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In this supplement, we will provide the proofs of the lemmas, theo-

rems given in paper and two real data applications. Recall that D =

diag{d21, d22, · · · , d2p}. For i = 1, 2, · · · , n, Ui = U(D−1/2(Xi − θ)) and

Ri = ∥D−1/2(Xi − θ)∥ as the scale-invariant spatial-sign and radius of

Xi − θ, where U(X) = X/∥X∥I(X ̸= 0) is the multivariate sign function

of X, with I(·) being the indicator function. The moments of Ri is defined

as ζk = E
(
R−k
i

)
for k=1,2,3,4.

TheD-estimated version Ui and Ri is denoted as R̂i = ∥D̂−1/2(Xi−θ)∥

and Ûi = ∥D̂−1/2(Xi − θ)/∥D̂−1/2(Xi − θ)∥, respectively, i = 1, 2, · · · , n.

We restate the Assumptions given in the main text.

Assumption 1. Wi,1, . . . ,Wi,p are i.i.d. symmetric random variables with
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E (Wi,j) = 0,E
(
W 2
i,j

)
= 1 , and ∥Wi,j∥ψα

⩽ c0 with some constant c0 > 0

and 1 ⩽ α ⩽ 2.

Assumption 2. The moments ζk = E
(
R−k
i

)
for k = 1, 2, 3, 4 exist for large

enough p. In addition, there exist two positive constants b and B̄ such that

b ⩽ lim supp E
(
Ri/

√
p
)−k

⩽ B̄ for k = 1, 2, 3, 4.

Assumption 3. The shape matrix R = D−1/2ΓΓ⊤D−1/2 = (σjℓ)p×p satis-

fies tr(R) = p and maxj=1,··· ,p
∑p

ℓ=1 |σjℓ| ⩽ a0(p). In addition, lim infp→∞minj=1,2,··· ,p dj >

d for some constant d > 0, where D = diag{d21, d22, · · · , d2p}.

Assumption 4. Let R = (σij)1≤i,j≤p. For some ϱ ∈ (0, 1), assume |σij| ≤ ϱ

for all 1 ≤ i < j ≤ p and p ≥ 2. Suppose {δp; p ≥ 1} and {κp; p ≥ 1} are

positive constants with δp = o(1/ log p) and κ = κp → 0 as p → ∞. For 1 ≤

i ≤ p, defineBp,i = {1 ≤ j ≤ p; |σij| ≥ δp} and Cp = {1 ≤ i ≤ p; |Bp,i| ≥ pκ}.

We assume that |Cp| /p → 0 as p → ∞.

Assumption 5. Variables {X1, . . . ,Xn} in the n-th row are independently

and identically distributed (i.i.d.) from p-variate elliptical distribution with

density functions det(Σ)−1/2g
(∥∥Σ−1/2(x− θ)

∥∥) where θ ’s are the sym-

metry centers and Σ ’s are the positive definite symmetric p × p scatter

matrices.

Assumption 6. tr (R4) = o {tr2 (R2)}.



S1. PROOF OF MAIN LEMMAS

Assumption 7. (i) tr (R2)− p = o (n−1p2), (ii) n−2p2/ tr (R2) = O(1) and

log p = o(n).

Assumption 8. There exist C > 0 and ϱ ∈ (0, 1) so that max1≤i<j≤p |σij| ≤

ϱ and max1≤i≤p
∑p

j=1 σ
2
ij ≤ (log p)C for all p ≥ 3; p−1/2(log p)C ≪ λmin(R) ≤

λmax(R) ≪ √
p(log p)−1 and λmax(R)/λmin(R) = O (pτ ) for some τ ∈

(0, 1/4).

S1 Proof of main lemmas

Lemma 1. Under Assumption 1, we have E{U(Wi)
⊤MU(Wi)}2 = O{p−2tr(M⊤M)}.

Proof. By Cauchy inequality and Assumption 1, we have

E{U(Wi)
2
lU(Wi)

2
k} ≤ 1

p2
E{

p∑
s=1

p∑
t=1

U(Wi)
2
sU(Wi)

2
t} = p−2

E{U(Wi)
4
l } ≤ 1

p
E{

p∑
s=1

U(Wi)
4
s} ≤ 1

p
E{

p∑
s=1

p∑
t=1

U(Wi)
2
sU(Wi)

2
t} = p−1,

and

E {U(Wi)lU(Wi)kU(Wi)sU(Wi)t} ≤
√

E {U(Wi)2lU(Wi)2k}E {U(Wi)2sU(Wi)2t}.

By the Cauchy inequality,

∑
i,k,s,t

alkast ≤
√∑

l,k

a2lk
∑
s,t

a2st ≤

√√√√ p∑
l,k

a2lk

p∑
s,t

a2st = tr(M⊤M).
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Thus, we get

E
[{

U(Wi)
⊤MU(Wi)

}2]
=

p∑
l ̸=k=1

p∑
s ̸=t=1

alkastE {U(Wi)lU(Wi)kU(Wi)sU(Wi)t}+
p∑
l=1

p∑
s=1

allassE
{
U(Wi)

2
lU(Wi)

2
s

}
≤p−2p

4 − p2

p4
tr(M⊤M) + p−1p

2

p4
tr(M⊤M) = O{p−2tr(M⊤M)}.

Lemma 2. Under Assumptions 1 and 7, we have maxj=1,2,···p(d̂j − dj) =

Op{n−1/2(log p)1/2}.

Proof. The proof of this lemma is along the same lines as the proof

of Lemma A.2. in Feng et al. (2016), but differs in that the assumptions

about the model in this paper are more general, with different constraints

controlling the correlation matrix R.

Denote η = (θ⊤, d1, d2, · · · , dp)⊤ and η̂ as the estimated version. By

first-order Taylor expansion, we have

U(D−1/2(Xi − θ)) =
D−1/2ΓU(Wi)

{1 + U(Wi)⊤(R− Ip)U(Wi)}1/2

= D−1/2ΓU(Wi) + C1U(Wi)
⊤(R− Ip)U(Wi)D

−1/2ΓU(Wi),

(S1.1)

where C1 is a bounded random variable between−0.5 and−0.5{1+U(Wi)
⊤(R−

Ip)U(Wi)}−3/2. By Cauchy inequality and Lemma 1 and Assumption 7, we
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get

E
{
U(D−1/2(Xi − θ)

}
≤ C2

[
E{U(Wi)

⊤(R− Ip)U(Wi)}2E{D−1/2(Xi − θ)}2
]1/2

= O(p−1
√

tr(R2)− p) = o(n−1/2).

Similarly, we can show that

E
[
diag

{
U(D−1/2(Xi − θ))U(D−1/2(Xi − θ))⊤

}
− 1

p
Ip

]
≤ O(n−1/2),

by first-order Taylor expansion for U(D−1/2(Xi − θ))U(D−1/2(Xi − θ))⊤,

Cauchy inequality and Lemma 1. The above two equations define the func-

tional equation for each component of η,

Tj(F, ηj) = op(n
−1/2), (S1.2)

where F represent the distribution of X, η = (η1, · · · , η2p). Similar with

Hettmansperger and Randles (2002), the linearisation of this equation shows

n1/2 (η̂j − ηj) = −H−1
j n1/2 {Tj(Fn, ηj)− Tj(F, ηj)}+ op(1),

where Fn represents the empirical distribution function based onX1,X2, · · · ,Xn,

Hj is the corresponding Hessian matrix of the functional defined in Equa-

tion S1.2 and

T (Fn,η) =(
n−1

n∑
j=1

U(D−1/2(Xi − θ))⊤, vec[diag{n−1U(D−1/2(Xi − θ))U(D−1/2(Xi − θ))⊤ − 1

p
Ip}]

)
.
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Thus, for each d̂j we have

√
n(d̂j − dj)

d→ N(0, σ2
d,j).

where σ2
d,j is the corresponding asymptotic variance. Define σd,max = max1≤j≤p σd,j.

As p → ∞,

P{ max
j=1,2,··· ,p

(d̂j − dj) >
√
2σd,maxn

−1/2(log p)1/2}

≤
p∑
j=1

P{
√
n(d̂j − dj) >

√
2σd,max(log p)

1/2}

=

p∑
j=1

[1− Φ{
√
2σd,maxσ

−1
d,j (log p)

1/2}] ≤ p[1− Φ{(2 log p)1/2}]

≤ p√
2π log p

exp(− log p) = (4π)−1/2(log p)−1/2 → 0,

which means that maxj=1,2,···p(d̂j − dj) = Op{n−1/2(log p)1/2}.

Lemma 3. Suppose the assumptions in Lemma 2 hold, then ζ̂1
p→ ζ1.

Proof. Denote µ̂ = θ̂ − θ.

