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This supplementary material provides proofs for lemmas and theorems in Sections [2| and [3] a
detailed description of multiplier bootstrap used in our simulations, as well as additional simu-

lation experiments.

A. Proofs for Section

Let Qxo be the marginal distribution of X under Fp, and let Qy-o and
Qy+, be respectively the conditional distribution of Y and YT given A,
X under Py. Let {P, : ¢ € R} C M be a parametric submodel that is
such that P. = Py when ¢ = 0. This submodel is defined so that the
marginal distribution of X and the conditional distributions of YT and Y*

given (A, X) satisfy

dQx..(z) = (1 + eSx (2))dQx.o(x), (S1.1)



A.1 Proof of Lemma

where Eq [Sx(z)] = 0 and sup |[Sx(z)] < m < oo,

dQy+t (2| a,z) = (1 + eSyt(2 | a,2)) dQy+ o(2 | a, ), (51.2)

where Eq [Sy+ | A, X| =0 Py-a.s. and sup |Sy+(z | a,x)| < 0o, and

dQy+(y | a,z) = (1 + eSy-(y | a,2)) dQy+o(y | a,x), (SL.3)

where Eq [Sy-

A, X] =0 Py-a.s. and sup |Sy«(y | a,z)| < .

T,a,y

We let g () = () (x) and sp(x) = sp( L) ().

A.1 Proof of Lemma [1]

Proof of Lemma(ll Note that 7h(z) = I{¢g(P)(z) > 0} for all z € X.
Following the idea of the proof of Theorem 3 in |Luedtke and Van Der Laan

[2016], we observe that

U*(P) —EpEp[YT | A=0,X] =Ep [rh(X)sy(P)(X)].
By a telescoping argument,

U*(P,) — U*(Ry) =EpEp YA =7} (X),X] —EpEp[YT|4 = 7*(X), X]
= EpEp[YT|A=mp (X), X] —EpEp[YT|A = 7%(X), X]

+EpEp[YT|A =7"(X), X] - EpEp [Y[A = 7(X), X]

= Ep [(I(gs,c > 0) — I(gs0 > 0)) - sp.e] + W (Pe) — Wi (Fp).

(S1.4)



A.1 Proof of Lemma

It is known that for a fixed w, W, is pathwise differentiable with gradient
D(m, Py). We shall now show that the first term is o(€). Letting By := {z €

X 1 qyo(z) = 0}, we have

Ep, [(1 (gp,e > 0) = I (qp0 > 0)) sp¢]

= / (I (gpe > 0) — I (gn0 > 0)) $pcdQx e
X\Bi

+/ (] (Qbﬁ > O) -1 (Qb,O > O)) Sb,edQX,e-
B1

Under Condition [1} we know that Pro(gso(X) # 0) = 1, so the second term

is zero. Then we aim to show that the first term is o(Je|). Note that

/ (I (qpe >0) — I (o >0)) spedQx e
X\Bi

< / |(L (gbe > 0) — I (gro>0))spe| dQx.e
X\By

< [ Tl < lave = mol) s 4@
X\B;
by looking at the sign of ¢, and gy . Also,

Gbe(z) = /y(dQY*,e(y |A=1,X=2)—dQy-(y| A=0,X =1))
= @o(z) + e([Bo [Y*Sy-(Y* | 1,X) | A=1,X = 1]
—Eo[Y*Sy-(Y*|0,X) | A=0,X = z])

= qpo(z) + €h(z)



A.1 Proof of Lemma

where

h(z) = Eo[Y* Sy (Y*[1, X)|A =1, X = 2]-Eo[Y*Sy~(Y*|0, X)|A = 0, X = .
Similarly, s, () = spo(z) 4 € - h(z) where
h(z) = Eo[YTSy+ (Y1, X)|A =1, X = 2]—Eo[YSy+ (Y10, X)|A =0, X = z].

Note that h and h are uniformly bounded since Y*, YT, Sy., and Sy+ are
bounded. Let H = max{sup, |h(z)|,

sup, |h(z)|}. Therefore,

Q/ 1 (g0l < b — abol) I35, dQx0
X\B;
< [ Tllaal < Hle) (Jsual + HIe) dQx,
X\B;
< (mle) [ 1avol < Hil) (suol + Hlel) dxg
X\B1
= (mle) [ 10 < Jaal < Hle) (sl + Hle) dQxo
X\B;
Denote X = X'\ B;. Under the first condition, define the set

Bys = {z € X : [syo()| < Ot gvo(2)]}-

Then

l/ I (lavol < Hlel) (Issol + Hlel) dQuxo
X\By

=/ﬁm<mm<mmwm+ﬂwaao
X



A.1 Proof of Lemma

=/’1w<mM<HMMmm+HMMQm
Bs ¢

—l—/ I(0<|gwo| < Hle|) (|sno] + Hle|) dQx o-

X\Ba,y
On one hand, note that for € By, and under the fact that |g,o(z)| < Hle|
we have [sy(z)] < CHt le|. define Cy such that Py(0 < |go(X)| < t) <

Cst” for any t > 0, the first term

| 100 < lavol < Hiel) (sual + Hlel) dQxcg (SL5)
B
g/‘1@<mm<ﬂwﬂcmlM+HMQO
Ba ¢
< (CHt [e| + Hle[) Po (0 < |gno(X)| < Hle])
< (Ct'|e| + Hle|) Co(H|el) (S1.6)

for t < 1. For the second term, let C5 := sup,, |spo(2)|, we have

/’ 1(0 < Igvol < Hlel) (Isno] + Hlel) dQx0

X\Ba,¢

< (Cs + Hlel) Po(|s60(X)| > Ct™*|gno(X)]))

< (Cs + HIe|)t¢

where the last inequality follows from Condition [I} Therefore, the sum is

bounded by

(C+|e| + HIe|) Ca(Hle|)” + (Cs + He|)t.



