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This supplementary material consists of nine parts.

1. Section[ST| presents important notations used in the manuscript.

2. Section[S2]provides the sample versions of Conditions[T]and 3]

3. Section[S3]introduces seven propositions that are useful for the proofs of the theorems.

4. Section[S4]presents the proofs of Theorems [T]—[2] based on the propositions.

5. Section[S3]provides the proofs of the propositions, together with eight lemmas and their correspond-

ing proofs.

6. Section[S6|presents the inference method based on the proposed regularized pseudo-likelihood esti-

mator.

7. Section [S7) contains additional details and results of the simulation study in Section ] along with

comparison to other estimators.

8. Section[S8]presents supplementary details of the real data application in Section 5]
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9. Section[S9|provides an application of the Ising similarity regression model to the Scotland Carabidae

ground beetle dataset.

Throughout the supplementary material, for a generic m-dimensional vector € = (z1,--- ,ar:m)—r

and subset of indices 7 C {1,---,m}, we let 7 denote the subvector of x consisting of the ele-
ments indexed by 7. Furthermore, let X ij) denote the submatrix of X(*) consisting of columns in-
dexed by V C {1,--- ,K} fori = 1,--- ,n, where X @ s defined in equation (3.9). Finally, recall
a = argming{—I()} is the unregularized pseudo-likelihood estimator, and o' is the true regression

coefficient vector. With these in mind, we also define § = o — a<0>, andd = a — 9.



S1. IMPORTANT NOTATIONS

S1 Important Notations

Table [ST] provides definition of key notations used throughout the manuscript.

Table S1: Key notations used in the manuscript along with their definitions.

Notation Definition

n Number of multivariate binary response vectors

P Dimension of multivariate binary response vectors

K Number of similarity matrices

®,0;; Ising model interaction matrix, and its (7, j')-th element

Yis Yij 1-th multivariate binary response vector, and its j-th element

Wi, wj(f,) k-th similarity matrix, and its (j, j/)-th element

a,a Vector of regression coefficients for the similarity matrices, and its k-th element
associated with the k-th similarity matrix

v Parameter vector of the Ising similarity regression model consisting of main effect
parameters and regression coefficients

f(9) Pmf of the Ising similarity regression model

Z(9) Intractable normalization constant in the pmf of the Ising similarity regression model

l(a),l;(e) Normalized log pseudo-likelihood of n response vectors, log pseudo-likelihood of
i-th response vector

& Regularized pseudo-likelihood estimator of regression coefficients

a Unregularized pseudo-likelihood estimator of regression coefficients

W, A Adaptive weights and tuning parameter for adaptive lasso penalty

x 9 K -dimensional vector with the k-th element being Wj(,k)Tyi

x@ p x K matrix with the j-th row being X’ (@)

X np x K matrix with the ((j — 1)n + i)-th row being & )

a® True value of the regression coefficient vector

S Index set of non-zero regression coefficients in (%)

se Index set of zero regression coefficients in a.(*)

U’ Expected value of the matrix Y ;- X OT x@ /(np)

MO Expected value of the matrix —V?2](a.(9))
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S2 Sample Versions of Conditions [I] and 3]

To establish the proofs of the theorems in Section 3] we introduce sample coun-
terparts of Conditionsandon M" = -V (a®)andU" =31 xOTx0/
(np), which are parallel to M° and U° defined below equation (3.9), respec-
tively.

Condition 1'. There exist finite positive constants Cyi, and Chay such that
Amin(Mn) Z Cmin and AmaX(Un) S Cmax~

Condition 3'. There exists a constant C'y; € (0,1) such that | M. (M3 ¢) ™" HOO
<1-0C%.

Sample Conditionimplies the submatrices Mg 5 and U g satisfy Apin (Mg g)
> Cin and A (U, g 5) < Chax, respectively. Both conditions are used to de-

velop the propositions in Section[S3]

S3 Seven Propositions

Before presenting the propositions, we first introduce a restricted version of cri-
terion (3.8), where S'is assumed to be known in this criterion and all the regres-

sion coefficients indexed by S¢ are set to zero. That is,

YN [S]‘
rcrtl[lsr]l{ I )—l—)\Zwk‘ak }, (S3.1)

kesS
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where al¥l = (ol ... olIT € RE with o) = 0 for k € 5°, and w; =
1/|ay| are the adaptive weights with @y, being the k-th element in the vector
of the unregularized pseudo-likelihood estimator & = arg min,{—I(c)}. The
estimator that minimizes criterion is denoted as & = (&y,--- ,ag)', and
we further define § = & — a(®). The asymptotic properties of a are discussed
in Propositions [3| ] and [7] below, and we subsequently make use of these results
for a to facilitate the proof of Theorem [2|in Section Note the proof can be

generalized to incorporate other choices of adaptive weights, although we focus

on wy = 1/|ay| in this article.

Proposition 1. Assume sample Condition |I'| and Condition 2| are satisfied. If
K+/log(p)/n = o(1) and there exists a finite positive constant C'y such that
K = o(p®%/B%)) as n,p — oo, then with probability tending to one it holds
that

o~ ], < iy LB

— Y

n

for a finite positive constant M > 4Cs /Ciyin.

Proposition 2. Assume Conditions|l|and 2| are satisfied. Then for any € > 0, it

holds that
(i) P{Apin(M") < Cpin — €} < 2exp {—¢*n/(8CH K?) + 21log(K)};

(ii) P{Anax(U™) > Chax + €} < 2exp {—€°n/(8C}, K?) + 21og(K)}.
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Proposition 3. Assume sample Condition[I'} Conditions [2| and 4] are satisfied.
If K+/log(p)/n = o(1) and there exists a finite positive constant C'y such that
K = o(pe/®C%)) as n,p — oo, then with probability tending to one it holds

that
Ko log(p)

A (1))
& - o], < ary/KoloE)

for a finite positive constant M > 4/C\yin.

Proposition 4. Assume sample Condition |I'| Conditions 2| and | are satisfied.
If K+/log(p)/n = o(1) and there exists a finite positive constant Cy such that
K = o(p®%/B%)) as n,p — oo, then with probability tending to one it holds

that &y, # 0 forall k € S and &y, = 0 for all k € S°.

Proposition 5. Assume Conditions[l|—[3 are satisfied. Then for any ¢ > 0, there

exists a finite positive constant C' = min { C2, C3, /{1152(1—C)?Cyy, }, C2:nCir/

in

(288C), Car /(48C, ), CainCar / (192C3,) }, such that

p {HMQC,S(M;S)*HOO >1- CTM} < 12exp {—O% + 210g(K)}.
0

Proposition 6. The sufficient and necessary conditions for & to be a minimizer



S4. PROOFS OF THEOREMS[T]-[]

of criterion (3.8)) are
oa) _ ,iSign(OAék)u if &, #0, and ‘61((1) < ,i, if &y =0.
Oay, |k Doy, [

Moreover, this minimizer is unique due to the strict convexity of criterion (3.8)).

Proposition 7. Assume sample Conditions|I'|and[3} and Conditions[2land[d|are
satisfied. If K+/log(p)/n = o(1) and there exists a finite positive constant Cy
such that K = o(pCQV/ (80&,)) as n,p — oo, then with probability tending to one

it holds that

(i) 22 — A gion(ay), forall k € S;

oy, ||

) A c
(ii) ’ o ’ < W,forallk S

S4 Proofs of Theorems 1 -2

Proof of Theorem[l| We first show the conditions K +/log(p)/n = o(1) and
K = o(ps/B%W), as n,p — oo, imply —e>n/(8CH K?) 4 2log(K) — —o0
for any € > 0. The condition K /log(p)/n = o(1) implies K?log(p)/n — 0

and subsequently n/K? — oo, and the condition K = o(p®s/®C%)) implies
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which leads to
log(K)K? _ log(p)K*log(K)
n n log(p)

Then for any € > 0, we have

en n [ e  2log(K)K?
N olog(K) = — - _ S~
scr gz +2los(k) KZ{SC’{}V n } >

Therefore, by Proposition 2} sample Condition[1’holds with probability tending
to one. This implies Proposition [I] holds and thus, with probability tending to

one, the unregularized pseudo-likelihood estimator & satisfies

Hd_a(O)H < M /Klog(p)’
2= n

for a finite positive constant M > 4Cy /Crnin, Which completes the proof. O

Proof of Theorem 2} Similar to the proof of Theorem([1] we obtain —e?n/(8CH, K?)+
2log(K) — —oo for any ¢ > 0 under the conditions K +/log(p)/n = o(1) and
K = o(pC%/ (SCav)), as n, p — oo. Consequently, sample Conditionholds with
probability tending to one by Proposition[2] This also implies Propositions [3]—[4]

hold and therefore, with probability tending to one, the minimizer & of criterion

(S3.7) satisfies

& — a©|, < M Ko log(p)
2 = n
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for a finite positive constant M > 4/C\;,, and
ap # 0forall k € S, and & = 0 for all k € S°.

Additionally, the condition K +/log(p)/n = o(1) implies log(K)/n = o(1),
and subsequently —C'n/K? + 2log(K) = n{—C/K3 + 2log(K)/n} — —oo
where C'is defined in Proposition[5} Therefore, sample Condition [3'] holds with
high probability by Proposition[5} and hence Proposition[7| holds under the con-
ditions of Theorem 2] This implies with probability tending to one that ¢ satis-
fies the necessary and sufficient conditions provided in Proposition [] to be the
minimizer of criterion (3.8)). Since criterion (3.8) is strictly convex, we can con-

clude & is a unique minimizer i.e., & = &. This completes the proof. [

SS Lemmas and Proofs of Propositions

Recall
P K K
k k
li(a) = Z [yij (Z Q Z w§j)yij/) — log {1 + exp (Z o Zw](.j,)yij) }] .
J=1 k=1 j'#j k=1 j'#j

We first introduce additional notations that will be used in the following lemmas

and proofs. The gradient vector of /;() is denoted as Vi;(a) = (0l;(ax) /Oy, - - -,
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Y

K I
0l;(o) a (k) exXp <Zl:1 WD s wJ(‘j)’yij’)
- > wipvi | i~ = m
1+ exp (lel D i wjj,yij/>

fori = 1,--- ,nand k = 1,--- , K. The Hessian matrix of /;(c) is given by
V(@) = X T () XY, where n®(e) = diag{n;; (@), -~ . mp ()} is

a p X p diagonal matrix with diagonal elements

K (k)
eXp (Zkzl U Dty Wi yw)

29
K k
{1+ew (S oy, wiv) }

;7 (er) =

fori =1,--- ,nand j = 1,---,p. The gradient vector of nj(i)(a) can then be

obtained as an(;)(a) = 5§i)(a))c' (9) where X7 is defined in equation (3.9)

and
K k K k
() exp (Zkzl kD i wj(‘j’)yij/) {1 — €Xp (Zk:l D i wa(‘j’)yif) }
e (a) =
J K k 3 ’
{1 +exp <Zk:1 D it wﬁj’)yij') }
fori = 1,--- ,nand j = 1,---,p. It can be verified that |77j(§-)(a)| < 1 and

£ < lforalli = 1,---,nand j = 1,---,p. Recalling [(a) =
j

S li(e)/(np), we thus obtain Vi(a) = Y Vii(er)/(np) and V() =
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S V2 () /(np). Therefore, we can write

and M" = —V3(a®) =3"" 19\7(Z D (@) x®/(np).

Lemma 1. Assume Condition 2| is satisfied. Then with probability tending to

one, it holds that

(i) [{Vi(a)}sl < viglp)/n:

(i) || VI(a?) HOO < Cyn/log(p)/n for a finite positive constant C'y that satis-

fies K = o(p®%/B%)) as p — .

