Estimation of subsidiary performance metrics under optimal policies

Zhaoqi Li*, Houssam Nassif[†], Alex Luedtke*

* University of Washington, †Meta

Supplementary Material

This supplementary material provides proofs for lemmas and theorems in Sections 2 and 3 a detailed description of multiplier bootstrap used in our simulations, as well as additional simulation experiments.

A. Proofs for Section 2

Let $Q_{X,0}$ be the marginal distribution of X under P_0 , and let $Q_{Y^*,0}$ and $Q_{Y^{\dagger},0}$ be respectively the conditional distribution of Y^* and Y^{\dagger} given A, X under P_0 . Let $\{P_{\epsilon}: \epsilon \in \mathbb{R}\} \subset \mathcal{M}$ be a parametric submodel that is such that $P_{\epsilon} = P_0$ when $\epsilon = 0$. This submodel is defined so that the marginal distribution of X and the conditional distributions of Y^{\dagger} and Y^* given (A, X) satisfy

$$dQ_{X,\epsilon}(x) = (1 + \epsilon S_X(x))dQ_{X,0}(x), \tag{S1.1}$$

where
$$\mathbb{E}_0[S_X(x)] = 0$$
 and $\sup_x |S_X(x)| \le m < \infty$,

$$dQ_{Y^{\dagger},\epsilon}(z \mid a, x) = (1 + \epsilon S_{Y^{\dagger}}(z \mid a, x)) dQ_{Y^{\dagger},0}(z \mid a, x), \tag{S1.2}$$

where $\mathbb{E}_0\left[S_{Y^\dagger}\mid A,X\right]=0$ P_0 -a.s. and $\sup_{x,a,z}|S_{Y^\dagger}(z\mid a,x)|<\infty,$ and

$$dQ_{Y^*,\epsilon}(y \mid a, x) = (1 + \epsilon S_{Y^*}(y \mid a, x)) dQ_{Y^*,0}(y \mid a, x),$$
(S1.3)

where $\mathbb{E}_0[S_{Y^*} \mid A, X] = 0$ P_0 -a.s. and $\sup_{x,a,y} |S_{Y^*}(y \mid a, x)| < \infty$.

We let $q_{b,\epsilon}(x) = q_b(P_{\epsilon})(x)$ and $s_{b,\epsilon}(x) = s_b(P_{\epsilon})(x)$.

A.1 Proof of Lemma 1

Proof of Lemma 1. Note that $\pi_P^*(x) = \mathbb{I}\{q_b(P)(x) > 0\}$ for all $x \in \mathcal{X}$. Following the idea of the proof of Theorem 3 in Luedtke and Van Der Laan 2016, we observe that

$$\Psi^*(P) - \mathbb{E}_P \mathbb{E}_P[Y^{\dagger} \mid A = 0, X] = \mathbb{E}_P[\pi_P^*(X) s_b(P)(X)].$$

By a telescoping argument,

$$\Psi^{*}(P_{\epsilon}) - \Psi^{*}(P_{0}) = \mathbb{E}_{P_{\epsilon}} \mathbb{E}_{P_{\epsilon}} [Y^{\dagger} | A = \pi_{P_{\epsilon}}^{*}(X), X] - \mathbb{E}_{P_{0}} \mathbb{E}_{P_{0}} [Y^{\dagger} | A = \pi^{*}(X), X]
= \mathbb{E}_{P_{\epsilon}} \mathbb{E}_{P_{\epsilon}} [Y^{\dagger} | A = \pi_{P_{\epsilon}}^{*}(X), X] - \mathbb{E}_{P_{\epsilon}} \mathbb{E}_{P_{\epsilon}} [Y^{\dagger} | A = \pi^{*}(X), X]
+ \mathbb{E}_{P_{\epsilon}} \mathbb{E}_{P_{\epsilon}} [Y^{\dagger} | A = \pi^{*}(X), X] - \mathbb{E}_{P_{0}} \mathbb{E}_{P_{0}} [Y^{\dagger} | A = \pi^{*}(X), X]
= \mathbb{E}_{P_{\epsilon}} [(\mathbb{I}(q_{b,\epsilon} > 0) - \mathbb{I}(q_{b,0} > 0)) \cdot s_{b,\epsilon}] + \Psi_{\pi^{*}}(P_{\epsilon}) - \Psi_{\pi^{*}}(P_{0}).$$
(S1.4)

It is known that for a fixed π , Ψ_{π} is pathwise differentiable with gradient $D(\pi, P_0)$. We shall now show that the first term is $o(\epsilon)$. Letting $B_1 := \{x \in A_0 : x \in A_0 : x \in A_0 \}$ $\mathcal{X}: q_{b,0}(x) = 0$, we have

$$\mathbb{E}_{P_{\epsilon}} \left[\left(I \left(q_{b,\epsilon} > 0 \right) - I \left(q_{b,0} > 0 \right) \right) s_{b,\epsilon} \right]$$

$$= \int_{\mathcal{X} \setminus B_{1}} \left(I \left(q_{b,\epsilon} > 0 \right) - I \left(q_{b,0} > 0 \right) \right) s_{b,\epsilon} dQ_{X,\epsilon}$$

$$+ \int_{B_{1}} \left(I \left(q_{b,\epsilon} > 0 \right) - I \left(q_{b,0} > 0 \right) \right) s_{b,\epsilon} dQ_{X,\epsilon}.$$

Under Condition 1 we know that $Pr_0(q_{b,0}(X) \neq 0) = 1$, so the second term is zero. Then we aim to show that the first term is $o(|\epsilon|)$. Note that

$$\left| \int_{\mathcal{X}\setminus B_{1}} \left(I\left(q_{b,\epsilon} > 0\right) - I\left(q_{b,0} > 0\right) \right) s_{b,\epsilon} dQ_{X,\epsilon} \right|$$

$$\leq \int_{\mathcal{X}\setminus B_{1}} \left| \left(I\left(q_{b,\epsilon} > 0\right) - I\left(q_{b,0} > 0\right) \right) s_{b,\epsilon} \right| dQ_{X,\epsilon}$$

$$\leq \int_{\mathcal{X}\setminus B_{1}} I\left(\left| q_{b,0} \right| < \left| q_{b,\epsilon} - q_{b,0} \right| \right) \left| s_{b,\epsilon} \right| dQ_{X,\epsilon}$$

by looking at the sign of $q_{b,\epsilon}$ and $q_{b,0}$. Also,

$$q_{b,\epsilon}(x) = \int y \left(dQ_{Y^*,\epsilon}(y \mid A = 1, X = x) - dQ_{Y^*,\epsilon}(y \mid A = 0, X = x) \right)$$

$$= q_{b,0}(x) + \epsilon \left(\mathbb{E}_0 \left[Y^* S_{Y^*}(Y^* \mid 1, X) \mid A = 1, X = x \right] \right)$$

$$- \mathbb{E}_0 \left[Y^* S_{Y^*}(Y^* \mid 0, X) \mid A = 0, X = x \right]$$

$$= q_{b,0}(x) + \epsilon \bar{h}(x)$$

where

$$\bar{h}(x) = \mathbb{E}_0[Y^*S_{Y^*}(Y^*|1,X)|A = 1, X = x] - \mathbb{E}_0[Y^*S_{Y^*}(Y^*|0,X)|A = 0, X = x].$$