A.2 Proof of Theorem

Taking t = \e[é% gives that this is O(]e\lﬂ_é%), which is o(|e|) given that

v > % Combining all of the results above gives

o1
lim -Ep, [(I (go,e > 0) — I (o0 > 0)) sp.e) = 0.

e—0 €

Therefore, U* is pathwise differentiable, and, per (S1.4), has the same

canonical gradient as the parameter U, ., namely D(7*, ). O]

A.2 Proof of Theorem [1]

Proof of Theorem[1. We would first like to show that ¥os., is an asymptot-
ically linear estimator of 1. For simplicity of notation, we let 7' := W}n and
drop the dependence of 7 in the definition of ¥, in this proof. Note that
Vo5 — Yo = (P — Po)D(Py) + (Py — By)[D(P,) — D(P)] + R(Py, By).
Note that the first term (P, — Fy)D(F,) is the linear term and (P, —
P)[D(P,) — D(Py)] = op,(n~"/?) under the Donsker condition and the
fact that | D(P,) — D(Py)|2 > 0 (Lemma 19.24 of [Van der Vaart [2000]).

To show that 1¥pg,, is asymptotically linear, we only need to argue that the

remainder term R(P,, Py) is op,(n~/2). Note that

HA =m(X)}
pn(A|X)

RD(B,) = E, [ (V1 = (4, X)) + s(m(X), X) - \m]

g [HA=mOOY X (P
= [T 04, X) = 5(4,20) 4 (55X, X) — B(E)

|



A.2 Proof of Theorem

by the law of total expectation. Therefore,

R(P,, Py) = W(P,) — W(Py) + PyD(P,)
= Msaw—s a,x sp(mi(x), ) — so(n”(z), x a,x
= [{H= B 0 - s )+ 0. 2) = sl (2 0) | aFoa)
-/ (W = 1) ol (), 2) = s a), DAy (a0) + o () = ()

pnlalz)

{a =7 (z . .
// < pnlal) 1) [so(m) (x),x) — sp(m) (), z)|po(alx)da dPy(x)
+ ‘117"2 (PO) — U (PO)
(O e
_/<pn(7r7*1(g;)|x) 1> [ 0( n( )7 ) n( n( )’ )]dPO( )
+ ‘ljﬂ;i (PO) — W (Po)

=: Rip, + Rap.

The first term Ry, is op,(n~'/?) under under Condition 4{ — see Proposi-
tion As for the second term R, Proposition shows that it is OPO(n_l/ 2)

under the margin condition. O
Proposition 1. Under Conditz’on Ry, = op,(n™Y/?).

Proof. By Jensen’s inequality, the fact that 7 (z) € {0, 1} for all z, the fact

that (b + ¢) < 2max{b,c} for b, c € R, and Cauchy-Schwarz, we have that

= —po(ﬂ; v)|z) — so(mi(x),x) — sp(m(z), x x
ol = | [ (BAZAE 1) (i), o) = sz o), )0
)|x)

PEE 1) (0] ) — sy o), )]

dP(] (.T)

polalz) _ 1) [so(a, ) — sp(a, x)]




A.2 Proof of Theorem

/ ‘( EZE)) )[So(a,x)—sn(a,x)]
(

S [

)
pola | X)
< 25&3“}1(}{‘ ) [sn(a, X) —so(a,X)||2,P0}.

dPy(z)

dP()(LL’)

-1

pala] X)

27P0

]

The following proposition shows that the second term Ry, is op, (n~"/?)

under our margin condition.
Proposition 2. Assume Conditions[1], (3, and[3 hold. Then, for any e > 0,
|Ron| = op,(n™'72).

Proof. We adopt the idea in proof of Theorem 8 of Luedtke and Van
Der Laan [2016]. Let By, = {v € & : [spo(z)] < Ciulgo(r)|} and
A, = {2z € X : Ciu|go(z)| < |spo(z)| < Ci(u + 1) |gpo(z)|}. Then for
any t > 0,

|\I}7r;i (PO) — Vs (PO) |

= Ep, [sp.0(X)(m,

n

(X) = 7"(X))]
< Eo [[spo(X) ] (7" (X) # m,(X))]

= ZEoHSb,o(X)II(W*(X) 7 (X)) 1(Au)]

< ZEO 55,0 (X)L (|g5,0(X)] < |@pn(X) = @o,0(X)]) 1 (AL)]-



A.2 Proof of Theorem

where the last inequality follows from the fact that for any x € X, 7*(z) #

75 (x) implies that |gpn(z) — @o(z)| > |go(z)|. From Condition (1| we know

that ¢, 0(X) # 0 with Py-probability 1, so

ZEO [56,0(X) L (|g5,0(X)] < | (X) — qo,0(X)) 1 (Au)]