Proof of Lemmal(l] Under Condition[2] we have

8ak
K (0
i exp <Zz:1 al( ) Zj’#] J(J)’y” >
Z Z wy(‘j’) Yi' | Y Y — K (0 0
=1 \j'%j 1 +exp (21:1 a0 i'#i Wiy Yis’ )

exp <Zl 1al( )Z] '#£5 ]])’ylj >
j |yij| +

< (Tt
Jj’ @
1 + €xp <Zl:1 al Zj’fj ]j’yU >

J=1 \j'#j
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<23 (3]s
J'#d

p
=1
p
=2 " [[Wi,
j=1

p

j=1

fori =1,---,nand k = 1,--- , K. By denoting E(y;;|y; ;) as p;;, it can also

be verified that
K (0 !
eXP (Zlﬂ o % J'#d wj(‘j)’yij')
Dij = e 0 )
1+ exp <Zz:1 a( 5 i1 leyw )
fori =1,---,nand j = 1,--- ,p. This, together with law of iterated expecta-

tion, implies

P
- Z E (Z wJJ’yW

| \I'#d

= z”: E|FE (Z wj(?yij,

J'#]

- ZE { (Zwﬂ/ym ) pij _pz’j)}

J'#J

K (0 I
) exp (Sh ol £,y i)y )
Yij = K (0 I
L+ exp (S0 ol X, wihwir )
0) (1)
exp <Zl 1 al( Z] '#j JJ’yU >
Yis 0
1 + €xp Zl:l al Zj’;é] ]j/yw

YiNj
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fori = 1,--- ,nand k = 1,--- , K. Hence, by applying Azuma-Hoeffding
inequality (Wainwright, |2019)), we obtain

ol(a) Ol ()
> — _
P{‘ day, ‘_t} ; npz da
=P — | >
_P<;|: 6ak _E{ aak }:|

- —on2p242
ex
- p Z?:1(2C'Wp + 20{/{/]))2

5 —nt?
= z2€X
p 80{%‘/ 9

for k =1,---, K. This, together with the union sum inequality, implies

0 ol(a® 0
[ll{vz @O} > o/ )] —P[U{‘ l(aak )’z 1gn(p)}]
Il(a® lo
g )

_nlog(p)
< Z 2 exp S C%Z

—lo
= 2K exp { SCi(p) }
w

—log(p)
= Zexp {W + 1Og<K0)}

> npt)
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— 0,

as p — oo, where K| is finite. We thus obtain

P

n

{vi@™}ll.. = M] o

which proves claim (i).

We prove claim (ii) in a similar way. By the union sum inequality, we obtain

etz o e [P 52

<3op e o o)

Gak

K _nC%IOg(p)
oo 2222)
1%
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due to K = o(p®%/®C%)) as p — co. This leads to

P {HW(a@)Hm <Oy bgn(p)} — 1,

which proves claim (ii). [

Lemma 2. Assume sample Condition|l'|and Condition 2| are satisfied. Suppose

18], = M+\/Klog(p)/n for a finite positive constant M > 4Cy /Crn and
K+/log(p)/n = o(1) as n,p — oo. Then for any 7 € [0, 1], with probability

tending to one it holds that

_%JT (V3 +76)} 6 > Czin

1815 -

Proof of Lemma[2} Recall V2i(a) = — " XD Tn0 ()X /(np). By ap-
plying the mean value theorem, we obtain 77](3) (@9+76) = n](;) () )+7"an(»? (O
7*8) "4, for some constant 7* € (0,7),7 = 1,--- ,nand j = 1,--- ,p, which

leads to

— léT (VU +76)} 6

=30 Z 5" {x“ @ (a® + ﬂs)x“‘)} 5



16 Zhi Yang Tho and Francis K.C. Hui and Tao Zou

ﬁ Y (mfnwm +78) (x03)
. 2
" o Zl ]Zl (@ +79) <X(W)T5>
. 2
- 2; g ( ma)
+ o Z Z Vi) (@ + 78)To (X ”'Wa)z . (S5
=1 j=1

By sample Condition |1’} the first term of (S5.1) is bounded from below by

n

LSS (o - 2 () e (9
:% {anX< <o>)x<z>}5

=-6"M"$§

—_

[\]

vV
rO| =

_Amin (Mn) H5H§

)

min 2
|52
As for the second term of (S5.1]), we have

an Z Z VTI” (0) + 7—_*5)T5 (X(i,j)T(s)Q

11]1

y N2
E § ea® + 7 8) xS (XW)T(S)
2np

=1 j5=1
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04 78)| |27 s| (26975)°

2np

0 4 7o9)| [t (x0075)’

2np

By Condition [2] we obtain

K
k)T
<> W 1ol

K
ZHWk” |0 |

K
=> Wil 16

foralli =1,--- ;nand j = 1,--- ,p, where J;, is the k-th element of §. Com-

bining this together with sample Condition |1}, we obtain

04 79)| |27 a| (x0075)"

2np

< QRPZZananl( 75)

i=1 j=1

= 5, Cw 181, S5 (0076

=1 j=1
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= %p(lw 1611, il (X“’&)T (Af(i)(s)

1 1 L ,
= - — > x0T xW
5Cw 19l & (np 2 9

1
= §CW |6]],6TU"S

1 n
S §CW H(sHl Amax(U ) H‘SHS
1
§CWCmax ”6||1 ||6||§ :

IN

Based on the conditions ||§]|, = M+/K log(p)/n for a finite positive constant

M > 4Cv /Chiy and K \/log(p)/n = o(1) as n,p — oo, we can apply inequal-

ity 4.67(c) in|Seber (2008)) to obtain

1811, < VK |8l

_ v E lilg(p)

log(p)

= MK

= o(1).

Therefore, when n and p are large enough, we obtain |||, < Cin/(2CmaxCw ),

which implies

. . y 2
9 +;*5)‘ ’X(%J)T(s’ (X(z,m5>

I =
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1
< —OWCmax H5H1 Hé”g

-2
1 Cui
_C C11’113,)( —
2 W 2C 0 Cov

len
1515

1115

IN

and thus

n

p
2;]9 Z JZ_: 0 (@ +776)"6 <X(i,j)T6> 2

Ia® 1 )| x| (x975)’

. C(min

1515

Finally, combining the lower bounds of the first and second terms of (S35.1]), we

obtain

1 _ Cmin Cmin C’min
—§5T{V25(a(°)+ﬂ5)}52 5 1815 — 1 1815 = 1 18115 .

as required. [

Proof of Proposition[l] We start by defining

§) =~ {ila" +8) ~1(a")}.
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Based on the definition of the unregularized pseudo-likelihood estimator ¢, it
can be seen that § = &—a?) minimizes G(§). Also, we have G(0x) = 0, which
implies G (5) < 0, where Og is a K -dimensional vector of zeros. Therefore, it

suffices to show G(-) is strictly positive everywhere on the boundary A = {4 :

6], = M+/Klog(p)/n} of the ball A = {§ : [|6]|, < M\/Klog(p)/n}

(Rothman et al., 2008)).
By using a first order Taylor expansion on [(a?) + §) at the point o), we

obtain
H(a® +8) ~1 (o) = {Vi(a®)} 5+ 57 {Vi(a +76)}
for some constant 7 € [0, 1]. Therefore, we can decompose
G(6) = — {Vi(a9)} 5 - %JT (VIO +78)6 =1+ L, (S52)

where I} = —{VI(a")}T§ and I, = —(1/2)6 "{V?(a® + 7§)}4. Since Cy
satisfies K = o(p¥/%)), we can apply Lemma [[ii) along with inequality

4.56(c) in Seber (2008) to obtain, with probability tending to one,

1] = |- {72y o

ity
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< |[|VI(a)]|__ 1161l
< ||Vi(@™)|| VE ||8],

< Co log \/_M Klog()

1
_ oolri 08P
n

which leads to
log(p )

I > -CyMK (S5.3)

Next, by Lemma 2] with probability tending to one it holds that

_ 1
L=-56" (VI +78)} 6
C(min
>
~ 4

1115
C

_ “min MQK log(p)
4 n

(S5.4)

Using the lower bounds on I; and I, from (55.3) and (S5.4)), respectively, we

obtain

G((S) - Il + IQ
> _conrrlos®) C?f“ a2 log(p)
n

_ ]\_42K10g(p) Cuin ~ Cv
4 M
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>0,

where the last inequality holds due to the condition M > 4Cv /Crin- Hence

with probability tending to one, we obtain

< _ — | Klog(p)
A A0 4 log(p)
[61], = fla — @), < 5y K220

as required. [

Lemma 3. Assume Condition [2)is satisfied. Then for any € > 0, it holds that

(i) P(|M™ — M°|| > ¢€) < 2exp{—€>n/(8CH K?) + 2log(K)};

(ii) P(JU" — U > €) < 2exp {—€*n/(8CH K?) + 2log(K)}.

Proof of Lemma[3] We first prove claim (i). Note the ([y, [2)-th element of matrix
M™ — M is given by > " | vl(f?lz/(np), where
,12 l2

vl(f) = (Xz(?)Tn(“(a‘O))XZ) _E {(Xl(f))'l'n(i)(a(o))x(i)}y

fort =1,--- ,nandly,lp =1, --- , K. Also, recall Xl(i) denotes the [-th column
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of X fori=1,--- ,nandl=1,---, K. Thatis,

nT
W1(~ : Yi
x)) =

nT

(%)

Therefore, it can be seen that v; *;,

has mean zero for7 = 1,--- ,nand ly,ly =
1,---, K. Under Condition [2] then, we have for all i = 1,--- ,n and ly,l; =

K,

(Xl(j))T”?(i)(a(o))XZ)

p
Z”J(;‘)(O‘(O)) (Wj('lmyi> (Wﬂ"’”w)
7j=1
p
<2
7=1

< i(DCWCW

j=1

12)T
VVj(_Q) i

i )T
(@) W)y,

= pChy,

which implies

Ul(f?lz _ (Xl(j))Tn(i)(a(O)>Xl(i) _ E{(Xl(f))T"?(i)(a(o))XZ)H
< @) 0@ x|+ | {2 O
< | 0@ )|+ {2 T (@)X}
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< pCh + pCys

= 2pCp;.

Therefore, we can apply the Azuma-Hoeffding inequality to obtain

P( %):P(
-

72627112])2
< 2exp — [2(2 o2
> i1 (2pCF, + 2pCHy)

= 2exp (——262n2p2 )
16nK2p*Cy;

5 —e2n
=2exp | ———
P\scirz)

forallly,lo =1,---, K and € > 0. It follows that

n

1 i
. Z Ul(l,)lz

n
p i=1

e, >0 e { () (3

11=1 \l2=1

)
K K 1 n .
IO SENED
K K 1 n - .
< ZP U n_pzvhh E
K K 1 n ” p
< ZZP n_pZI:vlLb E

v

v
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2
9 —€en
< K*2exp (SC'évK?)

=2ex —cn + 2log(K)
_ _—en o
P st K2 & ’

for all € > 0, which proves Lemma 3[i).
Next, we prove claim (ii). Note the (Iy, l5)-th element of matrix U™ — U is

givenby > 7" hl(?b /(np), where

l2 12

n, = X BT x

fore =1,--- ,nand ly,ly = 1,---, K. It can be seen that hz(?,zg has mean zero
foralli =1,--- ,nandly,ly = 1,--- , K. Furthermore, under Condition 2 we

have forall: =1,--- ,nandly,lb =1, --- | K,

l2

p
Sy
J=1
p

< Z CwCw
j=1

()T

l2)T
Wiy,

= pChy,
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which implies

)h

(4)

Du| =@ T2l - e {2}
< | x|+ B {@))
< |@D)r x|+ B {|@x)) x|}
< pCiy +pCiy,
= 2pC3,.

