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Supplementary Material

The supplementary materials include the finite sample performance for the case when the

dimension of the time series is p = 1, the finite sample performance when the moment

conditions fail in Assumption 1, and the proofs of all theorems and lemmas in the paper.

The finite sample performance for p = 1 is presented in Section 1, the finite sample

performance when the moment conditions fail in Assumption 1 is given in Section 2, and

the Section 3 provides the proofs of the theorems and lemmas.

1. Simulations for p = 1

In this section, we use the simulation studies to investigate the performance of the pro-

posed methods for p = 1. These studies are divided into three parts: the first part is to

demonstrate that the tuning parameter k = 1.8 is also suitable for p = 1 (See Section

1.1). The second part is to investigate the performance of the proposed methods for var-

ied DGPs (See Section 1.2) and to investigate the performance for the high dependent is
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presented in Section 1.3. The third part aims to verify that the proposed testing methods

are not sensitivity to the selected values of d (See Section 1.4). For all simulations, we set

the significance level α = 5%. For our proposed methods, the MDDM-based tests meth-

ods and the methods proposed by Escanciano (2006) need the wild bootstrap method

to compute the critical value and we use the Rademacher distribution for w∗
t and the

bootstrap procedure are repeated B = 1000 times. The simulation results are based on

1000 replications. For p = 1, the spectrum norm and Frobenius norm is equivalent, then,

we only need to consider the Frobenius norm, i.e., we only consider the testing statistic

ÂT
F

wn for our proposed data-driven method and the MDDM-based methods T̂ F
wn(M) and

T̂ F
sn(M) proposed by Wang et al. (2022).

1.1 Selection of k

In this subsection, we use simulation studies to verify that the tuning parameter k = 1.8

is also suitable for p = 1. The null model is the AR(1) model:

Yt = a0 + a1Yt−1 + εt. (1.1)

To select k, we generate 1000 replications of sample size n = 200, 1000 from the following

DGPs based on the above model (1.1):

AR(1) :Yt = 0.3Yt−1 + εt, εt ∼ N(0, 1),

AR(2) :Yt = 0.3Yt−1 + 0.2Yt−2 + εt, εt ∼ N(0, 1).

where the AR(1) is the null model and the AR(2) is the alternative model. For these

experiments, we consider d = 15. For each replication, we fit it by model (1.1) and obtain
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the model residual êt by êt = Yt − â0n − â1nYt−1, and use the least squared methods to

estimate the parameters â0n and â1n. On the basis of the estimation, we calculate our

data-driven MDDM-based test statistic ÂT
F

wn for different choices of k.

Figure 1: Rejection percentages (5% nominal level) of the tests ÂT
F

wn for the models AR(1) and
AR(2) for several selected values of tuning parameter k.

Fig.1 shows the empirical rejection percentage (RP) of our proposed test at the 5%

level for k = 0, 0.1, . . . , 3.3. The left side of Fig.1 is for the size study, which show that

the slope of the empirical RP becomes roughly flat when the values of k exceed 1.8. This

indicates that it is not necessary to use a value of k greater than 1.8 in order to properly

control the type-I error. The power study are presented in the right side of Fig.1. From

the power study, we know that the power is flat when the values of k are between 0

and 1.5, and decreases as k increases. When the values of k exceed 2.5, the slope of the

empirical RP plot becomes roughly flat again. On the basis of this analysis, we ultimately

select k = 1.8 for p = 1 as the same for p = 2, 5.
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1.2 Finite sample tests comparison

In this subsection, we compare the proposed data-driven test ÂT
F

wn with the MDDM-

based tests T̂ F
wn(M) and T̂ F

sn proposed by Wang et al. (2022), and the tests D2
n,C and D2

n,I

proposed by Escanciano (2006). The test statistics for D2
n,C and D2

n,I are defined as

D2
n,C =

n∑
j=1

1

σ̂2
e(jπ)

2nj

n∑
t=j

n∑
s=j

êtês exp
{
− 1

2
(Yt−j − Ys−j)

2
}
,

D2
n,I =

n∑
j=1

1

σ̂2
e(jπ)

2njn

n∑
t=1

∥∥∥ n∑
s=j

êsI(Ys−j ≤ Yt−j)
∥∥∥2,

where nj = n− j + 1. The critical values of D2
n,C and D2

n,I are also obtained by the wild

bootstrap procedure.

