyCie; [Q(eiTROer + Buw Z(G?I‘ek)%eﬁ‘ekﬂ
=1 j=1 —
p

p
—8n~* Z e/ RoCe; [QefRoclRoei + B Z(efrek)2e{rTclrek]

=1 k=1

81+ yo)n~ [Qtr (R2C,) + B, Z eI Teyel rTclrek}

p

—8(1 + yp)n ! Z e RoCe; [2eiTR(2)ei + Buw Z(eiTI‘ek)QeZI‘TFek} ,
i=1 k=1
where Cy is a px p matrix with (7, j)th element being coij = 2r;-+Buwroi; Yo (€] Ter)?(e] Tey)?.

Similarly, under the null hypothesis Hy, we have Bp = 0,xp. By the conclusion (b) in

Theorem 2, we get ooy (Thn — fi20) SN N(0,1), where

pao = (L) — 21 (Ro) + tr(RY),

0'%0 = UQQ(IP) + 40'11(R0) — 40'12(R0,Ip).

After calculation and simplification, we obtain that

p

poo = pyn+ya+ntr(RE) + Bun Y (efT Te;)? — 0.5n 'tr(CoRy)

k=1

[Qtr (R2) + B, Z Z TPe,)e Roreg]

k=1 ¢=1

p p
+0.5n7! [20r(RE) + B > ef Rien Y (efTer)’|
k=1 (=1

p p D
#0717 > (el Roej)? | 2(e] Roey)? + B Y (e Ter)*(e] Ter)?).

i=1 j=1 k=1

and o3, = 4[n"'tr(R2)]?.
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S5 Proof of Theorem 5

The proof of Theorem 5 is similar to those of Theorem 1 in |Cai et al. (2013) and Theorem
2.1 in Yang| (2020). Throughout this section, we denote the constants that do not depend on
p,n by C and may vary from one expression to the next. Before presenting the proof, we list

some technical lemmas that will be used.

S5.1 Technical lemmas

The first lemma is on the large deviations for 7;;.

Lemma 2 (Lemma 4.3 of Yang| (2020)). Under assumptions F or F*, there exists some

constant C' > 0 such that for any M > 0 and € > 0,

P( max |[f);; — 1] = C - ) =0(p ™M +n"),

1<i<j<p log p

1/2

where &, = (logp)*/?/n'/? if assumption F holds and ¢, = (logp)~! if assumption F* holds.

The second lemma is an extension of the Bernstein inequality.

Lemma 3 (Lemma 8 of Xiao and Wu (2013))). Let X, X1,..., X, be i.i.d. random variables

with mean zero and unit variance. Assume that for some 0 < o < 1,
E(IXPUeX) <A forall 0<t<T.

Let Sy = X1+ -+ X,. If2'7% > 2A/T?, then we have

2

2(n + x%2/T)

P(San)Sexp{— }-I—nP(XZm).

The next lemma is the classical Bonferroni’s inequality.
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p
Lemma 4 (Lemma 1 of |Cai et al.| (2013)). Let B = |J B;. For any k < [p/2], we have
t=1

2k 2k—1

Y (DTE <PB) <Y (F)TE,

t=1 t=1

where By = > P(B;,N---NBy;,).

1<i <-<it<p

Suppose that (NV;);ez, is a Gaussian random vector whose entries have zero mean and
unit variance, where 7, is an index set with cardinality |Z,| = s,. Let X, = (04;)i ez, be
the covariance matrix of (V;);ez, . Assume that s, — 0o as n — oo.

Consider either of the following two conditions.

(C1) For any sequence {b,} such that b, — oo, v(n,b,) = o(1/logb,);

and limsup~y, < 1.

n—oo
(C2) For any sequence {b,} such that b, — oo, y(n,b,) = o(1);

> 07 =0 (s37°) for some § > 0; and limsup, < 1,
i#JELy, n—00

where

v(n,b,) :=sup  sup inf|o;;| and -, := sup oyl
€Ty ACTy,|Al=by IEA 0,§€Tn5i]

Lemma 5 (Lemma 7 of Xiao and Wu, (2013)). Assume that either (C1) or (C2) holds. For
a fized 2 € R and a sequence {z,} satisfying 22 = 2log s, — loglog s, — logm + 22 + o(1),

denote

A= {(N] > 2} and Q= Y P (ﬂ A;-> ,
ACT,,|Al=d €A
then for all d > 1, it holds that
—dz

lim Q) = ——

n—o0 d!