Thus, we can again apply the Azuma-Hoeffding inequality to obtain

'

foralll1,lo=1,--

P(|lo -

1
z : hl(l3l2
(G

€ . " (i) enp
2?) (Zh 27)
- i i enp
“p [ S {0~ (50,)} = 7]
=1
_2e2n2p?
K2

}

< 2exp — 5 3
> i1 (2pC5 + 2pCiy)

920202
:2exp( ‘ )

n-p
:Qexp(

16nK2p2CY;
—€en
-, K and € > 0. It follows that

8CL K?

.

K K 1 n @
U’ >¢)=P N R
||oo ) {llL:Jl (; P — l1,l2 ) }
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SHIOED AR

=1 la=1
K K 1 n c
(4)

SHI(VIES AR

li=1 la=1 i=1

K K 1 n c
< Pl|— (i) >
SHUI(E AR

I1=112=1 =1
< K22 —cn

€ex
P\sct k2

for all € > 0, which proves Lemma [3[(ii). 0

Proof of Proposition 2] We first prove claim (i). By Condition [I] and inequality

4.67(e) in|Seber| (2008)), we have

Apin(M™) = ”nﬁir_ll {z' M’z + 2" (M" - M°) x}

2 Anin(M°) — || M = M

2 Cin — || M7 = M| -

This implies {Apin(M") < Cin — €} C {||M™ — M°|| > €} forall e > 0,

due to

C’min - HMn _MOHOO < Amln(Mn) < C(min —€ — ||Mn - MOHOO 2 €
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Therefore, by Lemma Eki), we obtain for all ¢ > 0,

P{Amln(Mn> S Omin — 6} S P (HMn — MOHOO Z 6)
2

en
< Qexp{—W +210g(K)},

which proves claim (i).
Next, we prove claim (i1). By Condition (I| and inequality 4.67(e) in [Seber

(2008)), we have

Anax(U") = max {&' Uz +x' (U" - U°) x}

l[ll2=1

< Amax(U) + || U™ = U°|

< O + U™ = U°| -

This implies {Apax(U™) > Chax + €} C {J U™ —U?|| > €} forall € > 0, due

to
Conas + € < s ([U") < Cos + [U" = U] . — |U" — U > e
Therefore, by Lemma Ekii), we obtain for all € > 0,

P {Amax(U") > Conax + €} <P (U = U°|| . > ¢)
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2

en
< 2exp{—W +210g(K)},

which proves claim (ii). ]

Lemma 4. Assume sample Condition |I'| and Condition 2| are satisfied. Sup-

pose ||0s|l, = M+/Kqlog(p)/n for a finite positive constant M > 4/C\i, and
Koy/log(p)/n = o(1) as n,p — oc. Then for any T € |0, 1], with probability

tending to one it holds that

Cmin

1
=505 {V2Ua® + 78} 85 > = |16 5.

where 85 = ((5?], e ,(ﬂf]) with (5,[5] = 0 for k € S and (5,&5} =0 fork € S°.

Proof of Lemma 4] The proof of this lemma follows along similar lines as that of
Lemma Recall V() = — 7, XD () XD /(np). By applying the
mean value theorem, we obtain n](;)(a(O) + 76151) = 77](;)( ) + TVnJ(;) (a® +
7*6151) 7§19, for some constant 7* € (0,7),5 = 1,---,nand j = 1,---,p,

which leads to

— lég {V(a® + 76[5})}575 ds
Q) (0) [S1\ 2-(9)
MZaS{ nD(a® + r5lh) x0 }S,s ds

= %p Z ( z)(5 ) 7D (' + 761 (Xg)és)
i—1
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- 2
2np Z Z 7]]] 0) 4 7-5[51) (ng)T(SS)

i=1 j=1
(3,9)T 2
an;;n ( ’ 65)
an Z Z an] 0) 4 7+l T glS! (X(Sz',més)? . (S5.5)
=1 j=1

By sample Condition |1’} the first term of (S5.3) is bounded from below by

an Z Z 77jj < )T 55‘)2

=1 j=1

= LN (295 100 (29

sy 2 (X518s) n0(a) (205)
{ g %X@}é
np 4

—— a N @

1

1
> Amin (MS,S) H55H3

2
len
- 2

1851l -

As for the second term of (S55.5]), we have

an ZZV%J *6[51)75[5] (ng-)-r65>2

=1 j=1
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SN A (6T §1S) (&,5)T 2
MZZ&: )T § (xs 55)

i=1 j=1
_ () (©) 519 ( (i.4)T )T s\
— I + 76 X 55) (X 55)
an;; ) (X5 s
* [S] i.7) (i) T ?
> - anZZ‘ O gl | | 2G| (67785 )

n o2 - 2
20 2 e 70| | (207 0)
2np =1 j=1

J

By Condition [2]and similar techniques used in the proof of Lemma 2] we obtain
XU T 86 < Cyy||6sl|y foralli =1,--- ;nandj =1,--- ,p. Combining this

with sample Condition [}, we obtain

n

1 p
<S>l (x677s)’

i=1 j=1

= 5oCw 8], S5 (26975,

11]1

1 . T .

_ 0 (i

= 5,0, 1851, Z (x50s) (x(as)
1 T [ 1 0T 20

= 5Cw [19sl], 95 n—pzxs X' | ds

i=1

. . 2
(ol + 7| |20 o] (24776

1
= 5Cw 105/l 85U 05

—_ N

< 50w 11851, Amax(U%5) 1105115

[\]
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—_

< 50w Chnax 1051, 105115

[\)

Based on the conditions ||dg||2 = M +/ Ko log(p)/n for a finite positive constant
M > 4/Chi, and Ky/log(p)/n = o(1) as n,p — oo, we can then apply

inequality 4.67(c) in Seber| (2008)) to obtain

19s[l, < v/ Ko |95l

Kol
= Ty Kolos()
1
MK, es?)
n

=o(1).

Thus, when n and p are large enough, we have ||0s]]; < Cuin/(2CmaxCw),

which implies

1 - z 7 7 2,7 2
oy S 4 [ (57,
1 j=1

1=

1
§CWCmax H55’“1 H‘SSHg

1 C’min
2N O30 o

C’min
= T g2

IN

2
1951l

IN
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and hence

P 2
* ’L T
5 ) (@® + 75l5) Tl (x 7 as)
np =1 j=1

1 2 - 2
o S o (257
=1 j5=1

Cmin
4

2
1951l

Finally, combining the lower bounds of the first and second terms of (S3.5)), we

obtain

CVmin
2

Cmin
4

CVmin
4

1
—§5§ {VAU(a@© + 785} 65 > 185115 — 1655 = 185115,

as required. [

Proof of Proposition|3| The proof of this proposition follows along similar lines

as that of Proposition[I] We start by defining

ds) = — {1 + 6¥) — i(cx }+Z| <°)+5,ES}|—\04,§0)|>,

kesS

where §°] = (5?],-'- ,5%?]) with 5,[5] = 0y for k € S and 5,&5} = 0fork €
S¢. Based on the definition of & as the minimizer of criterion (S3.1)), it can
(0)

be seen that g = g — oy’ minimizes G(dg). Also, we have G(0g,) = 0,

which implies G/(d5) < 0. Therefore, it suffices to show G(-) is strictly positive
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everywhere on the boundary 0A = {ds : ||ds|l, = M+/Kolog(p)/n} of the

ball A = {ds : ||ds]], < M/ Kylog(p)/n} (Rothman et al., 2008).

Using a first order Taylor expansion on [(a?) + §°1) at the point a(?), we

obtain

l(a(o) + 5[3}) .y (a(o)) _ {w(a(o))}T 85 ¢ %5[S]T {V2l(a(°) + 75[51)} S

T 1
— {Vl(a(o))}s g + 5@2 {VQZ(a(O) + 75[51)}375 ds,
for some constant 7 € [0, 1]. Therefore, we can decompose

G(ds)
= — {1 (a!”+ 5" }+Z (‘ +5LS]‘—‘04:§0)‘)
= —{Vi(a")}, & — §5§ {(ViU(a® + 78} o 85

A 0 S 0
+2 1 ([oi? + o] = o))
keS

=10+ 1+ I3,

where I} = —{VI(a9)}Lds, I, = —(1/2)8L{V?(aV + 76%1)}5 585, and

I; = Zkes()\/|dk\)(|a,(f) +(5,[€S]| — |a,(€0)\). By Lemmai) and inequality 4.56(c)
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in Seber (2008)), we obtain with probability tending to one,

] = |~ {Via®)}; &|
- ‘{Vl(a(o))};&@‘
< [{vi@)} |l 181,

< [{VUa)} ]| VEo 8],

Kolog(p)

= [{via)} ] oy Ko

< log(p) JEoM Ko log(p)
n

n
|
_ i, 08P
n
which leads to
1
I > —MKOM. (S5.6)
mn

Since K'y/log(p)/n = o(1) implies K(+/log(p)/n = o(1), then we can apply

Lemma [ and obtain with high probability,

1
I = —55; (VAU + 785} (65

C(min 2
> Cin g

min K 1
_ Cuin o Kolog(p) (S5.7)
4 n
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Applying the triangle inequality, we obtain

A s
el -4
0) 4 I8 0
<3 ol + 87— 1ol
s |
< A S o + 6] - |a<0),‘
- m1n{|ak| ke S} F g g
kes
- 55 _ o ©
- mm{]ak| kGS}Z '+
_ Sis]
min{|ag| : k‘ES}Z F

which implies

I3 > —

A
min{|ay, | ke S} l9slly

m1n{|ak| ke S} Ko [19sl;
A [T Ky log(p)
min{|a,| : k € S} KoM no
VEMy B log Kolog(p) (S5.8)

mm{\ak\ ke S}

Thus, using the lower bounds on 1, I, and I3 from (55.6), (S3.7) and (S5.8),

respectively, we obtain

G(ds) = Il + ]2 + Ig
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Z —MKO log(p) _'_ Czin M2K0 log(p)
A Ko log(p)
_ VK My 205\
min{|a;|: ke S}V’ n
10g<p) Cmin 1 ]- /\ n
_ 2K, 28 _
T 4 M Mmin{|ag| : k € S} log(p)

> 0,

where the last inequality holds due to the condition M > 4/C\;, and

A n

min{|ax| : k € S}/ log(p) = or(1). (55.9)

To see why (S5.9) holds, we note all the conditions in Proposition [I] holds,

such that we obtain for all &k € .S,
x| = lof”] + op(1),

since Op (/K log(p)/n) = op(1) due to the condition K \/log(p)/n = o(1).

Therefore, we have
min{|ay| : k € S} = min{|a\”| : k € S} + op(1).

This, together with )\\/ﬁ/{min{\ag})] k€ Sty/log(p)} — 0in Condition

implies (S5.9).
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Hence with probability tending to one, we obtain

Proof of PropositionH] Since & is the minimizer of criterion (S3.1), then we
have é;, = 0 for k € S¢. The result in Proposition [3| holds since all the required
conditions are satisfied. Therefore, by Proposition [3| we can apply inequality
4.56(b) in|Seber| (2008) to obtain, with probability tending to one,

Ky log(p) < min{\oz,(co)] 1 keS}
n - 2 ’

s = o], < flas = o], < a1

for a finite positive constant A/ > 4/C\;,, where the final inequality is due to

Kol
min{|a"| : k € S} > 2M %g(p). (S5.10)

To see why (S5.10) holds, we first note Condition {] implies

min{|a"| : k € 5} R
log(p)

)
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and
n A logn(P) .
= 00.
Vv Ko log(p) Ko log(p)
These lead to

min{\oz,(ﬁo)| :keS} Ve min{|a,§0)| ke S} R
= 00,
A/ Ko log(p) Ko log(p)
log(p) — —

which implies (S5.10).

