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In Sections S.1-S.7 of this supplement we present the proofs of all results stated in the main paper. The proofs are

presented in the order the results appear in the main paper. We also provide an additional numerical experiment,

details regarding the real data example of Section 5 and an additional real data example in Section S.8.

S1 Examples for integrative Tweedie

• Example 1: Suppose (Yi, Si) are conditionally independent given (µi,y, µi,s). We begin

by considering a scenario where Si is an independent copy of Yi: µi ∼ N(µ0, τ
2), Yi =

µi + ϵi, Si = µi + ϵ′i, where ϵi ∼ N(0, σ2), and ϵ′i ∼ N(0, σ2). Intuitively, the optimal

Bayes estimator is to use Zi = (Yi + Si)/2 ∼ N(µi, σ
2/2) as the new data point:

µ̂op
i =

1
2
σ2µ0 + τ 2Zi

1
2
σ2 + τ 2

=
σ2µ0 + τ 2(Yi + Si)

σ2 + 2τ 2
. (S1.1)

The conditional distribution of Yi given Si is Yi|Si ∼ N
(

σ2µ0+τ2Si

τ2+σ2 , σ
2(2τ2+σ2)
τ2+σ2

)
. It follows

that l′(Yi|Si) = σ−2(2τ 2 + σ2)−1(τ 2Si + σ2µ0)− Yi(τ
2 + σ2). We obtain δπi = (σ2 +

2τ 2)−1{σ2µ0 + τ 2(Yi + Si)}, recovering the optimal estimator (S1.1). It is important to

note that if we perturbate the model slightly, say by adding ηi to Si: Si = µi + ηi + ϵ′i,

or letting Si = f(µi) + ϵ′i, then averaging Y and S via (S1.1) may result in poor
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estimates. However, integrative Tweedie provides a robust data combination approach

that consistently reduces the estimation risk (Proposition 2).

• Example 2: Consider a scenario where Si is a group indicator with two equal-sized

groups (S = 1 and S = 2). The primary data follows Yi|Si = k ∼ (1 − πk)N(0, 1) +

πkN(µi, 1), with π1 = 0.01, π2 = 0.4, and µi ∼ N(2, 1). We compare the perfor-

mance of two oracle Bayes rules, namely δπi (Yi, Si) and δπi (Yi). Calculations show that[
B(δπi (Yi)) − B{δπi (Yi, Si)}

]
/B{δπi (Yi)} = 0.216, indicating that incorporating Si can

significantly reduce the risk. Despite the considerable difference between the distribu-

tions of Yi and Si (continuous vs. binary), integrative Tweedie remains highly effective

in reducing estimation risk by leveraging the grouping structure encoded in Si.

S2 Proof of Proposition 1

The idea of the proof follows from Brown (1971); we provide it here for completeness.

First, note that ∇y log f(y|s) = ∇y log f(y, s) as

∇y log f(y|s) = ∇y{log f(y, s)− log f(s)} = ∇y log f(y, s).

Next, from equations (1.1) and (2.2), Si and Yi are independent given θi, and so f(y|θ, s) =

f(y|θ) for all θ and s. Therefore, noting that f(y,sss) =
∫
f(y,sss|θ)dhθ(θ) and f(y,sss|θ) =

f(y|θ)f(sss|θ), expand the partial derivative of f(y,sss):

∇yf(y,sss) = σ−2
(∫

θf(y|sss, θ)f(sss|θ)dhθ(θ)− y

∫
f(y|sss, θ)f(sss|θ)dhθ(θ)

)
= σ−2

(∫
θf(y,sss|θ)dhθ(θ)− yf(y,sss)

)
Then, left-multiplying by σ2 and dividing by f(y,sss) on both sides, it follows that

σ2∇yf(y,sss)

f(y,sss)
=

∫
θf(y,sss|θ)dhθ(θ)

f(y,sss|θ)
− y
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Under square error loss, the posterior mean minimizes the Bayes risk. And so, the Bayes

estimator is given by

E(θ|y,sss) =
∫
θf(y,sss|θ)dhθ(θ)

f(y,sss)
= y + σ2∇yf(y,sss)

f(y,sss)
,

where, the second equality follows from the above two displays.

S3 Proof of Theorem 1

First note that the expected value of the concerned ℓp distance

ℓp(ĥhhλ,n, hf ) = n−1

n∑
i=1

|ĥhhλ,n(i)− hf (xxxi)|p

is given by ∆
(p)
λ,n(f) = EXXX{ℓp(ĥhhλ,n, hf )} where, the expected value is overXXXn = (xxx1;xxx2; . . . ;xxxn)

where xxxis are i.i.d. from f . Thus,

∆
(p)
λ,n(f) = E |ĥhhλ,n(1)− hf (xxx1)|p = E|ĥhhλ[XXXn](xxx1)− hf (xxx1)|p .

