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Supplementary Section A

We will first present the simulation results of the estimations under the cases
where ¢; = co = 0,0.5 and relative pointwise bias of slope functions under
three cases. We also present the RMSEs of the estimated loadings Xl and

factors F;, | = 1,2, which are defined as RUSE(X;) = (% Zle(% Zfil(S\Z—
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()\11,...,)\1]\[)7 and Fl = (Fll,...,FlT)T.
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Figure S1: The estimate for the slope functions B(s) = (81(s), S2(s))” using the func-
tional linear model with latent factors (FLiF) and the conventional functional linear
model (FLM) in the cases ¢; = ¢o = 0 and ¢; = ¢ = 0.5 obtained from one Monte Carlo
run with the sample sizes N = 100 and the number of observations T = 100, where ¢;
and co are two constants indicating the correlation of scalar and functional covariates
with the hiding factors, respectively.
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RMSE of Estimated Loadings A; and Factors F

Sample Size RMSE

N T A1 Ao F, F,
Cl1 = Cy = 0

50 50 0.275 0.258 0.195 0.216

50 100 0.238 0.224 0.154 0.163

100 100 0.172 0.193 0.128 0.119
cp=c3=0.5

50 50 0.306 0.295 0.252 0.261

50 100 0.263 0.244 0.214 0.235

100 100 0.224 0.218 0.175 0.182
cp=cy=1

50 50 0.357 0.368 0.302 0.282

50 100 0.315 0.309 0.253 0.247

100 100 0.269 0.251 0.212 0.229

Table S1: Root Mean Squared Errors (RMSE) of the estimates for factors F; and the
corresponding loadings A;, [ = 1,2, when varying the sample sizes N = 50,100 and the
number of observations T' = 50,100, where ¢; and ¢y are two constants indicating the
correlation of scalar and functional covariates with the hiding factors, respectively.

Supplementary Section B

When the common factors in our proposed model are known, the func-
tional linear model with latent factors becomes the functional linear mixed
model regardless of whether the factor loading is a one-dimensional or multi-
dimensional vector. To compare these two models, in this section, we com-
pare the proposed functional linear model with latent factors (FLiF) model
with the conventional functional linear mixed model (FLMM).

The data are simulated based on the model Y;; = a7 Wit—l—fol B (s)Xt(s)ds+

ATFi+ey,i=1,...,N,and t =1,...,T, with the sample size N = 50 and
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the number of observations per subject T' = 50, 100, where we set the fac-
tor structure as A; ~ N(0,I5) and Fy ~ N(0,0.5I5). The scalar covariates
W,y is set as (Wi + c1A] Fy, W)™, where ¢ is a constant indicating the
correlation of scalar covariates with the hidden factors, and Wy, ~ Exp(2),
Waye ~ U(0,1). The functional predictors X;e(-) = (Xii(+), Xair(+))™ is set
as X1i(s) = 14+co-A] Fy+014 + S, Xoit(8) = o+ A Fy+0d9;-8in(27s), where ¢y
is another constant representing the correlation of functional covariates with
the two hidden factors, 014 ~ U(—1,1) and d9;; ~ N(0,2). We set the scalar
coefficient @ = (1,0.5)7, the functional coefficient B(-) = (B1(-), f2(+))" to
be B1(s) =2+ 3s + €%, Ba(s) = 5+ 3sin(27s) + 2cos(27s). The regression
error &;; are generated ¢.7.d from the normal distribution N (0, 1).

From the simulated data, we then estimate the proposed functional
linear model with latent factors (FLiF) model, which assumes that the
factors are unknown. We also estimate the conventional functional linear
mixed model (FLMM): Y;; = a7 Wig+ [ 87(s) Xis(s)ds+A]; Fi+€ir, which
assumes the first factor F}; is observed but the second factor Fy, is missing.
This scenario mimics the problem of unobserved factors happening in many
applications.

We use the relative root mean integrated squared errors (Re-RMISE) to

measure the accuracy of the estimated functional coefficients under the two



Functional Linear Models with Latent Factors

different models, which is defined as Re-RMISE;, = <% S s {{Bf’(s) -

2\ 1/2
Bl(s)}/ﬁl(s)] ds) 1 = 1,2, where 3(s) is the estimate of §(s) in the

b-th simulation replicate, b=1,..., B.

Average Re-RMISEs (%) for the estimated functional coefficient 51 (s)

Sample Size c1=c =0 c1=c =05 ci=c =1
N T FLMM FLiF FLMM FLiF FLMM FLiF
50 50 7.9 7.3 8.3 7.6 8.8 8.2
50 100 7.4 6.7 7.8 7.2 8.3 7.5
100 100 6.7 6.1 7.5 6.6 7.9 7.1

Table S2: The average of the relative root mean integrated squared errors (Re-RMISEs)
(%) for the estimated functional coefficient Bl(s) over 100 simulation replicates for the
proposed functional linear model with latent factors (FLiF) model and the functional
linear mixed model (FLMM) when varying the sample sizes N = 50, 100 and the number
of observations T' = 50, 100, where ¢; and ¢ are two constants indicating the correlation
of scalar and functional covariates with the hidden factors.

Table shows the average Re-RMISEs of the estimated functional
coefficient Bl(s) of two models under three different correlation settings. It
shows that the estimates in the FLiF model have smaller Re-RMISE than
those in the functional linear mixed model in almost all settings. Therefore,
the performance of the proposed FLiF model is better than the FLMM
model. This result is not surprising because the FLMM model assumes the
first factor known but misses the second factor. Although the FLiF model
requires identification and estimation of hidden factors, the FLiF model is

more flexible because it can identify all hidden factors from data.
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fd nvg fin edu ener med eng elec consu soft

food 0.87 0.92 0.03 0.79 0.98 0.81 0.12 0.02 0.96
navigation 0.93 0.02 0.86 0.82 0.73 0.45 0.12 0.91
finance 6e-3 0.82 0.63 0.74 0.31 0.07 0.83
education 0.18 4e-5 0.69 0.43 0.85 8e-3
energy 0.68 0.81 0.76 0.43 0.82
medicine 0.65 0.02 3e-3 0.93
engineering 0.80 0.65 0.74
electricity 0.84 0.28
consumption 0.06
software

Table S3: P-value of multiple tests for loadings of ten sectors.