Finally, we can apply the triangle inequality and obtain for k& € S,

|O~ék| Z ‘a,&o)‘ — ‘&k — aéo)‘

> min{|oz,(§0)| ke St — Hds - ag))H
min{|oz,(€0)| ke S}

2min{|a,(€0)\ ke St — 5

min{|oz,(€0)| ke S} -0
2 Y

which completes the proof. 0
Lemma 5. Assume Condition2)is satisfied. Then for any € > 0, it holds that
(i) P(| Mg, s—MY. gl > €) < 2exp {—€n/(8Cy, K§) + log(Ko) + log(K — Ko) };
(i) P(|MZg — M gl > €) < 2exp {—e*n/(8C}, K3) + 2log(Ko) };

(iii) P(|Ug s — Uf slloo > €) < 2exp {—e*n/(8Cy, K§) + 21og(Ko) }.
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Proof of Lemma/[5] The proof of this lemma follows along similar lines as that
of Lemma|[3] We first prove claim (i). First recall the (;, 5 )-th element of matrix
M™ — M is given by > " | Uzl .,/ (np), where

o = (T @ x? — B {(Xl(i))'l'n(i)<a(0))xl(;)}7

lo —

fore = 1,--- ,nand [1,l = 1,---, K. It follows that vl(f?lz has mean zero
fori = 1,--- ,nandl,l = 1,---, K. Furthermore, under Condition [2|, we
have |(Xl(f))Tn(i)(a(0))Xl(?| <pC%foralli=1,--- ,nandly,lp=1,--- K.
Using similar techniques to those in the proof of Lemma this implies \vl(f?h\ <
2pC%, for all i = 1,--- ,nand l1,ly = 1,---, K. Thus, we can apply the

Azuma-Hoeffding inequality to obtain

< 2exp 2 o2
e 2230 + 2pCYy)

2n2p?
=2
s (m s )

—e?n
8C4 Kg)’
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forallly,lo =1,---, K and € > 0. It follows that

P (|| M35~ M|l =€) =P { U (Z

11€5¢ \l2€S

1 <
<§ P E - @ | >
< ( np 4 Vhi| Z 5)
l1€S°e l2€S i=1
] — ; €
<) P(U — N 2_>
l1ese 1,eS np =1 ’ KO
< E g P ( i . vl(i)l > i)
- 1,02 -
l1€S¢ 1,€8 np 3 Ko
< (K — Ko)(Ko)2 —cn
>~ 0 0 p 806[/}{3
2 —EN L og(Ko) + log(K — Ko)
=2exp{ ——— + 1o 0 -
p 80{%{/[(8 g 0 g 0 )

for all € > 0, which proves claim (i).

Similarly, we obtain

n

1 i
I Z Ul(l?ZQ

n
p =1

P(||Mgs — M|, > ) :P{U (Z

LEeS l2€S

)

1 <
SHIPMES AR

1eS loeS

1 <
SZP<U n_p;u;g,?

L es loeS

1 &
SHRY(FH o)

lLeSlyes

9 —e’n
< (Ko 2exp | gor s
W0

v
5|

v
&|e
S~
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2n
= 2exp {804 K2 + 210g(K0)}

for all € > 0, which proves claim (ii).
Next, we prove claim (iii). Recall the (I1, l5)-th element of matrix U" — U"

is given by > ", hl(f?b /(np), where
n, = @)TxD - {2

fore =1,--- ,nand l;,ls = 1,---, K. It follows that hl(?b has mean zero for
i=1,---,nandly,ly = 1,---, K. Furthermore, under Condition [2, we have
|(Xl(f))TXl(i)| <pC% foralli=1,--- ;nandly,ly =1,--- , K. Using similar
techniques to those in the proof of Lemma |3] this implies ]hl(f?lg\ < 2pC%, for

allv =1,--- ,nand ly,lo = 1,---, K. Therefore, we can apply the Azuma-

enp)

Hoeffding inequality to obtain

=) e (0

l1 lg

np
=P |, - B (D)} =
[ ; l1,l2 l1,l2 K,
26222
KQ
< 2exp

Z?:l (QPOI%V + QPOI%V)Z

5 —2e2n2p?
_= ex _—
P 16nK3p*Cy,
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5 ( —e2n )
=2exp | == | »

forall [y,lo =1,---, K and € > 0. It follows that

Z hll la

i=1

P(|[Ugs - Ulsll, =€) = P{U (Z

LeSs l2€S

)]

szP(z L3, )

lleS lQES

szP(u L3, f)
hes lo€eS

szzP(n—pz 0> )
1LeS €S

—e’n
< (Ko)*2exp (W)

2,
= 2exp{804 K2 +2log(K0)}

for all ¢ > 0, which proves claim (iii). [

Lemma 6. Assume Conditions|l|and[2are satisfied. Then for any ¢ > 0, it holds

that
(i) P{Awin(Mgs) < Crnin — €} < 2exp {—€*n/(8Cyy K§) + 2log(Ko) }

(i) P{Amax(U§ g) > Crax + €} < 2exp {—€>n/(8C} K§) + 21log(Ky)}.

Proof of Lemma|6] The proof of this lemma follows along similar lines as that

of Proposition[2] We first prove claim (i). By Condition[I|and inequality 4.67(e)
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in [Seber| (2008])), we have

Amin(Mgs) = Harjrﬁil:ll {xTMSO,S:B + x' (Mg’s - Mg,S) CB}

> Amin<MSO,S) - HMQS - Mg,SH2

Z Cmin - HM;‘L’,S B Mg’SHOO

This implies {Amin(Mgg) < Cnin — €} € {[|[M§g — Mgl > €} for all

€ > 0, due to

C'min - HMEJL’S - MgS”OO S Amin(Mg,S) S C'min — €

— || M§s— Mgl >
Therefore, by Lemma Ekii), we obtain for all € > 0,

P {Auin(Ms) < Con — ¢} < P (|| M55~ M|, > )
_ 627'L
8C1 K2

< 2exp { + 2log(K0)} :

which proves claim (i).

Next, we prove claim (i1). By Condition (I| and inequality 4.67(e) in [Seber
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(2008)), we have

Amax(Ug ) = Hgﬁgicl {a:TUg’S:c +x’ (Uss—Ugg) x}

< AmaX(qu,S) + HU;},S - U~87S||2

< Chnax + ||USs — Uss|| . -

This implies { Anax (U g) > Crax + €} € {|U§ 5 — Ugslloc > €} forall e > 0,

due to
Cmax + € S Amax<Ug,S) S Cmax + HUQS - Ugs”w — HUE{S - UgSHoo Z €.
Therefore, by Lemma [5(iii), we obtain for all ¢ > 0,

P {Aax(UZ ) > Croax + €} <P (HUS,S ~Ussl. > 6)

en

<2 ———— + 2log( K

which proves claim (ii).

Lemma 7. Assume Conditions[l|—[2| are satisfied. Then for any € > 0, it holds
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that
P {H(M” )= (Mgg) M| > 6} < 2exp G + 2log(Ky)
55 557 Moo = 2f = 3208 K3
Cfrlinan
+ 2exp {_3201%[/K3 + 2log(K0)} :

Proof of Lemmal7] Note (Mg,s)_l_<Mg,s>_l = (Mg,s)_l(Mg,s_Mg,S)(Mg,s)_l
and [[(Mgg) '[l2 = {Amin(Mgg)}~'. By inequalities 4.57(d) and 4.57(e) in

Seber| (2008), we have

[(MEg)™ — (M)

< VE ||(Mgs) ™ = (M§ )™,

= VKo || (M) (MG s — M) (Mgg) ™|,

< VEo [|(Mgg) |, | M85 — M|, [[(MEs) ],

< VEo |[(Mgs) ||, | M8.s — M|l [[(MEs) ],
VK,

= Ty M8 = Mis|l.. 1(M55) 7

< {H<ngm i’ } (V|03 - b)),

where the last inequality holds due to Condition Furthermore, by noting

(M5 5)71], = {Amin(Mg )} ", then we can set € = Cpyin/2 in Lemma @i)
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to obtain

”(MQ,S)_IHQ 2 . 1 2
P{ Cmin 2 CIQnin B P OminAmin(Mg’S) Z Cr2nin

(%)
< 2exp TSCTRE + 2log(K)y)

2

Cs.n
=2 ——2— 4+ 2]og( K, .

Also, by setting e = C2, ¢/(2v/K,) in Lemma ii), we have

2, o .
P (VEa M85 - M|, = )~ (|l ags - Mg > )

2 VK,
o2 &\2
(55) n
S 2€Xp —W + 210g(Kg)
C*. en
=2 -2 1 9]og( K
em{w%m+°g®}

for all € > 0.

Finally, we have

(Mg~ — (M8, > €}
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C{{”(MC—)”}(W\\M Mgll) = (o) (© 2>}
_{HMSS ", }U{mHMSS mgl, > Gl

— 2
len len

for all € > 0. Thus, by the union-sum inequality, we obtain

P{H (Mgs)™" — (Mgs) |, 2 g}
C?. €

-1 2
H” 5 I, . 2 }U{\fKoHMg,S—Mgsllm % }]

min

(M)~ ], e . Crinf
SP{ g Cz +P< Ko || Mgs — Mgl > 2)

min

[\]

<2 Coin® 9 log(Ky) b 42 Coim®n 1 9 10g( o)
eX (0] ex — (0]
= SO\ Taacn kg TR Pl 3208 K3 ~ 208\ 0

for all € > 0, which completes the proof. 0

Proof of Proposition[S|] We first write M. o(Mgg)™" = T\ + Ty + Ts + Ty,

where
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By Condition 3| we have || T}|| , < 1 — C), which implies

{HM&’S(MQ’S)_IHOO 51— CTM}

C C C
c {imiz 2o fimi > 2o fimi. > 24,

due to

Cum n noy—
1-—-< [ MG (M5 )| < Tl + 1 Telloo + T3] + 1Tl o

STl + 12l + 1Tl +1 = Cur

Cu
= Tl + 1 Bolle + 1 Tsllo = =~
C C C
= |1l = FM or |Tpll, > 7M or | T3], > %

Next, we proceed to obtain the tail bounds for 77,75 and T3 in the following

three steps.

Step 1. We start by rewriting T} = Mgcﬁs(Mg)s)_l(Mgs — Mgs)(MgS)_l.