For notational ease, we would often keep the dependence on f in ∆
(p)
λ,n(f) implicit. The

proof involves upper and lower bounding ∆
(2)
λ,n by the functionals involving ∆

(1)
λ,n. The upper

bound is provided below in (S3.4). The lower bound follows from (S3.6), whose proof is

quite convoluted and is presented separately in Lemma 1.

As the marginal density of the θθθ is the convolution with a Gaussian distribution, it

follows that there exists some constant C ≥ 0 such that

|hf (xxx1)|/∥xxx1∥2 ≤ C for all large ||xxx1||2.

and |ĥhhλ[XXXn](xxx1)| = O(∥xxx1∥2). With out loss of generality we include such constraints on hhh in

the convex program to solve (2.4) and so, |ĥhhλ[XXXn](xxx1)−hf (xxx1)| is also bounded by O(∥xxx1∥2).
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Using this property of the score estimates, we have the following bound for all xxx1 satis-

fying {xxx1 : ∥xxx1∥2 ≤ 2γ log n} :

E
[(
ĥhhλ[XXXn](xxx1)− hf (xxx1)

)2
I {∥xxx1∥2 ≤ 2γ log n}

]
≤ 2γ log(n)∆

(1)
λ,n. (S3.2)

On the set {∥xxx1∥2 > 2γ log n}, again using the aforementioned property of score estimates

from (2.4) we note that

E
[(

ĥhhλ[XXXn](xxx1)− hf (xxx1)
)2

I {∥xxx1∥2 > 2γ log n}
]
≲ E

[
∥xxx1∥22I{∥xxx1∥2 > 2γ log n}

]
, (S3.3)

where, for any two sequences an, bn, we use the notation an ≲ bn to denote an/bn = O(1) as

n → ∞.

Now, as xxx1 satisfies assumption 1, the right hand side (S3.3) is bounded by O(n−1).

Combining (S3.2) and (S3.3) we have the following upper bound on ∆
(2)
λ,n:

∆
(2)
λ,n ≲ log(n)∆

(1)
λ,n + n−1 . (S3.4)

For the lower bound on ∆
(2)
λ,n consider the following intermediate quantity which is related

to the KSD norm dλ on the score functions:

∆̄λ,n(f) = E
{(
ĥhhλ[XXXn](xxx1)− hf (xxx1)

)2
f(xxx1)

}
.

It can be shown that

∆
(1)
λ,n ≲

√
{log(n)}K+1 ∆̄λ,n + n−1 as n → ∞. (S3.5)

Proof of (S3.5). Restricting xxx1 on set {xxx1 : ∥xxx1∥2 ≤ 2γ log n} and using Cauchy-Schwarz

inequality, we get

E
[(
ĥhhλ[XXXn](xxx1)− hf (xxx1)

)2
I {∥xxx1∥2 ≤ 2γ log n}

]
≤

[
CK,γ {log(n)}K+1∆̄λ,n(f)

] 1
2 .
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On the tail {xxx1 : ∥xxx1∥2 > 2γ log n} using the same argument as (S3.3), we have

E
[∣∣∣ĥhhλ[XXXn](xxx1)− hf (xxx1)

∣∣∣ I {∥xxx1∥2 > 2γ log n}
]
= O(n−1).

(S3.5) follows by combining the above two displays.

The following result lower bounds ∆
(2)
λ,n using ∆̄λ,n.

Lemma 1. For any λ > 0, we have

∆̄λ,n ≲ λ−(K+1)Sλ[ĥhhλ,n+1] + λ2 log n+ λ(log n)K+3∆
(2)
λ,n . (S3.6)

The proof of the above lemma is intricate and is presented at the end of this section.

Now, for the proof of Theorem 1, we combine (S3.4), (S3.5) and (S3.6). Then, using

λ ≍ n− 1
K+2 and the fact that ∆

(1)
λ,n is bounded, we arrive at

∆
(1)
λ,n ≲

√
{log(n)}K+1

{
n

K+1
K+2Sλ[ĥhhλ,n+1] + n− 2

K+2 log(n) + n− 1
K+2 (log n)K+4 ∆

(1)
λ,n

}
. (S3.7)

Proportion 1, which is stated and proved at the end of this proof, provides the following

upper bound on Sλ[ĥhhλ,n+1]:

Sλ[ĥhhλ,n+1] ≤
E {hf (xxx1)}2 − E

{
ĥhhλ[XXXn+1](xxx1)

}2

n
(S3.8)

Using the similar argument as (S3.4), the numerator in above can be further upper bounded

by 2γ∆
(1)
λ,n+1 +O(n−1). Substituting this in (S3.7), we arrive at an inequality only involving

quantities ∆
(1)
λ,n and ∆

(1)
λ,n+1. Now, noting that λ ≍ n− 1

K+2 and ∆
(1)
λ,n is bounded, it easily

follows that ∆
(1)
λ,n → 0 as n → ∞.