®
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S5.2 The detailed proof

Without loss of generality, we assume that p =0 and o;; = 1 forv=1,...,p. We divide the
proof of Theorem 5 into two steps:

Step 1: Effects of estimated variances and means. Denote

A 2
My = max u—Ta)”
1<i<j<p Nij

Under the event {|n;;/n;; — 1| < Ce,/logp}, we have

En
logp

|Mn - ]/_\Zn,l| S CMn

Thus, by Lemma [2] it suffices to show that for any ¢ € R,

— 1 t
P(Mn1—4logp+loglogp§t) — exp (— exp | —= .
’ V& 2

Let f]n be the non-centralized sample covariance matrix, that is, f]n = (En-j)z jo1 =

n ~ ~
n~' Y xpx), and R, = (7;)},_; be the sample correlation matrix corresponding to X,,.
k=1
Denote
< 2
r n(fi; — rij)

M, » = max
1<i<j<p Nij

Using Lemma [3| and the Bernstein inequality, we can show that

max |7 = O, (@) , (S5.28)

1<i<p
max |6;; — ;5] = O, (x/logp/n) . (S5.29)
1<i<j<p

From ((S5.28)), (S5.29)), and the first order Taylor expansion of the 3 variate function z(yz)~'/2

for x € R and y, z > 0 (see equation (5) in |Cai and Zhang| (2016])),

- - i - <y2_yy+z2_zz)+0(:%—x)+0(3)—y)+0(2—z),

@22~ (yz)i2 + (y2)1/? - (y2)1/?
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we get

- 1 T34 _

Tig = Tig = Z [xikmjk — ?] (xfk + x?k)} + 0,(n 1/2), (55.30)
k=1

o & _ _ T _ _

Fij =Ty = [(fﬁz’k —Z) (T — 75) — 7j (e — 20)* + (250 — T;) )} +o0y(n1?)

It follows that
N mm  Tig 2 -1/2
Tij — Tij = TiT; (xz + Z7 ) +0,(n"%).
Thus, from ([S5.29)), we get

’Mml — M,

= 14 1/27371/2 — 12
< On max |Z;[" + Cn'/"M, 5 max |Z:]” + 0,(1),

which together with (55.28)) implies that we only need to prove that for any ¢ € R,

~ 1 t
P(Mn2—4logp+loglogp§t) — exp (— exp | —= )
’ V8w 2

Step 2: Truncation. From (S5.29)) and (S5.30)), we get Mmg = max Q2 + 0,(1), where
acly

and
Via = TirTji — - (x5, + x?k) :
Let Vi = Ve {|Via| < 70} — EVial{|Via| < 7}, where 7, = n7'81og(p + n) if assumption

F holds and 7,, = v/n/(log p)® if assumption F* holds. Denote

Note that |Vie| < 22 + m?k for k =1,...,n. If assumption F holds, then we have

~ 1

«

max E[Via I{|Vial > 70} < O\/_maXE|Vla|]{|Vla| > o}
a€l, \/n_”;

<CVn(p +n)~* max E[Via| exp(n|Via| /4) < CVn(p+n) 7,
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and if assumption F* holds, then we have

max E[Via I{|Vial > 70} < O\/_maXE“/lauﬂVlal > o}
act, \/n—],;

<CVnmax B[V, [0/ [r 202 < COp7omel®,
acly
Thus, we get
P <max Qa - @a

OéEIn

<P (ggx —ZIVkaIﬂVka\ > Tn} = EViaI{|Via| = T} = (logp)™ 1)

> (1ng)1)

ez
<P <max max |Via| > Tn) < ZP <maX|Vka’ > Tn>
a€T, 1<k<n ot o€,

=nP (m%x\vla| > Tn) <np rnaXP( x> Tn/2)
a€lp

1<i<p
=O(p~ ' +n~/%). (S5.31)
Note that
.2
max Q% — max@2 < 2max |Qu| max |Qa — Qu| + max |Qa — Qu (S5.32)
a€l, ac a€ly, acly, a€ly,
Based on ([S5.31)) and ((S5.32)), it suffices to prove that for any ¢ € R,
P( 02 — 4logp + log] <t)—> ( ! ( t)) (95.33)
max Q2 — 41o oglo exp [ — exp|—=1]]). :
X gp glogp p N p 9