For p = 1, we use the same date generation process as in Hong and Lee (2005) to

study the finite sample performance. The null model is a univariate AR(1) model :

Yt = a0 + a1Yt−1 + εt, (1.2)

where εt = v
1/2
t ηt and vt = ϕ1 + ϕ2ε

2
t−1. To examine the size performance of all tests,

we generate 1000 replications of sample size n = 200, 1000 from the following two DGPs

based on the above model (1.2):

DGP 17 : ϕ1 = 1 and ϕ2 = 0;

DGP 18 : ϕ1 = 0.43 and ϕ2 = 0.57,

where a0 = 0, a1 = 0.5, and ηt is a sequence of i.i.d. N(0, 1) random variables. To examine

the power performance of all tests, we consider the following eight DGPs:

DGP 19 : Yt = 0.5Yt−1 + 0.6Yt−1εt−1 + εt;
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DGP 20 : Yt = 0.5Yt−1 − 0.6ε2t−1 + εt;

DGP 21 : Yt = 0.5Yt−1 + 10Yt−1 exp(−Y 2
t−1) + εt;

DGP 22 : Yt = 0.5Yt−1I(Yt−1 ≤ 0)− 0.5Yt−1I(Yt−1 > 0) + εt;

DGP 23 : Yt = 1− 0.5Yt−1 − (4 + 0.4Yt−1)/(1 + exp(−Yt−1)) + εt;

DGP 24 : Yt = 0.5Yt−1 + 0.5εt−1 + εt;

DGP 25 : Yt = 0.5Yt−1 +
5∑

j=1

0.5jε2t−j + εt;

DGP 26 : Yt = I(Yt−6 > 0)− I(Yt−6 < 0) + εt,

where εt = ηt.

Table 1: The size and power (×100) of all tests for DGPs 17–26 at level 5%.
DGP 17 DGP 18 DGP 19 DGP 20 DGP 21

Test
n 200 1000 200 1000 200 1000 200 1000 200 1000

ÂT
F

wn 8.7 6.8 8.3 6.8 65.5 73.5 96.4 100 100 100
T̂F
sn(3) 7.7 6.1 7.6 7.0 41.6 61.1 50.7 96.2 100 100

T̂F
sn(6) 8.6 5.9 8.2 6.4 25.4 38.0 15.0 40.2 99.5 100

T̂F
sn(9) 7.8 4.9 7.5 6.4 19.8 28.9 10.1 17.7 97.6 100

T̂F
wn(3) 8.3 6.3 7.7 6.8 48.2 65.7 60.2 97.9 100 100

T̂F
wn(6) 7.5 5.3 7.7 6.8 34.0 54.1 36.4 84.7 99.9 100

T̂F
wn(9) 6.4 4.6 7.4 7.2 28.4 48.4 26.4 70.9 99.5 100
D2

n,C 6.2 5.4 6.0 6.9 73.6 95.0 97.3 100 100 100
D2

n,I 6.2 5.7 6.3 7.4 55.0 91.9 97.3 100 100 100

DGP 22 DGP 23 DGP 24 DGP 25 DGP 26

Test
n 200 1000 200 1000 200 1000 200 1000 200 1000

ÂT
F

wn 93.3 100 100 100 95.6 100 85.5 100 100 100
T̂F
sn(3) 26.7 73.7 100 100 93.0 100 53.7 98.4 41.2 51.0

T̂F
sn(6) 12.4 26.7 100 100 75.0 99.4 22.9 53.6 100 100

T̂F
sn(9) 10.2 16.4 99.7 100 60.0 98.1 14.7 27.5 100 100

T̂F
wn(3) 47.3 94.8 100 100 89.5 100 45.5 92.4 41.4 49.3

T̂F
wn(6) 30.9 79.1 100 100 68.5 98.9 27.7 70.3 100 100

T̂F
wn(9) 24.6 65.7 99.9 100 57.7 95.6 22.1 56.0 100 100
D2

n,C 91.7 100 100 100 25.0 74.5 78.1 100 69.5 100
D2

n,I 84.3 99.7 100 100 80.0 99.9 73.7 100 97.2 100

Table 1 reports the size and power for all examined tests. For these experiments, we

consider the upper bound d = 15 and the tuning parameter k = 1.8. From Table 1, we
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have the following finds for the size studies:

(1) The proposed data-driven tests ÂT
F

wn has satisfied size performance for most of

case, especially for the large sample size n = 1000. In general, our proposed methods tend

to oversized especially in DGP 18.