Supplementary Section C

Stock Price Analysis

An analysis of variance (ANOVA) test was conducted to determine whether
the factor loadings of ten sectors differ significantly. The p-value of the
ANOVA test is 1.197e-05, indicating significant differences in factor load-
ings among the ten sectors. To further identify which pairs of sectors differ
significantly, we performed multiple tests on the factor loadings. Table
lists the p-values of the multiple test results for each pair of sectors. The
table shows significant differences in factor loadings between the following
pairs: ’education’ and 'medicine’ with a p-value of 4e-5, 'food’ and ’con-
sumption’ with a p-value of 0.02, ’education’ and 'navigation’ with a p-value
of 0.02, 'medicine’ and ’electricity’ with a p-value of 0.02, ’education’ and

'finance’ with a p-value of 6e-3, 'medicine’ and 'consumption’ with a p-value
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Re-RMSE for the estimated response Y

Day FLM FLiF
70 0.076 0.068
71 0.081 0.072
72 0.086 0.075

Table S4: Relative Root Mean Square Error (Re-RMSE) for the estimated response
variable Y of day 70-72 using the proposed functional linear model with latent factors
(FLiF) model and the conventional panel data model in air pollution analysis.

of 3e-3, and ’software’ and ’education’ with a p-value of 8e-3.

Air Pollution Analysis

To assess whether latent factors improve prediction accuracy, we selected
data from the first 69 days and estimated the proposed FLiF model. We
then used this model to predict response variables for the subsequent three
days. Simultaneously, we made the same predictions using the conventional
functional linear model without latent factors. We measured the prediction
performance of both models using the relative root mean square errors (Re-
RMSEs). Table [S4] presents the Re-RMSEs for the predicted responses Y
on days 70-72 using both the FLiF and FLM models. The results indi-
cate that the Re-RMSEs for the predicted responses are reduced by 10.5%,
11.1%, and 12.8% on days 70, 71, and 72, respectively, when using the
FLiF model in comparison with the FLM model. These findings suggest

that incorporating hidden factors can enhance prediction accuracy.
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scalar and functional covariates with the hiding factors, respectively.

* FLIF
-« = FLM

The relative point-wise biases of the estimated slope functions f3;(s) (left
panel) and B (s) (right panel) using the functional linear model with latent factors (FLiF)
and the conventional functional linear model (FLM) in three cases ¢; = ¢ = 0,0.5,1
obtained from 200 Monte Carlo runs with the sample sizes N = 100 and the number of
observations T" = 100, where ¢; and ¢y are two constants indicating the correlation of
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Supplementary Section D

We will present the proof of theoretical results in this section. Some lemmas
and auxiliary theories needed will also be given.
We use the following facts throughout the paper: [|F|| = O,(T'?),

1Zi]| = O,(T"?) for all i, 33,1 [| Zil|*/NT = O,(1), and T~'2||F|| = /.
Lemma 1. Under assumptions (A1)~ (A6), we have

supl |57 ZZTMFaH — 0,(1).
supll 57 ZATFTMFaH — 0,(1).

Su10|| 25 — Pr,)e;l| = 0,(1).

Theorem 1

Proof. Assume ag = 0 and B,(-) =0, 7 = 1,...,q, namely, 8y = 0, then
Yi = FQAZ + g;.

In the estimation procedure, the objective function is written as

N
QO,F)=> (Y, ~ Z,0) Mp(Y; — Z:6) + 6"Gqb.

i=1
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Define the centered objective function of the above equation as

Qur(0.F) = [ S-(¥. - 20y Mr (Y, - 2,0)

N
1 i 1
+ ﬁ 2;0 Gge — ﬁ(; EiMFosi)

where

N N
3 1 2
0.F)=——> 0°Z]MpZi— =Y 0" Z]MpFX
Qnr(0, F) NT & MrpZi6 NT & i MrpFoX;

u [FSMFFO ATA] 1

T N + NTH G0

N N N
2 T T 2 T T 1 T
Q€ :W i_gl)\iFoMFEi—ﬁ i_gl 7] ZZMFETl—i—W i_glsi(PFO —PF)Ei

Proof of (a) and (b)
By Lemma 1, Qnr(8, F) = Qnr(0, F) + 0,(1). For any invertible H,
Qnr (60, FoH) = 0.

Next, show that for any (0, F) # (6o, FoH) = (0, FoH), Qn1(6, F) >

ATA

Define A = = SN ZTM¢Z;, B = v

N T
®ITa C: ﬁZi:IAi ®

MpZ,;, ¢ =vec(MpFy).
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Then,

Qnr(0,F)=60"A0 —20°C" ¢ + "By + —efc;ge

NT

—97(A+ WGG —C™B'C)0+ (¢" — 6"C"B YB(p — B~'CO)
T 1 T

= 0"(D(F) + 5G)0 + 1" Bn

where n = ¢ — B~'C6.

By Assumption 2, D(F') is positive definite, B is positive definite and
Gy is semipositive definite by definition. If either @ # 08y =0 or F # FyH ,
Q ~7(0, F) > 0, indicating that Q ~7(0, F) achieves its unique minimum at
(60, FoH) = (0, FyH). Since Bj(s) =47b(s), j =1,...,q, therefore, Bj(s)
is uniquely defined with probability tending to one.

Furthermore,for any ||a|| > ¢ > 0, which implies that ||0]| = ||(a”,y7)7|| >
c >0, QNT(O,F) > Apc® > 0, where \p is the minimum eigenvalue of
D(F'). Hence, & is consistent for o

Proof of (c)

The proof of part (c) is similar to that of Proposition 1 in Bai| (2009) ,
and we do not present the detailed proof.