Similarly, $s_{b,\epsilon}(x) = s_{b,0}(x) + \epsilon \cdot \tilde{h}(x)$ where

$$\tilde{h}(x) = \mathbb{E}_0[Y^{\dagger} S_{Y^{\dagger}}(Y^{\dagger} | 1, X) | A = 1, X = x] - \mathbb{E}_0[Y^{\dagger} S_{Y^{\dagger}}(Y^{\dagger} | 0, X) | A = 0, X = x].$$

Note that \tilde{h} and \bar{h} are uniformly bounded since Y^* , Y^{\dagger} , S_{Y^*} , and $S_{Y^{\dagger}}$ are bounded. Let $H = \max\{\sup_{x} |\bar{h}(x)|,$

 $\sup_{x} |\tilde{h}(x)|$. Therefore,

$$\begin{split} & \int_{\mathcal{X}\backslash B_{1}} I\left(|q_{b,0}| < |q_{b,\epsilon} - q_{b,0}|\right) |s_{b,\epsilon}| \, dQ_{X,\epsilon} \\ & \leq \int_{\mathcal{X}\backslash B_{1}} I\left(|q_{b,0}| < H|\epsilon|\right) \left(|s_{b,0}| + H|\epsilon|\right) dQ_{X,\epsilon} \\ & \leq \left(1 + m|\epsilon|\right) \int_{\mathcal{X}\backslash B_{1}} I\left(|q_{b,0}| < H|\epsilon|\right) \left(|s_{b,0}| + H|\epsilon|\right) dQ_{X,0} \\ & = \left(1 + m|\epsilon|\right) \int_{\mathcal{X}\backslash B_{1}} I\left(0 < |q_{b,0}| < H|\epsilon|\right) \left(|s_{b,0}| + H|\epsilon|\right) dQ_{X,0}. \end{split}$$

Denote $\tilde{\mathcal{X}} = \mathcal{X} \setminus B_1$. Under the first condition, define the set

$$B_{2,t} = \{ x \in \tilde{\mathcal{X}} : |s_{b,0}(x)| < Ct^{-1}|q_{b,0}(x)| \}.$$

Then

$$\begin{split} & \int_{\mathcal{X}\backslash B_1} I\left(|q_{b,0}| < H|\epsilon|\right) \left(|s_{b,0}| + H|\epsilon|\right) dQ_{X,0} \\ & = \int_{\tilde{\mathcal{X}}} I\left(0 < |q_{b,0}| < H|\epsilon|\right) \left(|s_{b,0}| + H|\epsilon|\right) dQ_{X,0} \end{split}$$

$$= \int_{B_{2,t}} I(0 < |q_{b,0}| < H|\epsilon|) (|s_{b,0}| + H|\epsilon|) dQ_{X,0}$$
$$+ \int_{\tilde{\mathcal{X}} \backslash B_{2,t}} I(0 < |q_{b,0}| < H|\epsilon|) (|s_{b,0}| + H|\epsilon|) dQ_{X,0}.$$

On one hand, note that for $x \in B_{2,t}$ and under the fact that $|q_{b,0}(x)| \leq H|\epsilon|$ we have $|s_b(x)| \leq CHt^{-1}|\epsilon|$. define C_2 such that $P_0(0 < |q_{b,0}(X)| < t) \leq$ $C_2 t^{\gamma}$ for any t > 0, the first term

$$\int_{B_{2,t}} I(0 < |q_{b,0}| < H|\epsilon|) (|s_{b,0}| + H|\epsilon|) dQ_{X,0}$$

$$\leq \int_{B_{2,t}} I(0 < |q_{b,0}| < H|\epsilon|) (CHt^{-1}|\epsilon| + H|\epsilon|) dQ_{X,0}$$

$$\leq (CHt^{-1}|\epsilon| + H|\epsilon|) P_0 (0 < |q_{b,0}(X)| < H|\epsilon|)$$

$$\leq (Ct^{-1}|\epsilon| + H|\epsilon|) C_2(H|\epsilon|)^{\gamma}$$
(S1.6)

for t < 1. For the second term, let $C_3 := \sup_x |s_{b,0}(x)|$, we have

$$\int_{\tilde{\mathcal{X}}\setminus B_{2,t}} I(0 < |q_{b,0}| < H|\epsilon|) (|s_{b,0}| + H|\epsilon|) dQ_{X,0}$$

$$\leq (C_3 + H|\epsilon|) P_0(|s_{b,0}(X)| > Ct^{-1}|q_{b,0}(X)|))$$

$$\leq (C_3 + H|\epsilon|)t^{\zeta}$$

where the last inequality follows from Condition I Therefore, the sum is bounded by

$$(Ct^{-1}|\epsilon| + H|\epsilon|) C_2(H|\epsilon|)^{\gamma} + (C_3 + H|\epsilon|)t^{\zeta}.$$

Taking $t = |\epsilon|^{\frac{1+\gamma}{\zeta+1}}$ gives that this is $O(|\epsilon|^{1+\gamma-\frac{1+\gamma}{\zeta+1}})$, which is $o(|\epsilon|)$ given that $\gamma > \frac{1}{\zeta}$. Combining all of the results above gives

$$\lim_{\epsilon \to 0} \frac{1}{\epsilon} \mathbb{E}_{P_{\epsilon}} \left[\left(I \left(q_{b,\epsilon} > 0 \right) - I \left(q_{b,0} > 0 \right) \right) s_{b,\epsilon} \right] = 0.$$

Therefore, Ψ^* is pathwise differentiable, and, per (S1.4), has the same canonical gradient as the parameter Ψ_{π^*} , namely $D(\pi^*, P_0)$.

A.2 Proof of Theorem 1

Proof of Theorem I. We would first like to show that $\psi_{OS,n}$ is an asymptotically linear estimator of ψ_0 . For simplicity of notation, we let $\pi_n^* := \pi_{\widehat{P}_n}^*$ and drop the dependence of π in the definition of Ψ_{π} in this proof. Note that $\psi_{OS,n} - \psi_0 = (P_n - P_0)D(P_0) + (P_n - P_0)[D(\widehat{P}_n) - D(P_0)] + R(\widehat{P}_n, P_0).$ Note that the first term $(P_n - P_0)D(P_0)$ is the linear term and $(P_n - P_0)D(P_0)$ $P_0[D(\widehat{P}_n) - D(P_0)] = o_{P_0}(n^{-1/2})$ under the Donsker condition and the fact that $||D(\widehat{P}_n) - D(P_0)||_2 \xrightarrow{p} 0$ (Lemma 19.24 of Van der Vaart 2000). To show that $\psi_{OS,n}$ is asymptotically linear, we only need to argue that the remainder term $R(\widehat{P}_n, P_0)$ is $o_{P_0}(n^{-1/2})$. Note that

$$\begin{split} P_0 D(\widehat{P}_n) &= \mathbb{E}_0 \left[\frac{\mathbb{I}\{A = \pi_n^*(X)\}}{p_n(A|X)} (Y^\dagger - s(A,X)) + s(\pi_n^*(X), X) - \Psi(\widehat{P}_n) \right] \\ &= \mathbb{E}_0 \left[\frac{\mathbb{I}\{A = \pi_n^*(X)\}}{p_n(A|X)} (s_0(A,X) - s(A,X)) + s(\pi_n^*(X), X) - \Psi(\widehat{P}_n) \right], \end{split}$$