(2) Most of the tests tend to oversize at most of cases, especially for the small sample

size n = 200, while the case is relieved as the sample size increasing. Our proposed data-

driven is a little more oversize than the other methods when sample size is n = 200, and

ÂT
F

wn is similar to the other tests when sample size is n = 1000.

From Table 1, we have the following finds for the power studies:

(1) For all of the DGPs 19-26, our proposed data-driven test ÂT
F

wn has a considerable

power. The ÂT
F

wn test has the worst performance for the DGP 19 and the power is 0.655

and 0.735 for n = 200 and 1000, respectively. And for the DGPs 20-26, the ÂT
F

wn test

usually has power 1.0 for n = 1000 and has power more than 0.855 for n = 200.

(2) For the MDDM-based methods T̂ F
sn(M), T̂ F

wn(M), the power is decreasing with the

lag increasing, i.e. T̂ F
sn(3) and T̂ F

wn(3) have the largest power among M = 3, 6, 9, while

T̂ F
sn(9) and T̂ F

wn(9) have the worst performance among M = 3, 6, 9. Our proposed data-

driven test usually performs better than the MDDM-based methods T̂ F
sn(M), T̂ F

wn(M)

for all of the considered DGPs 19-26. Our data-driven method has similar performance

as D2
n,C for DGPs 20-23, and has better performance than D2

n,C for DGPs 24-26 when

n = 200, and performs worse than D2
n,C for DGP 19. Our data-driven method has similar

performance as D2
n,I for DGPs 20–23 and 26, and has better performance than D2

n,I for

DGPs 24-25 when n = 200, and performs worse than D2
n,C for DGP 19 when n = 1000.
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1.3 Simulation for a high-order dependent: AR(10)

To demonstrate our proposed data-driven test has good performance in a high-order de-

pendent. In this subsection, we consider the VAR(10) model:

Yt = 0.3Yt−1 + βYt−10 + εt, εt ∼ N(0, 1),

For these experiments, we consider the sample size n = 1000, the upper bound d = 15

and the tuning parameter k = 1.8. Table 2 reports the empirical RP for six values of

β = −0.4,−0.3,−0.2, 0.2, 0.3 and 0.4.

Table 2: Empirical power (percentages) for AR(10) with n = 1000.
β -0.4 -0.3 -0.2 0.2 0.3 0.4

ÂT
F

wn 100 91.4 28.0 27.5 91.8 100
T̂F
sn(3) 13.0 10.0 7.9 8.3 11.1 15.1

T̂F
sn(6) 12.2 8.9 6.2 11.4 18.6 29.3

T̂F
sn(9) 64.4 36.1 16.4 21.6 42.3 68.4

T̂F
wn(3) 12.0 8.4 7.1 8.1 10.7 14.0

T̂F
wn(6) 11.8 8.0 7.1 11.7 18.1 27.1

T̂F
wn(9) 62.2 33.7 15.9 20.7 39.8 64.7
D2

n,C 15.1 10.8 7.7 7.7 13.4 23.1
D2

n,I 42.4 19.5 10.8 11.8 28.0 51.9

From Table 2, we have the following findings for the study:

(1) The emprical RP for all tests increases as the absolute value of β increases. The

reason for this is that the dependent is increasing as the absolute value of β increases. For

all of the considered six cases, the power of the MDDM-based tests T̂ F
sn(M) and T̂ F

wn(M)

are increase as the M increases.