= ZEO |56,0(X) (0 < [g5,0(X)] < g, (X) — @0 (X)) (Au)].
For any z € Ay, |spo(x)] < Ci(u+ 1)|gpo(x)], so for each u,

Eo [[55,0(X)[ 1 (0 < |gu,0(X)| < |gp,n(X) — qu,0(X)]) I(Ay)]
< CiEo [(u +1) |gp,0(X)] T (0 < [g,0(X)] < |gon(X) — qo,0(X)]) I(Au)]
< CiEo [(u + 1) (g6, (X) = @b,0(X)| 1 (0 < |gp,0(X)] < |gpn(X) = g,0(X)]) I(Au)]

< o [(u+ 1) ) — o1 (0 < o (X)) < mig [ (0) = o)) 70,1

= a1 = ol Bo |1 (0 < a0 (Ol < mi ) — ana()]) 104,

=Cr(u+1) 1gb,n — @0l p, Po(0 < lgu,0(X)| < llgp.n — av0ll oo p, » Au)-
470 40

For an event £ C X, let P*(E) := Po(0 < |g,0(X)| < [0 — @0lloo - €)-

Then, for any k € N,
ZEO [56,0(X)1(0 < [g,0(X)| < [g5,n(X) — q5,0(X) I (Au)]
< Z Ci(u+1) [[gpn — o0l o0, p, P (Au)

=3 Crlut Dllgon — b0l gy B (Bi1) — B¥(BS,)



A.2 Proof of Theorem

k k
= Cr(w+1) lgon — @0l o p, P (Bhurt) = Y Cr(w+1) [lgsn — @bollog p, P (B3,
u=0 u=0
k+1 k
= Crullgsn — Bolleep, P (B3) — D Crlu+1) gbm — @bolloo p, P (B50)
u=1 u=0

k
= Ci(k+ 1) |gsn — @b0lloo p, P (Ba i) = D C lgbin — @0l oo, P (B3)

u=0

k
=3 llann — B0l py [P (Bl 1) — B>(By )]

u=0

k
< Z C1 labn — aboll o p, [P™(X) = P>(Bs,)]

u=0
k
=¥ Cillabn — 0l oo p, [P (Bi)]
u=0
k

= C1llgpn — B0l o p, Po(0 < lgn,0(X)] < @b — @b.0ll oo g, - B
u=0

k
1+~/2 —
< ch lavn — Qb,0||oo,7:é w2,

u=0
where the last step follows from Holder’s inequality. Since ¢ > 2, let & — oo

and the infinite sum converges. Therefore,
(Wrs (Fo) — e (Fo) |
= Eollspo(X) (7 (X) # (X)) AuJP(A,)
u=1

1+v/2
p,Po

k—o0

= lim » Eo[lsp,o(X)|1 (" (X) # w1 (X)) AJP(Au) S ldon — a0

I+v/2 _ —1/2
oy = op,(n~1/?) for

Note that under Condition |3} we have ||g, — b0

any v > 0, 80 |Ran| = op,(n"1/2). O



B. Proofs for Section [3

For notational simplicity, throughout this section and later we denote 1, :=

U, (Fy) for some policy 7 € II.

B.1 Proof of Lemma [2|

Proof of Lemma[d. We have that

{H* C ﬁg} = {w,r/ < supwy,, V' € ﬁg} .

mell
Therefore,
. 5\C
(i)
_ I~ 13C . _
= {37‘(’ € Hﬁ C W = supw,r}
well

~ R oot

- {Elﬂ" c Hg : |:Cdﬂ./ — Wy — Ul/f —+ Ln:| > sup Wy, }
n mell

~ - ot

= {Elﬂ' € Hg : {wwf — Wyt — nl—/f] > Sup Wy — Ln} , (S2.7)
mell

where the inclusion follows from the definition of ﬁ[g. Let A denote the

event {L,, < sup,cqwy} N [ﬂﬂen {w,r < W + i’{%}] Hence, (S2.7) shows

that

{H* z ﬁﬂ}c

N N Gt
C |:{37T/ € Hg : [wﬂ/ — Wpr — u} > sup wy — Ln} F‘IA] u.A“

n1/2 mell



B.1 Proof of Lemma

(/T\ﬂ-/tﬁ
Copl/2

C HHW’Gﬁg:wW—@W >0}HA}UAC

= A¢

where the final equality used that the leading event in the union above is

equal to the null set since under A, we have w,/ —u, — % < Oforeachm e

I1. Also, note that by Lemma Pr <ﬂﬂen {ww < Wy + i’{%}) —1-4/2,
and by definition of L, limsup, Pr ({L,, < sup,cnwr}) > 1 — /2. Hence,

by a union bound,
limsup P {H* z l/_\[g} < B.
O

Lemma (4] in the following shows a uniform confidence band for {w, :

7 € II} which helps prove the validity of the candidate policy set ﬁg.