Establishing the rate of convergence of ∆
(1)
λ,n needs further calculations. For that purpose

consider An = max
{
∆

(1)
λ,n, 2n

− 1
K+2 (log n)2K+5

}
. For all large n, the following inequality can
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be derived from (S3.7) and (S3.8):

An ≤ C (log n)K+1n− 1
2K+4

√
An+1, (S3.9)

where C is a constant independent of n.

Applying (S3.9) recursively m times we have:

An ≤
(
C(log n)K+1n− 1

2K+4

)1+···+ 1
2m

A
1

2m+1

n+m+1.

Note that An < 1 for all large n. This implies that for any m > 0,

An ≤
(
C(log n)K+1n− 1

2K+4

)1+···+ 1
2m

.

Finally, let m → ∞, we proved that An ≤ C(log n)2K+2n− 1
K+2 , which implies

∆
(1)
λ,n ≲ (log n)2K+2n− 1

K+2 .

This completes the proof of Theorem 1.

S3.1 Proofs of results used in the proof of Theorem 1

Proposition 1. Let Kλ(·, ·) be RBF kernel with bandwidth parameter λ ∈ Λ and Λ is a

compact set of R+ bounded from zero. Then we have

Sλ[ĥhhλ,n] ≤
E {hf (xxx1)}2 − E

{
ĥhhλ[XXXn](xxx1)

}2

n− 1
.

Proof of Proposition 1. By the construction of the ĥhhλ,n, we have

Ŝλ[ĥhhλ,n] ≤ Ŝλ[hhhf ]. (S3.10)

Taking the expectation on the both sides of equation (S3.10), we get

n2 − n

n2
Sλ[ĥhhλ,n] +

n

n2

(
E
{
ĥhhλ[XXXn](xxx1)

}2

+
1

λ

)
≤ n2 − n

n2
Sλ[hf ] +

n

n2

(
E {hf (xxx1)}2 +

1

λ

)
.
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Notice that Sλ[hf ] = 0 and then the above inequality implies

Sλ[ĥhhλ,n] ≤
E {hf (xxx1)}2 − E

{
ĥhhλ[XXXn](xxx1)

}2

n− 1
,

which completes the proof.

Proof of Lemma 1.

First we assume there are n+ 1 i.i.d. samples, XXXn+1 = (xxx1;xxx2; . . . ;xxxn+1) where xxxis are i.i.d.

from f . Note that the definition of Sλ[ĥhhλ,n+1] is equivalent to the following definition:

Sλ[ĥhhλ,n+1] = E [Dλ(xxx1,xxxn+1)] ,

where the KSD is given by

Dλ(xxx1,xxxn+1) = Kλ(xxx1,xxxn+1)
(
ĥhhλ[XXXn+1](xxx1)− hf (xxx1)

)(
ĥhhλ[XXXn+1](xxxn+1)− hf (xxxn+1)

)
.

We consider the situation when xxxn+1 is in the ϵ-neighboor of xxx1. For a fixed ϵ > 0, denote

I
(1)
ϵ;λ := E

[
Dλ(xxx1,xxxn+1)I{∥xxxn+1 − xxx1∥ < ϵ}

]
.

When ϵ = λ log n, we have

I
(1)
ϵ;λ ≤ Sλ[ĥhhλ,n+1] +O

(
n−0.5 logn

)
. (S3.11)

The proof of (S3.11) is non-trivial. To avoid disrupting the flow of arguments here, its proof

is not presented immediately but is provided at the end of this subsection.

Denote the following intermediate quantity I
(2)
ϵ;λ which is close to ∆̄λ,n(f) as

I
(2)
ϵ;λ := E

[
Kλ(xxx1,xxxn+1)

(
ĥhhλ[XXXn+1](xxx1)− hf (xxx1)

)2
I{∥xxxn+1 − xxx1∥ < ϵ}

]
.