(2) Our proposed data-driven test ÂT
F

wn has a consider power, which is much powerful

than all of the other compared tests for all of the six considered values of β. The MDDM-

based tests T̂ F
sn(9) and T̂ F

wn(9) have similar performance as the D2
n,I test, and much better

than the T̂ F
sn(3), T̂ F

sn(3), T̂ F
wn(6), T̂ F

wn(6) and D2
n,C tests.
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1.4 Selection of d

In this subsection, we examine the sensitivity of the proposed data-driven test ÂT
F

wn to

the selection of the upper bound d. Similarly, we use the same the null and alternative

models in Subsection 1.1. The results are reported in Table 3.

Table 3: RP (percentages) of the data-driven test for different values of d whith nominal0.05
and n = 1000.

d 15 20 25 30 35 40

AR(1) 5.6 5.6 5.6 5.6 5.6 5.6

AR(2) 93.5 93.2 93.2 93.3 93.3 93.8

Table 3 reports the result for n = 1000 and six values of d = 15, 20, 25, 30, 35 and 40,

which shows that the proposed test is completely insensitive to the choice of d. We have

performed additional experiments under the null and under the alternative, for a variety

of sample sizes and model specifications, and in all cases we have found the absolute lack

of sensitivity to the selection of d.

2. Finite sample performance when moment conditions fail

In this section, we consider the robust of proposed data-driven method proposed in the

presented paper. We use the same DPGs 1–16 as in Subsection 5.2 for p = 2, 5 but with

independent p-dimension t(4) distribution replacing the independent p-dimension normal

distribution for the ηt. The Assumptions 1 need an finite 4th moment for the εt, the

moment conditions fail if ηt is an i.i.d. t(4) distribution. The results are summarized in

Tables 4–5.
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From Tables 4–5, we have the following finds for the size study:

1) Generally speaking, we can get similar results for the data-driven MDDM-based

testing method for the independent t(4) distribution as the independent standard normal

distribution.

2) Specifically, for the homoscedasticity error (e.g. DGPs 1 and 9), the difference

between the independent t(4) and independent standard normal distribution is very little

and can be ignored for both of considered sample size n = 200, 1000. While for the het-

eroscedasticity error (e.g.DGPs 2 and 10), the size is a little larger for the independent

t(4) distribution than for the independent standard normal distribution. And this phe-

nomenon is particularly obviously for p = 5. We can get similar conclusion for the other

considered testing methods.

Meanwhile, we have the following findings for the power study:

1) Generally speaking, for all of the considered testing methods, we can get similar

tendency for the independent t(4) distribution as for the independent standard normal

distribution, e.g., the data-driven MDDM-based tests have satisfying power and have

better performance than the other considered testing methods and so on.

2) For p = 2, the difference can be ignored with replacing the normal distribution by

the t(4) distribution. While,for the most cases of p = 5, the power is much smaller for

the independent t(4) than for the independent standard normal distribution, especially

for the small sample size n = 200. And for n = 1000, this phenomenon is relieved. And

we can get similar conclusion for the other considered testing methods.
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Table 4: The size and power (×100) of all tests for DGPs 1–8 at level 5%.
DGP 1 DGP 2 DGP 3 DGP 4

Test
n 200 1000 200 1000 200 1000 200 1000

ÂT
F

wn 6.8 5.8 7.7 6.2 99.7 100 90.0 99.5
ÂT

S

wn 6.6 5.3 7.7 6.1 99.4 100 89.5 99.5
T̂F
sn(3) 6.3 6.0 7.5 6.2 99.8 100 82.3 99.6