Let ¢ be the cardinality of Z, and y, = t + 4logp — loglogp. We arrange the two

dimensional indices {(i,7) : 1 < ¢ < j < p} in any ordering and set them as {(iy, jm) : 1 <

m < q}. Denote Vi, = @452, — —2im (22, + :Ejmk) N = Nipjm s AN Qy = \/nqum kgl Vi
By Lemma [4] for any integer s with 0 < s < ¢/2, we have
2s d
d—1 A2
> (=1 > oop <ﬂ Emj> <P (f&?i{q Q= yp>
d=1 1<m; <---<myg<q j=1
25—1
<Y (=ptt >y P (ﬂ Emj> : (S5.34)
d=1 1<mi1<---<mg<q Jj=1
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where E,,,, = {an] >y} Let Vign = Vign/(1m) /2 for 1 <m < g and Vi, = (Vi - -+ > Viem,)

for 1 < k < n. Denote |a|pnm = lrgigd |a;| for any vector a € RY. Then we have
_l_

d n
P (ﬂ Emj> =P ( n Y Vi > y;,/2> .
J=1 k=1 min

By Lemma 9 in Xiao and Wu (2013)), we get
2 ylly/Q) SP (’Nd’min 2 ?/11,/2 - En(logp)il/2)

P ( nil/Q Z Vk
k=1

e S5.35
et (_CQ,dTn(logp)1/2> ’ (85.35)
where ¢4 = cjd5/2, j =1,2, ¢; > 0 are constants, Ny = (Ny,,, ..., Npy,) is a d-dimensional

Gaussian vector with zero mean and Cov(IN,) = Cov(Vy). Let

(logp)®/?/n310  if assumption F holds,

€n —

—-1/2
?

(logp) if assumption F* holds,

then we have ¢, — 0 and for any M > 0,

n
crLaexp | —
LdXP ( C2,aTn(logp

1/2¢

)1/2> =0(p™). (S5.36)

It follows from (S5.34)), (S5.35)), and (S5.36)) that

2s—1
g (Eﬁ? @ 2 yp) <Y DT YT P(INali > /7 — en(logp)™?) +o(1).
=m=a d=1 1<mi<--<ma<q

(85.37)

Similarly, we also have

2s
P(max Gz 0p) 20" 3 P (N> 0+ culogn) ) —oll).
== d=1 1<my <-<mg<q

(55.38)
For 0 < k,¢ < g, denote Crp = 1/(Mm,Mm,)"/?. By some elementary calculations, we get if

assumptions F holds,
max |Cov(Nomy s Nony) — CreCov(Vipn,, Vim, )| < C(p +n) 71, (S5.39)
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and if assumption F* holds,
max |Cov(Noys Nony) — CitCov(Vipn,, Vign, )| < Cr 20072, (S5.40)

Based on assumption E (or E*), (S5.39)), and (S5.40)), we know that the covariance matrix

of (Ny,---, N,) satisfies assumption E (or E*). Thus, by Lemma |5, we get

1/ 1 £\
i . 1/2 -1/2y — __
nh_)rgo E P (|Nglmin > 3,/ £ €n(logp)~'/?) = pT (\/8_7'[' exp ( 2)) . (Sb.41)

1<mi<---<myg<q

Submitting (S5.41)) into (S5.37)) and (S5.38)), we get

25—1 d
A 1 1 t
: 2 d—1
hfln sup P (121&%{(162 > yp) < E (—1) I < = exp <—§))

d=1

and

2s d
A 1 1 t
. . 2 d—1
1171Ln inf P <121a}gcq Q> yp) > E (—1) a <_8 exp (—§>)

d=1

for any positive integer s. Letting s — 0o, we prove that (55.33)) holds.