We use Cauchy Schwarz inequality and Lipschitz continuity of score function to show I
(2)
ϵ;λ is

bounded by a function of I
(1)
ϵ;λ as

I
(2)
ϵ;λ ≤ I

(1)
ϵ;λ +O(ϵK+3). (S3.12)
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The proof of (S3.12) is quite involved and is presented afterwards. Finally, we establish the

following bound which along with (S3.11) and (S3.12) complete the proof of the lemma:

∆̄λ,n ≲ λ−K−1I
(2)
ϵ;λ + λ2(log n)K+3 + λ∆

(2)
λ,n log n. (S3.13)

Proof of (S3.11). Note that the difference between Sλ[ĥhhλ,n+1] and I
(1)
ϵ;λ is

E
[
Dλ(xxx1,xxxn+1)I{∥xxxn+1 − xxx1∥ ≥ ϵ}

]
.

If we use the Gaussian kernel Kλ(xxx1,xxxn+1) = e−
1

2λ2
∥xxx1−xxxn+1∥2 and set ϵ = λ log n, we have

Kλ(xxx1,xxxn+1)I{∥xxxn+1 − xxx1∥ ≥ ϵ} is always bounded by n−0.5 logn, which implies the above

difference is bounded by ∆
(2)
λ,n+1n

−0.5 logn. Note that ∆
(2)
λ,n+1 is bounded, (S3.11) follows.

Proof of (S3.12). Note that the score function hf is Lf -Lipschitz continuous. If we

assume for small ϵ, when ∥xxxn+1−xxx1∥ < ϵ, we have ĥhhλ[XXXn+1](xxxn+1) is Ln,ϵ-Lipschitz continuous

as ∣∣∣ĥhhλ[XXXn+1](xxxn+1)− ĥhhλ[XXXn+1](xxx1)
∣∣∣ ≤ Ln,ϵ ϵ. (S3.14)

where Ln,ϵ satisfies that EL2
n,ϵ is bounded. Then the difference between I

(2)
ϵ;λ and I

(1)
ϵ;λ is

bounded by

E
[
ϵ (Lf + Ln,ϵ)Kλ(xxx1,xxxn+1)

∣∣∣ĥhhλ[XXXn+1](xxx1)− hf (xxx1)
∣∣∣ I{∥xxxn − xxx1∥ < ϵ}

]
Apply the Cauchy-Schwarz inequality and the square of above difference can be further

bounded by

ϵE
[
(Lf + Ln,ϵ)

2I{∥xxxn − xxx1∥ < ϵ}
]
E
[
K2

λ(xxx1,xxxn+1)
∣∣∣ĥhhλ[XXXn+1](xxx1)− hf (xxx1)

∣∣∣2 I{∥xxxn − xxx1∥ < ϵ}
]
.

Note that E [(Lf + Ln,ϵ)
2I{∥xxxn − xxx1∥ < ϵ}] is bounded by

Cf
π(K+1)/2

Γ(K+1
2

+ 1)
ϵK+1E(Lf + Ln,ϵ)

2,
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where Γ(x) is the gamma function. Notice that K2
λ(xxx1,xxxn+1) ≤ Kλ(xxx1,xxxn+1) and then we

have

I
(2)
ϵ;λ ≲ I

(1)
ϵ;λ + ϵ

√
ϵK+1∆2

ϵ;λ.

This completes the proof of (S3.12).

Proof of (S3.13). We introduce an intermediate quantity:

I
(3)
ϵ;λ = E

[
Kλ(xxx1,xxxn+1)

(
ĥhhλ[XXXn](xxx1)− hf (xxx1)

)2
I{∥xxxn+1 − xxx1∥ < ϵ}

]
.

Assume that when n is large and ∥xxxn+1 −xxx1∥ < ϵ, we have ĥhhλ[XXXn+1](xxxn+1) is Ln,ϵ-Lipschitz

continuous as: ∣∣∣ĥhhλ[XXXn+1](xxxn+1)− ĥhhλ[XXXn](xxx1)
∣∣∣ ≤ Ln,ϵ ϵ

Combined with (S3.14), we get the difference between I
(3)
ϵ;λ and I

(2)
ϵ;λ is bounded by

4ϵ2 E
[
L2
n,ϵKλ(xxx1,xxxn+1)I{∥xxxn+1 − xxx1∥ < ϵ}

]
,

which implies that

I
(3)
ϵ;λ ≲ I

(2)
ϵ;λ + ϵK+3. (S3.15)

Next we introduce another intermediate quantity

I
(4)
ϵ;λ = E

∫
f(xxx1)Kλ(xxx1,xxxn+1)

(
ĥhhλ[XXXn](xxx1)− hf (xxx1)

)2
I{∥xxxn+1 − xxx1∥ < ϵ} dxxxn+1,

which is close to I
(3)
ϵ;λ . When ϵ = λ log n, we have the following term∫

Kλ(xxx1,xxxn+1)I{∥xxxn+1 − xxx1∥ < ϵ} dxxxn+1

is lower bounded by

λK+1

∫
e−

1
2
∥xxxn+1∥2I{∥xxxn+1∥ < log n} dxxxn+1,
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which can be further lower bounded by c λK+1 for some constant c when n is large. This

implies

λK+1 ∆̄λ,n(f) ≲ I
(4)
ϵ;λ . (S3.16)

Now it is enough to show I
(4)
ϵ;λ ≲ I

(3)
ϵ;λ + λK+2∆

(2)
λ,n log n.