By Condition [3|and inequality 4.67(d) in Seber| (2008]), we obtain

1Tl < || Mge s(Mgs) ™| || MSs— Mg [|[(Mgs)™ ||
< || Mg s(Mg) ™| [|MSs — Mgs|| vV Eoll(Mgs)™,

< (1= 0w (VR M55 - M3l ) (o)L}
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which implies

C
{i. >}

n C'minCY n \— 2
C {\/KO | Mgs — Mgs|| > rgw)} U {H(Ms,s) sz 5= }

The above is due to

S <m0 - Cun) (VS Mg — M3l|L) LMz}
= (VEo||Mgs - M|l ) {ll(M55)7 ], } > ﬁ

- {12?Tiich)} (Ciin)

n C1minCY n o \—
= VKo ||Mgs— Mgl > réfw) or [[(Mgs)~', =

2
C’min .

By setting € = Cyin/2 in Lemmal6](i), we have

n \—1 2 — 1 2
P {H(Ms,s> I, > m} =P {Amin(Mgs) = Cmin}

2

C’min
< 2exp {_3203[/—’(3 + 2log(K0)} :

Furthermore, by setting € = Cp,inCiy/{12(1 — Cyy)v/ Ky} in Lemma ii), we
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obtain

. C1minC’
p {,ﬁKO | M2s— M3 > M}

o n_ 0 C1minCVM }
_P{HM&S Ml > i e T
02

- minOJQ\Jn +210 (K)
1152(1 — Cyy )2CL KR s\l

< Qexp{

Therefore, we have

C
P (Tl = )
C'minC'M

2
<P {\/Ko HM&S — ngsHoo > m} + P {H(Mgl,s)_lnz = C.. }
. C(r2r11nC(]2\/[rn’

1152(1 — Cyy)2Cy, K3
2

C(minn
+ 2exp {_32061/[(3 + 210g(K0)} :

< 2exp { + 2 log(Ko)}

Step 2. By Condition (1| and inequality 4.67(d) [Seber (2008), we have

1Tl < [|ME. s — Mg || ||(Mgs)™"||
< || M. s — Mg 5|, vV Eo|[(Mgs)7|,

N n - 9 ;
= M55 = M3 oo VEog

< || Mg s — Mg s
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which implies

C C C(min
R e Y e e g

Note the above is due to

C K,
= <l < f M5 s — M. ],

o Mg — MY | > G

— 6VEKy
By setting € = C;Cin/(64/Kp) in Lemma i), we obtain

C n O C’min
P (1Tl > Q) <P (030 - M3 > i)

02 Cglinn
< 26Xp {—#w + IOg(Ko) + IOg(K — Ko)} .

Step 3. We have
1Tl < (1M s = M s (M) = (M) '] .

which implies

C
{iz. > ]

C C
< finaec -t > /% ooz - o > 2.
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where the above is due to

C
é\/[ < || Ts]| HMQ«:,S - MgSH H (Mg)~" — (Mg) _lH

C C C

— || Mg~ M| [[(Mge) ™ — (M) > =X \/Mv 3
Cy

— (Mg - M| > o (M) - (M2 2

Thus by setting e = /C;/6 in Lemma i), we obtain

C
P (- natl, >

Cun
< 2exp {—ﬁ + log(Ko) + log(K — KO)} :

Moreover, by setting €¢ = 1/, /6 in Lemma 7| we obtain

e{lareo - a2
c*. Cyn

Cﬁlinn min
§ 2eXp {—m + 210g(K0)} + Qexp {_m + 210g(K0)} .

Therefore, we have

C
P <||T3||oo > g”)

" 0 Cum 0 -1 Cwm
<SP [[Mge s = Mg sl >/ =57 | + P I(MEs) ™" = (Mss) > /=~

2

C(minn
+ log(Ko) + log(K — Ko)} + 2exp {_W + 2log(K0)}
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4
+ 2exp { Crni O

i+ 2 log(KO)} .
192C% K3

Note log(Kj) < log(K), log(K — Ky) < log(K) and —n/K3 < —n/K{. Then,

by combining the tail bounds from Step 1 to Step 3, we obtain

C
P {HMQC,S(MES)_w >1— QM}

C C C
P (Imile> ) + (||T2|| e R (CI

<2e ConinClr +2log(K) b + 2e Conin. ™ 91 (K)
X X
= 2P T 5201 — )20, K3 s P 3208, &3 75

Cc3,C2.

min CM n
—i-Qexp{ 2886’4 —|—210g(K)}+2eXp{ 4804 K3+2log(K)}

+Qexp{ 3204 3+2log(K)}+2exp{ 19204 3+2log(K)}

< 12exp{—C’K3 +210g(K)},
0

where

C' = min { CI%HI]O2 ann annoz CM C’mmc’f\/f}
1152(1 — Cyy)2CE." 3203, 288CE. ' 48CE." 192C%
— min { CIQnmCM C'IQnmC'M CM lenCM}
1152(1 — Cy)2C3, 288C%. " 48CE 192C%

This completes the proof. ]

Lemma 8. Assume sample Condition|l'|and Condition|2| are satisfied. Then for
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any ¢ € [0,1), it holds that

H{V2l(a(0) 48— v2l(a<0>)} 3”00 < O Crume 55”2‘

Proof of Lemma|8} The proof of this lemma follows along similar lines as those
of Lemmasand@ Applying the mean value theorem, we have 77](;) (a©® +10 ) =
77](.?(04(0)) - LVn](-?(a(O) + 1*8)7 4, for some constant .* € (0,),i=1,---,n
and j = 1,-- -, p. Then under sample Condition [1’land Condition [2| we obtain

forallk=1,--- | K,

H{Vzl( ﬂ&} — {v( 0>)}k’s}55

[  (29) {09 +15) - n(a)) x?] 5
=1

1
np

1

— n_p [Z (XE;J)T {n(i)(a(o) + Lg) . n(i)(a(o))} Xg)] 85
=1

LS N 46) i) )T §
- _ZZXkJ { Mj; +L6) 77]]( (0))}‘)(5’] ds

i=1 j=1
J R
— _ZZX,S”){LVn”( —l—e*&)Té} ”)T(ss
=1 j5=1
1 < - . - AT =
< L33 || [T 0 + )78 24975
[ i
1 = (k)T (i) * ()T § (@)7T §
gn—pzz‘wj, yi| [ (ol +L5)( J 5>Hx5 55)

i=1 j=1
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n

< —ZZC (x(” )2

’Lljl

Oy {nip Zn: (%055) (ngss)}

- 1 <& ; ; -
— Cy ol (n—p > aTxl >> s
i=1 S,8

2
< OwAmax(Ug g) H(SSHQ

-2
S C(WC’maux 65‘ )
where Xk(i’j ) is the k-th element of the vector X %) for i = 1,---,nand j =
L+, p. Since [[{VZI(al®) +16) = V() }6 | oo = maxy s {|[{ V() +
10)Yr.s — {V2(a )}, ]|}, this completes the proof of the lemma. O

Proof of Proposition[7] Since all conditions in Proposition [] are satisfied, then

we obtain with probability tending to one that &, # 0 for all £ € S. Furthermore,

recall & is the minimizer of criterion (S3.1). Hence, with probability tending to

one, dl(&)/day, = (N/|ag|)sign(ay) for all k € S. This proves claim (i).
Before we prove claim (ii), we first prove for all k£ € S,

A A
ar] ~ max{|ay| k€ 5}

(S5.11)

Since all the conditions of Proposition |1|are satisfied, we obtain for all £ €
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Se,

Klo
ae] = |k — 0| + o] = Op ( —g“’)) ,

n

and thus max{|ax| : £ € S} = Op(y/Klog(p)/n). This, together with

Mn/{VKlog(p)} — oo in Condition implies

A n
— 0. S5.12
max{|ag] : k€ 5\ loglp) > (53.12)
Recalling (S5.9) gives
A n
=o(1
min{|ay| : k € S} log(p) ol);
under the assumed conditions, this leads to
A A
(§5.13)

min{|ag : k € S} max{|a| : k € 5}

which implies (S5.171).
Then, we let w = (max{|ax| : k¥ € S}/A\)VI(&). From (S5.T1)), we have
forallk € S,
max{|a| : k € S} |0l(a)|  |ak| |[Ol(ex)
A 80% A 80% ’
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Hence, by (i), we obtain, with probability tending to one,

max{|ag| : k € S} |dl(&)

Jusl. = { 20

|

kes day,
max @ di(a)
keS A aOék

= max { sign(iy) }

A\

= 1.
Then, by the mean value theorem and recalling 6 = & — o', we obtain for

some constant ¢ € (0, 1),

A
max{|ay| : k € S¢}

u— Vi(a?)

= Vi(a) — Vi(a?)

= V() +.18)6

= V(' 4 18)d + V(a')d — V2I(a'”)

=—M" +1r",

where 7" = {V2[(a(®) + 18) — V2(a?))}d. Rearranging the equation gives

< A

M"$ = — H(a?) + 7"
max{|@k|:k€SC}u+v<a )+
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which can be written in block matrix form as

Mgg Mg ds _ _4max{|o7k)\\:k€5c}us n {w(a(o))}s TS

A
Mg‘:,s Mgc7s(: (SSC —Wusm {Vl(a(o))}Sc ’I“gc

Since SSC = Quge — ag)c) = Ox_k,, then we obtain

A

M2 b = —
SST8 T T max{|ag| : k € S}

us + {Vi(a)}  + 7, (S5.14)

and

A
max{|ay| : k € S°}

M. 305 = — uge + {VI(aP)} +7%.  (S5.15)

Sample Condition [T] implies M ¢ is invertible, so we can substitute (S5.14)

into (S5.13)) and obtain

A
max{|ayg| : k € 5}
A

- . Ia© n
malan ke gy T V@) £

M. o(Mg )™

ug + {Vl(a(o))}s + 75

Rearranging the equation gives

max{|a| : k € S} {Vl(cu(o))}sc max{|ay| : k € S°}ri.
+
A A
max{|ax| : k € S} {VI(a?)}
A

USC —

- Mgc,s(Mg,s)_l —ug +
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max{|ay| : k € S°}ri
" )

Using ||us]|, < 1 from above and sample Condition 3] we obtain

||u5c

< max{|ay| : k € S} {VI(a®)} g || n max{|ax| : k € S} |72
B ) A
_ max{|a;| : k € S} |[{Vi(a®)
b (Mg s (M) [”usnoo o] k€ 99 ),

max{|ag| : k € S°} Hrg||oo:|
+ A

_ max{|a| : k € 5} || VI(a®)]| max{|ay| : k € S} ||r"|

A )
n n o \— maX{|O_é | ke SC} VZ(a(0)>
+ || M. (M ) 1\\00{1+ F \ I [
maxllal € 5 ||r"||oo}

= || Mg (M) |+ {1+ || Mg s (M2

y {max{|ak| ke S} HVl(a(O))”OO N max{|ay| : k € S} ||'r”||oo}
A A

<1-Cy+(2-Cly)
) {max{|ak| ke 5 || Vi(a®)|_ | max{lay| - k € 5 ||'r”||oo}

A A

for a constant C, € (0,1).

Since Oy satisfies K = o(p®%/(%)), then we apply Lemma ii) and ob-
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tain, with probability tending to one,

max{|ay| : k € S| Vi), _ max{lar] : b € 57}Cry/ 2
A = A
max{|ax| : k € S} @

— WV A )

where (max{|ax| : k € S}/A)y/log(p)/n = o(1) due to (S5.12). Therefore,

when n and p are sufficiently large, we obtain

max{|ay| : k € S} ||Vl(a(0))Hoo Ciy
A - 8—4Cy,’

for a constant C'}; € (0, 1). By Lemma|8|and Proposition 3| we have

~ 112
|
2

max{|ag| - k€ S [l max{|ax| : k € S}Cw Crnax
A = A
< maX{’@k| ke SC}CWCmaXM2KOM

n

A
max{|ay| : k € SC}\/—logn(p) 1
= Cy Cona M N K, Oi(p )

for a finite positive constant M > 4/Cyin. Since (max{|ax| : k € S}/\)+/log(p)/n =

o(1), and Ky+/log(p)/n = o(1), due to the condition K +/log(p)/n = o(1) as

n,p — o0, then for sufficiently large n and p we have

max{lay| : k€ ST, . Ch
)y = 8—4C,’
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for a constant C'); € (0, 1). Thus, we obtain

||USC

Ch . Chy
§—4CT, T 83— 4C",

Oo<1—0§w+(2—0§w)<
! ! 20}\4
—1— 9 _ =M
Gt CM){4<2—C;W>}
1
:1—034+§cg4
1 !

