Statistica Sinica,

Supplementary material for *Testing High-dimensional

White Noise Based On Modified Portmanteau Tests’

Zeren Zhou! and Min Chen?

L Capital University of Economics and Business,

2Shanxi University, ? Chinese Academy of Sciences

The supplementary material contains additional simulation results and

the proof of Theorem 1-5.

1. Simulation of white noise test for fitted residuals

In this section, we examine the finite sample performance of our proposed
tests to test whether the residuals of the factor model are white noise. We

consider the following dynamic factor model:

Model 11. X, = BY;+ E;, where E, is i.i.d. N(0,1,), B € RP*? is a p X 2 matrix,
B = (b;j), b;; is first generate independently from uniform distribution
U(—1,1), then be divided by p®?, Y; € R? with V; = AY; ;| + e,

A € R**? {5 a 2 dimensional diagonal matrix with diagonal element
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set to be (—0.5,—0.5). ¢ “ N(0, I5) and are independent with {E;}.

Model 11 is a dynamic factor model with 2 factors. Firstly, We generate
{X;} from model 11. Subsequently, we fit { X;} with dynamic factor models,
where the number of factors in the dynamic factor model is set as 1,2, 3.
Next, we conduct white noise tests to test whether the residuals are white
noise. Since the true factor number is 2, we expect that white noise tests
reject the null hypothesis when the factor number is set to 1, and fail
to reject the null hypothesis when the factor number is set to 2 and 3.
We report the rejection rate of tests at o = 5% significant level. We set
p = 20,40,60, N = 200, and L = 5,10. For each experiment, we have 500
Monte Carlo replicates.

Table m presents the rejection rate for residuals in Model 11 for different
factor numbers r in the dynamic factor model, where r = 1,2,3. As we
expect, when the factor number is correctly set (r = 2), our proposed tests
T1, T5, and Tj exhibit correct empirical sizes. The test proposed by Wang
and Shao (2020) (Tsn), the test proposed by Chang et al, (2017) (T¢)
and two tests from Wang et al) (2022) (Tw; and Tw2) can also control
type I errors. All seven tests can control type I errors when the factor
number is set too large (r = 3). When the factor number is set to r = 1,

considering that the true factor number is r = 2, the residuals will not be



Table 1: Rejection rate (in %) of different test statistics at o = 5% significant

level for residuals in Model 11 with difference factor number r.

r=1
P Ty Ty T35 Tsny To  Twi  Twa g4 1> 13 Tsy Tc  Twi  Twe
L=5 L=10
20 446 72.8 60.6 19.6 0 4.2 0.6 33.4 66.6 58.6 12.8 0 5.0 1.2
40 50.6 78.6 63.8 24.6 0 3.2 1.0 374 69.0 624 15.4 0 4.4 1.2
60 48.6 824 72.0 28.6 0 13.4 6.2 37.4 694 62.8 17.2 0 10.4 6.0
r=2
P T Ts T3 Tsy Tc Twi  Twe Ty T> T3 Tsy Tc Twi  Twe
L=5 L=10
20 4.0 4.4 4.2 4.0 0 3.0 0.6 6.0 3.8 3.8 6.4 0 2.8 0.8
40 5.0 6.2 6.0 5.0 0 3.6 0.4 6.2 5.2 5.8 4.2 0 2.6 0.4
60 4.2 5.6 5.0 6.0 0 1.8 0.6 4.4 5.0 6.4 5.6 0 1.8 0.4
r=3
P I5 Ty T3 Tsny To Twi  Twa 1 T T3 Tsy Tc Twi  Twe
L=5 L=10
20 5.0 5.4 5.0 5.0 0 2.8 0.8 6.0 4.4 5.0 5.2 0 3.6 0.8
40 5.6 5.2 5.4 5.8 0 1.8 0.4 4.4 5.6 4.0 6.2 0 3.4 0.4
60 4.6 5.8 6.0 4.6 0 1.6 0.6 5.2 4.4 5.2 6.2 0 2.6 0.8

white noise. Our proposed tests Ty, T, and T3 show satisfactory power.
Notably, T, outperforms the others and T3 is the second best test. Tqy also
has nontrivial power. The rejection rates of Ty, and Ty are relatively low,
and the rejection rate of T is zero. This simulation indicates our proposed

tests can be used to select the number of factors in the factor model.