Assume that f is Lf -Lipschitz continuous. The difference between I
(4)
ϵ;λ and I

(3)
ϵ;λ is

bounded by

Lfϵ∆
(2)
λ,n

∫
[Kλ(xxx1,xxxn+1)I{∥xxxn+1 − xxx1∥ < ϵ}] dxxxn+1.

Notice that
∫
[Kλ(xxx1,xxxn+1)I{∥xxxn+1 − xxx1∥ < ϵ}] dxxxn+1 is bounded by C λK+1 for some con-

stant C. This implies that

I
(4)
ϵ;λ ≲ I

(3)
ϵ;λ + λK+2∆

(3)
λ,n log n.

Combined with (S3.15) and (S3.16), the result (S3.13) follows.

S4 Proof of Lemma 1

We follow the notions in Section S3. The convergence rate of ∆
(2)
λ,n is achieved by extending

the results of ∆
(1)
λ,n in Section S3. Recall that (S3.4) shows

∆
(2)
λ,n ≲ log(n)∆

(1)
λ,n + n−1 ,

and we have proved ∆
(1)
λ,n ≲ (log n)2K+2n− 1

K+2 in Section S3. Combining these two, we obtain

the result stated in this lemma.
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S5 Proof of Proposition 2

Proposition 4.5 in Johnstone (2011) shows that Bn(δδδ
π(yyy)) = σ2 − σ4IY . Following the same

arguments, we have Bn(δδδ
π(yyy,SSS)) = σ2 − σ4I(py|sss). Then it follows

Bn(δδδ
π(yyy))−Bn(δδδ

π(yyy,SSS)) = σ4(IY |SSS − IY )

Next, we prove that IY |SSS−IY is non-negative. By the definition of IY |SSS, we have the following

decomposition:

IY |SSS =

∫∫ (f(y)∇yf(sss|y) + f(sss|y)∇yf(y)

f(y,sss)

)2

f(y,sss) dy dsss.

Then we break the square and it follows

IY |SSS =

∫∫ (∇yf(sss|y)
f(sss|y)

)2

f(y,sss) dy dsss+

∫∫ (∇yf(y)

f(y)

)2

f(y) dy + 2

∫∫
∇yf(sss|y)∇yf(y) dy dsss.

Note that the second term of right hand side is always non-negative. Then we consider the

last term and exchange the integration and partial derivative, we get∫∫
∇yf(sss|y)∇yf(y) dy dsss =

∫
∇yf(y)∇y

(∫
f(sss|y)dsss

)
dy = 0

It follows that IY ≥ IY |SSS.

S6 Proof of Theorem 2

The proof of this theorem follows along the similar lines of the proof for Theorem 1. Denote

β = 1
(K+2)(K+3+2δ)

. In this case we entertain the possibility that the joint density f can be a

heavier tailed density. We concentrate on set
{
∥xxx1∥2 ≤ nβ

}
instead of the set {∥xxx1∥2 ≲ log n}

analyzed in the proof of Theorem 1.

Noting that ĥhhλ[XXXn](xxx1) and hf (xxx1) are both O (∥xxx1∥), it follows that |ĥhhλ[XXXn](xxx1) −
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hf (xxx1)| = O (∥xxx1∥). Then applying the Cauchy-Schwarz inequality, we get

E
[(

ĥhhλ[XXXn](xxx1)− hf (xxx1)
)2

I
{
∥xxx1∥2 ≤ nβ

}]
≲

{
n(K+3)β ∆̄λ,n

}1/2
. (S6.17)

Next, we consider the situation when ||xxxi||2 is large. Using assumption 2, it follows

E
[(

ĥhhλ[XXXn](xxx1)− hf (xxx1)
)2

I
{
∥xxx1∥2 > nβ

}]
≲ n−δβ . (S6.18)

Combining (S6.17) and (S6.18) gives the bound on ∆
(2)
λ,n as

∆
(2)
λ,n ≲

{
n(K+3)β ∆̄λ,n

}1/2
+ n−δβ . (S6.19)

Now, recall (S3.6) in Lemma 1 upper bounds ∆̄λ,n by a function of ∆
(2)
λ,n. Using (S3.6) and

(S6.19), we get

∆
(2)
λ,n ≲ n(K+3)β/2

{
λ−(K+1)Sλ[ĥhhλ,n+1] + λ2 log n+ λ(log n)K+3∆

(2)
λ,n

}1/2

+ n−δβ . (S6.20)

Note that, ∆
(2)
λ,n is bounded and so, Proposition 1 implies Sλ[ĥhhλ,n+1] is bounded by O(n−1).