<1,

since Cy; € (0,1). Finally, by recalling u = (max{|ax| : k¥ € S°}/\)VI(&),

we obtain for all £ € S¢,

29| < It
A
- max{|ay| : k € S} leesellos
A
< max{|ag| : k € SC}(l)
A
= mv

which proves claim (ii). ]
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S6 Inference Method

In this section, we provide more details on the inference method based on the
proposed regularized pseudo-likelihood estimator employed in the real data ap-
plications of Sections [5] and [S9] We first discuss the calculation of the empir-
ical sandwich covariance matrix, which is used to construct 95% Wald confi-
dence interval for each of the regression coefficients that are estimated to be
non-zero using regularized pseudo-likelihood estimation. Specifically, let 9 =
(611, ,0,p,&")T denote the regularized estimates of the Ising similarity re-
gression model, 5 = {k : & # 0, fork = 1,--- K} denote the estimated

index set of the non-zero regression coefficients, and

p

L) =D v | 0+ D awy wijyy

J=1 keSS  Ji'#i

—log {1 +exp |0+ Z Qg Z w]('];/)yij’ )

keS  J'#I
denote the log pseudo-likelihood function of the i-th observation for¢ = 1,--- ,n
after model selection, where V¢ = (611, - ,0,, ozST)T and ag is a subvector of

o that consists of the elements indexed by S. The empirical sandwich covari-

ance matrix is then given as

-1

n -1
V() = {— > v?z}(ég)}
i=1

3 Vii(dg) {vz}(f}g)}T] {— ZV2Z¢(1§5~)}
i=1 i=1

)
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where VI;(9¢) and V2[;(9) denote the gradient vector and the Hessian matrix,

respectively, of [;(94) for i = 1,--- ,n. In particular, the elements of Vi;(9)
for: =1,--- ,n are given as
- k
Oli(9) P <0jj + Phes 0 D Wy y”)
00..  Yui~ (k) ’
73 1 + exp <(9jj +Zke$‘ (09X Zj’;ﬁj wjj,yl-jr>

foryj=1,---,p,and

. - . T
0l;(9¢) — (W) 0l;(9g) o 0l;(9¢)
Oay, e 00 7 0y ’
for k € S. Furthermore, the elements of Vzii(ﬁ ¢)fori=1,--- nare given by
. k
PL(ds) TP <9jj 2 hes Ok Dy wyy) y”)
003, *
i {1 + exp <9jj + D kes Wk Dyt wé?%y) }

foryj=1,---,p,
(’92l~i Fs
( s) 0,

00,:00;;
for j' # J,
- - (k) (0)
L(05) L0y <Zj'¢j Wy sz) P <9jj + 2 hes 00 2y wjﬂ”’)
.. - . . o 2 7
Oad8;; 90500y {1 + exp <9jj T2 o0es Dy w§§)’yij’> }
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foryj=1,--- ,pandkég,and

~ k k' 4
%Li(9g) _ 3 - (Zj';éj wg) yw) (Zj/# wa('j')yij’) exp <9J'j D 0es e Dy wa('jzyij’)

OapOay, ; ¢ ’
RESR = {1 + exp (ij + 2 0es i “’;j)'y“')}

)

A

for k, k' € S. After obtaining the empirical sandwich covariance matrix V' (9),
the Wald confidence intervals are then constructed using the general form &y, +
1.96 x SE(dy) for k € S, where SE(dy,) is obtained by taking the square root
of the corresponding diagonal element from V(@ ¢). These intervals are con-
structed based on the theory that the coefficients standardized by their corre-
sponding standard errors i.e., (G — a,(go)) /SE(éy) are asymptotically standard
normal, noting that asymptotic normality result is a difficult problem for Ising
model in general, and much of the existing Ising model literature (e.g., Wain-
wright, Lafferty, and Ravikumar, [2006; Hofling and Tibshirani, 2009; |Cheng
et al., 2014; Guo et al., 2015) have not explicitly addressed this problem; see
also Section 6| for a discussion on future investigation of the asymptotic normal-
ity. Furthermore, the post-selection inference problem, to which our inference
method pertains, is challenging; see Berk et al.| (2013) and |Lee et al.[|(2016) for
related work, noting these are not easily generalizable to our case as they focused
on linear regression setting with independent univariate continuous responses as
opposed to our multivariate binary response vectors with dependence structure

from the Ising model.
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S7 Supplementary Details of Simulation Study

S7.1 Simulation Settings of Section {4

This section provide details of the simulation settings used to obtain the nu-
merical results in Section [4] of the main text. For the true values of the main

6\

effect parameters {60,;’;;j = 1,--- ,p}, we follow Guo et al. (2010) and gen-

erate them independently and uniformly in the range [—1, —0.5] U [0.5, 1]. For
the regression coefficients of the similarity matrices, we generate oz,(f) indepen-
dently and uniformly from [—0.4,—0.3] U [0.3,0.4] for k = 1,---,5 and set
a,io) = 0 for k = 6,---,20, leading to Ky = 5 truly non-zero coefficients out
of a total of K = 20 coefficients. Turning to the similarity matrices, we follow
the framework of Zou et al.| (2017) and set the diagonal elements of all the sim-
ilarity matrices {W}, : k = 1,--- | K'} to zero, while the off-diagonal elements
are simulated as wj(];,) = wj({? = exp(—dy;,p) with dy;? U (pY2, pt/?) for
j,7' = 1,---,p. Based on the above settings, we then construct the true Ising
similarity regression model as in (2.4), and afterward simulate 1000 datasets
consisting of n multivariate binary vectors of dimension p using the R package
IsingSampler (Epskamp,|2020), for each combination of n and p.

For all four methods considered in Section 4| (Regularized, Lasso, Unreg-

ularized and Oracle), we evaluate the performance of their point estimates for
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the regression coefficients «;, and main effect parameters ¢,; using MSE, =
(1/1000) 3,2 S (G i —al”)2/ K and MSEy = (1/1000) 320 S (055,00 —
0;;')°/p respectively, noting the MSE is scaled by the number of associated
parameters, and &y, ;3 and éjj,{l} generically denote the estimated parameters
from the [-th simulated dataset. Additionally, we assess model selection per-
formance for the proposed estimators and lasso-regularized estimators of the
regression coefficients based on TPR = (1/1000) 3,5 3" 1(ay 4y # 0)/5
and FPR = (1/1000) 3;%° S°1  1(du.y # 0)/(K — 5), where 1(-) is the

indicator function.

S7.2 Additional Comparison with Other Estimators

In this section, we perform simulation studies to compare the performance of
our proposed regularized estimator to other estimators. The simulation settings
are similar to those in Section 4] of the main text.

Recalling that the proposed regularized pseudo-likelihood estimator utilizes
a ten-fold cross-validation approach to select the tuning parameter A in equation
(2.7), we additionally consider two widely used methods, AIC and BIC, to select
A. We denote such regularized pseudo-likelihood estimators with A chosen using
AIC and BIC as the AIC and BIC estimators, respectively.

In more detail, the AIC and BIC estimators involve finding an optimal \ that
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minimizes the criteria 2K, —2 37" > i1 108{ f;(vilys j.9,) } and log(n) Ky —

~

230 >0 log{ fi(yilya ., )} respectively, where Iy = (Oin, - Oppr, &)
denote the estimated values for ¥ based on minimizing by setting the value
of the tuning parameter to be A, and K denotes the number of non-zero esti-
mated regression coefficients in ¢&). The resulting AIC and BIC estimators are
then set as ¥, that correspond to their respective optimal .

Table [S2] presents the TPR and FPR of the AIC and BIC estimators, along
with the TPR and FPR of the proposed estimator and lasso-regularized estimator,
noting the latter were previously reported in Section ] but are also included here
for ease of comparison. Similar to the proposed estimator, the TPR and FPR
of both the AIC and BIC estimators tend to one and zero, respectively, when
n and p increase. However, when p is small, the AIC estimator tends to suffer
from relatively large FPR albeit with a slightly larger TPR, and such tradeoff
between the TPR and FPR of the AIC estimator is expected due to its weaker
penalization on model complexity leading to overfitting. On the other hand, the
BIC estimator with a stronger penalization on model complexity is found to have
similar selection performance to our proposed regularized estimator.

We also compare the proposed estimator with traditional Ising model esti-

mators that do not incorporate the additional information from similarity ma-

trices Wy, and directly estimate the Ising model interaction matrix © (see e.g.,
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Table S2: TPR and FPR for the Regularized, Lasso, AIC and BIC estimators of the regression
coefficients in the simulation study involving the Ising similarity regression model.

Regularized

TPR FPR
p\n 50 100 200 400 50 100 200 400
10 0.337 0490 0.654 0.824 0.167 0.202 0.225 0.235
25 0.835 0970 0.999 1 0.218 0.218 0.197 0.167
50 0.954 0.999 1 1 0.186 0.174 0.154 0.102
100 0976 0.998 0.999 1 0.043 0.105 0.076 0.009
200 0.925 0.998 1 1 0.043 0.058 0.005 0

Lasso

TPR FPR
p\n 50 100 200 400 50 100 200 400
10 0.307 0.500 0.711 0.888 0.124 0.185 0.237 0.290
25 0.859 0.980 1 1 0.298 0356 0.392 0.395
50 0.982 0.999 1 1 0403 0412 0426 0.428
100 0.999 1 1 1 0.294 0327 0405 0.429
200 0.996 1 1 1 0.254 0354 0.392 0.433

AIC

TPR FPR
p\n 50 100 200 400 50 100 200 400
10 0.604 0.669 0.774 0.884 0.451 0435 0438 0.429
25 0.927  0.990 1 1 0.425 0400 0.391 0.371
50 0.962 0.999 1 1 0.377 0390 0.369 0.222
100  0.969 0.997 0.999 1 0.098 0.268 0.157 0.014
200 0.904 0.998 1 1 0.095 0.126 0.009 0

BIC

TPR FPR
p\n 50 100 200 400 50 100 200 400
10 0.388 0.459 0.591 0.769 0.214 0.177 0.151 0.145
25 0.856 0.967 0.998 1 0.237 0.183 0.133 0.084
50 0.958 0.999 1 1 0.201 0.151 0.102 0.067
100 0969 0.997 0.999 1 0.050 0.090 0.066 0.008
200 0.904 0.998 1 1 0.047 0.062 0.005 0
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Section 3 of Hofling and Tibshirani, 2009). Specifically, we consider an estima-

tor (Ising-Lasso) that minimizes the objective function

A 10551,

J<y’

(S7.16)