by the law of total expectation. Therefore,

$$\begin{split} R(\widehat{P}_{n},P_{0}) &= \Psi(\widehat{P}_{n}) - \Psi(P_{0}) + P_{0}D(\widehat{P}_{n}) \\ &= \int \left\{ \frac{\mathbb{I}\{a = \pi_{n}^{*}(x)\}}{p_{n}(a|x)} (s_{0}(a,x) - s_{n}(a,x)) + s_{n}(\pi_{n}^{*}(x),x) - s_{0}(\pi^{*}(x),x) \right\} dP_{0}(a,x) \\ &= \int \left(\frac{\mathbb{I}\{a = \pi_{n}^{*}(x)\}}{p_{n}(a|x)} - 1 \right) [s_{0}(\pi_{n}^{*}(x),x) - s_{n}(\pi_{n}^{*}(x),x)] dP_{0}(a,x) + \Psi_{\pi_{n}^{*}}(P_{0}) - \Psi_{\pi^{*}}(P_{0}) \\ &= \iint \left(\frac{\mathbb{I}\{a = \pi_{n}^{*}(x)\}}{p_{n}(a|x)} - 1 \right) [s_{0}(\pi_{n}^{*}(x),x) - s_{n}(\pi_{n}^{*}(x),x)] p_{0}(a|x) da dP_{0}(x) \\ &+ \Psi_{\pi_{n}^{*}}(P_{0}) - \Psi_{\pi^{*}}(P_{0}) \\ &= \int \left(\frac{p_{0}(\pi_{n}^{*}(x)|x)}{p_{n}(\pi_{n}^{*}(x)|x)} - 1 \right) [s_{0}(\pi_{n}^{*}(x),x) - s_{n}(\pi_{n}^{*}(x),x)] dP_{0}(x) \\ &+ \Psi_{\pi_{n}^{*}}(P_{0}) - \Psi_{\pi^{*}}(P_{0}) \\ &=: R_{1n} + R_{2n}. \end{split}$$

The first term R_{1n} is $o_{P_0}(n^{-1/2})$ under under Condition $\boxed{4}$ — see Proposition 1. As for the second term R_{2n} , Proposition 2 shows that it is $o_{P_0}(n^{-1/2})$ under the margin condition.

Proposition 1. Under Condition [4], $R_{1n} = o_{P_0}(n^{-1/2})$.

Proof. By Jensen's inequality, the fact that $\pi_n^*(x) \in \{0,1\}$ for all x, the fact that $(b+c) \leq 2 \max\{b,c\}$ for $b,c \in \mathbb{R}$, and Cauchy-Schwarz, we have that

$$|R_{1n}| = \left| \int \left(\frac{p_0(\pi_n^*(x)|x)}{p_n(\pi_n^*(x)|x)} - 1 \right) \left[s_0(\pi_n^*(x), x) - s_n(\pi_n^*(x), x) \right] dP_0(x) \right|$$

$$\leq \int \left| \left(\frac{p_0(\pi_n^*(x)|x)}{p_n(\pi_n^*(x)|x)} - 1 \right) \left[s_0(\pi_n^*(x), x) - s_n(\pi_n^*(x), x) \right] \right| dP_0(x)$$

$$\leq \int \sum_{n=0}^{1} \left| \left(\frac{p_0(a|x)}{p_n(a|x)} - 1 \right) \left[s_0(a, x) - s_n(a, x) \right] \right| dP_0(x)$$

$$= \sum_{a=0}^{1} \int \left| \left(\frac{p_0(a|x)}{p_n(a|x)} - 1 \right) \left[s_0(a,x) - s_n(a,x) \right] \right| dP_0(x)$$

$$\leq 2 \max_{a \in \{0,1\}} \int \left| \left(\frac{p_0(a|x)}{p_n(a|x)} - 1 \right) \left[s_0(a,x) - s_n(a,x) \right] \right| dP_0(x)$$

$$\leq 2 \max_{a \in \{0,1\}} \left\{ \left\| \frac{p_0(a|X)}{p_n(a|X)} - 1 \right\|_{2,P_0} \left\| s_n(a,X) - s_0(a,X) \right\|_{2,P_0} \right\}.$$

The following proposition shows that the second term R_{2n} is $o_{P_0}(n^{-1/2})$ under our margin condition.

Proposition 2. Assume Conditions [1], [2], and [3] hold. Then, for any $\epsilon > 0$, $|R_{2n}| = o_{P_0}(n^{-1/2})$.

Proof. We adopt the idea in proof of Theorem 8 of Luedtke and Van Der Laan [2016]. Let $B'_{3,u} = \{x \in \mathcal{X} : |s_{b,0}(x)| < C_1 u | q_{b,0}(x)| \}$ and $A_u = \{x \in \mathcal{X} : C_1 u | q_{b,0}(x)| \le |s_{b,0}(x)| < C_1(u+1) |q_{b,0}(x)| \}$. Then for any t > 0,

$$\begin{aligned} &|\Psi_{\pi_n^*}(P_0) - \Psi_{\pi^*}(P_0)| \\ &= \mathbb{E}_{P_0} \left[s_{b,0}(X) (\pi_n^*(X) - \pi^*(X)) \right] \\ &\leq \mathbb{E}_0 \left[|s_{b,0}(X)| I (\pi^*(X) \neq \pi_n^*(X)) \right] \\ &= \sum_{u=0}^{\infty} \mathbb{E}_0 [|s_{b,0}(X)| I (\pi^*(X) \neq \pi_n^*(X)) I(A_u)] \\ &\leq \sum_{u=0}^{\infty} \mathbb{E}_0 [|s_{b,0}(X)| I (|q_{b,0}(X)| \leq |q_{b,n}(X) - q_{b,0}(X)|) I(A_u)]. \end{aligned}$$

where the last inequality follows from the fact that for any $x \in \mathcal{X}$, $\pi^*(x) \neq$ $\pi_n^*(x)$ implies that $|q_{b,n}(x)-q_{b,0}(x)| \geq |q_{b,0}(x)|$. From Condition 1 we know that $q_{b,0}(X) \neq 0$ with P_0 -probability 1, so

$$\sum_{u=0}^{\infty} \mathbb{E}_{0}[|s_{b,0}(X)|I(|q_{b,0}(X)| \le |q_{b,n}(X) - q_{b,0}(X)|)I(A_{u})]$$

$$= \sum_{u=0}^{\infty} \mathbb{E}_{0}[|s_{b,0}(X)|I(0 < |q_{b,0}(X)| \le |q_{b,n}(X) - q_{b,0}(X)|)I(A_{u})].$$