Finally, let λ ≍ Θ(n− 1
K+2 ) and substitute β = 2

(K+2)(K+3+δ)
in (S6.20) to obtain

∆
(2)
λ,n ≲ n− δ

(K+2)(K+3+2δ) (log n)K+3,

which completes the proof of Theorem 2.

S7 Proof of Proposition 3

First note that

Kλ ((ui, si); (uj, sj)) /Kλ ((xi, si); (xj, sj)) = exp

{
− 1

2λ
(ui − uj)

2 +
1

2λ
(xi − xj)

2

}
=exp

{
− 1

2λ

[
α2(ηi − ηj)

2 − 2α(ηi − ηj)(xi − xj)
]}

:= I1.
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For any fixed n, we have xmax − xmin ≤ C1 and ηmax − ηmin ≤ C2 for some quantities C1 and

C2. Then the above is bounded by

I2 := exp
{
−2−1λ−1α(C2

2α− 2C1C2)
}
.

The above ratio for ∇Kλ equals I1(ui − uj)/(xi − xj), which is bounded in magnitude by

I2 (C3 + C2)/C3 where C3 = mini ̸=j |xi − xj| and C3 > 0 as the distribution of Y in (1.1) is

continuous.

Now consider the estimators

δ̂ITλ,i(U, S) = ui + σ2(1 + α2)ĝi = yi + αηi + σ2(1 + α2)ĝi, and,

δ̂ITλ,i(Y, S) = yi + σ2(1 + α2)ĥi ,

where, for an arbitrary fixed value of λ, ĝi and ĥi are solutions from (2.4) using (u, s) and

(y, s) respectively. Note that,

L̂n(λ, α) =
1

n

∑
i

(
δ̂ITλ,i(U, S)− vi

)2

− σ2(1 + α−2).

Taking expectation and using the fact that V is conditionally independent of (U, S), we get,

E{L̂n(λ, α)} = E

[
1

n

∑
i

(
δ̂ITλ,i(U, S)− θi

)2
]
.

For any fixed n,

Di := δ̂ITλ,i(U, S)− δ̂ITλ,i(U, S) = αηi + σ2
[
(1 + α2)ĝi − ĥi

]
.

Now, if the optimization in (2.4) is strictly convex, then for any small α, there exists ϵα such

that maxi |ĝi− ĥi| < ϵα and ϵα ↓ 0 as α ↓ 0 and the result stated in this proposition follows.
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S8 Further details on simulation and Real Data Illustrations

S8.1 Simulation 2: Integrative estimation in two-sample inference of sparse

means

This section considers compound estimation in two-sample inference. Let X1i and X2i be

two Gaussian random variables. Denote µ1i = E(X1i) and µ2i = E(X2i), 1 ≤ i ≤ n. Suppose

we are interested in estimating the differences θθθ = {µ1i − µ2i : 1 ≤ i ≤ n}. The primary

statistic is given by YYY = {X1i − X2i : 1 ≤ i ≤ n}. However, it is argued in Cai et al.

(2019) that the primary statistic YYY is not a sufficient statistic. Consider the case where

both µµµ1 and µµµ2 are individually sparse. Then an important fact is that the union support

U = {i : µ1i ̸= 0 or µ2i ̸= 0} is also sparse. The intuition is that the sparsity structure of θθθ is

captured by an auxiliary parameter ηηη = {µ1i + µ2i : 1 ≤ i ≤ n}. Our idea is to construct an

auxiliary sequence SSS = {X1i +X2i : 1 ≤ i ≤ n} and incorporate SSS into inference to improve

the efficiency.

To illustrate the effectiveness of the integrative estimation strategy, we simulate data

according to the following two settings and obtain primary and auxiliary data as YYY =

{X1i −X2i : 1 ≤ i ≤ n and SSS = {X1i +X2i : 1 ≤ i ≤ n}.