Lemma 4. Ifinf,co.(Py) > 0, and o, is a consistent estimator of o.(Fp)
for each m € 11, an asymptotically valid uniform (-level confidence band is

given by {@ﬂj: % ST E H}.

Proof of Lemmal{} To see that this is the case, note that ¢z is the 1 — 3/2

quantile of sup;.r G f, and also




B.1 Proof of Lemma

— P (mweﬂ {—tﬁ S n1/2w7r: Wr S tﬁ})
On

— P(Mren{—ts < Gf <tg})

=P (ﬂwen H—tﬁ < inf Gf} N {sup@f < tﬁ}:|)
fer feF

:1_ﬁ7

where the convergence follows from the fact that n'/ 2@’%;:’“ ~ Gf by

Lemma [5] and Slutsky’s Theorem. O

Lemma 5 (F is Py-Donsker). Assume that Conditions [§ and [9 hold and

also that

(i) 11 satisfies the uniform entropy bound, that is,

| s Viog N L LAQu))ie < o,
0 Qx

where the supremum is over all finitely supported measures on X ;

(ii) there exists L > 0 such that, for all finitely supported distributions Q
of (X, A,Y") with support on X x {0, 1} x Y, the gradient map ™ — D
is L-Lipschitz, in the sense that, for any m, 7" € I, || Dr — Dy || 2(g) <
Lllm — 7'||12(qy), where Qx is the marginal distribution of X under

Q;

(i41) SUPren €SSSUD e aefo,1}yey [Dx(F0) (7, @, y)| < oo



B.2 Proof of Theorem

Then, the set F := {D.(Fy)/o.(Fy) : m € 11} is Py-Donsker.

Proof of Lemma[5 We would like to use Theorem 2.5.2 of [Van Der Vaart|

and Wellner| [2013]. First, by and Condition [9]

SUD,rc17 €SS SUD, e v 4 D (Fy)(x,a,
O Pren Pzex, 6{0,1},yey| ( 0)( y)| < 0.

inf e oq(Pp)

Hence, an envelope function for F is the constant function F'(z,a,y) = C.
By and properties of covering numbers, for any () as stated in
and implied marginal distribution Qy, we have that N (Ce, F, L*(Q)) <

N (Ce/L, 11, L*(Qx)). Combining this with [(i) shows that F satisfies the

uniform entropy bound in the sense that fooo Supg Vg N (e, F, L2(Q))de <

oo, where the supremum is over all finitely supported measures on X X

{0,1} x Y. Hence, F is Py-Donsker by Theorem 2.5.2 of [Van Der Vaart

and Wellner| [2013]. O

B.2 Proof of Theorem [2|

This subsection shows the proof of Theorem [2 which gives the asymptotic

coverage of the confidence interval for the union bounding method.

Proof of Theorem[4. We have that

{[ inf ¢, sup 1] Z CIn}

Tell*



B.2 Proof of Theorem

~  RpZa ~  RrZg

= inf* Y < inf |9 — 1 /27,3 U< sup ¥, > sup |¢¥, + : /2’5

mell nellg n mell* refls n

. . -~ sza 8 ~
- f Y, < inf |V, — ——2=|, 11" CII
- {ﬂlenH*w 7T1€nﬁ5 {w nt/2 } = 5}

~  RnZa . = . =
U § sup ¢ > sup {%Jr 1/2”3},11 C Ilg U{H QHB}.
mell Wéﬁﬁ n

Hence, by a union bound and the fact that limsup,(a, + b, + ¢,) <

lim sup,, a,, + limsup,, b, + lim sup,, ¢, we see that

lim sup P {Cln Z 1&&&.C Yr, SUP @bw]}

mell*

. . . N /l{\ﬂza,ﬁ * ~
< hmsupP{ﬂleng* Y. < inf {1/% — ] T C HB}

n WEHg

. -~ /l%ﬂzaﬁ % =
+hmnsupP{sup Y > sup [wﬁ—k Y } I C Hg}

mell* ﬂeﬁﬁ

+ limsup P {H* Z ﬁg} .

The third term is upper bounded by 8 by Lemma[2] In what follows we will
show that the first term on the right-hand side is no more than (o — 3)/2.
Similar arguments can be used to show that the second term is also no more
than (o — )/2. By a union bound argument, the sum of three terms is
upper bounded by «, which completes the proof.

We begin by noting that, for any n € N,

/@,Tzaﬁ

g or< s [5-Ei)w cn)




B.2 Proof of Theorem

~ [ . =
- — : -
T e

. . -~ /I%ﬂ—Z Jé;
C { inf < inf — % )
- {ﬂ'EH* wﬂ- well* wﬂ- nl/2

By Lemma [7|and 7 + 9, is continuous, there exists a 7¢ such that v, =

inf, e+ ¥,. Combining this with the above, we see that

_ Iiﬂ a,f % =~ . -~ . /I%Trzoz,ﬁ

FEHﬂ
tZq,
{¢ﬂ£ <,¢7r - Tl'l/z }

Then

RrtZa g 1/2 /IZﬂ'Z - ¢7r5
(oo < B2E) ez )