2. Technical proofs

This section contains proofs of Theorem 1, Theorem 2, Theorem 3, Theorem
4 and Theorem 5.

Weset Yy = vec (X, X,,). Given L € N*, let ), = (V1Y ..., ywrY, )T,



then our statistics 7" in can be written as

1 T
T:NZ:)}Z. ;.
1#£]

Similarly, our bootstrap statistics can be written as

. 1
T = N Z: eiyiTyjej.
1)

Since {X,} is a stationary time series with physical dependence, {);} is

also a stationary time series with physical dependence and can be written

as:
Vi=yg (5157515—17 .- ) .

Let V;; be jth component of V;, then {)};} have the form:
yt,j =9j (5757515—17 .- ) .
Let Yy = 9 (Foqny), we set

Oras = Vs = Vesiorll, = Ve = 95 (Fro)|

q Y

and

o0
@m,q,j = E :et,q,j'
t=m

We first show the following lemma:



Lemma 1. Let {G;} be p?L-dimensional independent Gaussian random
vector, EGy = 0, and Cov(Gy) = Cov(Vi|Fi-1), {G:} is independent with

{Xi}. Define the Gaussian analog of T' as

1 T
vzﬁz:GiGj
i#]
2

Lp
Nogg 0, we

Assuming condition 1 -8 hold, when {X,} is white noise and
have

sup |P(T'<t)—P(V <t)| =0

teR

proof of Lemma EI:

Proof. Define

1 ifu<0
. 4
go(u) = [1 = min{l, max(u,0)}']" = { (1 — 44y fo<u<1-

0 fu>1

\
then gg is a non-increasing and three times continuously differentiable func-
tion. Define g, = max, {|g)(w)| + g (w)| + g0 (u)|} < oo.

Recall ¥ = Var(X;), and ¢ = tr(33). For any ¢ > 0, define gy ,(z) =
g(¢(x —t)), then for fix ¢, we can approximate the indicator function I,

by g((z = 1)), ie,

Lot < gpt(7) < Tocrpyr-



For gy(x), we also have sup, , |g},(2)| < g.¥,  sup,, |9}, (2)] < g.0?,
and  sup,, g, ()| < g.0®.

Let H; = 23;11 Vi + Z?:iﬂ Gj, and

LZ:Q(y177yZ—17GZ+177Gn)’ AZ:yZTHl’ Fl:G;I—HZ’
NO'() NO'() NO'O
where Q (z1,..., i1, Tis1,. .., TN) = Zi# z]z;. Let
T=gl, (L) (A —Ty) =gl (L) (Y — Gy) " H;
1 1
IT= 5912,,5 (Li) (A} =T7) = §9§Z¢ (Li) H (VY| — GG/ H,,

T = [gys (Li + A;) — e (Li + T3)] — T — 1L
For I, we have
El = E[gy,, (L) (A = )] = Elgy,, (L) (Vi = Gi) " H)]
=E[Eg,,, (L) (V; — Gi)" Hi| Fi1]]
When {X,} is white noise, {);} is a sequence of martingale differences with
respect to Fy, i.e., E[);|F_1] = 0. Since {G,} is independent with {)}}, L;

and H; only contain {J1,...,Y;i_1}, we have
El = E[E[g),, (L;) |Fir JE[(Y: — Gi) " |Fima JE[H| Fioi]] = 0

For II, similarly, we can have E[II] = 0.
For III, note that ‘ggt(u)} < g%, |g7’¢’)’t(u)‘ < g%, using Taylor’s ex-

pansion, we have E(IIT) < Emin {g.¢? (|A;]° + |T4%) , g.4® (JA + [TafP) },



let ¢ =246 € (2,3], we obtain

E(I11) < Emin { g0 (|A2 +|Ti%) , 0.0 (|A° + [T3*)}

<ol ®AF+ET
0

- N ¢ N ¢ -
By Y| +3 R 3V,
< Cwqaio i:lN jlgi—l qi:lN jlzz‘+1 .
+Y E|= Y VG| +> Bl > GG
| =1 N j<i—1 i=1 N i+l ]