By definition, the centered objective function satisfies that Q7 (6o, Fo) =

0, and for estimation (9, F), it is obvious that QNT(é F)
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However, since
QNT<97 F) - QNT(éa F) + 0p<]-)7

and Qnr(0, F) > 0, Qnr(0, F) = 0,(1).
From the proof of part (a), 0 is consistent for 6y, combining with the

equation of Qn7 (0, F), it is easy to obtain that

FiMF, A"A
I‘ .

t T N | = 0p(1).
FM ;. F ATA
Since OTFO Z O, T > O, then
FIM.F, FiF, F,P,F, F)F, F;F F F, )
—_— — g — . = 0
T T T T T T P
F Py F
which also implies that TFO 5T .
. FiFy . oo oF
By Assumption 3, is invertible, indicating that is invert-
ible.
Then,
Py, F
|Pj — Pr,||> = tr(Ps — Pp,)? = 2te(I, — TFO ).

Therefore, ||Pj — Pr,|| 5o. O
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For ease of notation, define D = {(W, Xy, Ni, fi),i = 1,...,N,t =
1,...,T}, onr = min[V/N,VT), (tp = qL72%, ¢ = min[6y2, L72]. Mean-
while, we denote a,, < b, as if a,, and b, are both positive, and both a, /b,

and b, /a, are bounded for all n.

Lemma 2. Assume that assumptions (A1)~ (A6) hold, then

(1) For any r, 1 < r < ro, Hy is an ro X r matriz, then V(r, F,) —
V(r, FoH,) = O,(0xy)-

(2) For each r with 1 < r < 1o, and the matric H, is defined in (1),
there assist a ¢, > 0, such that plim infx 7 [V (r, FoH,)—V (19, Fy)] = ¢,.

~

(3) For any fized r with v > 1o, V(r, F,) = V(ro, Fy,) = O,(03%) .

Theorem 2

Proof. Since BIC(r) =InV(r) + pr for any given r, then

BIC(r) — BIC(ro) = In[V(r)/V (ro)] + p(r — r0).

We consider two cases as (1): 1 <r < g, and (2): ro <7 < T'pog-

For case (1) 1 < r < rg, from Lemma (2)), we can get that V (r)/V (rg) >
1+¢p for some ¢y > 0 with large probability, and thus In[V (1) /V (r¢)] > €y/2.
Combining with the fact that p(r — rg) — 0 where p is generally assumed

to tend to zero at an appropriate rate for accurately determining the factor
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numbers, we have that BIC(r) — BIC(r¢) > €/2 — p(ro — 1) > €/3 with

large probability, then it is clear that

P(BIC(r) — BIC(rg) < 0) » 0, N,T — co.

For case (2) 190 < 7 < 7Tpae, from Lemma , it is obvious that

V(r)/V(rg) =1+ O0,(6y7), thus In[V () /V (r¢)] = O,(d53). Then

P(BIC(r) — BIC(rg) < 0) = P(In[V (r)/V (ro)] + p(r — ry) < 0)

< P(Op(0y7) +p<0)—0, N,T— oo.

Therefore, P(BIC(r) — BIC(ry) > 0) — 1, namely, BIC(r) achieves

its minimum only at r = ro for any r in 1 <r < rpe as N, T — oo.

From definition, we can rewrite @ — 8 = , Z; = (W, By),

z; = (WI.B).

Lemma 3. Assume that assumptions (A1)~ (A6) hold, and denote H =
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(A]:,A)(F;F)Vj}lT. Then, we have

O T E-FH[ =0, | |+ 0u0xh) + Op(C2) + 0,().
y—5

@ TORE-FH) =0, | | 1)+ 0,6 + Op(c2) + 0,(6).
y-5

@) TORE-FH) =0, | | 1)+ 0,65 + Op(CHE) + Oc).
5—5

) a—a
(4) T'Zy(F - FH)=0,(| ) + O,(65%) + Oy (2 + O,(s) forallk=1,. ..,

>
14

5) WYz E-FE) =0T | 1)+ 0,63 + 0, + 0,60)

Y-

Lemma 4. Assume that assumptions (A1)~ (A6) hold, and denote H =

(47)(

FTF\y/—1
=)V yp. Then, we have

N.
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. (8%
(1) T 'ep(F— FH) =T "0, 1)+ Op(057)

+ O, (T2 +0,() forallk=1,...,N.

1N 1/2 a-o 1/2 a-o
(2) )Y el(F — FH) =T7120,(| 1)+ N"Y20,(|

k=1 Y- Y-
+ Op(NY2) 4 0, (532) + Op(C1') + O(5).

N ~

ka (F—FH) = (NT)"0,(]| 1)+ Op(NT)

Y-

+ N720,(652) + N720,(¢2) + N20,(<).

From Assumption (A6) and Corollary 6.21 in |(Chumaker| (1981)), there

exists a constant M such that

Z%lbz + ce;(s),

sup |ee;(s)| < ML j=1,...,q. (S0.1)
seS

Let 4 = (1,...,%)" with 4; = (Fj1,...,%1)7, € = (ea,...,er)”

with e; = 25:1 J eXitj(s)ej(s)ds. Then, Y, = W,oe + B4 + FA; +¢&; +
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e, i=1,...,N. Denote 8 = (e, ¥)7, and the model can be written as

Y

Theorem 3

A —1
Proof. Since 0 = (SN, ZIM;Z,+ Go) SN, ZIM Y, then

. |a-a N X ]
6—6 = - (Z Z'M;Z; + GQ) (Z Z{MF(F)\i—l—ei—i—ei)—GgO) :
»-Ay _ 5/ =1 =1

or equivalently,

N ) _ N WZT 0
(Z ZTM 7, + G9> -0=> M W,B)+| "

i=1 =1 \ B] Ggs

(S0.2)
W’ N o (wr N (w? 0

:Z MFFAZ—i_Z MF€Z+Z Mj;‘el— PP

i=1 \ BT =1\ B} =1\ Bj Gs

For the third term, from assumptions (A3)~(A5) and (S0.1|), using the

similar proofs to Lemma A.7 in [Huang et al.| (2004)), and Lemmas 2 and 3

D
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in Appendix, it is easy to obtain

T

N
1 Wi
WHZ M jeil|* = Op(Crn/L).
= | g

For the first term of the right hand of(S0.2)), since M FF = 0, then
M ,F = M;(F — FH™"). Meanwhile, for the last term, under the as-
sumption (A7) of the smoothing parameter &, we can obtain that it is 0,(1).