By Condition [0} %, is a consistent estimator for (). Then with Slut-

sky’s Theorem, n1/2 Zxf _xf
K

P < 1/2¢7r H ww Za,ﬂ) S (Oé _B)/z,

ZJ ~» G fre, so by definition of z, g,

and so
. > /’V‘:WZO@/B * T
lim sup P mf Y < inf | — —2= | 1" C g p < (= B)/2.
n—00 WEH,g n /

By a symmetric argument, we also have

lim sup P { sup ¢, > sup [1@ + Kﬂfgﬁ} I C ﬁg} <(a—0)/2.
b n

n—00 mell* nellg



B.2 Proof of Theorem

Therefore, an asymptotic 1 — a confidence interval for [}, 1] is

. ~  RpZ ~ Rz
ln,f {¢ﬂ' - Wl;);’ﬁ} , Sup {1/}71' + Wl—;);ﬁ} .
WEHﬁ n Weﬁﬁ n

]

In the following lemma, for some subset G of a space L?(Q), define the
covering number N (¢, G, L?(Q)) to be the minimal cardinality of an e-cover
of G with respect to the L?*(Q) metric Van Der Vaart and Wellner| [2013].

Before stating the lemma, we recall that F := {D,(Fy)/o(Fp) : m € 11}.
Lemma 6. IT* is a closed subset of L*(F).

Proof. Let (m)72, be a IT*-valued sequence that converges to some 7 in
L*(P). Since m — w, is a continuous map from {0,1}* to R when the
domain is equipped with the L?(P)-topology, wy, — wy«. As m; € II* for
all k, wy, = sup,cqwy for all k. Hence, wy+ = sup,cqwyr. As II is closed,

this shows that 7* € IT*. Hence, IT* is a closed subset of L*(P). O
Lemma 7. IfII* is closed in L*(Py) and IT* is Py-Donsker, IT1* is compact.

Proof of Lemma[7. Since IT* is Py-Donsker following from II being Py-Donsker,
then IT* is totally bounded in L?*(P). Also, since L?(P,) is complete, IT* be-
ing closed implies that IT* is complete. And totally bounded and complete

subsets of a metric space are compact, so II* is compact. O



B.3 Proof of Lemma

B.3 Proof of Lemma 3|

Proof of Lemma[3. To show this lemma, we first define two events {IT* C
ﬁﬂ} and {w,« — inf g, wr < % SUp,er 0r }- These events ensure that all
Q-optimal policies are contained in | 3, and ﬁg only contains nearly optimal
policies. Lemma [2] and [§] ensure that both events happen with probability

at least 1 — 3 asymptotically. Lemma [9]ensures that our confidence interval

shrinks at an n~/2 rate under these events. O

Lemma 8. For any § > 0, liminf,,_,, P (wﬂ* - infﬂeﬁﬂ Wy < % SUDrery 8,r> >
1- 3.

Proof of Lemma[8. Note that by the definition of ﬁ@, we have

. Ogt . Ot
inf [wﬂ + ﬂl—/g} > sup [wﬂ — 7{/5} ,
nellg n mell n

SO

. . T N PO .
Wqx — Inf wy <wgee —sup {wﬂ — ﬂ—ﬁ} + inf {ww + ”—ﬁ} — inf w,.
nellg mell n n

Hence,
. 4t ~
Wqr — Inf wy > —7/3 SUP O
nellg n= rell
. Ogt . . Ogt , 4t N
C § War —SUp {ww - ﬂl—/f} + inf {ww+ ﬂl—/g} — 1nj Wy > 1—/isupo7r
well n nellg n nellg n= rell

N Oxts Oxtp
C * —
C {ww >ilelg {wﬂ n1/2}+2iup 1/2}




B.3 Proof of Lemma

~ , Oxt Ol
U< inf w, < inf {wﬂ + %} — 2sup 01 f . (S2.8)
71'61_[3 71'61_[,3 n / /

well T

In the remainder of this proof, we will show that the two events on the

right-hand side each occur with probability no more than 5/2. The result

then follows by a union bound. Note that
~ 87rtﬁ ~ 6:7rtﬂ
ﬂ wﬂ"gwﬂ'—i_ﬁ g Wﬂ*gsup wﬂ+1_/2
I n mell n
S

Gty Gats
C » < —
< o <sup (@0 = 552 2sun T

mell M

where the latter inclusion holds because sup[f + g] < sup f + supg. So

o A a'\ﬂ-tg a\71'15,6’
* T - <
imiatP (o —sup {3 ~ T2 | < 2oun 7 )

. . A~ a\-ﬂ'tﬂ /8
211gg}1f1[”<ﬂ {ww < W, + YD }) >1-=

mell

where the last step follows from Lemma 4l Hence, the first event on the

right-hand side of (S2.8)) occurs with probability no more than probability

B/2. We also have that

. . Ot ot
C ¢ inf w; > inf {ww—i- 7;2’3}—2sup qs ,
nellg nellg nt/ rells nt/



B.3 Proof of Lemma

since inf[f — ¢g] > inf f —supg. So

. , . Ot oxtsg .
lim inf P < inf {ww + i } — 2 sup i < inf wﬂ>

n—0o0 mellg rells mellg

> — < > 1 — —

_hﬁng<Q{wﬂ 172 _wﬂ}> >1 5
S

where the last step follows from Lemma [d] Hence, the second event on the

right-hand side of (S2.8]) occurs with probability no more than probability

/2. 0

Lemma 9. In the setting of Lemma @ under the event {IT* C ﬁg} and
{wg —inf_ 5 wr < % SUDyerr Ox ), the width of the confidence interval for

Yo is Op(n~1?).