T̂F
sn(6) 6.8 7.6 7.7 6.1 94.1 99.9 58.3 96.4

T̂F
sn(9) 6.2 6.2 8.0 6.4 80.4 99.8 54.3 90.9

T̂S
sn(3) 6.2 5.8 7.4 6.4 99.3 100 81.8 99.4

T̂S
sn(6) 6.6 7.2 7.3 5.9 91.4 99.9 58.0 96.2

T̂S
sn(9) 6.6 6.2 8.0 5.9 77.1 99.7 54.3 90.9

T̂F
wn(3) 6.6 7.7 8.1 6.9 99.4 100 78.8 99.4

T̂F
wn(6) 6.6 7.0 9.2 7.0 92.4 99.9 57.3 94.9

T̂F
wn(9) 6.7 5.7 8.2 7.0 77.5 99.8 52.7 89.0

T̂S
wn(3) 6.6 7.6 8.3 6.8 99.4 100 77.8 99.2

T̂S
wn(6) 6.7 6.9 8.4 6.7 91.3 99.9 56.5 94.7

T̂S
wn(9) 6.4 5.9 7.9 6.9 75.2 99.8 51.7 89.2
Q̂1(3) 5.6 6.0 9.1 10.8 100 100 100 100
Q̂1(6) 5.5 6.0 10.8 10.3 100 100 100 100
Q̂1(9) 6.4 4.9 10.7 9.6 100 100 99.9 100
Q̂2(3) 5.5 6.1 9.6 11.1 100 100 100 100
Q̂2(6) 5.3 6.2 11.9 10.7 100 100 100 100
Q̂2(9) 5.8 5.6 12.2 10.5 100 100 99.9 100
Q̂3(3) 3.2 6.1 9.3 10.9 100 100 100 100
Q̂3(6) 4.0 6.2 11.6 10.6 100 100 100 100
Q̂3(9) 3.8 5.3 11.8 10.1 100 100 99.9 100
L̂M(3) 4.9 5.7 9.8 10.6 100 100 100 100
L̂M(6) 4.2 3.9 9.1 19.0 100 100 100 100
L̂M(9) 3.2 5.1 7.3 8.6 100 100 100 100

DGP 5 DGP 6 DGP 7 DGP 8

Test
n 200 1000 200 1000 200 1000 200 1000

ÂT
F

wn 99.7 100 100 100 99.6 100 100 100
ÂT

S

wn 99.7 100 100 100 99.5 100 100 100
T̂F
sn(3) 99.7 100 100 100 97.8 100 83.2 100

T̂F
sn(6) 99.1 100 54.9 99.8 63.3 98.6 45.3 92.8

T̂F
sn(9) 96.5 100 27.2 72.9 41.1 93.3 31.7 74.7

T̂S
sn(3) 99.6 100 99.7 100 97.3 100 80.1 100

T̂S
sn(6) 98.8 100 39.8 96.6 63.6 98.7 43.0 91.2

T̂S
sn(9) 95.4 100 20.2 55.6 39.6 93.2 29.8 71.6

T̂F
wn(3) 99.8 100 100 100 99.2 100 96.6 100

T̂F
wn(6) 99.5 100 100 100 81.9 100 84.4 100

T̂F
wn(9) 98.2 100 100 100 66.3 99.7 71.7 99.7

T̂S
wn(3) 99.6 100 100 100 99.1 100 96.0 100

T̂S
wn(6) 99.4 100 100 100 81.4 100 82.0 100

T̂S
wn(9) 97.3 100 100 100 65.3 99.6 70.1 99.6
Q̂1(3) 98.2 100 5.0 4.8 62.1 93.9 21.7 39.9
Q̂1(6) 96.2 100 7.1 5.5 53.8 92.7 15.8 28.8
Q̂1(9) 95.2 100 7.0 4.2 45.8 87.0 14.5 25.9
Q̂2(3) 98.2 100 5.4 4.5 62.6 94.2 22.2 40.5
Q̂2(6) 96.7 100 7.8 5.7 56.7 93.1 17.3 29.7
Q̂2(9) 95.9 100 8.4 5.0 49.7 87.7 16.6 27.0
Q̂3(3) 98.2 100 5.3 4.5 62.6 94.2 22.2 40.0
Q̂3(6) 96.6 100 7.5 5.7 56.0 93.1 17.0 29.5
Q̂3(9) 95.9 100 7.8 4.8 49.2 97.6 16.1 26.6
L̂M(3) 99.1 100 2.2 2.3 63.0 97.0 13.8 29.9
L̂M(6) 97.9 100 3.6 2.1 46.7 90.6 12.6 23.2
L̂M(9) 96.7 100 2.8 2.1 34.5 83.7 9.0 21.8
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Table 5: The size and power (×100) of all tests for DGPs 9–16 at level 5%.
DGP 9 DGP 10 DGP 11 DGP 12