1 . R R R R
From |~ SN (Y, —Z0)(Y,—Z0)|F=FVypandY,— Z,0 =
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Zz(é — é) + F\; + €; + e;, we obtain the following expansion as

R 1 XN a— o
=1 ¥ -4
a— o R
¥ -4
1 a— o a— o wil .
= W, B,
N WiBo|
=1 ¥ Y= B;]
N .
1 a—o .
— B MNFF
+NTZ(WZ Z) . ~ ()
=1 Y=
N A~ N - ~ T
1 a— o . 1 a—ao Wi
S W, B, TF 4+ — FX;
w7 2 S N7 2 o ]
i=1 gle i=1 Y= B;
N - ~ T N
1 a—o W 1
— i P4 — F\e F
3l D B R R D Dt
=1 fy_fy BZ =1
T N
— TFF+ — F
+ NT ;&AZ + ;ezsl
N Y — O N a— o W’
—= > (W, B, e
+ 77 2L s P+ 57D e o
= Y= = Y= B
| X N
— Fl\e F + — TFTF
+ NT ; e F+ T ; e
N N N

1 - 1 S 1 i
+ﬁ;€ieiF+ﬁ;eisiF+ﬁ;eieiF

N
1 ~
S FANFTF
TNT LT

:ZI1—|—...+I16,
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FANF'F = F(4A)- 1 EE

1
where I16 = W Zz]il

Then, it is easy to get

~

F-FH'=—(I,+...+15G,

where H = (A]TVA)(F;F)‘/]—V}f7 and G = (F;F)—l(A]:[A)—ll
Furthermore,
N T N T
— M F\ = — M (F—-FH ")\
NT 4 d NT 2 2l )
=1 BZ i=1 B;r
N T
:_WZ M (I 4 ...+ 115G
=1\ BT
=Ji+...+Ji5,

where J; ~ J15 are implicitly defined via I ~ I5 respectively.
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For J,, we have

N T
1 Wi
i=1 \ BT
N T N ~ ~ ~ ~ -
1 Wz 1 a—Q a—Q k ~
— Mp|—==> (W, By) F|GX
x| | Mol L Fles
=1\ B} k=1 Y-7) \v—° B,
= op(| 1)
Y-
For J,, we have
R
Joy = “NT : MF<I2)G>\1'
i=1 B:
N T N & _ A -
1 W, 1 G-a| 1V FF | AA_
— v || M| v B wE B (5
=1 B;r k=1 ,.Ay_,?

i
£
JL
oy
3

=2
I

N

Il
|
WE
WE
<
K
e
5

@
I
A
£
Il
MR
3
>
|
N

AT )71)\1‘.

.
where a;; = Aj(
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For J3, we have

N T
1 Wi
=1 BZ’
N T N A A
1 W, 1 a—«o )
=\ By v 5
Y (W a—a|gf
S 53 31 Igll EYAUOR:S Fax
i=1 k=1 B: »-A)/_ﬁ/

By Lemma 3 and some calculation, we can have
T 'elF =T 'elFH + T ‘e (F — FH)
=0,(T1) +T7120,(]| )
+ Opl07) + Op(T 721 5) + Op(T26).

Combining with the similar argument as the proof of Lemma 2, it is easy

A ~

to get that J3 = o,(]| ).
-5
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Similarly, for J5, we have

N T
1 Wi
i=1 BZ’
N ™ N AN A
1 W 1 a— o« .
i=t \ BT k=1 A -5
= op(| 11)-
Y-
For J,4, we have
1 wi
Jy= “NT MF(I4)G/\1'
i=1 BZ’
N ™ N A=
1 w; 1 - .
i=1 | BT k=1 4 —5
N N T A= «
1 i a—« (Wk Bk) F
i=1 k=1 BZ— 2/_5/

Since M, F = M ;(F — FH™'), using Lemma 3, we can get that J, =

O
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For Jg, we have

N T
1 w;
i=1 BZ—
N T N
1 Wi 1 .
i=1 \ BT k=1
N (W N of
1 % ~ 1 el F
=—— Mp(F-FH ") =) A\ A

Here, by Lemma 3,

lon, eF 1 & [
k _ T T(T
k=1 k=1 k=1
=0,((NT)™?) + Op(N™) + N0, (657)

+ N7YV20,(¢5) + N7V20,(¢),

and

S| [ MeE-FE =0, |7 | 040,650+ 0, (R O6).



Functional Linear Models with Latent Factors

Since G does not depend on ¢ and ||G|| = O,(1), then

1)+ 0653 + On(c2) + 0p<g>]

: {Op((NT)‘”Z) +Op(N71) + N7V20,(337)

+ N7Y20,(¢5) + N7V 20p(<>]

~ ~

(81
=op(| 1)+ 0p(NT)™2) + N7 0y(dy7) + N™20, (03 7)
Y-

+ N0, (G + N7Y20,(Cop) + N710,(5) + N7Y20,(2).