Proof. We first show that SUD_ i, [QZW + E;’f—}*f] = 1 + O,(n~Y2). We

know that
- /"%Trza N /"%ﬂza
sup {@/}W + 1—/25] < sup ¥ + sup {%r — P+ 1/2"3]
TI'EHB n TI'EHB WEHﬁ n

We then show that supcp. ¢r — sup, g, ¥r = O,(n~%2). Consider some
m € II* and my € ﬁﬁ. Let Big = {z € X : m(x) = 1,m(z) = 0} and
By = {x € X : m(x) = 0,me(z) = 1}. By the definition of IT* we know

that wy, > wg,, and

Wiy — Wiy = /E[Y*|A = mi(x), x]dPy(z) — /E[Y*|A = my(x), x|dPy(x)



B.3 Proof of Lemma

Bo,1

- /B oo(x)dPy(z) — / @v0(x)dFo(x).

Since m; € II* and II* contains unrestricted optimal policies by assumption,
wy, is largest among all 7 € II, which implies that for x € By, g o(x) > 0

and for x € By, gy o(z) < 0. This gives us

oy — W = / ghol)|dPo(z) + / lgbo(2)|dPo(2).
Bl,O BO,l

On the other hand, on the event {II* C ﬁﬂ}, we have SUp, 7, Ve >

SUpP, e+ Y, and
s — | = ] / E[Y1[A = my(x), 2)dPo(x) - / E[YTA = m(x), 2]dPy(x)

/30,1 spo(x)dPy(z) —/ sp0(x)dPy(x)

Bio

S/B |sp.0(2)|dPo(x) +/B |sp,0(7)|dPo(z)

<C \qv0(x)|dPo(z) + C |qv.0(x)|dPo(z).

Bio Bo1

Therefore, |Vr, — ¥r| < C(wr, — wg,) for some C' < oo. Since this
holds for any m € II* and my € ﬁg, we have SUD, i, Vr — Inf e Yy <
C(Supeq wr—inf g5 wy). Under the event {w —inf g wr < % SUDyerr Or b
we have that SUD i, U — inf e ¥ < C’% SUDscrr 0. Under Condi-

tion [9 we know that sup,cy G — sup ey ox(FPo) = 0,(1), s0

. 4t ~
sup ¥, — 1n§* UV < 01—72 Sup o,
WEﬁB T n mell
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4
= C’ﬂ (Sug o-(FPo) + op(n_l/Q)) =0,(n7'?). (52.9)
TE

nl/2

Under the event {II* C ﬁﬂ}, we have sup, g ¥n = SUPrep Y = infrene Yn,

so we have Sup ey ¥r — SUD,cy, ¥r = 0, (n=1/2). Also,

~ RrZo
sup {%—%ﬂL ’5}

B nl/2
7TEH[3
~ RnZ ~ RnZ
S sup |:77D7r - ¢W + 7r1—72,ﬁj| S sup [ww - ¢W] + sup ﬂl—zﬁ'
mell n mell rell T

The first term is O,(n~'/?) under Condition . As for the second term,

under Condition [9]

Therefore, sup, [@Zﬂ — Yy + E::—/af} = 0,(n"'/?) and so

N RrZa, u _
sup |:¢7r + n—ﬁ] =g + Op(n'7?)

Weﬁg

as desired. By symmetry, infﬂeﬁﬂ [Jn _ Eﬁza,ﬁ] =1y — Op(n—l/z) as well.

nl/2

]

B.4 Proof of Theorem 3|

Proof of Theorem[3. To establish this theorem, we show that

~ = ot
liminf P (sup P, < sup [z/Jw—l— /{7;1;2&]) >1—a/2.
n n

mell* rellt
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We can similarly get

ul
limian(lnf Yy > inf |:77/J7r 1/2}) 1—a/2.

mellf

Combining the two displays gives us the theorem statement. Note that

2 ul
~ RozU
{SUP Yr < sup {%Jr ”1/2“”
mell* reflt n

~ ol
Q{supzﬁwgsuAp [wﬁ /{1/2} H*CHT}

mell mellt

Since I1* is Py-Donsker following from II being FPy-Donsker, I1* is totally
bounded in L?(Fy) |Luedtke and Van Der Laan [2016]. Also, since L?(Pp) is
complete, IT* being closed in L?(P,) implies that IT* is complete in L?( ).
So IT* is compact in L?*(Fy). Combining this with the fact that 7+ 1), is
continuous implies that there exists a 7 € II* such that ¢« = sup,cp- V.