For any $x \in A_u$, $|s_{b,0}(x)| \le C_1(u+1)|q_{b,0}(x)|$, so for each u,

$$\begin{split} &\mathbb{E}_{0}\left[\left|s_{b,0}(X)\right|I\left(0<\left|q_{b,0}(X)\right|\leq\left|q_{b,n}(X)-q_{b,0}(X)\right|\right)I(A_{u})\right] \\ &\leq C_{1}\mathbb{E}_{0}\left[\left(u+1\right)\left|q_{b,0}(X)\right|I\left(0<\left|q_{b,0}(X)\right|\leq\left|q_{b,n}(X)-q_{b,0}(X)\right|\right)I(A_{u})\right] \\ &\leq C_{1}\mathbb{E}_{0}\left[\left(u+1\right)\left|q_{b,n}(X)-q_{b,0}(X)\right|I\left(0<\left|q_{b,0}(X)\right|\leq\left|q_{b,n}(X)-q_{b,0}(X)\right|\right)I(A_{u})\right] \\ &\leq C_{1}\mathbb{E}_{0}\left[\left(u+1\right)\max_{x\in\mathcal{X}}\left\|q_{b,n}(x)-q_{b,0}(x)\right\|I\left(0<\left|q_{b,0}(X)\right|\leq\max_{x\in\mathcal{X}}\left\|q_{b,n}(x)-q_{b,0}(x)\right\|\right)I(A_{u})\right] \\ &=C_{1}(u+1)\left\|q_{b,n}-q_{b,0}\right\|_{\infty,P_{0}}\mathbb{E}_{0}\left[I\left(0<\left|q_{b,0}(X)\right|\leq\max_{x\in\mathcal{X}}\left\|q_{b,n}(x)-q_{b,0}(x)\right\|\right)I(A_{u})\right] \\ &=C_{1}(u+1)\left\|q_{b,n}-q_{b,0}\right\|_{\infty,P_{0}}P_{0}(0<\left|q_{b,0}(X)\right|\leq\left|q_{b,n}-q_{b,0}\right|_{\infty,P_{0}},A_{u}). \end{split}$$

For an event $\mathcal{E} \subseteq \mathcal{X}$, let $\mathbb{P}^{\infty}(\mathcal{E}) := P_0(0 < |q_{b,0}(X)| \le ||q_{b,n} - q_{b,0}||_{\infty, P_0}, \mathcal{E})$. Then, for any $k \in \mathbb{N}$,

$$\sum_{u=0}^{k} \mathbb{E}_{0}[|s_{b,0}(X)|I(0 < |q_{b,0}(X)| \le |q_{b,n}(X) - q_{b,0}(X)|)I(A_{u})]$$

$$\leq \sum_{u=0}^{k} C_{1}(u+1) \|q_{b,n} - q_{b,0}\|_{\infty,P_{0}} \mathbb{P}^{\infty}(A_{u})$$

$$= \sum_{u=0}^{k} C_{1}(u+1) \|q_{b,n} - q_{b,0}\|_{\infty,P_{0}} [\mathbb{P}^{\infty}(B'_{3,u+1}) - \mathbb{P}^{\infty}(B'_{3,u})]$$

$$\begin{split} &= \sum_{u=0}^{k} C_{1}(u+1) \|q_{b,n} - q_{b,0}\|_{\infty,P_{0}} \mathbb{P}^{\infty}(B'_{3,u+1}) - \sum_{u=0}^{k} C_{1}(u+1) \|q_{b,n} - q_{b,0}\|_{\infty,P_{0}} \mathbb{P}^{\infty}(B'_{3,u}) \\ &= \sum_{u=1}^{k+1} C_{1}u \|q_{b,n} - q_{b,0}\|_{\infty,P_{0}} \mathbb{P}^{\infty}(B'_{3,u}) - \sum_{u=0}^{k} C_{1}(u+1) \|q_{b,n} - q_{b,0}\|_{\infty,P_{0}} \mathbb{P}^{\infty}(B'_{3,u}) \\ &= C_{1}(k+1) \|q_{b,n} - q_{b,0}\|_{\infty,P_{0}} \mathbb{P}^{\infty}(B'_{3,k+1}) - \sum_{u=0}^{k} C_{1} \|q_{b,n} - q_{b,0}\|_{\infty,P_{0}} \mathbb{P}^{\infty}(B'_{3,u}) \\ &= \sum_{u=0}^{k} C_{1} \|q_{b,n} - q_{b,0}\|_{\infty,P_{0}} [\mathbb{P}^{\infty}(B'_{3,k+1}) - \mathbb{P}^{\infty}(B'_{3,u})] \\ &\leq \sum_{u=0}^{k} C_{1} \|q_{b,n} - q_{b,0}\|_{\infty,P_{0}} [\mathbb{P}^{\infty}(X) - \mathbb{P}^{\infty}(B'_{3,u})] \\ &= \sum_{u=0}^{k} C_{1} \|q_{b,n} - q_{b,0}\|_{\infty,P_{0}} [\mathbb{P}^{\infty}(B'_{3,u})] \\ &= \sum_{u=0}^{k} C_{1} \|q_{b,n} - q_{b,0}\|_{\infty,P_{0}} [\mathbb{P}_{0}(0 < |q_{b,0}(X)| \le \|q_{b,n} - q_{b,0}\|_{\infty,P_{0}}, B'_{3,u})] \\ &\leq \sum_{u=0}^{k} C_{1} \|q_{b,n} - q_{b,0}\|_{\infty,P_{0}} [\mathbb{P}_{0}(0 < |q_{b,0}(X)| \le \|q_{b,n} - q_{b,0}\|_{\infty,P_{0}}, B'_{3,u})] \\ &\leq \sum_{u=0}^{k} C_{1} \|q_{b,n} - q_{b,0}\|_{\infty,P_{0}} [\mathbb{P}_{0}(0 < |q_{b,0}(X)| \le \|q_{b,n} - q_{b,0}\|_{\infty,P_{0}}, B'_{3,u})] \end{split}$$

where the last step follows from Holder's inequality. Since $\zeta > 2$, let $k \to \infty$ and the infinite sum converges. Therefore,

$$\begin{split} &|\Psi_{\pi_n^*}\left(P_0\right) - \Psi_{\pi^*}\left(P_0\right)| \\ &= \sum_{u=1}^{\infty} \mathbb{E}_0[|s_{b,0}(X)|I(\pi^*(X) \neq \pi_n^*(X))|A_u]\mathbb{P}(A_u) \\ &= \lim_{k \to \infty} \sum_{u=1}^k \mathbb{E}_0[|s_{b,0}(X)|I(\pi^*(X) \neq \pi_n^*(X))|A_u]\mathbb{P}(A_u) \lesssim \|q_{b,n} - q_{b,0}\|_{p,P_0}^{1+\gamma/2} \,. \end{split}$$

Note that under Condition 3, we have $||q_{b,n} - q_{b,0}||_{\infty, P_0}^{1+\gamma/2} = o_{P_0}(n^{-1/2})$ for any $\gamma > 0$, so $|R_{2n}| = o_{P_0}(n^{-1/2})$.

B. Proofs for Section 3

For notational simplicity, throughout this section and later we denote $\psi_{\pi} := \Psi_{\pi}(P_0)$ for some policy $\pi \in \Pi$.