For J;, we have

N T
1 W
Jr =< ;21: . M ;. (I;)G\;
N T N -
1 w; 1 . F'F_ AA_,

where a;, = AJ(4A4) 71,
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For Jg, we have

1 | Wi 1 | WE Yoo
i=1 BZ’ =1 B: k=1
N N T N N T
1 Wi 1 W . .
— T ON2T2 Z Z ]wFOQITFGAZ N2T2 Z Z M j(exef, — o’ IT)FGA;
i=1 k=1 \ BT i=1 k=1 \ BT
XY — &
=M 1+ O,((TVN) ™) + (NT) /2 | O,(]| 1) + O0p(0n1) + Op(C15) + Op(s™7?)
Y7
2
+ N0, 1)+ 04 (6xr) +O0p(C1p) + Onl() |
Y=
where Myt = —ﬁ vazl Z]kvzl i MFU2ITFGAi.
B;
a—a
For Jy and Jyy which depend on , it is easy to prove that
5 -5
Y —
are bounded by O, (|| 1)
77

For J1, using Lemma 3 and the equation ||elF'/T|| = ||ex||\/7/VT =
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1 KW 1 L[ Wh 1 & A
Ju = —WZ M i (I11)GX; = _WZ MF(WZF)%GZF>G)‘1‘
i=1 \ BT i=1 \ BT k=1
N T N
1 Wi . 1 N
== M(F — FH ") (=Y AepF)GX;
NT =\ B NT —
1/2 - & 9 1/2
= 0,(¢rp) | On(ll 1) + Op(0n7) + Op(Crp) + Op(s)
Y=
For J19, we have
N T
1 W,
Ji2 =~ > M ;,(I2)G)
i=1 BZ’
N T N -
1 w; 1 . FF_,  ATA
- o TFTF —1 —1
i=1 BZ’ k=1
N N T
1 Wi
S 3) DY gl Y
i=1 k=1 BZT

= O,(LYV2¢/3) + O, (L7Y%),

where a; = A[(44)71N,.
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1 A
Similarly, we can get that J13 = — 37 Zi\; MF(W Z]kvzl ere F)GA;
B

7

is bounded by (NT)~Y20,(¢,/2) + (NT)~Y20,(s).

For J14, we have

N T N T N
1 w; 1 Wi 1 .
Jiy=— NT ~\ 5 M ;(I4)GX; = “NT 121 - MF(W 21 ere F)GA;

N N -
B i e, FFH 1 i e(F—FH)
=~ 7 Z S M per(~—)GA: = 1o Z_: > M e ()G

T7120,(¢) + T720,(<)

O,(CH3 | T-120 “ 0) O, (T2 + 0,(T~/?
+ Op(Crp) p(I] 1) + Op(657) + Oy n) + Op(T75)

Y=

For J5, since M . F' = 0, we have

N T
1 W,
Ji5 = ——NT 521 - MF<Il5)G)‘Z
N T N
1 Wi 1 .
= _W ZE 1 BT MF(W kE:1 ekekF)G)\,



Functional Linear Models with Latent Factors

Summarizing the results and we can obtain the following equation

1 N WZ a— & oy
= MpFXi = Js+ J7+ Myr + o,(]] 1) + O, ((NT)~'/?)

=\ B -7

+O0,((TVN)™Y) + NY20,(632) + O, (T Y2¢15) + O, (L

+ N7V20,(5) + Oy (L7%).

Then,
N T N — &
1 W, 1 a—«
— M. B4 1 _
NTZ T #(Wi Bi) + = Go + 0p(1) o J,
=t \ Bj Y=
N WwWT A~
1 i 1 a—«
— WZ ) M (W, Bi)+ﬁag+op(1) o —J
=\ B; -
L« | Wi x-a ~1/2
— || e+ Tr M+ o) 1)+ Op((NT) 1)
=\ B -4

+ Op((TVN)™) + N0, (337) + Op(T2¢ ) + Op(L77¢1)

+ N71/2Op(§) + Op(L71/2g)-

Multiplying (D(F) + w7Go) ™t on cach side of the equation, where

—1/21/2
LD

)
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1 N WZ- 1 N N WZ
D(F) = 57 2. Mp(Wi Bi) =527 2im1 2kt Mp(Wy, By)-
BT B?
ATAN !
AZ( N ) Ak, leads to
o — ) I L N wW? W
) ) = (LD(F) + WGQ) ﬁ Z ) 13—‘ N Z Ak i j;v €;
Y- =\ \ B] B;,
+ (LD(F) L La )7L
NT 0 UNT
+ (LD(F) + ﬁc;g) L(Op(LINT)2) + Op(LITVN) ) + N™20,(Léy3) )
+(LD(F) + WGe) H(OWLT 2GR + O (LY2CE) + LN 720, (6) + 0,(L1%) )
where
N N T
1 W, F'F _, AA
vt = = 57 20 M~ R)F(—) " (57) " Ml anskt
i=1 k=1 BZ—
N N [WwWT
1 i S
~ N Dl M oI FGX,
i=1 k=1 BzT

and R; = % Zszl aix(W; B;).

By Lemma 2 and 3, it can be shown that D(F) = D(F) + 0,(1). In

addition, by Lemma 1 and Lemma A.6 in Bai (2009), it is easy to verify
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that vyr = op(1). By Lemma 2, we have

N w?

(D(F) + —Gy) ' >

)" i
NT NS B

N

1

MF—N E ik MF E; :Op(Lz/NT)
k=1 B;;

uniformly for F'. Therefore, under the assumptions, we have
:Op(L(NT)_l/Q) + Op(L/T) + Op(L/N)
+ Op(LT 1) + Op(LY2¢1 ) + Oy (L1V5%).