Combining this with the above, we see that

7ol
~  Kgul,
{sup Yr < sup {%Jr i H

mell mellt

~ Rowul
= {wﬂu < WPru + %,wﬂ < supw,, V' € (IIH° } (52.10)

mell

Note that

c
{wﬂ/ < sup wy, V' € (HT)C} = {EIW' c (IIN° : wp = supww}

mell mell
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- {371'/ S (ﬁT)C : [wﬂ/ — WO —

~

_wﬂ_,_

{aw’ e (M) : {wﬂ,

where the inclusion follows from

b\'ﬂ/tL —~ (/T\ﬂ-SL

+sup (W — —=| | > supw
nl/2 neg{ " nl/2 weg "
&\W/tL ~ &\WSL
—— | >supw, —sup |W, — —— ,
172 WEE m Weg T A2

the definition of IIt. Let A’ denote the

event
sup |Wy — < sup wy wr < Wy :
mell nl/? mell rell nl/2
Hence, (S2.11) shows that
{Elﬂ' e (MN° : wy = sup ww}
well
~ ~ 1
. it -
C [{EIW’ € (HT)C S W — Wyt g 7z > SUPWr — sup [wﬁ — UTZX] } ﬂA'] uAc
n mell w€ell
—INe. _ Guth c
C I e @MY :wp — @ iy >0 nA|uA

AC.

For each 7 € II, we define EWT =

starting from (S2.11), we have

| o

~

Wy < supwy, V' € (IIH°
well

[ [ sl

_{weg{w”_ 1/2]
Grs!

>N {a- T <

n1/2—°7ﬂ3—“’” and Enm = nl/zw’%;w”- Then

oath
nl/2

]
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= {~tl <inf B, } N {sup B, < s!}.
mell well

Using the above to study the event on the right-hand side of (52.10) shows

that

= T
-~ Rgul ~
{wﬂ'“ S %ru + 1—/2(170‘-)#’ < sup Wmv’/r/ € (HT)C}
n mell

il
N Rpuly, 1 . i
2 {¢W” < %Unu + n1/2 7_ta S 711611{; Bn,TH ?rlelll'[) B’VLJI' S Sa

= {énﬂru > —ul —tl < ing By zysup B, < SL} ) (52.12)
S

mell

We know that the choices (s, t],ul) satisfy that

o) Yo

i i > —t] <sh,Gfy>—ul } >1—a/2. :
;QBP{}E;__GJC_ ta,?lelng_sa,Gfﬁ_ ua}_l a2, (S2.13)

Note that by Condition we have sup, .y [nl/mﬁ”&;ﬁw” — anﬁ] = 0,(1)
and also %% — Gpfpu = op(1). Since sup;crG,f ~ sup;crGf,
infrer G, f ~ infrerGf, and for each m € II, 0, is a consistent esti-
mator of o, by Slutsky Theorem, we have sup,cy By ~ sup;c G f and
infren By » ~ infrer Gf. Also, since for each f e F, an ~ Gf and o is

a consistent estimator of o,, we similarly have En,ﬂu ~ G ﬁru. Combining



(S2.10), (S2.12), and (S2.13), we have

mell* rell

~  Rpul
lim inf P (sup Yy < sup [% + _1/§}>
n n

> liminf P (Enﬂru < uL, —SL < inf B, r,sup B, » < tl)
n mell w€ell

—P (Gfﬂu <ul,—s! < inf Gf,supGf < tL)
fer fer

> inf P (Gﬁr <ul,—s! < inf Gf,supGf < tL) =1-—a«a/2.
well feF fer

C. Additional simulation results

C.1 A 1D simulation with large sample size

In this section, we run the same 1D instance described in Section but
with larger sample size. Table 2| provides coverages and confidence interval
widths with a larger sample size of 5000. In the non-unique setting, since
there are multiple optimal policies for the primary outcome, [tb§, wy] will
be an interval with some length. In our setting, we can see from the lower-
left plot of Figure |3| that the length of [1§,1y] is about 0.5, so any valid
confidence interval for [1§, ¥4] must have at least that length. Comparing
the widths in Table (1] and |2} we can see that both the union bounding

method and the joint method produce confidence intervals approaching that



C.2 A 3D simulation

coverage width
union joint one-step os-split union joint one-step os-split oracle
non-unique 1.000 1.000 0.000 0.000 1.091 1.061 0.061 0.096 0.561
unique non-margin 0.981 0.986 0.810 0.734 0.036 0.035 0.017 0.027 0.016
unique margin 0.983 0.989 0.946 0.949 0.040 0.036 0.023 0.037 0.023

Table 2: Coverages and widths of [¢)§, 1] with sample size n = 5000.

limit. In the setting where Q-optimal policy is unique, the widths of the

confidence intervals for all methods approach zero as n goes to infinity.

C.2 A 3D simulation

We also added a scenario where we have a 3D policy and the optimal
policy is unique. The policy class is a restricted tree class, denoted as
II={zw— {z; > a,x9 > as,x3 > as} : a1, as,a3 € [—1,1]}}. The opti-
mal policy is 7*(z) = 1{x; > 0,25 > 0,23 > 0} so it lies in the tree class
IT. We compare the outcome interval from three approaches: union, joint,
and one-step. The method os-split provides a wider interval while having a
worse coverage than one-step in 1D simulation results, so we drop it from
the simulation. For each scenario, we consider a sample size n of 500. We
again use 1000 multiplier bootstrap replicates to estimate the supremum
and infimum. In this scenario, instead of generating a fine grid and com-
puting the maximum over the grid, we use the nlopt package to numerically

approximate the maximum. We let @ = 0.05 and use 500 Monte Carlo repli-



C.3 Linear classes

coverage width

union | joint | one-step | union | joint | one-step | oracle

3D margin 0.970 | 0.948 | 0.940 0.199 | 0.186 | 0.124 0.124

3D non-margin | 1.000 | 0.988 | 0.594 0.185 | 0.175 | 0.092 0.092

Table 3: Coverage and width for 3D policy class with sample size n = 500.

cations to compute the coverage and approximate the average confidence
interval widths. Table |3| shows the results. The joint methods achieves
slightly shorter widths in this setting (5-6%), and the results are otherwise

similar to those from Section [4.1].