Setting 1: X1i and X2i are generated from X1i ∼ N (µ1i, 1) and X2i ∼ N (µ2i, 1), where

µµµ1[1 : k] = 2.5, µµµ2[1 : k] = 1

µµµ1[k + 1 : 2k] = 1, µµµ2[k + 1 : 2k] = 1

µµµ1[2k + 1 : n] = 0, µµµ2[2k + 1 : n] = 0

The sparsity level of θθθ is controlled by k. We fix n = 1000 and vary k from 50 to 450

It can be shown that {(X1i −X2i, X1i +X2i) : 1 ≤ i ≤ n} is minimal sufficient and retains all information about θθθ.
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(a) Setting 1 (b) Setting 2

Figure 1: Two-sample inference of sparse means.

to investigate the impact of sparsity level on the efficiency of different methods.

Setting 2: X1i and X2i are generated from X1i ∼ N (µ1i, 1) and X2i ∼ N (µ2i, 1), where

µµµ1[1 : k] = 1, µµµ2[1 : k] = 1

µµµ1[k + 1 : 500] = 2.5, µµµ2[k + 1 : 500] = 1

µµµ1[501 : n] = 0, µµµ2[501 : n] = 0

The primary parameter θθθ becomes more sparse when k increases. We fix n = 1000 and

vary k from 50 to 450 to investigate the efficiency gain of NIT.

We apply different methods to simulated data and calculate the MSEs using 100 replications.

The simulation results are displayed in Figure 1. The following can be observed.

(a). The side information provided by the auxiliary sequence can be highly informative for

reducing the estimation risk. Our proposed methods (NIT.DD, NIT.OR) have smaller
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MSEs than competing methods (EBCF, JS, NPMLE, EBT). The efficiency gain over

univariate methods (JS, EBT, NPMLE) is more pronounced when signals become more

sparse.

(b). EBCF is dominated by NIT, and can be inferior to univariate shrinkage methods.

(c). The class of linear estimators is inefficient under the sparse setting. For example, the

NPMLE method dominates the JS estimator, and the efficiency gain increases when

the signals become more sparse.

S8.2 Gene Expressions Estimation example

The data considered in this analysis was collected in Sen et al. (2018) via RNA sequencing.

The set of genes in the sequencing kit was same across all the experiments. The standard

deviations of the expressions values corresponding to the different genes were estimated

from related gene expression samples which contain replications under different experimental

conditions. Pooling data across these experiments, unexpressed and lowly expressed genes

were filtered out. The resultant data consist of around 30% of the genes. We consider the

estimation of the mean expression levels of n = 3000 genes. The primary parameter θθθ is

estimated based on primary vector YYY and two auxiliary sequences SSSU and SSSI.

In Figure 2 (top panel), we list the 28 genes for which the Tweedie and integrative

Tweedie estimates disagree by more than 50%. According to PANTHER (Protein ANalysis

THrough Evolutionary Relationships) Classification System (Mi et al., 2012), those genes

impact 12 molecular functions and 35 biological processes in human cells. The bottom two

panels of Figure 2 present the different function and process types that are impacted.



S8. FURTHER DETAILS ON SIMULATION AND REAL DATA ILLUSTRATIONS

S8.3 Leveraging auxiliary information in predicting monthly sales

We consider the total monthly sales of beers across n = 866 stores of a retail grocery chain.

These stores are spread across different states in the USA as shown in Figure 4. The data

is extracted from Bronnenberg et al. (2008), which has been widely studied for inventory

management and consumer preference analyses; see also Bronnenberg et al. (2012) and the

references therein.

Let Y t be the n dimensional vector denoting the monthly sales of beer across the n stores

in month t ∈ {1, . . . , 12}. For inventory planning, it is economically important to estimate

future demand. In this context, we consider estimating the monthly demand vector (across

stores) for month t using the previous month’s sales Y t−1. We use the first six months

t = 1, . . . , 6 for estimating store demand variabilities σ̂2
i , i = 1, . . . , n. For t = 7, . . . , 12,

using estimators based on month t’s sales, we calculate their demand prediction error for

month t+1 by using its monthly sale data for validation. Among the estimators, we consider

the modified James-Stein (JS) estimator of Xie et al. (2012):

θ̂t+1
i [JS] = ĴS

t

i +

[
1− n− 3∑

i σ̂
−2
i (Y t

i − ĴS
t

i)
2

]
+

(Y t
i − ĴS

t

i) where ĴS
t

i =

∑n
i=1 σ

−2
i Y t

i∑n
i=1 σ

−2
i

,

as well as the Tweedie (T) estimator θ̂t+1
i [T] = Y t

i +σ̂iĥi where ĥi are estimates of∇1 log f(σ̂
−1
i Y t

i )

based on the marginal density of standardized sales. We also consider the sales of three other

products: milk, deodorant and hotdog from these stores. They are not directly related to the

sale of beers but they might contain possibly useful information regarding consumer pref-

erences to beers particularly as they share zip-code and other store specific responses. We

use them as auxiliary sequences in our NIT methodology. Figure 3 shows the distribution

of beer sales (across stores) for different months and the pairwise distribution of the sales of

different products. Further details about the dataset is provided in Section S8.4.
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In Table 1, we report the average % gain in predictive error by the James-Stein (JS),