Since f(s) = 32y Aubi(s) and Bi(s) = 30, Yubi(s), from (S0.1), we

can get that
18,0) = 8O, < 213,0) = BOIR, + ML
and
1350) = B0l = IH, =l =< L7, = ,0P, G=1 0

where ||v,|[% = Y] Av;, and A = (ayy)rxL is a matrix with entries a,, =
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[ by N s)ds. Then, it is easy to obtain that

18() = BCIZ, = ZH% Y,l5 = LA =411

7j=1

Therefore, under the assumption that the error is identically and inde-
pendent distributed, we can get the convergence rate of both & and 5;(-)

as
& — al[?, =O,(L3(NT)™ + L1 1 L¢2)
and

=0,(LINT) '+ L™ +¢%), j=1,...,q

Bi() — ﬁ]()

Theorem 4

Proof. Under some appropriate relative rate for 7"and N and some assump-

tions, we have

-1 N
- v 1 .
6-0-| (NTZV +—G’9> W;Visﬂrop(l),
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where 0 is defined before.
As N, T — oo simultaneously, the conditional variance matrix ®4 =
Var(0|D) of 6 conditioning on D is the limit in probability of
N N N
;=) _VIVi+Go) 'O _*VIV)D VIVi+Ge) .
i=1 i=1 i=1

The results from the proof of Theorem 3 indicates the convergency of
both & — & and 4 — 4. Since the proof of the asymptotic property of
these two parts are similar, we just take the second part as example. Let
¥ = E(¥|D), ®5 = Var(¥|D), from the Theorem 4.1 in Huang| (2003), and
invoking Lemma A.8 in Huang et al. (2004), we obtain that, for any vector

a with dimension ¢L and whose components are not all zero,
(a”®,a) " a" (5 —7) 5 N(0,1).

Then, any ¢-vector w whose components are not all zero, letting w =

B(s)"a, we have
(w™Var(B(s)|D)w) 2w (B(s) — B(s)) & N(0, 1),

which yields the asymptotic result.
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Theorem 5

Proof. From the definition in the article, 3(s) = B(s)¥, ¥ = 07@ where

B(s) =b"(s) ® I,,, then

B(s) — B(s) = B(s)(¥ — ) + B(s)7y — B(s).

From (S0.1)), we can get that ||B(s)y — B(s)|| = O,( é/;)
Meanwhile, from simple calculation, we can get that

N -1 N
¥-A4=c, <Z ZTMuZ; + G9> (Z ZTM;,(FX\ +e) — Ggé) :
=1

i=1

First, from the similar proof of Lemma A.9 in Huang et al.| (2004)), we

can obtain that

<C.

o0

N
L
‘ |(ﬁ Y ZIMpZ;+Gg)!
=1

Next, under assumption (A3) and (A4), from MpF = 0 and Lemma
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1, it is clear that

N T N T
L Wi L Wz'
:|ﬁz (MF—MF)FA1|OO:|WZ (PF_PF)FAi|oo
i=1 B;" =1 BZ-
OplLM*¢ ).

Meanwhile, since M ;. is an idempotent matrix, then from Lemma A.6

in Huang et al. (2004) and Lemma 1, we can get that

L & L LKL W

—_ Z™M . E — E M

NT ZH iMpeiloo = |7 Z = 5 (Mgl
= 1= = i

L
< S 1/2
Inax max NT;; Wi + Buy) (€] M pes) )

1/2
< max NTZZWmBm leilll = 0u(Crp).

i=1 t=1 00

The assumption of smoothing parameter & leads to the result that

|57 GoBllo0 = 0,(1).

Moreover, similar to the proof of Corollary 1 in [Huang et al. (2004]),

under assumption (Al) and (A6), from Lemma 1, for coefficient function
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B;(+), we can get that

wIB(s) () _ViVi+Go) ' (D _o*VIV)(D _ ViVi+Ge) ' B (s)w;

i=1 =1 =1

>(J— Zb, Ni

We can similarly get the result of a, which proves the theorem.

Supplementary Section E

In this section, we will provide detailed proofs for lemmas needed for theo-
retical results.

Proof of Lemma 1

Proof. By assumptions (A1) and (A5), it is easy to obtain that 1= Zf\il Ze;, =

0p(1). Using Prp = F"F /T, we can get
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Then,

N N T
1 - 1 Z'F 1
_TH;ZZPF&H:NHZ T '?;FtsitH

N T
1 Z'F 1
< ST 1SS Feeall.
N — || T || ||T — tglt”

Since T~'2||F|| = /7, then T-H|ZTF|| < T7Y|Z,]|||F| = /7T~ Zi]| <

VIS 1 Zal )2 Then, using the Cauchy-Schwarz inequality, the

above equation is bounded by

1 X1 X 21/2 [N T 21/2
VT <N;f;||zit|| ) : (N; ||T;Ft5it|| > :
By TV2||Z; = O,(1), the first term of the expression is O,(1). Similar
to the proof of Lemma A.1 in Bai| (2009)), it is sufficient to show that the
second term is 0,(1) uniformly in F' as follows.

1 N N 1 T T
EONEIIEREN (5 IR SLEAT
i=1 t=1

1 z—’; Tt 1 s= 11 N
< ZZFtFl—Nzgit€is> .
=1

t=1 s=1

Since T=' 3, || Fy||> = r, then by the Cauchy-Schwarz inequality and
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assumption (A5), we can obtain that

1L 1<
5 27 > Freall
=1

t=1

1 T T 1/2 1 1 N 1/2
S(ﬁZZIIFtIIQHFsIF) N2 ( 7 2 27 2 e )
t=1 s=1 1 _

t=1 s= =1

=rN~120,(1).

Therefore, it shows that supp || 57 SN ZTMpei|| = 0,(1).
The proofs for the remaining statements are similar to that of the first

one, and hence omitted.