∥D̂−1/2(Xi − θ̂)∥ =∥D−1/2(Xi − θ)∥

{1 +R−2
i ∥(D̂−1/2 −D−1/2)(Xi − θ)∥2

+R−2
i ∥D̂−1/2µ̂∥2 + 2R−2

i U⊤
i (D̂

−1/2 −D−1/2)D1/2Ui

− 2R−1
i U⊤

i D̂
−1/2µ̂− 2R−1

i UiD
1/2(D̂−1/2 −D−1/2)D̂−1/2µ̂}1/2.

According to the proof and conclusion in Lemma 2, we can show that

R−2
i ∥(D̂−1/2−D−1/2)(Xi−θ)∥2 = Op{n−1/2(log p)1/2} = op(1) andR−2

i ∥D̂−1/2µ̂∥2 =
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Op(n
−1) = op(1) and by the Cauchy inequality, the other parts are also

op(1). So,

n−1

n∑
i=1

∥∥∥D̂−1/2
(
Xi − θ̂

)∥∥∥−1

=

(
n−1

n∑
i=1

∥∥D−1/2 (Xi − θ)
∥∥−1

)
(1 + op(1)) .

Obviously, E
(
n−1

∑n
i=1R

−1
i

)
= ζi and Var

(
n−1ζ−1

i

∑n
i=1 R

−1
i

)
= O (n−1).

Finally, the proof is completed.

Lemma 4. Suppose Assumptions 1-3 holds with a0(p) ≍ p1−δ for some posi-

tive constant δ ≤ 1/2. Define a random p×p matrix Q̂ = n−1
∑n

i=1 R̂
−1
i ÛiÛ

⊤
i

and let Q̂jl be the (j, l)th element of Q̂. Then,

∣∣∣Q̂jℓ

∣∣∣ ≲ ζ1p
−1 |σjℓ|

+Op

(
ζ1n

−1/2p−1 + ζ1p
−7/6 + ζ1p

−1−δ/2 + ζ1n
−1/2(log p)1/2(p−5/2 + p−1−δ/2)

)
.

Proof. Recall that Q̂ = 1
n

∑n
i=1 R̂

−1
i ÛiÛ

⊤
i , then,

Q̂jl =
1

n

n∑
i=1

R̂−1
i Ûi,jÛi,l

=
1

n

n∑
i=1

v−1
i (D̂−1/2ΓjWi)(D̂

−1/2ΓlWi)
⊤∥D̂−1/2ΓWi∥−3

=D̂−1/2D1/2

{
1

n

n∑
i=1

v−1
i (D−1/2ΓjWi)(D

−1/2ΓlWi)
⊤∥D̂−1/2ΓWi∥−3

}
D̂−1/2D1/2.
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We first consider the middle term,

1

n

n∑
i=1

v−1
i (D−1/2ΓjWi)(D

−1/2ΓlWi)
⊤∥D̂−1/2ΓWi∥−3

=
1

n

n∑
i=1

v−1
i (D−1/2ΓjWi)(D

−1/2ΓlWi)
⊤
{
∥D̂−1/2ΓWi∥−3 − ∥D−1/2ΓWi∥−3

}
+

1

n

n∑
i=1

v−1
i (D−1/2ΓjWi)(D

−1/2ΓlWi)
⊤ {∥D−1/2ΓWi∥−3 − p−3/2

}
+ n−1p−3/2

n∑
i=1

v−1
i (D−1/2ΓjWi)(D

−1/2ΓlWi)
⊤.

(S1.3)

The first part in Equation S1.3:

E[
1

n

n∑
i=1

v−1
i (D−1/2ΓjWi)(D

−1/2ΓlWi)
⊤
{
∥D̂−1/2ΓWi∥−3 − ∥D−1/2ΓWi∥−3

}
]

=E[v−1
i (D−1/2ΓjWi)(D

−1/2ΓlWi)
⊤
{
∥D̂−1/2ΓWi∥−3 − ∥D−1/2ΓWi∥−3

}
]

=E[v−1
i (D−1/2ΓjWi)(D

−1/2ΓlWi)
⊤

{
∥D̂−1/2ΓWi∥−3∥D−1/2ΓWi∥−3

(
∥D−1/2ΓWi∥3 − ∥D̂−1/2ΓWi∥3

)}
].

(S1.4)

To compute the order of Equation S1.4, we consider ∥D̂−1/2ΓWi∥k −

∥D−1/2ΓWi∥k for k = 1, 2, · · · .

Firstly, for k = 2, By the Lemma 2 and Assumption 3, we can see that,

max
i=1,2,··· ,p

(
di

d̂i
− 1) = max

i=1,2,··· ,p

di − d̂i

d̂i
= Op(n

−1/2(log p)1/2).
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So, for ∥D̂−1/2ΓWi∥2,

∥D̂−1/2ΓWi∥2

=∥(D̂−1/2D1/2 − Ip)D
−1/2ΓWi +D−1/2ΓWi∥2

=∥D−1/2ΓWi∥2 + ∥(D̂−1/2D1/2 − Ip)D
−1/2ΓWi∥2 +WiΓ

⊤D−1/2(D̂−1/2D1/2Ip)D
−1/2ΓWi

≤∥D−1/2ΓWi∥2
{
1 + max

i=1,2,··· ,p
(
di

d̂i
− 1)2 + max

i=1,2,··· ,p
(
di

d̂i
− 1)

}
:=∥D−1/2ΓWi∥2 (1 +H) ,

where H := maxi(
di
d̂i
− 1)2 +maxi(

di
d̂i
− 1) = Op{n−1/2(log p)1/2}.

For all integer k,

∥D̂−1/2ΓWi∥k =∥(D̂−1/2D1/2 − Ip)D
−1/2ΓWi +D−1/2ΓWi∥k

=
{
∥(D̂−1/2D1/2 − Ip)D

−1/2ΓWi +D−1/2ΓWi∥2
}k/2

≤∥D−1/2ΓWi∥k (1 +H)k/2

:=∥D−1/2ΓWi∥k (1 +Hk) ,

(S1.5)

where Hk is defined as Hk = (1 +H)k/2 − 1 = Op{n−1/2(log p)1/2}.

Thus, from the proof of Lemma A3. in Cheng et al. (2023), Equation
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S1.4 equals

E[
1

n

n∑
i=1

v−1
i (D−1/2ΓjWi)(D

−1/2ΓlWi)
⊤
{
∥D̂−1/2ΓWi∥−3 − ∥D−1/2ΓWi∥−3

}
]

=E[v−1
i (D−1/2ΓjWi)(D

−1/2ΓlWi)
⊤
{
∥D̂−1/2ΓWi∥−3 − ∥D−1/2ΓWi∥−3

}
]

=E[v−1
i (D−1/2ΓjWi)(D

−1/2ΓlWi)
⊤∥D−1/2ΓWi∥−3H3]

=E[v−1
i (D−1/2ΓjWi)(D

−1/2ΓlWi)
⊤(∥D−1/2ΓWi∥−3 − p−3/2)H3]

+ p−3/2E[v−1
i (D−1/2ΓjWi)(D

−1/2ΓlWi)
⊤H3]

≲n−1/2(log p)1/2ζ1p
−5/2(1 + p3/2−δ/2)

=ζ1n
−1/2(log p)1/2(p−5/2 + p−1−δ/2).

The second and last part in Equation S1.3:

From the proof of Lemma A3. in Cheng et al. (2023), we can conclude,

1

n

n∑
i=1

v−1
i (D−1/2ΓjWi)(D

−1/2ΓlWi)
⊤ {∥D−1/2ΓWi∥−3 − p−3/2

}
= Op(ζ1p

−1−δ/2),

and

n−1p−3/2

n∑
i=1

v−1
i (D−1/2ΓjWi)(D

−1/2ΓlWi)
⊤ ≲ ζ1p

−1 |σjℓ|+Op

(
ζ1n

−1/2p−1 + ζ1p
−7/6

)
.

It follows that,

Qjl =

{
n−1p−3/2

n∑
i=1

v−1
i (D−1/2ΓjWi)(D

−1/2ΓlWi)
⊤ +Op(An)

}
(1 +Op(n

−1 log p)),

where An = ζ1n
−1/2(log p)1/2(p−5/2 + p−1−δ/2) + ζ1p

−1−δ/2.
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Thus,

|Qjℓ| ≲ ζ1p
−1 |σjℓ|

+Op

{
ζ1n

−1/2p−1 + ζ1p
−7/6 + ζ1p

−1−δ/2 + ζ1n
−1/2(log p)1/2(p−5/2 + p−1−δ/2)

}
.

Lemma 5. Suppose Assumptions 1-3 hold with a0(p) ≍ p1−δ for some

positive constant δ ≤ 1/2. Then, if log p = o(n1/3),

(i)∥n−1
∑n

i=1 ζ
−1
1 Ûi∥∞ = Op

{
n−1/2 log1/2(np)

}
,

(ii)∥ζ−1
1 n−1

∑n
i=1 δ1iÛi∥∞ = Op(n

−1).