Tweedie (T) and integrative Tweedie (IT) estimators (using different combinations of auxil-

iary sequences) over the naive estimator δ̂t+1,naive = Y t for the demand prediction problem

at t = 7, . . . , 12. Using auxiliary variables via our proposed NIT framework yields significant

additional gains over non-integrative methods. However, the improvement slackens as an in-

creasing number of auxiliary sequences are incorporated. It is to be noted that the demand

data set is highly complex and heterogeneous and n = 866 may not be adequately large for

conducting successful non-parametric estimation. Hence suitably anchored parametric JS

estimator produces better prediction than nonparametric Tweedie. Also, as demonstrated

in Table 3, there are months where shrinkage estimation methods do not yield positive gains.

Nonetheless, the NIT estimator produces significant advantages over competing methods. It

produces on average 7.7% gain over unshrunken methods and attains an additional 3.7%

gain over non-parametric shrinkage methods.

Table 1: Average % gains over the naive unshrunken estimator for monthly beer sales prediction

JS Tweedie IT-Milk IT-Deodorant IT-Hotdog IT-M&D IT-M&H IT-D&H IT-M&D&H

5.7 4.0 6.0 7.1 6.8 6.1 6.6 7.5 7.7

S8.4 Additional details on the monthly sales data example

Here, we consider the monthly sales at the store level for 3 additional commodities: milk,

deodorant and hotdog. The distribution of 866 store across different US states is shown in

Figure 4 and Table 2 shows the correlation between the different products.

In Table 3, we report the average % gain in predictive error by the JS, T and IT estimators

(using different combinations of auxiliary sequences) over the naive unshrunken estimator
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δ̂t,naive = YYY t−1 for the demand prediction problem at t = 7, . . . , 12. For estimator δ̂δδ we report,

Gaint(δ̂δδ) =

∑n
i=1 σ̂

2
i (δ̂

t
i − ŷti)

2∑n
i=1 σ̂

2
i (δ̂

t,naive − ŷti)
2
× 100% for t = 7, . . . , 12.

The last column in Table 3 reports the average performance of these methods over the

six successive trails. In Figure 5, we compare the prediction of monthly sales in August

Table 2: Correlation matrix of the monthly sales of different products.

Products (1) (2) (3) (4)

(1) Beer 1.00

(2) Milk 0.33 1.00

(3) Deod 0.16 0.63 1.00

(4) Hotdog 0.84 0.38 0.19 1.00

Table 3: Month-wise % gains for monthly beer sales prediction over the naive unshrunken estimator.

July August September October November December Average

James-Stein 9.7 2.4 10.8 -2.7 -16.2 -3.7 5.7

Tweedie 7.5 7.5 9.6 -7.2 -22.6 -2.8 4

IT -Milk 11.7 5.2 9.4 -7.4 -8.8 -8.2 6

IT -Deo 11.3 5.1 10.7 -10.6 -13.7 3.7 7.1

IT -Hotdog 12.4 2.6 11.9 -3.2 -13.2 -6.5 6.8

IT-M&D 10.7 5.9 9.8 -7.4 -8.7 -7 6.1

IT-M&H 10.3 5.7 10.8 -4.3 -10.3 -4.8 6.6

IT-D&H 11.7 6.8 11 -8.2 -9.1 -0.6 7.5

IT-M&D&H 11.2 6.8 10.9 -8.1 -7.2 1.8 7.7

using Tweedie and IT-M&D&H. The magnitude of side-information is marked using different

colors. We can see that the most significant differences between Tweedie and integrative

Tweedie are observed in the left-tails.
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Figure 2: Top panel: Scatterplot and names of genes where Tweedie and Integrated Tweedie effect size

estimates disagreed by more than 50%. The other panels show the different molecular function types and

biological processes that are impacted by these genes.
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Figure 3: Distribution of monthly sales of beer across stores (on left) and the pairwise distribution of joint

sales of different products in the month of July (in right).
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Figure 4: Distribution of the 866 stores across different states in USA.
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Figure 5: Scatterplot of the logarithm of beer demand estimates in the month of August. The magnitudes of

the corresponding auxiliary variables used in the IT estimate are reflected in the different colors. We can see

that the most significant differences between Tweedie and integrative Tweedie are observed in the left-tails.

This shows the region where the side information is most helpful.
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