For yz’T ngi—l Vi, let Z; = yz‘Tyja then yz'T ngi—1 Vi = Z;;ll Zj. Fol-

lowing Theorem 1 of Liu et al] (2013), we have

i—1 ~+o00
1 1 . 1_1
SiEN 24 < CoV2 (max O+ y1||2>+Cqu<nlf‘lemm<m,N>2 "m0+ 192 Vi)
J= m=

q

Condition 1 implies max; ©;5,; < oco. Since ¢ € (2,3]|, when N is

sufficiently large, we have

i—1
V! Z V;
j=1

For Y S i<i1 Gj, since {G,} is independent, we have

max
1<i<N

q 400
< C,N(max Y min(m, N)F 0,5 + 95 ll,)"
m=1

i—1 q
T T
max |, ZlGj < CyN |V W4
‘]:
-, TN 1 TV (|2 TN ¢
Similarly, maxi<i<n |V 225201 Gi| < CN|[[ Vo N1lE, and maxi<i<n |Gy 3251 G| <

CoN (1Y Vil



Then

[E(ID] < Cy* (E]A[* + E|T4[%)

- N g -
1

D_E|§ 2 YY) +23 }:yR:

< Cwqi i:lN j<i—1 qi: ]>z+1 .

0o 1
T2 By 2 WG P E DA
| =1 j<i—1 i=1 J>@+1 .
11
CyIN (max; Y5, min(m, N)2 ™ 0yq5 + [ V5 Villg)?

NqO'Q

1_1
+<>o 27y

1 1
Note that max; > min(m, N)2 " 46,,,; =

)-

=, min(m, N)2 au,,, and

Qe

175 1lly = O((Lp?)

Since
T 1% _
Gyt (—) — Gyt (—) = Z (96 (Li + Ai) — gy (Li + 13)],
70 70 i=1
we have

n

> g (Li + A7) = gy (Li +T3)]|

i=1

T

00) Gt (

v

)l

<

[E[gy.¢ <

< NE(II)|

< OO min(m, N2ty 4+ (Lp?)7)"
N(;O'O

= L(N,p,d)Cy1.

Since condition 2 hold, p and N satisfy = N5 — 0, we have L(N,p,d) — 0.

Then we obtain

T

)

T
P(—
oy g

<t) < Elgys ( <

1% 1%
Elge. (U—O)HL(N,p, 50U < B(L < 1

“H4+L(N,p,6)Cy,



ie., IP(UZO <t) < IP’(G—V(; <t+¢ Y+ L(N,p,0)Cy?. Similarly, we can obtain

P(X <t—9')— L(N,p,0)Cy? < ]P’(UZO < t). Then we have

<t—¢~)—=L(N,p,0)Cyp? < IE”(z <t) < P(K < -+ ) 4+L(N, p, §)Cyl.

0o 0o

p(L
0o

Since V is distributed as a linear combination of independent chi-
squared random variables, following supplement material of Xu et al, (2019),

there exists a constant Cy > 0, such that

P <t +07Y) < P < 8) + Co,

0o 0o

therefore,
V 1 T \% 1

P(~ < t)— [cgw + L(N,p, 5)0¢q] <P(= <t) < P(— < H)+|Cop? + L(N, p, 5)C"| .
go 0o go

We then have

sup

teRr 0o 00

hence

sup |P(T < t) —P(V < t)| = Cotp2 + L(N, p, §)C".
teR

Set ¢ = C%L(n, §) **%, condition 1 and condition 2 indicate ¢~ — 0, we
then have

sup |[P(T'<t)—P(V <t)| = 0.

teR



We then prove Theorem 1.

proof of Theorem 1:

Proof. Since {G;} are p?L-dimensional independent Guassian random vec-

tors, EG; = 0, and Cov(G;) = Cov(J}4|Fi—1), set ¥ = Var();), we have

1
~ >G5 N(0,D).