Proof. For any j ∈ {1, 2, · · · , p},

Ûij −Uij =
∥D−1/2Xi∥
∥D̂−1/2Xi∥

dj

d̂j
Uij −Uij

≤ (1 +H)(1 +H)Uij −Uij

= HuUij,

(S1.6)

where Hu = Op(H
2 + 2H) = Op{n−1/2(log p)1/2}. Thus, Ûi −Ui = HuUi.

(i)By Equation S1.6, we have,∥∥∥∥∥n−1

n∑
i=1

ζ−1
1 Ûi

∥∥∥∥∥
∞

=

∥∥∥∥∥n−1

n∑
i=1

ζ−1
1 (1 +Hu)Ui

∥∥∥∥∥
∞

≤|1 +Hu|

∥∥∥∥∥n−1

n∑
i=1

ζ−1
1 Ui

∥∥∥∥∥
∞

= Op

{
n−1/2 log1/2(np)

}
.

.

(ii)Similarly,∣∣∣∣∣ζ−1
1 n−1

n∑
i=1

δ1iÛi

∣∣∣∣∣
∞

≤ |1 +Hu|

∥∥∥∥∥ζ−1
1 n−1

n∑
i=1

δ1iUi

∥∥∥∥∥
∞

≤Op{n−1(1 + n−1/2 log1/2 p)} = Op(n
−1).
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S1.1 Proof of Lemma 1(Bahadur representation)

Proof. As θ is a location parameter, we assume θ = 0 without loss

of generality. Then Ui can be written as Ui = D−1/2Xi/∥D−1/2Xi∥ =

D−1/2ΓWi/∥D−1/2ΓWi∥ for i = 1, 2, · · · , n. The estimator θ̂ satisfies∑n
i=1 U(D̂−1/2(Xi − θ̂)) = 0, which is is equivalent to

1

n

n∑
i=1

(Ûi − R̂−1
i D̂−1/2θ̂)(1− 2R̂−1

i Û⊤
i D̂

−1/2θ̂ + R̂−2
i θ̂⊤D̂−1θ̂)−1/2 = 0.

From the proof of lemma A.3 in Feng et al. (2016), we can see that ∥θ̂∥ =

Op(ζ
−1
1 n−1/2). By the first-order Taylor expansion, the above equation can

be rewritten as:

n−1

n∑
i=1

(
Ûi − R̂−1

i D̂−1/2θ̂
)(

1 + R̂−1
i Û⊤

i D̂
1/2θ̂ − 2−1R̂−2

i

∥∥∥D̂−1/2θ̂
∥∥∥2 + δ1i

)
= 0,

where δ1i = Op

{(
R̂−1
i Û⊤

i D̂
1/2θ̂ − 2−1R̂−2

i

∥∥∥D̂−1/2θ̂
∥∥∥2)2

}
= Op (n

−1), which

implies

1

n

n∑
i=1

(1− 1

2
R̂−2
i θ̂⊤D̂−1θ̂ + δ1i)Ûi +

1

n

n∑
i=1

R̂−1
i (Û⊤

i D̂
−1/2θ̂)Ûi

=
1

n

n∑
i=1

(1 + δ1i + δ2i)R̂
−1
i D̂−1/2θ̂,

(S1.7)

where δ2i = Op(R̂
−1
i Û⊤

i D̂
1/2θ̂ − 2−1R̂−2

i

∥∥∥D̂−1/2θ̂
∥∥∥2) = Op(δ

1/2
1i ).

Similar with Cheng et al. (2023), by Assumption 2 and Markov inequal-

ity, we have that: maxR−2
i = Op(ζ

2
1n

1/2), max δ1i = Op(∥D̂−1/2θ∥2max R̂−2
i =

Op(n
−1/2) and max δ2i = Op(n

−1/4).
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Considering the second term in Equation S1.7,

1

n

n∑
i=1

R̂−1
i (Û⊤

i D̂
−1/2θ̂)Ûi =

1

n

n∑
i=1

R̂−1
i (ÛiÛ

⊤
i D̂

−1/2)θ̂ = Q̂D̂−1/2θ̂,

where Q̂ = 1
n

∑n
i=1 R̂

−1
i ÛiÛ

⊤
i . From Lemma 4 we acquire,

|Qjℓ| ≲ ζ1p
−1 |σjℓ|

+Op

{
ζ1n

−1/2p−1 + ζ1p
−7/6 + ζ1p

−1−δ/2 + ζ1n
−1/2(log p)1/2(p−5/2 + p−1−δ/2)

}
,

and this implies that,∥∥∥QD̂−1/2θ̂
∥∥∥
∞

⩽∥Q∥1
∥∥∥D̂−1/2θ̂

∥∥∥
∞

≲ζ1p
−1∥R∥1

∥∥∥D̂−1/2θ̂
∥∥∥
∞

+Op

{
ζ1n

−1/2p−1 + ζ1p
−7/6 + ζ1p

−1−δ/2 + ζ1n
−1/2(log p)1/2(p−5/2 + p−1−δ/2)

}∥∥∥D̂−1/2θ̂
∥∥∥
∞

Op

{
ζ1n

−1/2p−1 + ζ1p
−7/6 + ζ1p

−1−δ/2 + ζ1n
−1/2(log p)1/2p−5/2

}∥∥∥D̂−1/2θ̂
∥∥∥
∞
.

(S1.8)

According to Lemma 5,
∥∥∥n−1

∑n
i=1 ζ

−1
1 Ûi

∥∥∥
∞

= Op

{
n−1/2 log1/2(np)

}
and∥∥∥ζ−1

1 n−1
∑n

i=1 δ1iÛi

∥∥∥
∞

= Op(n
−1). In addition, we obtain,∥∥∥∥∥ζ−1

1 n−1

n∑
i=1

R̂−2
i ∥D̂−1/2θ̂∥2Ûi

∥∥∥∥∥
∞

≤ |1 +Hu|

∥∥∥∥∥ζ−1
1 n−1

n∑
i=1

R̂−2
i ∥D̂−1/2θ̂∥2Ui

∥∥∥∥∥
∞

≲Op(n
−1)[1 +Op{n−3/2(log p)1/2}] = Op(n

−1).

Considering the third term :

Using the fact that ζ−1
1 n−1

∑n
i=1R

−1
i = 1 + Op(n

−1/2) and Equation
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S1.5, we have

1

n
ζ−1
1

n∑
i=1

R̂−1
i

=
1

n
ζ−1
1

n∑
i=1

R−1
i [1 +Op{n−1/2(log p)1/2}]

=
{
1 +Op(n

−1/2)
}
[1 +Op{n−1/2(log p)1/2}]

=1 +Op{n−1/2(log p)1/2}

.

We final obtain:

D̂−1/2θ̂
∣∣∣
∞

≲

∥∥∥∥∥ζ−1
1 n−1

n∑
i=1

Ûi

∥∥∥∥∥
∞

+ ζ−1
1

∥∥∥QD̂−1/2θ̂
∥∥∥
∞

≲ p−1a0(p)
∥∥∥D̂−1/2θ̂

∥∥∥
∞
+Op

{
n−1/2 log1/2(np)

}
+Op

{
n−1/2 + p−(1/6∧δ/2) + n−1/2(log p)1/2p−3/2

}∥∥∥D̂−1/2θ̂
∥∥∥
∞
.

Thus we conclude that:

∥∥∥D̂−1/2θ̂
∥∥∥
∞

= Op{n−1/2 log1/2(np)},

as a0(p) ≍ p1−δ.

In addition, we have

∥∥∥ζ−1
1 QD̂−1/2θ̂

∥∥∥
∞

=Op

{
n−1 log1/2(np) + n−1/2p−(1/6∧δ/2) log1/2(np) + n−1(log p)1/2p−3/2 log1/2(np)

}
,
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and

n−1

n∑
i=1

R̂−1
i (1 + δ1i + δ2i)

=ζ1
{
1 +Op

(
n−1/4

)} [
1 +Op{n−1/2(log p)1/2}

]
=ζ1

[
1 +Op{n−1/4 + n−1/2(log p)1/2}

]
.

Finally, we can write

n1/2D̂−1/2(θ̂ − θ) = n−1/2ζ−1
1

n∑
i=1

Ui + Cn, (S1.9)

where

∥Cn∥∞ =Op{n−1/2 log1/2(np) + p−(1/6∧δ/2) log1/2(np) + n−1/2(log p)1/2p−3/2 log1/2(np)}

+Op{n−1/4 log1/2(np) + n−1/2(log p)1/2 log1/2(np)}

=Op{n−1/4 log1/2(np) + p−(1/6∧δ/2) log1/2(np) + n−1/2(log p)1/2 log1/2(np)}.

S1.2 Proof of Lemma 2(Gaussian approximation)

Proof. Let Ln,p = n−1/4 log1/2(np)+p−(1/6∧δ/2) log1/2(np)+n−1/2(log p)1/2 log1/2(np).

Then for any sequence ηn → ∞ and any t ∈ Rp,

P(n1/2D̂−1/2(θ̂ − θ) ≤ t) = P(n−1/2ζ−1
1

n∑
i=1

Ui + Cn ≤ t)

≤ P(n−1/2ζ−1
1

n∑
i=1

Ui ≤ t+ ηnLn,p) + P(∥Cn∥∞ > ηnLn,p).