S6 Proof of Corollary 3

Note that Ry = (Tgij)i ;=1 represents the structured population correlation matrix under the

null hypothesis Hy. Let

2 2
n\r;; —To;;
Mn,l — max (JA—J)
1<i<j<p Mij

By Theorem 5, we get for any ¢t € R,

1 t
P (M, —4logp +loglogp <t) — exp (— = oxp (—§>> :
V OTT

Under the null hypothesis Hy, we have

e = Vo (( —w)ap =) roy (( — ) (- W)) |

(01i055) " 2 Tii Tjj
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and

= Tij — Toij;

- Z (i — a;lA lek/z— T;)  Toig <<£lki ;)2 . (% - @)2)
(646) 2 Tii 05
then n;; can be estimated by
n — S L 7.)2 72 2
~1 {( ik — : i) (e — 7;) T0ij <<$zk Z;) I ) ) — (7 _TAOij>:| _

2 - A A
Gii0 )" 2 Gii Gjj

Noij = N
k=1

Next, we prove that Jnax 1T0i; — Mij| = 0p(1). After some elementary calculations, we get
<7

o = 0" Y [Ty + (g — Foig) Riig]”
k=1

where

A ~

Ty = (wik — Ti) (wjh — T;) Ty ((m S G fj)g) |

(6ii05)'/? 2 Oii 0jj
Ry — (i - i) (g - ;) L
20'7;7; 20’jj
Thus, we have
foig — Mg = 2(Fi; = Poig)n ™Y Thaj Raij + (Fi — Foi)*n~" Z Ry (56.42)

Note that n™! Z R, < max 0;:/62, where ¥ = n ' S (x4 — %)% — 63)°. By Lemma 3
k=1

of |Cai et al.| (2013), we have

P (maan — ﬁul/au > En ) =O0(p '+ n_€/8)’
log p

where ¢, = max ((logp)'/®/n'/?, (log p)~!). Therefore, we get

n

max n~' Yy Ri=0,(1). (56.43)

1<i<j<p e

Due to the conclusion that 6, = 6; + O,(n"") in the proof of Theorem 2, we have

max  |foi; — r0i;] < ||[Ro — Rol| = 0,(n~?). (S6.44)

1<i<j<p
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From (S5.28) and (S5.29)), we get max |7;; — ;| = 0,(1). It follows that

1<i<j<p
1%?%?;}) |fl] — TA'OZ'j| = Op(l). (8645)
Denote
M, 2 = max (i = roi)” - rOij)2.
1<i<j<p Noij

Combining (56.42)), (S6.43)), and ((S6.45)), we have | Inax 0i; — Mij| = 0p(1). It follows that
<i<j<p

M1 — Myo| < M, max 95 /Mo — 1] = 0p(1).

1<i<j<
From ([S6.44), we get

N 2 1/2 9 s1/2 N _
| My — My| < Cn  Jnax |Foij — Toij|* + Cn'/2 M,/  Jpax 70ij — T0ij] = 0p(1).

Based on the Slutsky’s theorem, we derive that M,, converges to the Type I extreme value

distribution under the null hypothesis Hy. Thus, the proof of Corollary 3 is completed.
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Table S1: Key notations used in the paper

Definition

Notation
p
n
Yn
X1, 0, Xp
Y= (Uij)i,jzl
R= (Tij)f,jzl
diag(X)
r
ZAln = (6ij)i,j:l
IA{n = (fw )]z?,jzl
Buw
Jo, Ju, -+ Ik

€;

Co = (coij)f j=1

the dimension
the sample size
the dimension-versus-sample-size ratio, defined as p/n
the 4.4.d. sample
the population covariance matrix
the population correlation matrix
the diagonal matrix formed by the diagonal elements of ¥
a p X p matrix, defined as [diag(X)]~1/2%1/2
the sample covariance matrix
the sample correlation matrix
the kurtosis, defined in Assumption A
the basis matrices involved in Hy
the population correlation matrix specified under Hy
the structured estimator of R under Hy
a K x K matrix with the (4, j)th entry being tr(J;J;)
the p X p identity matrix
the 7th column of the identity matrix, and its
dimension is determined by the matrix it multiplies
a matrix with cg;; = 2r§ij + Buwroij Zp: (eZTl"ek)Q(ejTl"ek)2

k=1

a quantity, defined as (tr(J1Ry'), ..., tr(JxRy ")) A ey

hy,
K

B a p X p matrix, defined as > hiJi
k=1

C, a p X p matrix, defined as Ral + v, B
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Table S2: Empirical size and power for the test statistics based on infinite norm (M,,), ratio-based quadrat-
ic norm (T3,) and distance-based quadratic norm (75,) under scenarios 1-4, where n observations with

dimension p are generated from the Gamma population.