Test
n 200 1000 200 1000 200 1000 200 1000

ÂT
F

wn 9.8 7.6 8.7 7.3 73.9 99.6 56.7 87.8
ÂT

S

wn 8.2 6.7 8.6 7.4 42.9 98.4 27.9 43.0
T̂F
sn(3) 11.6 7.9 8.7 7.5 85.2 99.9 62.1 94.2

T̂F
sn(6) 11.2 9.1 8.5 8.1 72.0 99.0 50.7 80.6

T̂F
sn(9) 12.8 10.7 10.2 7.8 66.0 97.0 49.0 72.5

T̂S
sn(3) 9.7 6.8 8.3 7.4 64.6 98.0 47.2 75.0

T̂S
sn(6) 9.5 7.7 8.3 8.0 48.1 89.4 32.2 52.7

T̂S
sn(9) 9.7 9.2 9.7 7.7 66.0 77.8 29.9 42.3

T̂F
wn(3) 12.2 6.9 9.0 8.1 79.9 99.9 60.1 91.8

T̂F
wn(6) 10.8 7.3 9.6 7.7 65.3 97.5 49.0 74.9

T̂F
wn(9) 12.4 9.5 10.9 6.9 59.9 92.4 48.5 67.4

T̂S
wn(3) 10.8 6.8 8.8 7.7 63.8 98.0 45.8 78.6

T̂S
wn(6) 11.3 6.7 9.3 7.6 51.3 88.5 36.9 57.7

T̂S
wn(9) 11.8 7.8 10.8 6.5 44.7 80.4 37.9 48.4
Q̂1(3) 6.8 5.3 8.0 9.4 83.1 100 65.7 99.8
Q̂1(6) 5.2 5.1 8.7 11.4 69.2 99.9 51.4 95.6
Q̂1(9) 7.7 4.9 10.4 10.6 67.3 99.3 48.9 91.0
Q̂2(3) 7.4 5.5 9.1 9.9 84.7 100 68.7 99.8
Q̂2(6) 7.7 6.1 12.1 12.6 73.2 99.9 56.9 96.2
Q̂2(9) 12.2 6.6 16.2 11.8 75.0 99.5 59.7 92.1
Q̂3(3) 7.4 5.5 9.1 9.9 84.7 100 68.7 99.8
Q̂3(6) 7.3 6.0 11.9 12.5 73.0 99.9 56.5 96.3
Q̂3(9) 11.2 6.4 15.7 11.6 74.5 99.5 58.9 92.1
L̂M(3) 4.6 4.7 6.4 9.4 67.4 100 57.5 99.2
L̂M(6) 4.4 3.7 5.6 6.7 41.3 98.2 30.8 91.6
L̂M(9) 5.1 4.6 4.7 5.2 28.1 96.7 23.1 78.9

DGP 13 DGP 14 DGP 15 DGP 16

Test
n 200 1000 200 1000 200 1000 200 1000

ÂT
F

wn 100 100 100 100 46.2 89.2 55.3 89.8
ÂT

S

wn 99.7 100 100 100 21.6 41.3 34.6 58.5
T̂F
sn(3) 100 100 69.1 100 53.4 94.6 13.4 15.0