According to Lemma 7, E{(ζ−1
1 Ui,j)

4} ≲ M̄2 and E{(ζ−1
1 Ui,j)

2} ≳ m for

all i = 1, 2, · · · , n, j = 1, 2, · · · , p, and the Gaussian approximation for

independent partial sums in Koike (2021), let G ∼ N
(
0, ζ−2

1 Σu

)
with Σu =
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E
(
U1U

⊤
1

)
, we have

P(n1/2ζ−1
1

n∑
i=1

Ui ≤ t+ ηnLn,p) ≤ P(G ≤ t+ ηnLn,p) +O[{n−1 log5(np)}1/6]

≤ P(G ≤ t) +O{ηnLn,p log1/2(p)}+O[{n−1 log5(np)}1/6],

where the second inequality holds from Nazarov’s inequality in Lemma 8.

Thus,

P(n1/2D̂−1/2(θ̂ − θ) ≤ t) ≤P(G ≤ t) +O{ηnLn,p log1/2(p)}+O[{n−1 log5(np)}1/6]

+ P(|Cn|∞ > ηnln,p).

On the other hand, we have

P(n1/2D̂−1/2(θ̂ − θ) ≤ t) ≥P(G ≤ t)−O{ηnLn,p log1/2(p)} −O[{n−1 log5(np)}1/6]

− P(∥Cn∥∞ > ηnln,p).

where P(∥Cn∥∞ > ηnln,p) → 0 as n → ∞ by Lemma S1.1.

Then we have that, if log p = o(n1/5) and log n = o(p1/3∧δ),

sup
t∈Rp

|P(n1/2D̂−1/2(θ̂ − θ) ≤ t)− P(G ≤ t)| → 0.

Further,

ρn(Are) = sup
A∈Are

|P(n1/2D̂−1/2(θ̂ − θ) ∈ A)− P(G ∈ A)| → 0,

by the Corollary 5.1 in Chernozhukov et al. (2017).

S1.3 Proof of Lemma 3(Variance approximation)

Proof. EZ2
j = ζ−2

1 E(R2
i )

−1 ≤ B̄ by Assumption 2 and E(max1≤j≤p Zj) ≍
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√
log p+ log log p by Theorem 2 in Feng et al. (2022). Let ∆0 = max1≤j,k≤p |p(EU1U

⊤
1 )j,k−

Rj,k|, by Lemma 7,

∆0 = max
1≤j,k≤p

|p(EU1U
⊤
1 )j,k −Rj,k| = O(p−δ/2).

According to Lemma 9 ,we have

sup
t∈R

|P (∥Z∥∞ ⩽ t)− P (∥G∥∞ ⩽ t)| ⩽ C ′n−1/3 {1 ∨ log (np)}2/3 → 0.

S2 Proof of main results

S2.1 Proof of Theorem 1(Limit distribution of maxima)

Proof.

ρ̃n = sup
t∈R

∣∣∣P(n1/2
∥∥∥D̂−1/2(θ̂ − θ)

∥∥∥
∞

⩽ t
)
− P (∥Z∥∞ ⩽ t)

∣∣∣
≤ sup

t∈R

∣∣∣P(n1/2
∥∥∥D̂−1/2(θ̂ − θ)

∥∥∥
∞

⩽ t
)
− P (∥G∥∞ ⩽ t)

∣∣∣
+ sup

t∈R
|P (∥G∥∞ ⩽ t)− P (∥Z∥∞ ⩽ t)|

→ 0.

The last step holds from Lemma 2 and 3 in subsection S1.2 and S1.3.

S2.2 Proof of Theorem 2(Exact limit distribution of maxima)

Proof. According to the Theorem 2 in Feng et al. (2022), we have

P(pζ21 max
1≤i≤p

Z2
i − 2 log p+ log log p ≤ x) → F (x) = exp

{
− 1√

π
e−x/2

}
,
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a cdf of the Gumbel distribution, as p → ∞. Thus, according to Lemma 3

and Theorem 1 in subsection S2.1.

|P(TMAX − 2 log p+ log log p ≤ x)− F (x)|

≤
∣∣∣P(ζ21 ζ̂−2

1 TMAX − 2 log p+ log log p ≤ x)− F (x)
∣∣∣+ o(1)

≤
∣∣∣∣P(ζ21 ζ̂−2

1 TMAX − 2 log p+ log log p ≤ x)− P(pζ21 max
1≤i≤p

Z2
i − 2 log p+ log log p ≤ x)

∣∣∣∣
+

∣∣∣∣P(pζ21 max
1≤i≤p

Z2
i − 2 log p+ log log p ≤ x)− F (x)

∣∣∣∣+ o(1) → 0,

for any x ∈ R.

S2.3 Proof of Theorem 3(Consistency for max-type test)

Proof. Recall that up(y) = y+2 log p−log log p, TMAX = n∥D̂−1/2θ̂∥2∞ζ̂21

p
(
1− n−1/2

)
. In order to make the following proof process briefly, we ab-

breviate up(0) to up, define q̃1−α = (max{q1−α + up, 0})1/2 = Op[{log p −

2 log log(1 − α)−1}1/2], T = T
1/2
MAX = n1/2∥D̂−1/2θ̂∥∞ζ̂1p

1/2(1 − n−1/2)1/2

and T c = n1/2∥D̂−1/2(θ̂ − θ)∥∞ζ̂1p
1/2(1 − n−1/2)1/2, which has the same

distribution of T under H0.

It is clear that, T ≥ n1/2∥D̂−1/2θ∥∞ζ̂1p
1/2(1−n−1/2)1/2−T c. Combined
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with Assumption 2 and Lemma 2, we get

P(TMAX − up ≥ q1−α | H1)

≥P(n1/2∥D̂−1/2θ∥∞ζ̂1p
1/2(1− n−1/2)1/2 − T c ≥ q̃1−α | H1)

=P(T c ≤ n1/2∥D̂−1/2θ∥∞ζ̂1p
1/2(1− n−1/2)1/2 − q̃1−α | H1)

≥P(T c ≤ n1/2
(
∥D−1/2θ∥∞ − ∥(D̂−1/2 −D−1/2)θ∥∞

)
ζ̂1p

1/2(1− n−1/2)1/2 − q̃1−α | H1)

≥P(T c ≤ n1/2∥D−1/2θ∥∞[1 +Op{n1/2 log1/2(np)}]ζ̂1p1/2(1− n−1/2)1/2 − q̃1−α | H1) → 1,

if ∥θ∥∞ ≥ C̃n−1/2{log p− 2 log log(1− α)−1}1/2 for some large enough con-

stant C̃.

The last inequality holds since

∥(D̂−1/2 −D−1/2)θ∥∞ = max
i=1,2,··· ,p

d̂i − di

d̂idi
θi ≤ max

i=1,2,··· ,p
|1− di

d̂i
|∥D−1/2θ∥∞

≤ Op{n−1/2 log1/2(np)}∥D−1/2θ∥∞.

S2.4 Proof of Theorem 5(Without elliptical distribution)

Theorem 4 is the special case of Theorem 5 with θ = 0, so we only need to

show that Theorem 5 holds.

Proof. The following proof is based on the idea of the proof in article

Feng and Sun (2016), with modifications in some equations. We restate the

equations in Feng and Sun (2016) on U(D̂
−1/2
ij Xi)

⊤U(D̂
−1/2
ij Xi). By the
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definition, we have

2

n(n− 1)

∑
1≤i<j≤n

U
(
D̂

−1/2
ij Xi

)⊤
U
(
D̂

−1/2
ij Xj

)
=

2

n(n− 1)

∑
1≤i<j≤n

{
Ui +R−1

i D−1/2θ +
(
D̂

−1/2
ij D1/2 − Ip

)
Ui

}⊤

×
{
Uj +R−1

j D−1/2θ +
(
D̂

−1/2
ij D1/2 − Ip

)
Uj

}
(1 + αij)

−1/2 (1 + αji)
−1/2

=
2

n(n− 1)

∑
1≤i<j≤n

U⊤
i Uj +

2

n(n− 1)

∑
1≤i<j≤n

R−1
i R−1

j θ⊤D−1θ

+
2

n(n− 1)

∑
1≤i<j≤n

U⊤
i Uj

{
(1 + αij)

−1/2 (1 + αji)
−1/2 − 1

}
+

4

n(n− 1)

∑
1≤i<j≤n

U⊤
i

(
D̂

−1/2
ij D1/2 − Ip

)
Uj (1 + αij)

−1/2 (1 + αji)
−1/2

+
2

n(n− 1)

∑
1≤i<j≤n

U⊤
i

(
D̂

−1/2
ij D1/2 − Ip

)2
Uj (1 + αij)

−1/2 (1 + αji)
−1/2

+
2

n(n− 1)