B.1 Proof of Lemma 2

Proof of Lemma 2. We have that

$$\left\{ \Pi^* \subseteq \widehat{\Pi}_{\beta} \right\} = \left\{ \omega_{\pi'} < \sup_{\pi \in \Pi} \omega_{\pi}, \forall \pi' \in \widehat{\Pi}_{\beta}^C \right\}.$$

Therefore,

$$\left\{ \Pi^* \subseteq \widehat{\Pi}_{\beta} \right\}^C
= \left\{ \exists \pi' \in \widehat{\Pi}_{\beta}^C : \omega_{\pi'} = \sup_{\pi \in \Pi} \omega_{\pi} \right\}
\subseteq \left\{ \exists \pi' \in \widehat{\Pi}_{\beta}^C : \left[\omega_{\pi'} - \widehat{\omega}_{\pi'} - \frac{\widehat{\sigma}_{\pi'} t_{\beta}}{n^{1/2}} + L_n \right] > \sup_{\pi \in \Pi} \omega_{\pi}, \right\}
= \left\{ \exists \pi' \in \widehat{\Pi}_{\beta}^C : \left[\omega_{\pi'} - \widehat{\omega}_{\pi'} - \frac{\widehat{\sigma}_{\pi'} t_{\beta}}{n^{1/2}} \right] > \sup_{\pi \in \Pi} \omega_{\pi} - L_n \right\},$$
(S2.7)

where the inclusion follows from the definition of $\widehat{\Pi}_{\beta}$. Let \mathcal{A} denote the event $\{L_n \leq \sup_{\pi \in \Pi} \omega_{\pi}\} \cap \left[\bigcap_{\pi \in \Pi} \left\{ \omega_{\pi} \leq \widehat{\omega}_{\pi} + \frac{\widehat{\sigma}_{\pi} t_{\beta}}{n^{1/2}} \right\} \right]$. Hence, (S2.7) shows that

$$\left\{ \Pi^* \not\subseteq \widehat{\Pi}_{\beta} \right\}^C
\subseteq \left[\left\{ \exists \pi' \in \widehat{\Pi}_{\beta}^C : \left[\omega_{\pi'} - \widehat{\omega}_{\pi'} - \frac{\widehat{\sigma}_{\pi'} t_{\beta}}{n^{1/2}} \right] > \sup_{\pi \in \Pi} \omega_{\pi} - L_n \right\} \cap \mathcal{A} \right] \cup \mathcal{A}^C$$

$$\subseteq \left[\left\{ \exists \pi' \in \widehat{\Pi}_{\beta}^{C} : \omega_{\pi'} - \widehat{\omega}_{\pi'} - \frac{\widehat{\sigma}_{\pi'} t_{\beta}}{n^{1/2}} > 0 \right\} \cap \mathcal{A} \right] \cup \mathcal{A}^{C}$$

$$= \mathcal{A}^{C},$$

where the final equality used that the leading event in the union above is equal to the null set since under \mathcal{A} , we have $\omega_{\pi'} - \widehat{\omega}_{\pi'} - \frac{\widehat{\sigma}_{\pi'} t_{\beta}}{n^{1/2}} \leq 0$ for each $\pi \in$ Π . Also, note that by Lemma 4, $\Pr\left(\bigcap_{\pi\in\Pi}\left\{\omega_{\pi}\leq\widehat{\omega}_{\pi}+\frac{\widehat{\sigma}_{\pi}t_{\beta}}{n^{1/2}}\right\}\right)\to 1-\beta/2$, and by definition of L_n , $\limsup_n \Pr(\{L_n < \sup_{\pi \in \Pi} \omega_{\pi}\}) \ge 1 - \beta/2$. Hence, by a union bound,

$$\limsup_{n} P\left\{ \Pi^* \not\subseteq \widehat{\Pi}_{\beta} \right\} \le \beta.$$

Lemma \P in the following shows a uniform confidence band for $\{\omega_{\pi}:$ $\pi \in \Pi$ } which helps prove the validity of the candidate policy set $\widehat{\Pi}_{\beta}$.

Lemma 4. If $\inf_{\pi \in \Pi} \sigma_{\pi}(P_0) > 0$, and $\widehat{\sigma}_{\pi}$ is a consistent estimator of $\sigma_{\pi}(P_0)$ for each $\pi \in \Pi$, an asymptotically valid uniform β -level confidence band is given by $\left\{\widehat{\omega}_{\pi} \pm \frac{\widehat{\sigma}_{\pi} t_{\beta}}{n^{1/2}} : \pi \in \Pi \right\}$.

Proof of Lemma 4. To see that this is the case, note that t_{β} is the $1-\beta/2$ quantile of $\sup_{f\in\mathcal{F}} \mathbb{G}f$, and also

$$P\left(\bigcap_{\pi\in\Pi}\left\{\widehat{\omega}_{\pi}-\frac{\widehat{\sigma}_{\pi}t_{\beta}}{n^{1/2}}\leq\omega_{\pi}\leq\widehat{\omega}_{\pi}+\frac{\widehat{\sigma}_{\pi}t_{\beta}}{n^{1/2}}\right\}\right)$$

$$= P\left(\bigcap_{\pi \in \Pi} \left\{ -t_{\beta} \le n^{1/2} \frac{\widehat{\omega}_{\pi} - \omega_{\pi}}{\widehat{\sigma}_{\pi}} \le t_{\beta} \right\} \right)$$

$$\to P\left(\bigcap_{\pi \in \Pi} \left\{ -t_{\beta} \le \mathbb{G}f \le t_{\beta} \right\} \right)$$

$$= P\left(\bigcap_{\pi \in \Pi} \left[\left\{ -t_{\beta} \le \inf_{f \in \mathcal{F}} \mathbb{G}f \right\} \cap \left\{ \sup_{f \in \mathcal{F}} \mathbb{G}f \le t_{\beta} \right\} \right] \right)$$

$$= 1 - \beta,$$

where the convergence follows from the fact that $n^{1/2} \frac{\widehat{\omega}_{\pi} - \omega_{\pi}}{\widehat{\sigma}_{\pi}} \rightsquigarrow \mathbb{G}f$ by Lemma 5 and Slutsky's Theorem.

Lemma 5 (\mathcal{F} is P_0 -Donsker). Assume that Conditions $\boxed{8}$ and $\boxed{9}$ hold and also that

(i) Π satisfies the uniform entropy bound, that is,

$$\int_{0}^{\infty} \sup_{Q_{X}} \sqrt{\log N\left(\varepsilon, \Pi, L^{2}(Q_{X})\right)} d\varepsilon < \infty,$$

where the supremum is over all finitely supported measures on \mathcal{X} ;

- (ii) there exists L > 0 such that, for all finitely supported distributions Q of (X, A, Y) with support on $\mathcal{X} \times \{0, 1\} \times \mathcal{Y}$, the gradient map $\pi \mapsto D_{\pi}$ is L-Lipschitz, in the sense that, for any $\pi, \pi' \in \Pi$, $||D_{\pi} - D_{\pi'}||_{L^2(Q)} \le$ $L\|\pi - \pi'\|_{L^2(Q_X)}$, where Q_X is the marginal distribution of X under Q;
- (iii) $\sup_{\pi \in \Pi} \operatorname{ess} \sup_{x \in \mathcal{X}, a \in \{0,1\}, y \in \mathcal{Y}} |D_{\pi}(P_0)(x, a, y)| < \infty.$

Then, the set $\mathcal{F} := \{D_{\pi}(P_0)/\sigma_{\pi}(P_0) : \pi \in \Pi\}$ is P_0 -Donsker.

Proof of Lemma 5. We would like to use Theorem 2.5.2 of Van Der Vaart and Wellner 2013. First, by (iii) and Condition 9,

$$C := \frac{\sup_{\pi \in \Pi} \operatorname{ess} \sup_{x \in \mathcal{X}, a \in \{0,1\}, y \in \mathcal{Y}} |D_{\pi}(P_0)(x, a, y)|}{\inf_{\pi \in \Pi} \sigma_{\pi}(P_0)} < \infty.$$

Hence, an envelope function for \mathcal{F} is the constant function F(x, a, y) = C. By (ii) and properties of covering numbers, for any Q as stated in (ii) and implied marginal distribution Q_X , we have that $N\left(C\varepsilon, \mathcal{F}, L^2(Q)\right) \leq N\left(C\varepsilon/L, \Pi, L^2(Q_X)\right)$. Combining this with (i) shows that \mathcal{F} satisfies the uniform entropy bound in the sense that $\int_0^\infty \sup_Q \sqrt{\log N\left(\varepsilon, \mathcal{F}, L^2(Q)\right)} d\varepsilon < \infty$, where the supremum is over all finitely supported measures on $\mathcal{X} \times \{0,1\} \times \mathcal{Y}$. Hence, \mathcal{F} is P_0 -Donsker by Theorem 2.5.2 of Van Der Vaart and Wellner [2013].