T̂F
sn(6) 99.9 100 28.6 60.7 40.8 80.5 13.7 11.6

T̂F
sn(9) 99.4 100 23.9 32.7 39.2 70.5 13.7 11.8

T̂S
sn(3) 99.8 100 35.7 96.0 35.9 79.0 12.0 11.1

T̂S
sn(6) 99.4 100 14.8 30.6 25.4 54.8 8.8 10.6

T̂S
sn(9) 96.9 100 13.8 17.3 21.9 44.8 10.3 11.0

T̂F
wn(3) 100 100 99.9 100 56.0 95.7 16.6 21.3

T̂F
wn(6) 99.9 100 94.2 100 42.0 82.8 16.3 17.0

T̂F
wn(9) 99.7 100 83.7 100 40.7 73.7 17.5 17.3

T̂S
wn(3) 99.8 100 95.7 100 41.0 83.9 13.8 16.9

T̂S
wn(6) 99.7 100 74.2 100 32.0 67.1 11.5 14.8

T̂S
wn(9) 98.9 100 63.7 99.5 31.4 58.4 13.5 12.6
Q̂1(3) 100 100 6.4 5.5 39.5 90.1 5.3 4.4
Q̂1(6) 99.7 100 6.4 6.4 30.5 76.5 6.2 4.9
Q̂1(9) 99.3 100 8.3 6.6 35.4 67.1 6.8 5.5
Q̂2(3) 100 100 7.3 5.8 41.9 90.7 6.5 4.7
Q̂2(6) 99.9 100 8.8 7.2 35.8 78.5 7.9 5.3
Q̂2(9) 99.6 100 12.9 8.3 40.6 71.6 11.8 7.1
Q̂3(3) 100 100 7.2 5.8 41.8 90.7 6.4 4.7
Q̂3(6) 99.9 100 8.1 7.0 35.2 78.5 7.7 5.2
Q̂3(9) 99.6 100 12.3 8.1 40.0 71.4 11.2 7.0
L̂M(3) 100 100 2.4 1.2 23.8 83.3 3.2 4.6
L̂M(6) 99.8 100 3.2 3.2 14.3 60.1 4.9 5.8
L̂M(9) 99.3 100 2.8 3.4 12.1 47.9 6.0 6.1
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3. Proofs

Proof of Lemma 1. Following Shao and Zhang (2014), we rewrite ||MDDMn(êt|Yt−j)||F

as

||MDDMn(êt|Yt−j)||F=

∥∥∥∥∥ 1cp
∫
Rp

Ĝj
n(s)Ĝj

n(s)
⋆

∥s∥1+p
ds

∥∥∥∥∥
F

, (3.3)

where

Ĝj
n(s) =

1

n

n∑
t=1

ête
i⟨s,Yt−j⟩ −

(
1

n

n∑
t=1

êt

)(
1

n

n∑
t=1

ei⟨s,Yt−j⟩

)
. (3.4)

Let Ω ⊂ Rp is a compact set. We know
√
n− jĜj

n(s) ⇒ χj(s) by the Theorem 3.1 in

Wang et al.(2022), where “⇒” denotes weak convergence in C and C represents the space

of continuous complex-valued random functions over Ω equipped with uniform topology.

By the continuous mapping theorem, we can get the conclusion of Lemma 1.

Proof of Theorem 1. Define

MBIC = min{M : 1 ≤ M ≤ d;LBIC,M ≥ LBIC,h, h = 1, 2, · · · , d},

where

LBIC,M = n||MDDMn(êt|Yt−M)||F− log(3p) ·M log n.

Under the null hypothesis and the Assumptions 1-5, we need to prove that,

lim
n→∞

P (M∗ = MBIC) = 1, (3.5)

and that

lim
n→∞

P (MBIC = 1) = 1. (3.6)
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To proof (3.5), we define the following events

An(k) =

{
max
1≤j≤d

n||MDDMn(êt|Yt−j)||F> log(3p)k
√

log n

}
.

By Lamma 1, we can get max
1≤j≤d

n||MDDMn(êt|Yt−j)||F= Op(1), it follows that

P (An(k)) = P

(
max
1≤j≤d

n||MDDMn(êt|Yt−j)||F> log(3p)k
√
log n

)
= 0, as n → ∞.

Then,

P ((An(k))
c) = 1, as n → ∞,

where (An(k))
c denotes the complementary set of An(k). By the definition of π(M,n, k),

we know that (3.5) holds.

In the following, we will prove (3.6). Notice that

P (MBIC = 1) = 1−
d∑

j=2

P (MBIC = j) ≥ 1−
d∑

j=2

P (LBIC,j ≥ LBIC,1). (3.7)

Now, for 1 ≤ j ≤ d,

P (LBIC,j ≥ LBIC,1) = P (n||MDDMn(êt|Yt−j)||F− log(3p)(j log n)

≥ n||MDDMn(êt|Yt−1)||F− log(3p)(log n))

≤ P (n||MDDMn(êt|Yt−j)||F≥ (j − 1) log(3p) log n)

≤ P

(
n

j∑
i=1

||MDDMn(êt|Yt−i)||F≥ (j − 1) log(3p) log n

)

≤
j∑

i=1

P

(
n||MDDMn(êt|Yt−i)||F≥

j − 1

j
log(3p) log n

)
.