∑
1≤i<j≤n

R−1
j θ⊤D−1θ

{
(1 + αij)

−1/2 (1 + αji)
−1/2 − 1

}
+

4

n(n− 1)

∑
1≤i<j≤n

U⊤
i D

−1/2θ (1 + αij)
−1/2 (1 + αji)

−1/2

+
2

n(n− 1)

∑
1≤i<j≤n

U⊤
i

(
D̂

−1/2
ij D1/2 − Ip

)
D−1/2θ (1 + αij)

−1/2 (1 + αji)
−1/2

:=
2

n(n− 1)

∑
1≤i<j≤n

U⊤
i Uj +

2

n(n− 1)

∑
1≤i<j≤n

R−1
i R−1

j θ⊤D−1θ

+ An1 + An2 + An3 + An4 + An5 + An6.

where

αij =2R−1
i U⊤

i

(
D̂

−1/2
ij −D−1/2

)
Xi +R−2

i

∥∥∥(D̂−1/2
ij −D−1/2

)
Xi

∥∥∥2
+ 2R−1

i D−1/2θ +R−2
i θ⊤D−1θ.
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Note that R−1
i U⊤

i (D̂
−1/2
ij −D−1/2)Xi = U⊤

i (D̂
−1/2
ij D1/2 − Ip)Ui + R−1

i U⊤
i

(D̂
−1/2
ij − D−1/2)θ = Op{n−1/2(log p)1/2} and R−2

i ∥(D̂−1/2
ij − D−1/2)Xi∥2

= Op (n
−1 log p) by Lemma 2. By Assumption 7 and H1, R

−1
i D−1/2θ =

Op(σ
1/2
n ) = Op (n

−1) and R−2
i θ⊤D−1θ = Op (σn) = Op (n

−2) where σ2
n =

2 tr (R2) /n(n− 1)p2. So αij = Op{n−1/2(log p)1/2}.

Similarly, we will show that An1 = op (σn). Under some calculations,

we get E{(U⊤
i Uj)

2} = tr(Σ2
u). By Lemma 7, we find that Σu,i,j = p−1σi,j+

O(p−1−δ/2). Thus we have,

tr(Σ2
u) =

p∑
i=1

p∑
j=1

Σ2
u,i,j =

p∑
i=1

p∑
j=1

(
p−2σ2

i,j + σi,jO(p−2−δ/2)
)

=

p∑
i=1

p∑
j=1

p−2σ2
i,j +

∑
p−δ/2=O(σij)

σi,jO(p−2−δ/2)

+
∑

σij∈[C1
O{tr(R2)}
p2−δ/2

,C2p−δ/2]

σi,jO(p−2−δ/2) +
∑

σij=O(
O{tr(R2)}
p2−δ/2

)

σi,jO(p−2−δ/2)

= p−2tr(R2){1 +O(1)}+O(p−2−δ/2)
p2−δ/2

O{tr(R2)}
o(
p2

n
) + p−2O{tr(R2)}

= O{p−2tr(R2)}.
(S2.1)

By the Cauchy inequality,

E
(
A2
n1

)
= O

(
n−4
)∑
i<j

E
[
UT
i Uj

{
(1 + αij)

−1/2 (1 + αji)
−1/2 − 1

}]2
≤ O

(
n−2
)
E
(
UT
i Uj

)2 E{(1 + αij)
−1/2 (1 + αji)

−1/2 − 1
}2

= O
(
n−3 log p

[
p−2tr(R2) +O(p−2−δ/2){p+ po(

p

n1/2
)}
])

= o
(
σ2
n

)
.
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An2 =
4

n(n− 1)

∑
i<j

U⊤
i

(
D̂

−1/2
ij D1/2 − Ip

)
Uj

+
4

n(n− 1)

∑
i<j

U⊤
i

(
D̂

−1/2
ij D1/2 − Ip

)
Uj

{
(1 + αij)

−1/2 (1 + αji)
−1/2 − 1

}
:= Gn1 +Gn2.

By Lemma 2 and Equation S2.1,

E[{U⊤
i

(
D̂

−1/2
ij D1/2 − Ip

)
Uj}2] ≤ O{n−1 log p tr(Σ2

u)} = o{p−2tr(R2)}.

Then we obtain Gn1 = op(σn). Similar to An1, we can show Gn2 = op(σn).

Taking the same procedure as An2, we can obtain An3 = op(σn). Similarly

to the processing of Equation S1.1, we get

2

n(n− 1)

∑
1≤i<j≤n

U⊤
i Uj =

2

n(n− 1)

∑
1≤i<j≤n

{D−1/2ΓU(Wi)}⊤D−1/2ΓU(Wj)+op(σn).

We replace the Lemma 1 in Feng and Sun (2016) by Lemma 7, and final

acquire√
n(n− 1)p2

2 tr (R2)

2

n(n− 1)

∑
1≤i<j≤n

{D−1/2ΓU(Wi)}⊤D−1/2ΓU(Wj)
d−→ N(0, 1).

S2.5 Proof of Theorem 6(Asymptotically independent under H0)

Proof. To prove TSUM and TMAX are asymptotically independent, it

suffices to show that: Under H0,

P(
TSUM
σn

≤ x, TMAX − 2 log p+ log log p ≤ y) → Φ(x) exp

{
− 1√

π
e−y/2

}
.

(S2.2)
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Let up(y) = y + 2 log p− log log p, and we rewrite Equation S2.2 as

P(
TSUM
σn

≤ x, TMAX ≤ up(y)) → Φ(x) exp

{
− 1√

π
e−y/2

}
. (S2.3)

From the proof of Theorem 2 in Feng and Sun (2016), we acquire

TSUM =
2

n(n− 1)

∑∑
i<j

U⊤
i Uj + op(σn), (S2.4)

and it’s easy to find that σ2
n = 2

n(n−1)p
+ o( 1

n3 ) according to Assumption 7.

Combined with Lemma 1 in subsection S1.1, it suffice to show,

P(
2

n(n−1)

∑∑
i<j U

⊤
i Uj

σn
+ op(1) ≤ x

, p

∥∥∥∥∥n−1/2

n∑
i=1

Ui

∥∥∥∥∥
2

∞

+Op(Ln,p) ≤ up(y))

→ Φ(x) exp

{
− 1√

π
e−y/2

}
.

(S2.5)

We next prove that,

P(
√

n

n− 1

(
∥
√

p
n

∑n
i=1 Ui∥22 − p√
2tr(R2)

)
≤ x,

∥∥∥∥∥
√

p

n

n∑
i=1

Ui

∥∥∥∥∥
2

∞

≤ up(y))

→ Φ(x) exp

{
− 1√

π
e−y/2

}
.

(S2.6)

When Equation S2.6 holds, combined with Op(Ln,p) = op(1), Equation S2.5

holds obviously, which means that the independence of TSUM and TMAX

follows.

Proof of Equation S2.6: From the Theorem 2 in Feng et al. (2022),

the Equation S2.6 holds if Ui follows the normal distribution. We then

investigate the non-normal case. Let ξi = Ui ∈ Rp, i = 1, 2, · · · , n. For z =
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(z1, · · · , zq)⊤ ∈ Rq, we consider a smooth approximation of the maximum

function, namely,

Fβ(z) := β−1 log{
q∑
j=1

exp(βzj)},

where β > 0 is the smoothing parameter that controls the level of approxi-

mation. An elementary calculation shows that for all z ∈ Rq,

0 ≤ Fβ(z)− max
1≤j≤q

zj ≤ β−1 log q.

Define σ2
S = 2n2 tr (R2),

W (x1, · · · ,xn) =
∥
√

p
n

∑n
i=1 xi∥22 − p√
2tr(R2)

=
p
∑

i ̸=j x
⊤
i xj√

2n2 tr (R2)
:=

p
∑

i ̸=j x
⊤
i xj

σS
,

V (x1, · · · ,xn) = β−1 log{
p∑
j=1

exp(β

√
p

n

n∑
i=1

xi,j)}.

By setting β = n1/8 log n, Equation S2.6 is equivalent to

P (W (ξ1, · · · , ξp) ≤ x, V (ξ1, · · · , ξp) ≤ up(y)) → Φ(x) exp{− exp(y)}.

(S2.7)

Suppose {Y1,Y2, · · · ,Yn} are sample from N(0,E(U⊤
1 U1)) , and inde-

pendent with U1, · · · ,Un (or write as ξ1, · · · , ξn). The key idea is to show

that: (W (ξ1, · · · , ξn), V (ξ1, · · · , ξn)) has the same limiting distribution as

(W (Y1, · · · ,Yn), V (Y1, · · · ,Yn)).
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Let l2b (R) denote the class of bounded functions with bounded and con-

tinuous derivatives up to order 3. It is known that a sequence of randon

variables {Zn}∞n=1 converges weakly to a random variable Z if and only if

for every f ∈ l3b (R), E{f(Zn)} → E{f(Z)}.