Proof of Lemma 2
Proof. Driven by |Bai and Ngj| (2002)), to make better explanation, we denote

V(r (Y- Z6,) w (Yi— Z.6,),

V(r,FoH Y Z0,) Mp,u, (Yi—Z0,),

N
N
where F, is the estimator of F given the estimated number of factors
r, Mg = I — Pg and Mp,g, = I — Ppyg, are the corresponding

idempotent matrix spanned by the space of F, and FoH, respectively.
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(1) From the definition, we can get that

N

1. FF, .. 1 H'FFH, _____
PFOHT_PF :TFT( T )FT—?FOHT(OT)I'L»FO
1

—_[F,D.'F, — FoH,D;'H'F])

(F,— FyH,+ F,H,)D;'(F, — FoH, + FoH,)” — FoH,D;'H F7]

| e | i

(F,— FyH,)D;\(F, — FoH,)” + (F, — FoH,)D-'H"F},

+ FyH,D'(F, — FoH,) + FoH,(D;' — D;')H'F7})

Denote C; =Y, — Ziér, then

N
. 1
V('f’, FT)—V(T, FOHT> = ﬁ E CZ(PFOHT_PF)CZ' = J1+J2+J3+J4.
i=1
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For J,, by Theorem 1 and Lemma 1, we can get that

N T T
1 T T
Jl NT?2 ;;; Ft”' H Fto) D (FST’_H SO)C’LtCZS
T T A 1/2 T T N 1/2
( D> (Fi,— H]F, ) D;\(F,, - HZFs,o)]Q) : (T‘Q SN OitciS]Q)
t=1 s=1 t=1 s=1 i=1

T
< (T SN~ HEPWI ) 1D 0pl1) = 0,0533).

t=1

For JQ,

T
Z Ft,r — HZFt,O)TDquH:Fs,OCit is

Mz
NE

Jy = e
N =1 t=1 s=1
T T 1/2 T T N 1/2
< (T‘Q[ZZ |Fy, — HTF || - |- ||H:Fs,o||2) : (T‘2 Yoy Z%%P)
t=1 s=1 t=1 s=1 =1
T 1/2 T 1/2
g(T S, - H:Ft,on?) -||Dﬂ||-(T*ZHH:FW) op(1)
t=1 t=1

!

1/2
=(T |Fy, — H:Ft,ow) L0p(1) = 0,(651)
t=1

The same result can be obtained for J3. For Jy,

T

| NI
J4:NT22Z

t=1 s=

N T 2
< NID:' - DY Z(Tl S HIF, - |czt|)

i=1 t=1

F H[(D,' — D"\ H[F,,C;C;,
1

=|ID," — Dy'|| - Op(),
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2
where N=' SN (T‘l ST ||H:Ft,0|y-\cit|> is bounded by N~'T2||H |27, || Frol|*
SN ST |Caf? from the Assumptions.

Moreover, for the first term in Jy,

F'F, HF)FH, |
T T

T
=T\ Y _(Fi Fr, — HIFoF H,)|

t=1

D" = Dyl =]

T
ST MY (Fup— HIFy)(Fop — HIF )|
t=1

T
+ 7YY (Fir — HIF o) F o H, ||

t=1

T
+ 17| ZH:FW(FW —HF.) ||

t=1
T
<T 'Y ||Fy, — HLF, |

t=1
1/2

T 1/2 T
+ Q(T‘IZ 1By, — HZFt,oW) - (T‘l >_I[HIF t,o“z)
t=1

t=1

= Op((s;/%“) + Op(éﬁé“) = Op((S;,%«).

Since the rank of H, is r < rg, and from the above conclusion, Dy and

D,. both converges to a positive definite matrix, leading to the result that

r

|ID,||7* = O,(1). Meanwhile, since D;' — D,;' = D;'(D, — D,)D;",

then J4 = O,(d5%). Therefore, for 1 < r < g, we can get that V(r, F,) —



Han, Li, You and Cao

V(r, FoH,) = O,(65r)-

(2)

N
1 : .
Vir FoHy) = Vo, Fo) = 553 (Yo = Z6,)(Pr, ~ Prou (Y = Z:6,)
i=1
1N
=~T (FoXio+€i) (Pr, — Prom, ) (FoXio + €;)
i=1

N
1
= 7 > X Fj(Pr, — Proa,)FoXio
i=1

N
2 § ' T
+ _NT 2 €, (PFO — PFOHT)FOAi7Q

= J1 + J2 + J3.
Then, we can get that

N
1 .
Jy=tr (ﬁFO(PFo — Prpou, ) Fo ; >\i,0>‘z’,0)

N
= tr <T1 [FgFO — FgFOHT(HZFgFOHT)lHZFgFO} N7t Z Ai,oA;())

=1

= t?"(DF . D)\),

since the limit of matrix Dy is semi-positive and D) is positive, then

J, > 0.
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For J, = 3% SN e1(Pp, — Prom,)FoXi, from Lemma 1,

N T
Zs Pr,FoXio| = | ZzgitFZOAi,O‘

=1 t=1

T T N
< (1 'y HFtouZ) (T D IN T S Peio
t=1 =1

similarly, it is easy to get that |tx > T Ppom, FoXig| = O,(N~12).
Hence, it is obvious that J3 > 0.

For J3, it is obvious that J3 > 0 because of Pp, — Pp,m, > 0. There-
fore, for each 1 < r < 1y, we can get the conclusion that there assist a

¢, > 0, such that plim infy o[V (r, FoH,) — V(ro, Fo)] = ¢,

~ ~ ~ ~

|V(T’ F?”) - V(TOvFTo)| < |V(T‘, FT‘) - V(TO’ F0)| + |V(T07F0) - V(T07F7‘0)|

~

2 max |V(r,F,)—V(ry, Fy)l

To<r<rmaaz

Define H, as in Theorem 1 with rank ry > 7, and H," be the generalized
inverse of H, such that I-I,J—Ij = I,,. Meanwhile, since C; =Y, - Z,0 =

Fo)\ o+ €, then it is easy to get that

C,=F.H.H \g+¢e,— (F,— FoH,)H \io= F,.H.H A\ + e,

1/2

= OP(N71/2)7
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where e; = ¢; — (F, — FoH,)H \;.