1 ~w
_% Z Z yij (ij + Z Hjj’yij’) — log {1 + exp(ij + Z ejj’yij’)}

i=1 j=1 §'#i J#

subject to 0,;; = 0, for j # j', where A > 0 is a tuning parameter for the lasso
penalty. This estimator is computed using the R package glmnet by properly
setting up the model matrix in the above lasso-regularized logistic regression
in an analogous way to how our proposed regularized estimator is computed,
where the tuning parameter is also selected by a similar ten-fold cross-validation
approach. To understand how the model matrix can be set up, we first note
that equation (2.3) in the main text includes the traditional Ising model as a
special case, by letting W, = Ao + Aoy, -+ Wy = A, + A, W, =
Ags + Az, -+ Wi = A1)y + Appo1), 01 = o, o1 = 01,0 =
023, ,ax = Qp_1)p, K = p(p — 1)/2, and recalling A;; is a p X p matrix
with the (74, j')-th element being one and other elements being zeros for j, j' =
1,--- ,p. These W) matrices can then be substituted into the expression of X
given in Section {4f of the main text to obtain the required model matrix (I, ®
1,, X). We also consider an unregularized variant (Ising-Unregularized) of the

above estimator by minimizing (S7.16) with )\ set to zero. Again, the Ising-
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Unregularized estimator is computed using the R package glmnet. As such,
the resulting Ising-Unregularized estimator corresponds to the largest possible
model selected by glmnet, which might still contain some zero estimated 0
under some cases due to the large number (i.e., p(p+1)/2) of parameters needing
to be estimated. We assess the performance of these two estimators, along with
the Oracle, Regularized, Lasso and Unregularized estimators from Section
of the main text, in estimating the true Ising model interaction matrix @) =
L0 A+ Y o W
Table [S3| reports the estimation error measured under the Frobenius norm

(Frobenius-error) and the spectral norm (Spectral-error), computed as (1/1000) }S{O

10 — @@ and (1/1000) 3,27 @1y — ©©) ||, respectively, where ©

generically denotes the estimated interaction matrix from the [-th simulated dataset.
It is clear that the traditional Ising model estimators (Ising-Lasso and Ising-
Unregularized) have the worst performance in recovering the interaction matrix,
since these estimators do not incorporate the extra information from the simi-
larity matrices W),. In addition, the estimation errors of the proposed estimator
tend to be smaller than both the lasso-regularized estimator and the unregular-

ized estimator, and are getting closer to the oracle estimator as n and p increase.
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Table S3: Frobenius-error and spectral-error for the Oracle, Regularized, Lasso, Unregularized,
Ising-Lasso, and Ising-Unregularized estimators of the interaction matrix ® in the simulation
study involving the Ising similarity regression model. Dashes indicate procedures that are not
executed due to prohibitively time-intensity.

Frobenius-error Spectral-error

p n  Oncle Regularized Lasso Unregularized Ising-Lasso Ising-Unregularized  Oracle Regularized  Lasso Unregularized Ising-Lasso Ising-Unregularized
50 2771 3223 2.861 5.561 3.365 11.447 1.650 1.926 1.729 3.323 2.070 7.668

o 100 1906 2461 2274 3.611 3.053 5.838 1132 1472 1.386 2153 1.863 3611
200 1344 1860  1.729 2477 2,682 3.704 0.799 L115 1057 1.466 1618 2244

400 0.930 1.342 1.266 1.703 2.145 2.486 0.556 0.808 0.771 1.007 1.280 1.483

50 3.428 4.605 4.421 5.822 6.967 151.669 1.438 1.880 1.798 2.365 2.861 94.351

55 100 2367 3139 3.044 3.947 6.638 25.223 0981 1277 1271 1595 2692 13.378
200 1.670 2120 2234 2766 6.123 12.335 0.692 0863 0.902 1117 2.496 5.867

400 1165 1442 1580 1936 5.182 7.644 0481 0588 0.639 0.786 2138 3416

50 5.060 6.390 6.471 7.433 13.483 263.305 2433 2.792 2.788 2.987 5.015 93.879

s 100 2920 3576 3.892 4641 12,635 253.155 1.024 1190 1.283 1.441 3.994 129.932
U200 1991 2392 2701 3.198 12,184 47.021 0675 0775 0.859 0977 3.830 21.351
400 1415 1631 1911 2247 10.964 22,041 0473 0527 0.602 0.683 3488 9.087

50 14.281 12,192 13.973 15.626 27.172 103.003 10.185 6.271 8.461 10.243 12.776 21.443
o 100 6181 6.689 6797 7.600 23.061 329.099 3.764 3320 3.002 3.920 7.706 85.681
200 3.066 3331 3.666 4213 — — 1.167 1152 1197 1310 — —
400 2.006 2110 2462 2829 — — 0623 0649 0.707 0727 — —

50 19.079 22523 21985 20.426 2164 76856 11.736 13123 13.964 1753 13.187 12.780

200 100 7.186 7.744 8.399 8.777 37.970 136.217 3.609 3.710 4.111 3713 7.761 20.779
200 3.948 4060 4.603 5241 — — 1153 Li64 1238 1254 — —
400 2671 2806 3.119 3.582 — — 0.644 0667 0.702 0727 — —

S7.3 Additional Simulation Results for Varying /K

We conduct further simulation studies to investigate the effect of the number of
similarity matrices / on the empirical performance of various estimators for
the Ising similarity regression model. The simulation settings are largely similar
to those in Section {4 of the main text, with the only exception being that we
now additionally consider K € {10, 40,80, 200}, while holding K, = 5 as the
number of truly non-zero regression coefficients. For this simulation study, we
only consider two combinations of sample size and number of binary responses:
(n,p) = (50, 25) and (n, p) = (400, 50).

Table |S4| shows the increasingly worse estimation performance for all three
estimators of the main effect parameter (Regularized, Lasso and Unregularized)

when the number of irrelevant similarity matrices increases. The same conclu-
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sion of increasingly worse estimation performance when /K increases holds for
the estimators of the regression coefficients, despite the seemingly decreasing
pattern of the MSEs for the proposed estimator and lasso-regularized estimator
of the regression coefficients. Note however that the latter is due primarily to the
definition of MSE, = (1/1000) 1% S5 (agy — ol”)/ K, whose denomina-
tor increases with /. In fact, such worsening estimation performance of the re-
gression coefficients is further reflected in Table which demonstrates the in-
creasingly large error in estimating the interaction matrix for all three estimators
as K increases. Furthermore, Tables @and@] show the unregularized estimator
consistently has the worst estimation performance, while the proposed estimator
performs better than the lasso-regularized estimator when (n, p) = (400, 50).
Table |S5|presents the averaged true positives TP = (1/1000) }220 22:1 1(
.y 7 0) and averaged false positives FP = (1/1000) 112?0 2526 (b 1y #
0), along with the TPR = (1/1000) >;%° ™7 1(éuqy # 0)/5 and FPR
= (1/1000) 33,2 o8 1(6u,qy # 0)/(K —5) as defined previously in Section
As the number of irrelevant similarity matrices increases, the similarity se-
lection performance of all four estimators of the regression coefficients (Regu-
larized, Lasso, AIC and BIC) becomes worse as indicated by the decreasing and
increasing patterns of their TP and FP, respectively. When (n,p) = (400, 50),

the TP for all estimators are always equal to the number of truly non-zero re-
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Table S4: MSE for the Regularized, Lasso, and Unregularized estimators of the regression coef-
ficients (MSE,,) and main effect parameters (MSEy) in the simulation study involving the Ising
similarity regression model with K € {10, 20, 40, 80,200}. MSE,, is multiplied by 1000 for
clarity.

1000 x MSE,, MSEy
p n K Regularized  Lasso Unregularized Regularized Lasso Unregularized
10 22.645 20.630 25.176 0.356  0.321 0.402
20 14.717 13.474 25.985 0.391 0.351 0.546
25 50 40 10.190  8.386 31.193 0.435 0.366 0.795
80 7.622  4.990 46.441 0.513  0.377 1.439
200 4.875 2340 276.987 0.608  0.407 7.725
10 0.612  0.836 0.918 0.029  0.033 0.036
20 0.386  0.625 0.939 0.033  0.038 0.047
50 400 40 0270  0.433 0.992 0.036  0.041 0.059
80 0.197  0.279 1.056 0.040 0.044 0.078
200 0.143  0.147 1.264 0.048  0.049 0.136

gression coefficients i.e., five, under all values of K. Again, the decreasing
patterns of the FPR for some of the estimators are due to the denominator in
the expression of FPR, which includes a factor of (K — 5). Among the four
estimators, the TP of AIC decreases at the slowest rate, while its FP increases at
the fastest rate as / increases. This is to be expected given the weaker model
complexity penalty in the AIC. The proposed estimator also tends to perform
better than the lasso-regularized estimator, especially in terms of much smaller
FP in some cases. Finally, the BIC estimator tends to have comparable selection

performance to our proposed estimator.
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Table S5: TPR and FPR along with TP and TP (in parentheses) for the Regularized, Lasso,
AIC and BIC estimators of the regression coefficients in the simulation study involving the Ising
similarity regression model with K € {10, 20, 40, 80, 200}.

TPR (TP)
p n K Regularized Lasso AIC BIC
10 0.855(4.274)  0.911 (4.555) 0.937 (4.685)  0.875 (4.375)
20 0.835 (4.174)  0.859 (4.295) 0.927 (4.636)  0.856 (4.282)
25 50 40 0.803 (4.017)  0.785 (3.927) 0.921 (4.603)  0.832 (4.159)
80 0.75(3.748)  0.697 (3.484) 0.899 (4.495)  0.785 (3.924)
200  0.538(2.688)  0.596 (2.982) 0.836 (4.179)  0.597 (2.986)
10 1(5) 1(5) 1(5) 1(5)
20 1(5) 1(5) 1(5) 1(5)
50 400 40 1(5) 1(5) 1(5) 1(5)
80 1(5) 1(5) 1(5) 1(5)
200 1(5) 1(5) 1(5) 1(5)
FPR (FP)
p n K Regularized Lasso AIC BIC
10 0.252 (1.259)  0.457 (2.283) 0.425 (2.125)  0.262 (1.312)
20 0.218 (3.265)  0.298 (4.473) 0.425 (6.368)  0.237 (3.557)
25 50 40 0.182 (6.369)  0.181(6.349)  0.436(15.255)  0.212 (7.435)
80  0.161 (12.043)  0.104 (7.775)  0.473(35.478) 0.194 (14.581)
200 0.108 (21.010)  0.051(9.849) 0.643 (125.447) 0.163 (31.702)
10 0.073 (0.364)  0.617 (3.086) 0.098 (0.492) 0.07 (0.349)
20 0.102 (1.537)  0.428 (6.417) 0.222 (3.326)  0.067 (1.008)
50 400 40 0.128 (4.477) 0.291 (10.184)  0.347 (12.128)  0.051 (1.784)
80 0.127 (9.537) 0.193 (14.454)  0.406 (30.485)  0.037 (2.749)
200 0.118(23.077) 0.099 (19.337)  0.435(84.809)  0.023 (4.575)
S8 Supplementary Details of Application to U.S. Senate Roll

Call Voting Data

We first describe the procedure in constructing the final U.S. Senate roll call vot-
ing dataset used for analysis in Section [5] of the main text. Following |Guo et al.
(2010), we remove procedural votes with the ‘Yea/Nay’ proportion falling out-

side of the interval [0.3,0.7], as these are uncontroversial bills that do not reveal
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Table S6: Frobenius-error and spectral-error for the Regularized, Lasso, and Unregularized esti-
mators of the interaction matrix ® in the simulation study involving the Ising similarity regres-
sion model with K € {10, 20, 40, 80, 200}.