Scenario 1 Scenario 2 Scenario 3 Scenario 4

n p Mn Tln T2n Mn Tln T2n Mn Tln TZn Mn Tln T2n

Empirical size (%)

50 4.1 5.1 3.8 3.6 4.9 3.7 3.9 45 43 3.7 4.6 4.7

100 3.4 5.4 4.4 3.3 5.1 4.5 3.1 5.0 4.7 3.1 4.6 4.8

100 300 3.2 5.7 4.6 3.1 5.1 4.6 26 53 438 2.2 4.6 4.6
500 2.6 6.0 5.1 2.7 5.3 4.7 29 54 51 2.7 4.9 4.8

1000 2.6 6.3 4.6 2.9 5.9 5.0 25 58 4.5 24 4.5 4.7

50 3.6 5.5 4.2 3.7 5.4 3.8 3.8 52 44 3.7 4.9 4.8

100 3.5 5.3 4.7 3.5 5.2 4.3 33 52 46 3.6 4.8 5.0

300 300 3.3 5.2 4.7 3.3 5.2 4.6 33 49 45 3.2 4.7 4.5
500 3.1 5.3 4.4 2.8 4.8 4.7 29 50 44 3.1 4.7 4.6

1000 3.0 5.7 5.1 2.7 5.7 5.0 27 52 49 24 5.2 5.2

Empirical power (%)

50 5.6 100.0 11.6 6.8 193 544 73.6 49 9.1 50 224 141

100 4.5 100.0 11.5 70 626  89.3 58.7 4.8 6.8 4.5 289 15.0

100 300 3.2 100.0 11.5 74 999 100.0 350 59 49 2.7 572 153
500 3.1 100.0 11.9 7.8 100.0 100.0 26.7 59 5.3 3.0 803 164

1000 2.7 100.0 11.8 8.3 100.0 100.0 174 59 49 25 994 16.3

50 11.4 100.0 30.5 10.2 8.0 90.6 99.7 153 21.9 9.9 578 421

100 8.4 100.0 31.1 112 351  99.8 99.3 6.2 119 74 67.0 435

300 300 5.2 100.0 32.0 127 98.4 100.0 96.6 5.0 5.5 50 887 46.5
500 4.7 100.0 315 12.6  100.0 100.0 939 53 5.1 43 971 46.5

1000 3.9 100.0 325 12.8  100.0 100.0 89.0 59 5.1 3.2 100.0 479
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Table S3: Empirical size and power for the test statistics based on infinite norm (M,,), ratio-based quadrat-
ic norm (73,) and distance-based quadratic norm (75,) under scenarios 5-8, where n observations with

dimension p are generated from the Gamma population.

Scenario 5 Scenario 6 Scenario 7 Scenario 8

n p Mn Tln T2n Mn Tln T2n Mn Tln T2n Mn Tln T2n

Empirical size (%)

50 3.7 5.1 3.9 38 43 43 3.3 5.2 4.0 29 63 23

100 3.2 5.0 4.6 3.2 45 44 3.6 5.3 4.4 29 56 3.1

100 300 2.7 4.9 4.6 26 48 438 2.9 4.7 4.4 2.7 50 34
500 2.9 5.3 4.9 29 48 49 2.9 5.3 5.1 27 53 33

1000 2.3 4.9 4.7 26 45 46 2.8 4.9 5.2 2.7 51 27

50 3.5 9.3 4.0 3.7 49 49 3.6 5.5 4.0 28 6.1 26

100 3.4 5.0 4.4 3.7 48 48 3.2 4.7 3.9 3.0 55 33

300 300 3.2 4.8 4.4 3.2 50 49 3.0 5.1 4.7 29 51 3.7
500 2.9 5.1 4.7 3.0 49 47 2.7 5.0 4.8 26 51 36