B.2 Proof of Theorem 2

This subsection shows the proof of Theorem 2, which gives the asymptotic coverage of the confidence interval for the union bounding method.

Proof of Theorem 2. We have that

$$\left\{ \left[\inf_{\pi \in \Pi^*} \psi_{\pi}, \sup_{\pi \in \Pi^*} \psi_{\pi} \right] \not\subseteq \mathrm{CI}_n \right\}$$

$$\begin{split} &= \left\{ \inf_{\pi \in \Pi^*} \psi_{\pi} < \inf_{\pi \in \widehat{\Pi}_{\beta}} \left[\widehat{\psi}_{\pi} - \frac{\widehat{\kappa}_{\pi} z_{\alpha, \beta}}{n^{1/2}} \right] \right\} \cup \left\{ \sup_{\pi \in \Pi^*} \psi_{\pi} > \sup_{\pi \in \widehat{\Pi}_{\beta}} \left[\widehat{\psi}_{\pi} + \frac{\widehat{\kappa}_{\pi} z_{\alpha, \beta}}{n^{1/2}} \right] \right\} \\ &\subseteq \left\{ \inf_{\pi \in \Pi^*} \psi_{\pi} < \inf_{\pi \in \widehat{\Pi}_{\beta}} \left[\widehat{\psi}_{\pi} - \frac{\widehat{\kappa}_{\pi} z_{\alpha, \beta}}{n^{1/2}} \right], \Pi^* \subseteq \widehat{\Pi}_{\beta} \right\} \\ &\cup \left\{ \sup_{\pi \in \Pi^*} \psi_{\pi} > \sup_{\pi \in \widehat{\Pi}_{\beta}} \left[\widehat{\psi}_{\pi} + \frac{\widehat{\kappa}_{\pi} z_{\alpha, \beta}}{n^{1/2}} \right], \Pi^* \subseteq \widehat{\Pi}_{\beta} \right\} \cup \left\{ \Pi^* \not\subseteq \widehat{\Pi}_{\beta} \right\}. \end{split}$$

Hence, by a union bound and the fact that $\limsup_{n} (a_n + b_n + c_n) \le$ $\limsup_{n} a_n + \limsup_{n} b_n + \limsup_{n} c_n$, we see that

$$\lim \sup_{n} P\left\{ \operatorname{CI}_{n} \not\subseteq \left[\inf_{\pi \in \Pi^{*}} \psi_{\pi}, \sup_{\pi \in \Pi^{*}} \psi_{\pi} \right] \right\}$$

$$\leq \lim \sup_{n} P\left\{ \inf_{\pi \in \Pi^{*}} \psi_{\pi} < \inf_{\pi \in \widehat{\Pi}_{\beta}} \left[\widehat{\psi}_{\pi} - \frac{\widehat{\kappa}_{\pi} z_{\alpha, \beta}}{n^{1/2}} \right], \Pi^{*} \subseteq \widehat{\Pi}_{\beta} \right\}$$

$$+ \lim \sup_{n} P\left\{ \sup_{\pi \in \Pi^{*}} \psi_{\pi} > \sup_{\pi \in \widehat{\Pi}_{\beta}} \left[\widehat{\psi}_{\pi} + \frac{\widehat{\kappa}_{\pi} z_{\alpha, \beta}}{n^{1/2}} \right], \Pi^{*} \subseteq \widehat{\Pi}_{\beta} \right\}$$

$$+ \lim \sup_{n} P\left\{ \Pi^{*} \not\subseteq \widehat{\Pi}_{\beta} \right\}.$$

The third term is upper bounded by β by Lemma 2. In what follows we will show that the first term on the right-hand side is no more than $(\alpha - \beta)/2$. Similar arguments can be used to show that the second term is also no more than $(\alpha - \beta)/2$. By a union bound argument, the sum of three terms is upper bounded by α , which completes the proof.

We begin by noting that, for any $n \in \mathbb{N}$,

$$\left\{\inf_{\pi\in\Pi^*}\psi_{\pi}<\inf_{\pi\in\widehat{\Pi}_{\beta}}\left[\widehat{\psi}_{\pi}-\frac{\widehat{\kappa}_{\pi}z_{\alpha,\beta}}{n^{1/2}}\right],\Pi^*\subseteq\widehat{\Pi}_{\beta}\right\}$$

$$\subseteq \left\{ \inf_{\pi \in \Pi^*} \psi_{\pi} < \inf_{\pi \in \Pi^*} \left[\widehat{\psi}_{\pi} - \frac{\widehat{\kappa}_{\pi} z_{\alpha, \beta}}{n^{1/2}} \right], \Pi^* \subseteq \widehat{\Pi}_{\beta} \right\}
\subseteq \left\{ \inf_{\pi \in \Pi^*} \psi_{\pi} < \inf_{\pi \in \Pi^*} \left[\widehat{\psi}_{\pi} - \frac{\widehat{\kappa}_{\pi} z_{\alpha, \beta}}{n^{1/2}} \right] \right\}.$$

By Lemma 7 and $\pi \mapsto \psi_{\pi}$ is continuous, there exists a π^{ℓ} such that $\psi_{\pi^{\ell}} =$ $\inf_{\pi \in \Pi^*} \psi_{\pi}$. Combining this with the above, we see that

$$\left\{ \inf_{\pi \in \Pi^*} \psi_{\pi} < \inf_{\pi \in \widehat{\Pi}_{\beta}} \left[\widehat{\psi}_{\pi} - \frac{\widehat{\kappa}_{\pi} z_{\alpha,\beta}}{n^{1/2}} \right], \Pi^* \subseteq \widehat{\Pi}_{\beta} \right\} \subseteq \left\{ \psi_{\pi^{\ell}} < \inf_{\pi \in \Pi^*} \left[\widehat{\psi}_{\pi} - \frac{\widehat{\kappa}_{\pi} z_{\alpha,\beta}}{n^{1/2}} \right] \right\}
\subseteq \left\{ \psi_{\pi^{\ell}} < \widehat{\psi}_{\pi^{\ell}} - \frac{\widehat{\kappa}_{\pi^{\ell}} z_{\alpha,\beta}}{n^{1/2}} \right\}.$$

Then

$$P\left(\psi_{\pi^{\ell}} < \widehat{\psi}_{\pi^{\ell}} - \frac{\widehat{\kappa}_{\pi^{\ell}} z_{\alpha,\beta}}{n^{1/2}}\right) = P\left(n^{1/2} \frac{\widehat{\psi}_{\pi^{\ell}} - \psi_{\pi^{\ell}}}{\widehat{\kappa}_{\pi^{\ell}}} > z_{\alpha,\beta}\right).$$