C.3 Linear classes

To demonstrate the benefit of the joint method and the flexibility of our
method in high-dimensional scenarios, we consider another scenario where
the policy class is linear, taking the form [Ty = {z + 1{x"6 > 0}}. We con-
sider a high-dimensional sparse linear setting where #* = [0.1,0.2,...,0.5,
0,...,0] € R%. We again compare the outcome interval from three ap-
proaches: union, joint, and one-step and use 1000 multiplier bootstrap repli-
cates to estimate the supremum and infimum. To approximate the maxi-
mum more accurately and avoid the issue of getting a local optimum, we use

the differential evolution method in the scipy package. We let o = 0.05 and



C.3 Linear classes

coverage width

union | joint | one-step | union | joint | one-step | oracle

linear margin 1.000 | 0.989 | 0.990 0.107 | 0.076 | 0.038 0.037

linear non-margin | 1.000 | 0.998 | 0.618 0.183 | 0.161 | 0.062 0.050

Table 4: Coverage and width for sparse linear policy class with sample size

n = 1000.

use 500 Monte Carlo replications to compute the coverage and approximate
the average confidence interval widths. Table ] shows the results. We can
see that when the margin condition is not satisfied, the one-step estimator
only achieves coverage of 0.618, while both the union bounding and the
joint methods achieve valid coverages. Also, the joint method generally has
a smaller confidence interval width than the union bounding method (29%
decrease when the margin condition is satisfied and 12% when the margin
condition is not satisfied).

We also consider the true parameter vector #* = [0.1,0.2,--- ,1] € R
and we run the same set of simulations as described in Section [C.3] Table [
shows the results. The joint methods achieve much shorter widths (almost
20% decrease in margin and 17% decrease in non-margin setting) in this

setting, and the results are otherwise similar to those from earlier sections.



coverage width

union | joint | one-step | union | joint | one-step | oracle

linear margin 1.000 | 0.985 | 0.980 0.112 | 0.090 | 0.057 0.042

linear non-margin | 0.995 | 0.964 | 0.895 0.102 | 0.085 | 0.062 0.043

Table 5: Coverage and width for linear policy class with sample size n =

1000.

D. Multiplier bootstrap

In practice, we use multiplier bootstrap to estimate the quantiles described
in Section |3| and we provide the pseudocodes of the algorithms below. Al-
gorithm [I] estimates ¢3 defined just above Lemma 2] Algorithm [2] estimates
the quantiles described in (3.7). In this algorithm, we take sI = t! for
simplicity and estimate the best (¢, u]) given samples. Both algorithms
approximate suprema and infima over sets indexed by 7 € II by maxima

and minima over 7 belonging to a grid approximation of II.



Algorithm 1 Multiplier bootstrap

Input: samples {(x;,a;,y;)},, policy set II, bootstrap sample size B, confi-

7

dence level 5

Take a grid estimate {7y, -+ ,mx} of II

: for each k € [K], compute normalized one-step estimates {ogm)}i:1 using

collected samples {(z;, a;, yi) }7'q

for j=1,---,B do
get multiplier bootstrap samples ¢;; fori =1,--- ,nand k=1,--- | K
compute n~ /237" eijogwk) and denote the result as f%)

end for

compute maxe(g) fT(ri) for each j and denote the resulting dataset as {t;}2

Output: (1 — 3)-th quantile of {t;}2,




Algorithm 2 Multiplier bootstrap for joint probability
Input: samples {(z;, a;, yi, zi) } -, policy set II, bootstrap sample size B, confi-

dence level «

—_

: Take a grid estimate {my,--- , 7} of IT

2: for k € [K] do
)

3:  compute normalized one-step estimates {ogm" i, using collected samples

{(@i,ai,y5) Hey

4:  compute normalized one-step estimates {65”’“)}?:1 using collected samples

{(zs, a8, 2:) }7y
5: end for

6: for j=1,---, B do

()

7:  get multiplier bootstrap samples eii fori=1,--- ,nand k=1,--- | K

8:  compute n~ /23" e%)ogﬂ’“)

(2
) -1/25~ () ~(mk)
9:  compute n Y1 61 0

and denote the result as f,(ri)

and denote the result as f,%)

10: end for

11: compute maxye|x] f%) for each j and denote the results as {s; }}3:1

12: compute probability P(maxye(x) fr, < t, ﬁrk < u) for each k = 1,--- | K

using the B samples

Output: pairs (¢, u) such that mingex) P(maxge(g) fr), <1, frn <u)=1-q.
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