1000 2.5 5.1 4.9 26 49 48 2.6 4.9 5.3 24 50 3.0

Empirical power (%)

50 87.1 35.1  50.0 57.1 46.0 40.5 3.7 266 44 453 264 29

100 75.3 46.7  75.8 56.6 428 36.3 3.6 449 4.7 342 234 32

100 300 50.9 955  99.8 54.3 44.8 33.2 3.0 952 46 26.9 406 3.1

500 39.8  99.8 100.0 92.7 48.0 32.2 3.0 100.0 54 25.7 60.6 3.0

1000 27.1 100.0 100.0 48.8 59.7 32.0 2.7 100.0 5.5 248 912 2.1

50 99.9 839 941 984 945 918 4.0 459 49 975 612 5.6

100 99.8 91.8 994 98.5 93.1 88.8 3.5 689 49 95.4 51.2 3.6

300 300 99.4 100.0 100.0 98.0 924 854 3.1 993 59 93.1 653 2.7

500 98.7 100.0 100.0 97.5 934 84.0 29 100.0 5.8 92.8 830 2.6

1000 97.4 100.0 100.0 97.5 96.0 83.7 2.7 100.0 6.2 93.2 986 2.1
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Table S4: Empirical size and power for the Tippett’s minimum p-value test T3, and the Cauchy combina-
tion test T, under scenarios 1-8, where n observations with dimension p are generated from the Gamma

population.

Scenario 1 2 3 4 5 6 7 8

n p Ty Ten Tin Ten Tin Ten Tin Ten Tin Ten Tin Ten Ty Ten Tin Ten

Empirical size (%)

50 4.0 4.3 34 39 35 43 31 43 38 42 26 40 37 41 38 38

100 4.1 4.3 39 41 38 43 27 41 38 43 24 37 40 44 34 36

100 300 4.3 4.4 43 43 37 41 26 36 38 41 25 38 37 38 38 36

500 4.4 43 41 41 40 43 31 41 38 40 29 40 39 41 3.7 3.7

1000 4.5 4.5 46 45 44 42 26 36 39 39 25 38 41 41 31 3.0

50 4.0 44 3.8 41 37 43 32 43 37 42 30 42 38 42 38 39

100 4.0 4.6 43 45 38 44 32 43 38 42 29 43 33 37 3.7 37

300 300 3.9 4.1 40 40 36 40 29 40 36 40 27 40 38 42 37 34

500 3.9 4.1 40 41 37 40 30 39 36 38 25 39 35 38 34 32

1000 44 4.5 45 42 40 41 29 39 39 41 26 40 40 42 33 3.2

Empirical power (%)

50  99.9 99.9 51.7 53.7 61.461.7 142172 844 86.8 59.966.2 183 187 41.2 424

100 100.0 100.0 94.3 95.0 46.7 47.0 18.0 20.5 86.4 88.4 59.0 649 33.6 33.2 33.234.2

100 300 100.0 100.0 100.0 100.0 26.6 26.9 40.9 41.4 99.7 99.8 59.0 64.0 90.7 90.2 39.9 40.7

500 100.0 100.0 100.0 100.0 20.4 21.0 67.6 66.4 100.0 100.0 60.1 65.1 99.8 99.8 55.5 56.3

1000 100.0 100.0 100.0 100.0 13.9 14.0 98.7 98.4 100.0 100.0 65.5 68.6 100.0 100.0 86.4 86.7

50 100.0 100.0 87.7 88.4 99.4 99.4 44.4 49.7 100.0 100.0 99.6 99.8 34.3 34.0 96.8 97.1

100 100.0 100.0 99.9 100.0 98.2 98.2 52.2 56.7 100.0 100.0 99.6 99.8 55.5 55.1 94.0 94.4

300 300 100.0 100.0 100.0 100.0 93.8 93.6 79.4 80.0 100.0 100.0 99.5 99.6 98.4 98.3 94.5 95.3

500 100.0 100.0 100.0 100.0 90.2 90.1 93.3 92.9 100.0 100.0 99.5 99.7 100.0 100.0 96.7 97.2

1000 100.0 100.0 100.0 100.0 83.7 83.6 99.9 99.9 100.0 100.0 99.6 99.8 100.0 100.0 99.7 99.8
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