It suffices to show that:

E{f(W (ξ1, · · · , ξn), V (ξ1, · · · , ξn))}−E{f(W (Y1, · · · ,Yn), V (Y1, · · · ,Yn))} → 0,

for every f ∈ l3b (R2) as (n, p) → ∞.

We introduce W̃d = W (ξ1, · · · , ξd−1,Yd, · · · ,Yn) and Ṽd = V (ξ1, · · · , ξd−1,

Yd, · · · ,Yn) for d = 1, · · · , n + 1, Fd = σ{ξ1, · · · , ξd−1,Yd+1, · · · ,Yn} for

d = 1, · · · , n. If there is no danger of confusion, we simply write W̃d and

Ṽd as Wd and Vd respectively (only for this part). Then,

| E{f(W (ξ1, · · · , ξn), V (ξ1, · · · , ξn))} − E{f(W (Y1, · · · ,Yn), V (Y1, · · · ,Yn))} |

≤
n∑
d=1

| E{f(Wd, Vd)− E{f(Wd+1, Vd+1)} | .

Let

Wd,0 =
2p
∑d−1

i<j ξ
⊤
i ξj + 2p

∑
d+1≤i<j≤n Y

⊤
i Yj + 2p

∑d−1
i=1

∑n
j=d+1 ξ

⊤
i Yj

σS
∈ Fd,

Vd,0 = β−1 log{
p∑
j=1

exp(β

√
p

n

d−1∑
i=1

ξi,j + β

√
p

n

n∑
i=d+1

Yi,j)} ∈ Fd.
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By Taylor expansion, we have,

f (Wd, Vd)− f (Wd,0, Vd,0)

=f1 (Wd,0, Vd,0) (Wd −Wd,0) + f2 (Wd,0, Vd,0) (Vd − Vd,0)

+
1

2
f11 (Wd,0, Vd,0) (Wd −Wd,0)

2 +
1

2
f22 (Wd,0, Vd,0) (Vd − Vd,0)

2

+
1

2
f12 (Wd,0, Vd,0) (Wd −Wd,0) (Vd − Vd,0)

+O
(
|(Vd − Vd,0)|3

)
+O

(
|(Wd −Wd,0)|3

)
,

and

f (Wd+1, Vd+1)− f (Wd,0, Vd,0)

=f1 (Wd,0, Vd,0) (Wd+1 −Wd,0) + f2 (Wd,0, Vd,0) (Vd+1 − Vd,0)

+
1

2
f11 (Wd,0, Vd,0) (Wd+1 −Wd,0)

2 +
1

2
f22 (Wd,0, Vd,0) (Vd+1 − Vd,0)

2

+
1

2
f12 (Wd,0, Vd,0) (Wd+1 −Wd,0) (Vd+1 − Vd,0)

+O
(
|(Vd+1 − Vd,0)|3

)
+O

(
|(Wd+1 −Wd,0)|3

)
,

where for f := f(x, y), f1(x, y) =
∂f
∂x
, f2(x, y) =

∂f
∂y
, f11(x, y) =

∂f2

∂2x
, f22(x, y) =

∂f2

∂2y
and f12(x, y) =

∂f2

∂x∂y
.

We first consider Wd,Wd+1,Wd,0 and notice that,

Wd −Wd,0 =
p
∑d−1

i=1 ξ
⊤
i Yd + p

∑n
i=d+1 Y

⊤
i Yd

σS
,

Wd+1 −Wd,0 =
p
∑d−1

i=1 ξ
⊤
i ξd + p

∑n
i=d+1 Y

⊤
i ξd

σS
.

Due to E (ξt) = E (Yt) = 0 and E
(
ξtξ

⊤
t

)
= E

(
YtY

⊤
t

)
, it can be verified
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that,

E (Wd −Wd,0 | Fd) = E (Wd+1 −Wd,0 | Fd) and

E
(
(Wd −Wd,0)

2 | Fd

)
= E

(
(Wd+1 −Wd,0)

2 | Fd

)
.

Hence,

E {f1 (Wd,0, Vd,0) (Wd −Wd,0)} = E {f1 (Wd,0, Vd,0) (Wd+1 −Wd,0)} and

E
{
f11 (Wd,0, Vd,0) (Wd −Wd,0)

2} = E
{
f11 (Wd,0, Vd,0) (Wd+1 −Wd,0)

2} .
Next we consider Vd−Vd,0. Let zd,0,j =

√
p/n

∑d−1
i=1 ξi,j+

√
p/n

∑n
i=d+1 Yi,j, zd,j =

zd,0,j + n−1/2√pYd,j, zd+1,j = zd,0,j + n−1/2√pξd,j. By Taylor expansion, we

have that:

Vd − Vd,0

=
n∑
l=1

∂lFβ (zd,0) (zd,l − zd,0,l) +
1

2

n∑
l=1

n∑
k=1

∂k∂lFβ (zd,0) (zd,l − zd,0,l) (zd,k − zd,0,k)

+
1

6

n∑
l=1

n∑
k=1

n∑
v=1

∂v∂k∂lFβ (zd,0 + δ (zd − zd,0)) (zd,l − zd,0,l) (zd,k − zd,0,k) (zd,v − zd,0,v) ,

(S2.8)

for some δ ∈ (0, 1). Again, due to E (ξt) = E (Yt) = 0 and E
(
ξtξ

⊤
t

)
=

E
(
YtY

⊤
t

)
, we can verify that

E {zd,l − zd,0,l | Fd} = E {zd+1,l − zd,0,l | Fd} and

E
{
(zd,l − zd,0,l)

2 | Fd

}
= E

{
(zd+1,l − zd,0,l)

2 | Fd

}
.

By Lemma A.2 in Chernozhukov et al. (2013), we have,∣∣∣∣∣
n∑
l=1

n∑
k=1

n∑
v=1

∂v∂k∂lFβ (zd,0 + δ (zd − zd,0))

∣∣∣∣∣ ≤ Cβ2,
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for some positive constant C.

By Lemma 7, we have that:
∥∥ζ−1

1 Ui,j
∥∥
ψα

≲ B̄, for all i = 1, . . . , n

and j = 1, . . . , p, which means P(| √pξi,j |≥ t) ≤ 2 exp(−(ct
√
p/ζ1)

α) ≲

2 exp(−(ct)α), P
(
max1≤i≤n

∣∣√pξij
∣∣ > C log(n)

)
→ 0 and since

√
pYtj ∼

N(0, 1), P
(
max1≤i≤n

∣∣√pYij
∣∣ > C log(n)

)
→ 0. Hence,∣∣∣∣∣16

n∑
l=1

n∑
k=1

n∑
v=1

∂v∂k∂lFβ (zd,0 + δ (zd − zd,0)) (zd,l − zd,0,l) (zd,k − zd,0,k) (zd,v − zd,0,v)

∣∣∣∣∣
≤ Cβ2n−3/2 log3 n,∣∣∣∣∣16

n∑
l=1

n∑
k=1

n∑
v=1

∂v∂k∂lFβ (zd+1,0 + δ (zd+1 − zd,0)) (zd+1,l − zd,0,l) (zd+1,k − zd,0,k) (zd+1,v − zd,0,v)

∣∣∣∣∣
≤ Cβ2n−3/2 log3 n,

holds with probability approaching one. Consequently, we have that: with

probability one,

|E {f2 (Wd,0, Vd,0) (Vd − Vd,0)} − E {f2 (Wd,0, Vd,0) (Vd+1 − Vd,0)}| ≤ Cβ2n−3/2 log3 n.

Similarly, it can be verified that,

∣∣E{f22 (Wd,0, Vd,0) (Vd − Vd,0)
2}− E

{
f22 (Wd,0, Vd,0) (Vd+1 − Vd,0)

2}∣∣ ≤ Cβ2n−3/2 log3 n,

and

|E {f12 (Wd,0, Vd,0) (Wd −Wd,0) (Vd − Vd,0)} − E {f12 (Wd,0, Vd,0) (Wd+1 −Wd,0) (Vd+1 − Vd,0)}|

≤ Cβ2n−3/2 log3 n.
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By Equation S2.8, E
(
|Vd − Vd,0|3

)
= O

(
n−3/2 log3 n

)
. For E

(
|Wd −Wd,0|3

)
,

we first calculate E
{
(Wd −Wd,0)

4}, then it’s easy to get the order for 3-

order term.

E
{
(Wd −Wd,0)

4} = E

(
p
∑d−1

i=1 ξ
⊤
i Yd + p

∑n
i=d+1 Y

⊤
i Yd

σS

)4

=
p4

2n4{tr (R2)}2
E

(
d−1∑
i=1

ξ⊤i Yd +
n∑

i=d+1

Y ⊤
i Yd

)4

.

(S2.9)

We consider the binomial expansion term and calculate them separately in

Equation S2.9:

(i) =E(
n∑

i=d+1

Y ⊤
i Yd)

4, (ii) = E{(
d−1∑
i=1

ξ⊤i Yd)(
n∑

i=d+1

Y ⊤
i Yd)

3},

(iii) =E{(
d−1∑
i=1

ξ⊤i Yd)
2(

n∑
i=d+1

Y ⊤
i Yd)

2},

(iv) =E{(
d−1∑
i=1

ξ⊤i Yd)
3(

n∑
i=d+1

Y ⊤
i Yd)}, (v) = E{(

d−1∑
i=1

ξ⊤i Yd)
4}.