Frobenius-error Spectral-error
p n K Regularized Lasso Unregularized Regularized Lasso Unregularized
10 4.171 4.004 4.408 1.723  1.649 1.811
20 4.605 4.421 5.822 1.880 1.798 2.365
25 50 40 5.148 4.759 8.088 2.093  1.920 3.265
80 5914 5.067 12.209 2.397 2.031 4.944
200 6.844 5.419 31.047 2773  2.168 14.122
10 1.519 1.684 1.759 0.501 0.542 0.554
20 1.631 1911 2.247 0.527 0.602 0.683
50 400 40 1.790  2.109 2917 0.565 0.657 0.868
80 2.020 2310 3.926 0.628 0.714 1.152
200 2465 2.561 6.106 0.746  0.787 1.770

political dynamics in the U.S. Senate. The original dataset also contains a small
number of missing values since not all senators vote on every bill. Specifically,
1.44% of all votes are missing, and we choose to impute these with the majority
vote of the senator’s party on the same bill. Note even though we use party to
construct one of the similarity matrices for our model in Section [5 we do not
believe this form of imputation impacts our analysis to any great degree, given
the percentage of the missing data is very small. As a result, the final dataset is
made up of n = 138 bills voted by p = 100 senators.

Next, we provide a descriptive analysis on the binary votes as well as var-
ious attributes of the 100 U.S. senators from the 117-th Congress. Figure

provides two histograms detailing the average binary votes y; = lefi i/ 138

for each senator and 7; = Z;iol v;;/100 for each bill, where i = 1, --- , 138 and

j = 1,---,100. The mean and median for y; are given as 0.5323 and 0.5072,
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respectively, while the mean and median for ; are given as 0.5323 and 0.5, re-
spectively. Out of a total of 100 senators, 24 of those are females while the
remaining 76 are males. In terms of the party distribution, there are 48 Demo-
crat senators, 50 Republican senators and two independent senators. Out of the
50 U.S. states, there are 21 states with both Democrat senators, 22 states with
both Republican senators, 5 states with one Democrat senator and one Republi-
can senator, one state with one democrat senator and one independent senator,
and one state with one Republican senator and one independent senator. The
number of senators for each of the seven most common occupation that are used
in Section [5] for constructing similarity matrices is given in Figure [S2] demon-
strating that a large number (>40) of senators are lawyers. Figure |S3| provides
the histograms for the age, number of Tweets, and number of Twitter followers
of the 100 senators. The age of the senators range from 34 to 87 years old and
is centered around 65 years old. The number of Tweets and number of Twit-
ter followers both have a right-skewed distribution, indicating the presence of a
small number of senators who are much more active and popular than the other
senators on Twitter.

For qualitative attributes (state, party, class and gender), we construct sim-

(k)

ilarity matrices Wy, by setting w,;, = 1if the j-th and j'-th senators are in the

same category and zero otherwise. For the occupation variable, given there is
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Figure S1: Average binary votes {7, : j = 1,--- ,100} for each U.S. senator (left) and {7; : i =
1,---,138} for each bill (right) in the 117-th Congress.

such a large number of categories, we consider the seven most common occu-
pations in the sample (lawyer, executive, businessman, farmer, army, teacher,
professor) and construct a separate similarity matrix for each of these occupa-
tions. That is, wj(f) = 1 if the j-th and j’-th senators have the same specific
occupation and zero otherwise. As for the similarity matrices based on the quan-
titative attributes (age, number of tweets, number of Twitter followers), we set
their off-diagonal elements to be wj(l;,) = exp(—|zjx — zj|?)-

Figure [S4] presents a histogram summarizing the estimated main effect pa-

rameters {éjj :j=1,---,100} of all senators. It can be seen that the estimated
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Figure S2: Number of senators for each of the seven most common occupation.

main effect parameters ranged from -12.5 to -1.5, with most of them concen-
trated around -10 to -5. Figure [S5|presents the graph for the estimated interac-
tion matrix © without any removal of edges for the same subset of 20 senators

as in Figure[T]in the main text, which gives qualitatively similar interpretation as

Figure

S9 Application to Scotland Carabidae Ground Beetle Dataset

We apply the Ising similarity regression model to study an ecology dataset pro-
vided by Ribera et al.| (2001)). The original data consists of counts of p = 68

Carabidae ground beetle species collected from a total of n = 87 sites spread
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Figure S3: Age, number of Tweets and number of Twitter followers of 100 U.S. Senators in the
117-th Congress.

across nine main areas in Scotland using pitfall traps, which we convert into bi-
nary presence-absence records. Additional details of the dataset can be found
in Ribera et al. (2001)), and we note Carabidae ground beetles are commonly
used for assessing environmental pollution and characterizing soil-nutrient sta-
tus (e.g., Szyszko, [1983; |[Heliovaara and Vaisanen, 2018)).

The main purpose of this application is to investigate the relationship be-
tween trait similarity and the conditional dependence structure of species pres-
ences, by fitting the proposed Ising similarity regression model to the presence-
absence records using similarity matrices constructed based on species traits.

This allows us to identify species traits that are important in explaining the de-
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Figure S4: Estimation results for the main effect parameters {éjj :j=1,---,100} based on
fitting the Ising similarity regression model (2.4) to the U.S. Senate roll call voting data using
regularized pseudo-likelihood estimation.

pendence structure of species occurrences e.g., suggestive of potential biotic
interactions between species. The dataset consists of K = 20 traits, ten of
which are quantitative while the remaining ten are qualitative; see Table [S7| for
the full list of traits and their corresponding abbreviations. Figure [S6| presents
histograms summarizing the average binary presences i; = Z?il vi;/87 for
each species and 7; = Z?il v;;/68 for each site, where i« = 1,---,87 and
J = 1,---,68, with the mean and median for y; given as 0.3005 and 0.2471,
respectively, while the mean and median for ¢; are given as 0.3005 and 0.2941,

respectively. Figure shows most distributions of the quantitative traits are
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Theta

Figure S5: Weighted graph based on the estimated interaction matrix © for a subset of 20
senators with all edges included, where the edge width is proportional to its associated 9} 4 and
edges between senators with different states and parties are colored red. Nodes are labeled with
the state abbreviation of each senator and the color represents senator’s party.

symmetric, while Table[S8| provides a breakdown of the 68 species into different
categories of each qualitative trait variable.

Similar to the application in Section [5] we construct a similarity matrix for
each trait, where for qualitative traits we set wj(f,) = 1 if the j-th and j'-th species
are in the same category and zero otherwise, while for quantitative traits we con-
sider wj(lj,) = exp(—|zjx — zjx|?). The proposed model is then fitted using the
regularized pseudo-likelihood estimator with adaptive lasso penalty, and the tun-

ing parameter ) is selected using ten-fold cross validation where the observations

are grouped at the site level. We also construct 95% Wald confidence intervals
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Table S7: Trait variables of the Scotland Carabidae ground beetle dataset along with their abbre-

viations. Adapted from [Ribera et al.| (200T).

Quantitative (all measures log-transformed)
LYW  Diameter of the eye, measured from above
LAL  Length of the antenna
LPW  Maximum width of the pronotum
LPH  Maximum width (“vaulting”) of the pronotum
LEW  Maximum width of the elytra
LFL  Length of the metafemur (with the articulation segments), from the coxa to the apex
LTR  Length of the metatrochanter
LRL  Length of the metatarsi
LFW  Maximum width of the metafemur
LTL  Total length (length of the pronotum in the medial line plus length of the elytra, from the medial ridge of the scutellum to the apex)
Qualitative
CLG  Color of the legs (1. pale; 2, black; 3, metallic)
CLB  Color of the body (1. pale; 2, black; 3, metallic)
WIN  Wing development (1, apterous or brachypterous; 2, dimorphic; 3, macropterous)
PRS Shape of the pronotum (1, oval; 2, cordiform; 3, trapezoidal)
OVE  Overwintering (1, only adults; 2, adults and larvae or only larvae)
FOA  Food of the adult (1, mostly Collembola; 2, generalist predator; 3, mostly plant material)
DAY  Daily activity (1, only diurnal; 2, nocturnal)
BRE  Breeding season (1, spring; 2, summer; 3, autumn or winter)
EME Main period of emergence of the adults (1, spring; 2, summer; 3, autumn)
ACT  Main period of adult activity (1, autumn; 2, summer only)

y; of 68 Ground Beetle Species y; of 68 Ground Beetle Species
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S6: Average binary presences {; : j = 1,--- , 68} for each species (left) and {g; : i =
87} for each site (right) in the Scotland Carabidae ground beetle dataset.
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Table S8: Number of species belonging to each category of qualitative trait variables; see Table
for definition of each category. Dashes indicate trait variables with only two categories.

Category CLG CLB WIN PRS OVE FOA DAY BRE EME ACT
1 38 23 18 21 30 12 20 32 6 26
2 22 27 21 26 38 40 48 10 54 42
3 8 18 29 21 — 16 — 26 8 —

based on the empirical sandwich-based standard errors in Section

Table [S9| presents the estimated regression coefficients associated with the
K = 20 trait similarity matrices along with their corresponding 95% Wald con-
fidence intervals, while the estimation results for the main effect parameters are
given in Figure To summarize, 14 out of the 20 regression coefficients are
estimated to be non-zero. Of these, there is statistically clear evidence five traits
(LFL, LTR, CLG, WIN and BRE) exhibit positive associations with conditional
dependence structure of species presences. For instance, this implies two species
with same breeding season (BRE) would have more similar occurrence patterns
across sites, which in turn may suggest this trait plays an important role in me-
diating positive biotic interactions between the species. On the other hand, two
traits (LRL and EME) are found to have a negative effect on the dependence
structure among species presences e.g., two species with same main period of
adult emergence (EME) are less likely to be present at the same site, indicating
this trait could be related to competition between species.

Figure presents graphs of the weighted similarity matrices a; W), for
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Table S9: Point estimates and 95% confidence intervals (in parentheses) for the regression co-
efficients corresponding to the K = 20 similarity matrices, based on fitting the Ising similarity
regression model (2.4)) to the Scotland Carabidae ground beetle data using regularized pseudo-
likelihood estimation. Estimates whose corresponding confidence interval excludes zero are

bolded.

Estimation of oy,
LYW LAL LPW LPH LEW
-0.058 0 -0.032 0 0
(-0.127,0.012) 0 (-0.111,0.046) 0 0
LFL LTR LRL LFW LTL
0.110 0.158 -0.176 0 0
(0.021,0.198) (0.121,0.194) (-0.280,-0.071) 0 0
CLG CLB WIN PRS OVE
0.057 0.025 0.095 -0.000 0
(0.020, 0.095) (-0.029,0.079)  (0.066, 0.125)  (-0.047,0.047) 0
FOA DAY BRE EME ACT
0.038 -0.063 0.123 -0.049 -0.022
(-0.009,0.085)  (-0.130,0.005)  (0.088,0.158)  (-0.090,-0.008) (-0.064,0.021)

selected traits, along with the estimated interaction matrix © for a subset of
ten species. The choice of species to be included is made by beginning with
an empty set, and sequentially adding pairs of species which have the largest
off-diagonal elements éjj/ in © until the set contained the top ten species. It
can be seen that similarity in terms of breeding season and wing development
contributes more than similarity in terms of color of legs to the conditional de-
pendence structure between species presences, due to their larger estimated re-

gression coefficients in Table
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Figure S7: Histograms for ten quantitative traits of 68 ground beetle species.
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Figure S8: Estimation results for the main effect parameters {9j j:j=1,---,68} based on
fitting the Ising similarity regression model (2.4) to the Scotland Carabidae ground beetle data
using regularized pseudo-likelihood estimation.
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Figure S9: Graphs of weighted similarity matrices &y W), associated with color of legs, wing
development and breeding season for a subset of 10 species, where the edge width is proportional
to the estimated &. The bottom right plot presents the weighted graph based on the estimated
interaction matrix ©, where the edge width is proportional to its associated éjj/. Nodes are
labeled with the code of each species; see Table 4 of [Ribera et al.| (2001)) for the corresponding
species names.
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