By Condition Θ , $\widehat{\kappa}_{\pi^{\ell}}$ is a consistent estimator for $\kappa_{\pi^{\ell}}(P_0)$. Then with Slutsky's Theorem, $n^{1/2} \frac{\widehat{\psi}_{\pi^{\ell}} - \psi_{\pi^{\ell}}}{\widehat{\kappa}_{\pi^{\ell}}} \leadsto \mathbb{G} f_{\pi^{\ell}}$, so by definition of $z_{\alpha,\beta}$,

$$P\left(n^{1/2}\frac{\widehat{\psi}_{\pi^{\ell}} - \psi_{\pi^{\ell}}}{\widehat{\kappa}_{\pi^{\ell}}} > z_{\alpha,\beta}\right) \le (\alpha - \beta)/2,$$

and so

$$\limsup_{n\to\infty} \mathbb{P}\left\{\inf_{\pi\in\Pi^*} \psi_{\pi} < \inf_{\pi\in\widehat{\Pi}_{\beta}} \left[\widehat{\psi}_{\pi} - \frac{\widehat{\kappa}_{\pi}z_{\alpha,\beta}}{n^{1/2}}\right], \Pi^* \subseteq \widehat{\Pi}_{\beta}\right\} \leq (\alpha - \beta)/2.$$

By a symmetric argument, we also have

$$\limsup_{n\to\infty} P\left\{\sup_{\pi\in\Pi^*} \psi_{\pi} > \sup_{\pi\in\widehat{\Pi}_{\beta}} \left[\widehat{\psi}_{\pi} + \frac{\widehat{\kappa}_{\pi}z_{\alpha,\beta}}{n^{1/2}}\right], \Pi^* \subseteq \widehat{\Pi}_{\beta}\right\} \le (\alpha - \beta)/2.$$

Therefore, an asymptotic $1 - \alpha$ confidence interval for $[\psi_0^l, \psi_0^u]$ is

$$\left[\inf_{\pi\in\widehat{\Pi}_{\beta}}\left\{\widehat{\psi}_{\pi}-\frac{\widehat{\kappa}_{\pi}z_{\alpha,\beta}}{n^{1/2}}\right\},\sup_{\pi\in\widehat{\Pi}_{\beta}}\left\{\widehat{\psi}_{\pi}+\frac{\widehat{\kappa}_{\pi}z_{\alpha,\beta}}{n^{1/2}}\right\}\right].$$

In the following lemma, for some subset \mathcal{G} of a space $L^2(Q)$, define the covering number $N(\epsilon, \mathcal{G}, L^2(Q))$ to be the minimal cardinality of an ϵ -cover of \mathcal{G} with respect to the $L^2(Q)$ metric Van Der Vaart and Wellner [2013]. Before stating the lemma, we recall that $\mathcal{F} := \{D_{\pi}(P_0) / \sigma_{\pi}(P_0) : \pi \in \Pi\}.$

Lemma 6. Π^* is a closed subset of $L^2(P_0)$.

Proof. Let $(\pi_k)_{k=1}^{\infty}$ be a Π^* -valued sequence that converges to some π^* in $L^2(P)$. Since $\pi \mapsto \omega_{\pi}$ is a continuous map from $\{0,1\}^{\mathcal{X}}$ to \mathbb{R} when the domain is equipped with the $L^2(P)$ -topology, $\omega_{\pi_k} \to \omega_{\pi^*}$. As $\pi_k \in \Pi^*$ for all k, $\omega_{\pi_k} = \sup_{\pi \in \Pi} \omega_{\pi}$ for all k. Hence, $\omega_{\pi^*} = \sup_{\pi \in \Pi} \omega_{\pi}$. As Π is closed, this shows that $\pi^* \in \Pi^*$. Hence, Π^* is a closed subset of $L^2(P)$.

Lemma 7. If Π^* is closed in $L^2(P_0)$ and Π^* is P_0 -Donsker, Π^* is compact.

Proof of Lemma $\boxed{7}$. Since Π^* is P_0 -Donsker following from Π being P_0 -Donsker, then Π^* is totally bounded in $L^2(P_0)$. Also, since $L^2(P_0)$ is complete, Π^* being closed implies that Π^* is complete. And totally bounded and complete subsets of a metric space are compact, so Π^* is compact.

B.3 Proof of Lemma 3

Proof of Lemma 3. To show this lemma, we first define two events $\{\Pi^* \subseteq$ $\widehat{\Pi}_{\beta}$ and $\{\omega_{\pi^*} - \inf_{\pi \in \widehat{\Pi}_{\beta}} \omega_{\pi} \leq \frac{4t_{\beta}}{n^{1/2}} \sup_{\pi \in \Pi} \widehat{\sigma}_{\pi} \}$. These events ensure that all Ω -optimal policies are contained in $\widehat{\Pi}_{\beta}$, and $\widehat{\Pi}_{\beta}$ only contains nearly optimal policies. Lemma 2 and 8 ensure that both events happen with probability at least $1-\beta$ asymptotically. Lemma 9 ensures that our confidence interval shrinks at an $n^{-1/2}$ rate under these events.

Lemma 8. For any $\beta > 0$, $\liminf_{n \to \infty} \mathbb{P}\left(\omega_{\pi^*} - \inf_{\pi \in \widehat{\Pi}_{\beta}} \omega_{\pi} \leq \frac{4t_{\beta}}{n^{1/2}} \sup_{\pi \in \Pi} \widehat{\sigma}_{\pi}\right) \geq 0$ $1-\beta$.

Proof of Lemma \boxtimes . Note that by the definition of Π_{β} , we have

$$\inf_{\pi \in \widehat{\Pi}_{\beta}} \left[\widehat{\omega}_{\pi} + \frac{\widehat{\sigma}_{\pi} t_{\beta}}{n^{1/2}} \right] \ge \sup_{\pi \in \Pi} \left[\widehat{\omega}_{\pi} - \frac{\widehat{\sigma}_{\pi} t_{\beta}}{n^{1/2}} \right],$$

SO

$$\omega_{\pi^*} - \inf_{\pi \in \widehat{\Pi}_{\beta}} \omega_{\pi} \le \omega_{\pi^*} - \sup_{\pi \in \Pi} \left[\widehat{\omega}_{\pi} - \frac{\widehat{\sigma}_{\pi} t_{\beta}}{n^{1/2}} \right] + \inf_{\pi \in \widehat{\Pi}_{\beta}} \left[\widehat{\omega}_{\pi} + \frac{\widehat{\sigma}_{\pi} t_{\beta}}{n^{1/2}} \right] - \inf_{\pi \in \widehat{\Pi}_{\beta}} \omega_{\pi}.$$