(S2.10)

Since EYi = Eξi = 0, we easily find that Equation S2.10 -(ii)(iv) equal to 0.

Next we can get the following equations for Equation S2.10-(iii) after some
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straightforward calculations.

E{(
d−1∑
i=1

ξ⊤i Yd)
2(

n∑
i=d+1

Y ⊤
i Yd)

2} =E[E[(
d−1∑
i=1

ξ⊤i Yd)
2(

n∑
i=d+1

Y ⊤
i Yd)

2 | Yd]]

=E[(d− 1)(n− d)(Y ⊤
d ΣuYd)

2]

=E[(d− 1)(n− d)((Σ−1/2
u Yd)

⊤Σ2
u(Σ

−1/2
u Yd))

2]

=(d− 1)(n− d)2tr (Σ4
u)

≤(d− 1)(n− d)O{tr(Σ2
u)

2}.
(S2.11)

By some properties for standard normal random variable, the last inequality

holds with some simple calculations shown below.

(i)

tr (Σ4
u) = ∥Σ2

u∥2F ≤ (∥Σu∥F∥Σu∥F )2

= ∥Σu∥4F = tr (Σ2
u)

2.

(S2.12)

(ii)If X,Y
i.i.d.∼ N(0, Ip), then

E(X⊤AX)2 = 2tr(A2)− tr2(A) ≤ tr(A2),

E(X⊤AY )4 = E[E[(Y ⊤AXX⊤AY )2 | X]] ≤ 2E[tr(AXX⊤A)2]

= 2E[(X⊤A2X)2] ≤ 4tr(A4).

(S2.13)

For Equation S2.10-(1), according to
∑n

i=d+1 Yi ∼ N(0, (n− d)Σu) and
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Equation S2.12-S2.13, we have,

E(
n∑

i=d+1

Y ⊤
i Yd)

4 =E{( 1√
(n− d)

Σ−1/2
u

n∑
i=d+1

Yi)
⊤(
√
n− dΣu)(Σ

−1/2
u Yd)}4

≤tr ((n− d)2Σ4
u) = (n− d)2O{tr(Σ2

u)
2}.

(S2.14)

Similar with Equation S2.14, for Equation S2.10-(v),

E{(
d−1∑
i=1

ξ⊤i Yd)
4} ≤ (d− 1)2tr (Σ4

u) ≤ (d− 1)2O{tr(Σ2
u)

2}. (S2.15)

Thus, in combining with the Equation S2.1,

E
{
(Wd −Wd,0)

4}
=

p4

2n4{tr (R2)}2
E

(
d−1∑
i=1

ξ⊤i Yd +
n∑

i=d+1

Y ⊤
i Yd

)4

≤ p4

2n4{tr (R2)}2
{(d− 1)(n− d) + (n− d)2 + (d− 1)2}O{tr(Σ2

u)
2}

≤ p4

2n4(tr (R2))2
n2O{tr(Σ2

u)
2} = O(

1

n2
).

By Jensen’s inequality , we get

n∑
d=1

E |Wd −Wd,0|3 ≤
n∑
d=1

{
E (Wd −Wd,0)

4}3/4 ≤ C ′n−1/2,

for some positive constant C ′, Combining all facts together, we conclude

that

n∑
d=1

|E {f (Wd, Vd)} − E {f (Wd+1, Vd+1)}| ≤ Cβ2n−1/2 log3 n+C ′n−1/2 → 0,

as (n, p) → ∞. The conclusion follows.
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S2.6 Proof of Theorem 7(asymptotically independent under H1)

Proof. From the proof of Theorem 2 in Feng and Sun (2016), we can

find that

TSUM =
2

n(n− 1)

∑∑
i<j

U⊤
i Uj + ζ21θ

⊤D−1θ + op(σn),

and according to Lemma 1 with minor modifications, we get the Bahadur

representation in L∞ norm,

n1/2D−1/2(θ̂ − θ) = n−1/2ζ−1
1

n∑
i=1

(Ui + ζ1D
−1/2θ) + Cn.

Similar with the proof in Theorem 6, it’s suffice to show the result holds

for normal version, i.e. it suffice to show that:

∥
√

p

n

n∑
i=1

Yi∥2 and ∥
√

p

n

n∑
i=1

(Yi + ζ1D
−1/2θ)∥2∞,

are asymptotic independent, where {Y1,Y2, · · · ,Yn} are sample fromN(0,EU⊤
1 U1).

Denote
√

p/n
∑n

i=1 Yi := φ = (φ1, · · · , φp)⊤,φA = (φj1 , · · · , φjd)⊤,

and φAc = (φjd+1
, · · · , φjp)⊤, where A = {j1, j2, · · · , jd}. Then, S =

∥φ∥2 = ∥φA∥2 + ∥φAc∥2, M = ∥φ +
√
npζ1D

−1/2θ∥∞ = maxi∈A(φi +

√
npζ1D

−1/2θ) + maxi∈Ac φi. From the proof of Theorem 6 in subsection

S2.5, we know that ∥φAc∥2 and maxi∈Ac φi are asymptotically independent.

Hence, it suffice to show that ∥φAc∥2 is asymptotically independent with

φA.
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By Lemma 10, φAc can be decomposed as φAc = E + F , where E =

φAc − ΣU,Ac,AΣ
−1
U,A,AφA, F = ΣU,Ac,AΣ

−1
U,A,AφA, ΣU = pEU1U

⊤
1 = pΣu

, which fulfill the properties E ∼ N(0,ΣU,Ac,Ac − ΣU,Ac,AΣ
−1
U,A,AΣU,A,Ac),

F ∼ N(0,ΣU,Ac,AΣ
−1
U,A,AΣU,A,Ac) and E and φA are independent.

Then, we rewrite

∥φAc∥2 = E⊤E + F⊤F + 2E⊤F .

According the proof of lemma S.7 in Feng et al. (2022), we have that:

P(|F⊤F + 2E⊤F | ≥ ϵνp) ≤
3

pt
→ 0,

by d = o{λmin(R)tr(R2)1/2/(log p)C}, where νp = {2tr(R2)}1/2 , t = tp :=

Cϵ/8vp/{λmax(R) log p} → ∞,ϵp := (log p)C/{vpλmin(R)} → 0.

S3 Some useful lemmas

Lemma 6. (Lemma A3. in Cheng et al. (2023)) Suppose Assumptions

1-3 holds with a0(p) ≍ p1−δ for some positive constant δ ≤ 1/2. Define a

random p × p matrix Q = n−1
∑n

i=1R
−1
i UiU

⊤
i and let Qjl be the (j, l)th

element of Q. Then,

(i)|Qjl| ≲ ζ1p
−1|σjl|+Op(ζ1n

−1/2p−1 + ζ1p
−7/6 + ζ1p

−1−δ/2).

(ii)Qjl = Q0,jl + Op(ζ1p
−7/6 + ζ1p

−1−δ/2), where Q0,jl is the (j, l)th
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element of

Q0 = n−1p−1/2

n∑
i=1

ν−1
i {D−1/2ΓU(Wi)}{D−1/2ΓU(Wi)}⊤.

In addition, Q0 satisfies

tr[E(Q2
0)− {E(Q0)}2] = O(n−1p−1).

Lemma 7. (Lemma A4. in Cheng et al. (2023))Suppose Assumptions 1-3

holds with a0(p) ≍ p1−δ for some positive constant δ ≤ 1/2. Then,

(i) E{(ζ−1
1 Ui,j)

4} ≲ M̄2 and E{(ζ−1
1 Ui,j)

2} ≳ m for all i = 1, 2, · · · , n

and j = 1, 2, · · · , p.

(ii) ∥ζ−1
1 Ui,j∥ψα ≲ B̄ for all i = 1, 2, · · · , n and j = 1, 2, · · · , p.

(iii )E(U2
i,j) = p−1 + O(p−1−δ/2) for j = 1, 2, · · · , p and E(Ui,jUi,l) =

p−1σj,l +O(p−1−δ/2) for 1 ≤ j ̸= l ≤ p.

(iv) if log p = o(n1/3),∣∣∣∣∣n−1/2

n∑
i=1

ζ−1
1 Ui

∣∣∣∣∣
∞

= Op{log1/2(np)} and

∣∣∣∣∣n−1

n∑
i=1

(ζ−1
1 Ui)

2

∣∣∣∣∣
∞

= Op(1).

Lemma 8. (Nazarov’s inequality) Let Y0 = (Y0,1, Y0,2, · · · , Y0,p)
⊤ be a cen-

tered Gaussian random vector in Rp and E(Y 2
0,j) ≥ b for all j = 1, 2, · · · , p

and some constant b > 0, then for every y ∈ Rp and a > 0,

P(Y0 ≤ y + a)− P(Y0 ≤ y) ≲ a log1/2(p).