Let éz = Ye;, where {e;} are independent standard normal distribution,

we have éz ~ N(0,Y;)."), thus
1 ~ d
Therefore, under H,, we have

sup |P(T* <t)—-P(V <t)] = 0.

teR

Combining with Lemma 1, we have

sup |P(T' <t)—P(T" <t)] = 0.
teR

Theorem 2 naturally follows from Theorem 1.
We then prove Theorem 3

proof of Theorem 3:




Proof. Let Ty =  >_,.; Y;; Yju, then T have form

1 1 1 1
NT = wlNTl + w2NT2 +-+ wLNTL'

Under H; in equation (3.6), we have for [ > 2, EY;; = Evec(X;X, ;) = 0.
Notice that %Tl = # Zi# Y;TIY}l = tr (f]lTXAJZ> — # Zf\il Yi’TlY;-J, where

f]l = % > XtXtTH is the sample autocovariance matrix at lag [. Since X, is

a VMA(1) sequence under H; in equation (3.6), we have ¥, % 0 for [ > 2.

For ﬁ vazl Yz',TlYi,lv note that the elements of Y; ; are of the form X; ; Xi 1 x,
where X ; is jth element of X;. Hence when [ > 2, for an arbitrary given j
and k, by applying the central limit theorem, we have \/LN Zf\il Xi i Xitik L
N(0,1). consequently, under Hy in equation (3.6), we have +7; = > s V1Y, S

0 for [ > 2; hence %T is asymptotically equivalent to w; %Tl.

For T} = % Z#j Y;Tlel, we have

—T = N2 Z (Aoz + Alzifl)—r (Aozj + Arzj—1) (Aozj—1 + Alzj72>—r (Aozim1 + Ar2zi)
i#]

=Ty (I) + Ty(IT) + Ty (I11)

1

_ E : T AT T T T T T T
_m (Zi AO AOZijflAO A()Zi_l -+ ZiflAl Alzj_12j72/41 Alzi_g

i#]

T AT T T T T T T



1
T1 (II) =—F Z (Z;AgAlele]—-r_lAngzifl + ZiT_lAIA()ZijT_lAgA()Zi,1

N2
i#]

T T T T T T T T

—+ ziflAl Alzj,lzjflAO Alzi,g + ZiflAl A12j712j72A1 A()Zl',l
TAT T T T AT T T

+ Z; AO AonZj_zAl AoZifl + Z; AO Aozjzj_lAO Alzi,g
TAT T T T T T T

1
T1 ([[I) :F Z (ziTAgAlzj,lij_lAgAlzi,g + ZiT_lAlTA(]ZjZ]—-r_QAIAQZifl

2
is#j

+ZZ-TAJA1,ZJ‘,12]T72A1TA()Z7;,1 + ZinlAlTAozjijflAgAlzi,z) .
We have E{T1 (1)} = tr (ioil> EB{Ty(ID)} = 0, E{Ty(I11)} = % tr? (201),

and
T} =102 (524 52) + O 2 (55
Val”{ 1( )}—mr 0+ 1 +ml‘ 0241
4 N - .
+ 5 {2 tr (2021> 4 (s —3)tr {D2 (2021> }] YR
8 ST 52, SN2 16 S SR
var{Ty(I)} =~ tr (201201> tr (20 + 21> + i (20121) tr <20120)
16 /= - . S
+ m tr (EO + 21> {tI‘ (EJIE[HZ()) + tr <201Zgl§]1>}

16 /e e e e -
+ ot (Sor) {br (£350) + tr (53501 ) + 20 (£1501%0) }

4 S o
- (23120123 LS 52 4 22312120120> +R
4 S AT ST & 12 /(s &t
var{T1(IT1)} =— tr (201201201201) T (201201)
N N?
16 /e e e
+ m tr (201> tr <201Z(—|)—123—1> + R,
4 e 4 e
cov{T1(1), Ty(IID)} = - tr (zoz(n) + st (21201) + R,



cov{T\(I), Th(II)} = R,
cov{Ty(I1), L (I11)} = R,

where R represents the remainder terms with smaller orders than the others
listed in each variance and covariance items. Using Proposition 4.1 of [Li

et al| (2019), we have

1
(NTl - ,u5> /081 iN(O: 1)-

Since %T is asymptotically equivalent to w, %T 1, we have

1
(NT — wl,us) Jwios N N(0,1).