Then, from the following equations

V(r, F,) ZeTM e,

V(To,FO ZeTMF €y

we can get

N
V(T, FT) = (NT)il Z(El — (FT — FOHT)Hj)\i,O)TMFT(ei — (FT — FOHT)H;F)\LO)
i=1
N
Z €;—MFT€Z' Z A F F()H ) MFT€1‘

Z by "(F,— FoH, M (F, — FoH,)H; X\

:J1+J2+J3.
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For J5, by the fact that [tr(A)| < r||A|| for any r X r matrix A,

Jy =21~ 1tT<H+(F FoH ZEZ Z())

< or-|[H}||- |[TV2(F, — FoH,)|| - |T"/*N " Zsz ioll

T 1/2 N 1/2
<or.||HY- (T-l S, - H;Ft,on?) N2 (T-l S v Zeuxi,m?)
t=1 =1

t=1

= Op((sx/%r) ) N1/2 - OP<5]:I2T>‘

For J3, by Theorem 1,

Z N o(H ) (F, — FoH,) (F, — FoH,)H A
N
<7 Z [1Fs = HTFoo [ (Nl > HA@oHZHHiHQ) = 0,(033) - Op(1).
t=1 i=1

Then, V(r, F,) = (NT)"' SN eTM; €+ 0,(0y7). From the fact

that for r > ro, V(r, F,) — V(ro, F,,) <0, we can get that

V(r,F,)=V(ro, F,) = (N ZETM e,—(NT)~ ZsTMFT €40, (032

=1 =1
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Meanwhile,

N
Y efMp, & < ||(F] Fyo/T) |- N'T2sum e] F,, F] e

=1

N T
= 0,(1)- (NT) SIS Fyel?
=1 t=1

Then, (NT) ' SN eTM €+ Op(0y7) <0, leading to the fact that

(NT) 'Y eTM ;. ‘&; = 0y(dy7). Hence, V(r, F.)=V(ro, Fy,) = 0,(632).

~

Therefore, for any r > ry, we can ge the result that V(r, Fr)—V(ro, F,)=

Op(S57) -

Proof of Lemma 3

1
Proof. (i) F —
roof. (i) From NT

SN (Y, —Z0)(Y,—Z0)|F=FVypand Y, —
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A

Z,0 = ZZ(é — 9) + F)\; + €; + e;, we obtain the following expansion as

FVr :{Li (Zi(é— 9) + F; + € +ei> (Zi(é—é) +FX\ +¢; +ei>T]F

N N
1 P | R
=—Y"Z(6-6)(6-6)Z]F + T;:ljzl(e—e))\iF F

NT &~ g N

A R

— N ZO-0)F+—S F)\NO-07ZF
+NT; (6 —0)e; *sz; (6-0)2;

1 & 1 &

— (0—0VZF+—S F)e'F
+NT;€< )2 +NT; &

1 N N

— NFF+ — & F
+NTZZIE i + Zlzlesl

1L 1 L L.
+ 7 > Zi(0-0)e]F+ ~7 > e(0-0yZF

N N N
+ W;&‘ZEZF—F W;CiSZF—F ﬁ;eleZF
1 N
— FXNF'F
+NT; l
:ZI1—|—...—|—116,

1 . . .
where Tig = —— 2, FANF'F = F(44) 1 EE.

Then, it is easy to get that

F-FH=(I,+...+1LVy.
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By the fact that T-'2||F|| = /r and || Z;|| = O,(T"? + T'/2L1), we

can get that
N A~ ~ A~ ~

T RILI < N7 (1Z3[P/T)]10-61PVr = O0y(110-611)+0,(s) = Oy(s),
i=1

N
T2 Ll < N7 (1Z:l|/VT) 18BN FTE/TI| = 0,(]16—81)+0,(<2).
=1

Similarly, we can get that T-Y2||L;]| = 0,(]16 = 0|]) + 0,(s*/?) for

j = 3747 57 and T71/2||]J|| - OP(CSXI;) + Op(gl/Z) fOI' ] - 6a 7) 8

For Iy,
N ) T
T2 Ll < NT'TV2Y (1Z3]|/VT)10 = 61| - [|[F/VT|- (3 <)
i=1 t=1

= 0,(]10 - 8]]) - MCih + O, (s?).

Similarly, we can prove that T-Y2|[I;o| = O,(||0 — 8||) - M(}72

Lp T
Op(gl/Q)-

For IH,
N T
TN < NTT2Y (IFINVTAIN - (0 Y eh)
i=1 t=1

= OP( é/g)
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Similarly, we can prove that T-Y2||Ip,|| = O,(¢)).

For Ilg,

N
T2 || < N el - (r) e

i=1 t=1

= 0,(CH o).

Similarly, we can prove that T~2||I 4]| = O,( é/gé;,lT)
For 115,
N T
T2 L) | < NT'TY V- (O eh)
i=1 t=1
= Op(CLD)'

Therefore, following the proof of Proposition A.1 in [Bai| (2009)), we can

get the conclusion that

T2 F — FH|| = 0,(]10 — 0]]) + O,(55%) + Op(C5) + Op(s*/?).

The similar proof of the other parts in this Lemma can be found in

Feng et al.| (2018).

Proof of Lemma 4
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Proof. (i) From the discussion of Lemma 3, we have
T e (F-FH)=T" e[l + -+ I;5)V .

For the first eight terms, using the similar arguments in the proof of
Lemma A.4 in [Bai| (2009)) and the results obtained in the Lemma 3, we can

get that
Tef(L+ -+ L)V = T720,(116 = 8]1) + O, (6y7) + Op(<).

Meanwhile, for the other terms, applying the similar proof of (i) in

Lemma 3, it is easy to get that the order of dominant term as

N T
1T R Vil < 771 IR FI/NVT - N7 I IVl - (Y i)'
=1

t=1

= 0,(TV?¢).

Similarly, [|Te] LoV 3| = O (TY2¢2).

Therefore, together with the above discussion, we can get that T‘leg(l:"—
FH) =T7'20,(10 = 8])) + 0,(057) + Op(T7/2¢;5) + O, (<)

The similar proof of the other parts in this Lemma can be found in

Feng et al.| (2018).
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