Lemma 9. (Theorem 2 in Chernozhukov et al. (2015)) Let X = (X1, . . . , Xp)
⊤
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and Y = (Y1, . . . , Yp)
⊤ be centered Gaussian random vectors in Rp with co-

variance matrices ΣX =
(
σXjk
)
1≤j,k≤p and ΣY =

(
σYjk
)
1≤j,k≤p, respectively.

In terms of p,

∆ := max
1≤j,k≤p

∣∣σXjk − σYjk
∣∣ , and ap := E

{
max
1≤j≤p

(
Yj/σ

Y
jj

)}
.

Suppose that p ≥ 2 and σYjj > 0 for all 1 ≤ j ≤ p. Then

sup
x∈R

∣∣∣∣P(max
1≤j≤p

Xj ≤ x

)
− P

(
max
1≤j≤p

Yj ≤ x

)∣∣∣∣
≤ C∆1/3

{(
1 ∨ a2p ∨ log(1/∆)

}1/3
log1/3 p,

where C > 0 depends only on min1≤j≤p σ
Y
jj and max1≤j≤p σ

Y
jj (the right

side is understood to be 0 when ∆ = 0 ). Moreover, in the worst case,

ap ≤
√
2 log p, so that

sup
x∈R

∣∣∣∣P(max
1≤j≤p

Xj ≤ x

)
− P

(
max
1≤j≤p

Yj ≤ x

)∣∣∣∣ ≤ C ′∆1/3{1 ∨ log(p/∆)}2/3,

where as before C ′ > 0 depends only on min1≤j≤p σ
Y
jj and max1≤j≤p σ

Y
jj.

Lemma 10. (Theorem 1.2.11 in Muirhead (2009))Let X ∼ N(µ,Σ) with

invertible Σ, and partition X,µ and Σ as

X =

 X1

X2

 , µ =

 µ1

µ2

 , Σ =

 Σ11 Σ12

Σ21 Σ22

 .

Then X2 −Σ21Σ
−1
11 X1 ∼ N

(
µ2 −Σ21Σ

−1
11 µ1,Σ22·1

)
and is independent of

X1, where Σ22·1 = Σ22 −Σ21Σ
−1
11 Σ12.
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S4 Real data Application

S4.1 US stocks data

In this section, we utilize our methods to tackle a financial pricing problem.

Our goal is to test whether the expected returns of all assets are equivalent

to their respective risk-free returns. Let Xij ≡ Rij − rfi denote the excess

return of the jth asset at time i for i = 1, · · · , n and j = 1, · · · , p, where

Rij is the return on asset j during period i and rfi is the risk-free return

rate of all asset during period i. We study the following pricing model

Xij = µj + ξij, (S4.1)

for i = 1, · · · , n and j = 1, · · · , p, or, in vector form, Xi = µ + ξi, where

Xi = (Xi1, . . . , Xip)
⊤, µ = (µ1, . . . , µp)

⊤, and ξi = (ξi1, . . . , ξip)
⊤ is the

zero-mean error vector. We consider the following hypothesis

H0 : µ = 0 versus H1 : µ ̸= 0.

We examined the weekly return rates of stocks that are part of the S&P

500 index from January 2005 to November 2018. The weekly data were de-

rived from the stock prices every Friday. Over time, the composition of the

index changed and some stocks were introduced during this period. There-

fore, we only considered a total of 424 stocks that were consistently included

in the S&P 500 index throughout this period. We compiled a total of 716
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weekly return rates for each stock during this period, excluding Fridays that

were holidays. Given the possibility of autocorrelation in the weekly stock

returns, we applied the Ljung-Box test Ljung and Box (1978) at a 0.05 level

for zero autocorrelations to each stock. We retained 280 stocks for which

the Ljung-Box test at a 0.05 level was not rejected. It’s important to note

that if we had used all 424 stocks, there might be autocorrelation between

observations, which would violate our assumption and necessitate further

studies.

Figure 1 show the histogram of standard deviation of those 280 securi-

ties. We found that the variances of those assets are obviously not equal. So

the scalar-invariant test procedure is preferred. Thus, We apply the above

six test procedures–SS-SUM,SS-MAX,SS-CC,MAX,SUM,COM on the total

samples. All the tests reject the null hypothesis significantly. To evaluate

the performance of our proposed tests and other competing tests for both

small and large sample sizes, we randomly sampled n = 52K observations

from the 716 weekly returns, where K ranges from 3 to 8. This experiment

was repeated 1000 times for each n value.

Table 1 presents the rejection rates of six tests. We discovered that

spatial-sign based test procedures outperform mean-based test procedures.

This is primarily due to the heavy-tailed nature of asset returns. Figure 2
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displays Q-Q plots of the weekly return rates of some stocks in the S&P

500 index. We observed that all data deviate from a normal distribution

and exhibit heavy tails. Additionally, sum-type tests perform better than

max-type test procedures, mainly because the alternative is dense. Figure

3 illustrates the t-test statistic for each stock. We noticed that many t-test

statistics are larger than 2, and most of them are positive. Among these

tests, the SS-CC test performs the best. Although the SS-SUM outper-

forms the SS-MAX, the SS-MAX still retains some power in all cases. As

indicated in the theoretical results in Subsection 3.2, our proposed Cauchy

Combination would be more powerful than both max-type and sum-type

tests in this scenario. Therefore, the application of real data also demon-

strates the superiority of our proposed maxsum test procedure.

It’s worth noting that the rejection of the null hypothesis, which sug-

gests that return rates are not solely composed of risk-free rates on average,

aligns with the perspectives of numerous economists. Indeed, the considera-

tion of a non-zero excess return rate and the attempt to model it has spurred

a vast amount of research on factor pricing models in finance (Sharpe, 1964;

Fama and French, 1993, 2015). These models, which have many practical

applications, operate under the Arbitrage Pricing Theory (Ross, 1976). Re-

cently, numerous studies have focused on the high-dimensional alpha test
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under the linear factor pricing model, including works by Fan et al. (2015);

Pesaran and Yamagata (2017); Feng et al. (2022); Liu et al. (2023). Notably,

Liu et al. (2023) proposed a spatial-sign based sum-type test procedure for

testing alpha for heavy-tailed distributions. It would be intriguing to ex-

tend the methods presented in this paper to propose a spatial sign based

max-type and maxsum-type test procedures for testing alpha. This is an

area that warrants further exploration.
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Figure 1: Histogram of standard deviation of US securities.

S4.2 Paired colon dataset

Another important application of the one-sample test discussed in this pa-

per is assessing the mean difference between two paired samples. In this
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Figure 2: Q-Q plots of the weekly return rates of some stocks with heavy-tailed distri-

butions in the S&P500 index.

section, we utilize our methods to test the mean difference for paired sam-

ples and consider the colon dataset provided by Alon et al. (1999). The

colon dataset includes gene expression data from 40 colon cancer patients,
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Table 1: The rejection rates of testing excess returns of the S&P stocks for p = 280 and

n = 52K with K = 3, · · · , 8. For each n, we sampled 1000 data sets.

SS-MAX SS-SUM SS-CC MAX SUM COM

n = 156 0.295 0.361 0.380 0.124 0.219 0.204

n = 208 0.364 0.448 0.458 0.128 0.217 0.206

n = 260 0.424 0.542 0.556 0.140 0.276 0.246

n = 312 0.506 0.633 0.645 0.137 0.272 0.236

n = 364 0.652 0.738 0.758 0.143 0.317 0.282

n = 416 0.753 0.821 0.843 0.163 0.339 0.303
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Figure 3: t test statistics of the weekly excess return rates of each stock.
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comprising 22 paired samples from normal and tumor colon tissue and ad-

ditional 18 samples from tumor tissue, with each sample containing 2,000

gene expressions. Our objective is to assess whether the mean gene ex-

pression levels differ between normal and tumor tissues. To streamline the

analysis, we exclude unpaired samples and retain only the n = 22 paired

normal and tumor tissue samples. To compare the methods, MAX, SUM

and COM methods are also displayed. We observed that SUM test fails to

reject the null hypothesis while others strongly reject if the significant level

is set to α = 0.05, see Figure 2. It is aligned with the simulation results

of non-normal cases, suggesting a significant difference in gene expression

between normal and tumor tissues, warranting further investigation. In

addition, we find that the COM test successfully rejects the null hypoth-

esis, whereas the SUM test does not. This indicates that methods based

on the theorem of the independence between the test statistic can enhance

test power while ensuring that Type I error remains controlled, particularly

when data sparsity is uncertain.

Table 2: The p-values of testing the difference of gene expression levels of the normal

and tumor colon tissues.

SS-MAX SS-SUM SS-CC MAX SUM COM

6.88× 10−5 6.71× 10−7 1.33× 10−6 1.68× 10−3 9.62× 10−2 3.30× 10−3
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