We then prove Theorem 4

proof of Theorem 4:

Proof. Recall that the statistic T' can be expressed as T = % ZZ oy yj Y;.
Under alternative hypothesis H; with E [);] = p # 0, we have the following

decomposition:

1 1 2 &
NTzﬁZnyjsz Visr —p+p) (Y — i+ p)

i#] i=1 j=1
N i
2 N +1
eSS e = ) )+ Sl
i=1 j=1
9 N N
+_2 (N_]+1) (yj Z yz-i—l ,U



Let
N i

= Y i) O ),

N+ 1
1T = ——Ilull3,

I = WZ(N—J'H) O =)
j=1
9 N
V= N2 Z i (Vig1 — M)T -
=1

For III, we have EIII = 0, and

1/2
Var <—H“”\%H ) 111

N
S%WZN E [ s~ ) 0 — )|

~ IS
Z 2 Sy | < 2tmee 560

_NHMH (1802 1517

J1,J2=1

1/2 -1 1/2 -1
Hence, <%) 1 5 o. Similarly, we have (%) v 5o

Hence, we have

lelis)®) 1 [IEa VN|lpll N+1
RLUSELEL Gl L T=| —— T+

0,(1),
VN N VN Is|* N o
then,
1 1 N 2 N
ro Loy Ml V|
ErEr 15| 15|1E

For I, notice that {); — u} satisfy E[}, — u| = 0. Following the proof

of Theorem 1, we can show that sup,.p |[P(N-1<¢t) —P(T* <t)| — 0.

Therefore, we have sup,cp ‘IP) (IISIII N-1< t> P ( |S1||FT* < t)‘ — 0.



Hence, 1f H % ¢, then

1 1
T4

—_ —T" +c,
1517 1517

we have that P(T' < gs or T'> g1-«) — 8 € (a,1).

if Mel® 00, then the leading term of ——7 js Nl 2, and T — oo,
I1S1lF ISllF ISlle
we have that P(T' < ga or T'> g1-2) — 1. O

We then prove Theorem 5.

proof of Theorem 5:

Proof. Since we can rewrite T as T = Zle w1y, where T) = + Z#J YTY] 5

and Y;; = vec (XtXtH) We first show that 5 ? 4 N(0,1).

(3

N
We can see that 2HF|| = M1, Where 1y = m}gil,l St Y
Since E[ni1 | Fi] = 0, then {n:11} is a martingale difference sequence with
respect to JF;. Using the martingale central limit theorem in Billingsley
(2017), we need to show the following:
N 2 p

1. Ve 2 O? Zt:lE [nt+11 {’nt+1| > 5} | "T_-t} - 07

N
2. 3L Bt | A = L

Note that

]E[n?—i-l N4HFH4 ZE t+1l}/;l ]

Ft1

_N4HFH4 E : E E E [Yii 1050 Yoo Yirtgs Yerta Yer 1y Yoo,

t=1 s1<--<s4=1 j1,...,Ja=1

l

Y,

J2 183,

l

Y.

7j3 S4,

l,]'4] )



since {X;} is i.i.d. sequence, we have
B Y100 Yer o Yertgs Yerrgn Youig Yoo b Yos 1s Yoa bja] =

E th+1—847l,j1 Y;+1—S4,l7j2Y;5+1—84,l,j3 1/15+1—S47l7j4Y81—S4,l7j1 }/;2—84,173'2}/;3—84,l,j3}/(],l,j4] .

Note that {X;} is an i.i.d. sequence, then Y;; is independent of Y;; for

s < 0, we have
E th+1—847l,j1 Y;+1—S4,l7j2Y;5+1—84,l,j3}/15+1—S47l7j4Y81—84,l7j1 }/;2—84,173'2}/;3—84,l,j3}/(],l,j4] =

E Y1 sty Yer1—sago Yiri—sadys Yer1—sadia) B [Yer—sutijs Yoo —sudijo Yos—saiijs Y00 ja) -
We can obtain

E [}/154-1—84,1,‘]'1 3/15+1—S4,l,j2 Y;+1—S4,l,j3}/t—|—1—84,l,j4] -

Fj1,jzrj37j4 + Fj17j3rj27j4 + Fj1,j4rj2,j3 + 0(1)7

then

p2

Z E [Y;t+1754,l,j1K+1734,l,j21/1%+1fs4,l,j3Y;§+1,S4’l7j4] =0 (HFH%) )
J1,92:93,Ja=1
Note that
|E [Ysl—m,l,h Y52—S4,l,j2 Y:93—54,l,j3Y0,l,j4] |
:’ Ui g2l al {81 = 52} 1 {53 = 54} + Ly sl nal {51 = 33} 1 {32 = 84}
+ Fj17j4rj2,j31 {31 = 34} 1 {32 = 53} ‘