Since under the null max
1≤i≤d

n||MDDMn(êt|Yt−i)||F= Op(1), it is prove that

P (n||MDDMn(êt|Yt−i)||F≥ (j − 1)/j · log(3p) log n) → 0, as n → ∞.
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Therefore, (3.6) holds, and Theorem 1 follows from an application of the result of Lemma

1.

Proof of Theorem 2. Similar as prove the Theorem 1, we define

MAIC = min{M : 1 ≤ M ≤ d;LAIC,M ≥ LAIC,h, h = 1, 2, · · · , d},

where

LAIC,M = n||MDDMn(êt|Yt−M)||F− log(3p) · 2M.

Under the alternative HK
1 and the conditions for Theorem 2 hold, we will prove that

lim
n→∞

P (M∗ = MAIC) = 1, (3.8)

and that

P (MAIC ≥ K) → 1. (3.9)

We define the event

Bn(k) =

{
max
1≤i≤d

n||MDDMn(êt|Yt−i)||F< log(3p)k
√
log n

}
.

Then, since K ≤ d,

P (Bn(k)) ≤ P
(
n||MDDMn(êt|Yt−K)||F< log(3p)k

√
log n

)
→ 0.

By the theorem 3.2 of Wang et al.(2022) and the alternative HK
1 , we know that,

||MDDMn(êt|Yt−K)||F→p ||MDDM(εt|Yt−K)||F ̸= 0.

Then, by the definition of π(M,n, k),we know that (3.8) holds.
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Now, for k∗ = 1, · · · , K − 1,

P (MAIC = k∗) ≤ P (LAIC,k∗ ≥ LAIC,K)

= P (n||MDDMn(êt|Yt−k∗)||F− log(3p) · 2k∗

≥ n||MDDMn(êt|Yt−K)||F− log(3p) · 2K)

= P (n||MDDMn(êt|Yt−k∗)||F

≥ 2(k∗ −K) log(3p) + n||MDDMn(êt|Yt−K)||F ) → 0.

Since

||MDDMn(êt|Yt−k∗)||F→ 0 and ||MDDMn(êt|Yt−K)||F→ ||MDDM(εt|Yt−K)||F ̸= 0.

Hence, (3.9) holds. Therefore, for each C > 0,

P (T̂ F
wn(M

∗) ≤ C) = P (T̂ F
wn(M

∗) ≤ C,M ∗ ≥ K) + o(1)

≤ P ((n−K)||MDDMn(êt|Yt−K)||F≤ C) + o(1)

= o(1).

Then, AT̂ F
wn → ∞ as n → ∞, and the test statistic is consistent against HK

1 .

Proof of Lemma 2. Similar to (3.3), we have

∥MDDMn(ê
∗∗
t |Yt−j)∥F=

∥∥∥∥∥ 1cp
∫
Rp

Ĝj∗
n (s)Ĝj∗

n (s)⋆

∥s∥1+p
ds

∥∥∥∥∥
F

, (3.10)

where Ĝj∗
n (s) is defined in the same way as Ĝj

n(s) in (3.4) with ê∗∗t replaced by ê∗t . By the

Theorem 4.1 in Wang et al. (2022), we have

√
nĜj∗

n (s) ⇒ χj
∗(s) in probability.
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By the Corollary 4.1 in Wang et al. (2022), we have

(n− j)∥MDDMn(ê
∗∗
t |Yt−j)∥F→d

∥∥∥∥ 1cp
∫
Rk

χj
∗(s)χ

j
∗(s)

⋆

∥s∥1+p
ds

∥∥∥∥
F

in probability.

Therefore,

ÂT
F∗
wn = T̂ F∗

wn (M
∗)

= n

M∗∑
j=1

ωj∥MDDMn(ê
∗∗
t |Yt−j)∥F

=
M∗∑
j=1

(n− j)∥MDDMn(ê
∗∗
t |Yt−j)∥F

→d

M∗∑
j=1

∥∥∥∥ 1cp
∫
Rp

χj
∗(s)χ

j
∗(s)

⋆

∥s∥1+p
ds

∥∥∥∥
F

in probability.

Hence, Lemma 2 holds.
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