< Ty 5ol ga 1 {51 = 82} 1{s3 = sa}| + [T, js L u 1 {81 = 83} 1 {82 = 54}

+ |Fj17j4rj2,j31 {51 = 34} 1 {52 = 33}| ;



by condition 4, we have sup;, ;,_; . |I'j, j,| < C, then we have

77777

4 . . . .
E[nt-i-l N4HFH4 E E : § : Y;H-l,lvjlY;H-l,l,jzYt+17l,j3Y;+1M4Y:91,lvj1}/:92757J2}/;3,l7j3}/;47l7]4]

t=1 s1<-<s4=171,...,J4=1

- ]\74||F||4 Z Z Z AN PR o AN A o A ]2J3|

t=1 s1<---<84=1 j1,...,ja=1
X T 5o Ujs a1 {51 = s2} 1{s3 = sa}| + [Ty, js Uy a1 {51 = s3} 1 {52 = s4}|
+ 05,5 0a s 1 {51 = s} 1 {s2 = s3}|

N 2
1
< N4HF||4 Z Z ( sup , |Fj1,j2|) O (HFH%)

t=1 1<s1<s3<t

<O(N ) =0,

hence E[n},,] — 0, then Ve > 0, Zi\ilE [nfﬂl {Ine1] > €} | .Ft] 2o0.

Note that

N

N t 2
Z]E 771?-&—1 | ‘/—-;5 ZE NQHFH2 (Y;f—-ﬁr-l,l ZY;J) ‘Ft
t=1 t=1 =1
N2 |F||2 ZZZ 1Z]E Yt+1lY;+1l|-7:t] 52,1

t= 181 1s9=1

N?HFH2 Z Z Z ol

t=1 s1=1s9=1

set Vo = S0 E [n?.1 | 7], we have E[Vy] — 1.



We can obtian

E [VN N4||F||4 Z Z Z Z Z 81, J1 827Z7J2}/83,l,j3§/847l,j4] Fj17j2rj37j4

t1=11t2=1s1,52=1 s83,54=1 j1,...,ja=1

N4||ru4ZZ Z Z Z 1{si = s} L{sy = sa} I5, 515,

t1=11t2=1 s1,52=1 s3,54=1 j1,...,ja=1

N4|P|]4ZZ Z Z Z 1{s1 = s3}1{s2 = 54}

t1=112=1 s1,52=1 83,54=1 j1,...,ja=1

X T gsLingal 050  ds

N4||F|]4ZZ Z Z Z 1{s1 = sa}1{s2 = 53}

t1=1t2=1 s1,52=1 83,54=1 j1,...,ja=1

X Ly gaLiaiaUin g Uisoa

= Kj + Ky + K.

2
p 2 2
We have K1 VA |F||4 Ztl 1 Etg 1 Zsl 1 33 1 1 yensja=1 Fj17j2rj37j4 —

1, and

| K| = N4||FH4ZZ Z Z Z 1{s1 =s3}1{s9 =354}

t1=11t2=1 s1,82=1 83,54=1 j1,...,ja=1

x 'y .1

inds L oo Lin e L s |

~ N4 ’FH4 ZZ 21: Z 1is1 =83} 1{s2 = sa} Z [ ]17j2]2

t1=1te=1 s1,s2=1 s3,54=1 J1,J2=1

—N4||r||4 ZZ Z Z 1{s; = 53} 1 {s2 = s} |72}

t1=1t2=1 s1,s2=1 s3,54=1

< e VLI = 0 ”F”f) S0
NS T




REFERENCES

Similarly, we can obtain | K3| — 0. Hence E [VZ] — 1, using Chebyshev’s in-

equality, we have > E [, | F;] © 1. Hence we have 2||€’”F 2 N(0,1).

Since {X;} is i.i.d. sequence, for [ # k, we have E[T;T}] = 0, then we

have = 2— % N(0, o8 | w?).

2[ITr
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