Hence,

$$\left\{ \omega_{\pi^*} - \inf_{\pi \in \widehat{\Pi}_{\beta}} \omega_{\pi} > \frac{4t_{\beta}}{n^{1/2}} \sup_{\pi \in \Pi} \widehat{\sigma}_{\pi} \right\} \\
\subseteq \left\{ \omega_{\pi^*} - \sup_{\pi \in \Pi} \left\{ \widehat{\omega}_{\pi} - \frac{\widehat{\sigma}_{\pi} t_{\beta}}{n^{1/2}} \right\} + \inf_{\pi \in \widehat{\Pi}_{\beta}} \left\{ \widehat{\omega}_{\pi} + \frac{\widehat{\sigma}_{\pi} t_{\beta}}{n^{1/2}} \right\} - \inf_{\pi \in \widehat{\Pi}_{\beta}} \omega_{\pi} > \frac{4t_{\beta}}{n^{1/2}} \sup_{\pi \in \Pi} \widehat{\sigma}_{\pi} \right\} \\
\subseteq \left\{ \omega_{\pi^*} > \sup_{\pi \in \Pi} \left\{ \widehat{\omega}_{\pi} - \frac{\widehat{\sigma}_{\pi} t_{\beta}}{n^{1/2}} \right\} + 2 \sup_{\pi \in \Pi} \frac{\widehat{\sigma}_{\pi} t_{\beta}}{n^{1/2}} \right\}$$

$$\bigcup \left\{ \inf_{\pi \in \widehat{\Pi}_{\beta}} \omega_{\pi} < \inf_{\pi \in \widehat{\Pi}_{\beta}} \left\{ \widehat{\omega}_{\pi} + \frac{\widehat{\sigma}_{\pi} t_{\beta}}{n^{1/2}} \right\} - 2 \sup_{\pi \in \Pi} \frac{\widehat{\sigma}_{\pi} t_{\beta}}{n^{1/2}} \right\}.$$
(S2.8)

In the remainder of this proof, we will show that the two events on the right-hand side each occur with probability no more than $\beta/2$. The result then follows by a union bound. Note that

$$\bigcap_{\pi \in \Pi} \left\{ \omega_{\pi} \leq \widehat{\omega}_{\pi} + \frac{\widehat{\sigma}_{\pi} t_{\beta}}{n^{1/2}} \right\} \subseteq \left\{ \omega_{\pi^*} \leq \sup_{\pi \in \Pi} \left\{ \widehat{\omega}_{\pi} + \frac{\widehat{\sigma}_{\pi} t_{\beta}}{n^{1/2}} \right\} \right\}$$

$$\subseteq \left\{ \omega_{\pi^*} \leq \sup_{\pi \in \Pi} \left\{ \widehat{\omega}_{\pi} - \frac{\widehat{\sigma}_{\pi} t_{\beta}}{n^{1/2}} \right\} + 2 \sup_{\pi \in \Pi} \frac{\widehat{\sigma}_{\pi} t_{\beta}}{n^{1/2}} \right\},$$

where the latter inclusion holds because $\sup[f+g] \leq \sup f + \sup g$. So

$$\begin{split} & \liminf_{n \to \infty} \mathbb{P}\left(\omega_{\pi^*} - \sup_{\pi \in \Pi} \left\{ \widehat{\omega}_{\pi} - \frac{\widehat{\sigma}_{\pi} t_{\beta}}{n^{1/2}} \right\} \leq 2 \sup_{\pi \in \Pi} \frac{\widehat{\sigma}_{\pi} t_{\beta}}{n^{1/2}} \right) \\ & \geq \liminf_{n \to \infty} \mathbb{P}\left(\bigcap_{\pi \in \Pi} \left\{ \omega_{\pi} \leq \widehat{\omega}_{\pi} + \frac{\widehat{\sigma}_{\pi} t_{\beta}}{n^{1/2}} \right\} \right) \geq 1 - \frac{\beta}{2}, \end{split}$$

where the last step follows from Lemma 4. Hence, the first event on the right-hand side of (S2.8) occurs with probability no more than probability $\beta/2$. We also have that

$$\bigcap_{\pi \in \Pi} \left\{ \omega_{\pi} \ge \widehat{\omega}_{\pi} - \frac{\widehat{\sigma}_{\pi} t_{\beta}}{n^{1/2}} \right\} \subseteq \bigcap_{\pi \in \widehat{\Pi}_{\beta}} \left\{ \omega_{\pi} \ge \widehat{\omega}_{\pi} - \frac{\widehat{\sigma}_{\pi} t_{\beta}}{n^{1/2}} \right\}
\subseteq \left\{ \inf_{\pi \in \widehat{\Pi}_{\beta}} \omega_{\pi} \ge \inf_{\pi \in \widehat{\Pi}_{\beta}} \left\{ \widehat{\omega}_{\pi} - \frac{\widehat{\sigma}_{\pi} t_{\beta}}{n^{1/2}} \right\} \right\}
\subseteq \left\{ \inf_{\pi \in \widehat{\Pi}_{\beta}} \omega_{\pi} \ge \inf_{\pi \in \widehat{\Pi}_{\beta}} \left\{ \widehat{\omega}_{\pi} + \frac{\widehat{\sigma}_{\pi} t_{\beta}}{n^{1/2}} \right\} - 2 \sup_{\pi \in \widehat{\Pi}_{\beta}} \frac{\widehat{\sigma}_{\pi} t_{\beta}}{n^{1/2}} \right\},$$

since $\inf[f-g] \ge \inf f - \sup g$. So

$$\lim_{n \to \infty} \inf \mathbb{P} \left(\inf_{\pi \in \widehat{\Pi}_{\beta}} \left\{ \widehat{\omega}_{\pi} + \frac{\widehat{\sigma}_{\pi} t_{\beta}}{n^{1/2}} \right\} - 2 \sup_{\pi \in \widehat{\Pi}_{\beta}} \frac{\widehat{\sigma}_{\pi} t_{\beta}}{n^{1/2}} \le \inf_{\pi \in \widehat{\Pi}_{\beta}} \omega_{\pi} \right) \\
\ge \lim_{n \to \infty} \inf \mathbb{P} \left(\bigcap_{\pi \in \Pi} \left\{ \widehat{\omega}_{\pi} - \frac{\widehat{\sigma}_{\pi} t_{\beta}}{n^{1/2}} \le \omega_{\pi} \right\} \right) \ge 1 - \frac{\beta}{2},$$

where the last step follows from Lemma 4. Hence, the second event on the right-hand side of (S2.8) occurs with probability no more than probability $\beta/2$.

Lemma 9. In the setting of Lemma 3, under the event $\{\Pi^* \subseteq \widehat{\Pi}_{\beta}\}$ and $\{\omega_{\pi^*} - \inf_{\pi \in \widehat{\Pi}_{\beta}} \omega_{\pi} \leq \frac{4t_{\beta}}{n^{1/2}} \sup_{\pi \in \Pi} \widehat{\sigma}_{\pi}\}$, the width of the confidence interval for ψ_0 is $O_p(n^{-1/2})$.

Proof. We first show that $\sup_{\pi \in \widehat{\Pi}_{\beta}} \left[\widehat{\psi}_{\pi} + \frac{\widehat{\kappa}_{\pi} z_{\alpha,\beta}}{n^{1/2}} \right] = \psi_0 + O_p(n^{-1/2})$. We know that

$$\sup_{\pi \in \widehat{\Pi}_{\beta}} \left[\widehat{\psi}_{\pi} + \frac{\widehat{\kappa}_{\pi} z_{\alpha,\beta}}{n^{1/2}} \right] \leq \sup_{\pi \in \widehat{\Pi}_{\beta}} \psi_{\pi} + \sup_{\pi \in \widehat{\Pi}_{\beta}} \left[\widehat{\psi}_{\pi} - \psi_{\pi} + \frac{\widehat{\kappa}_{\pi} z_{\alpha,\beta}}{n^{1/2}} \right].$$

We then show that $\sup_{\pi \in \Pi^*} \psi_{\pi} - \sup_{\pi \in \widehat{\Pi}_{\beta}} \psi_{\pi} = O_p(n^{-1/2})$. Consider some $\pi_1 \in \Pi^*$ and $\pi_2 \in \widehat{\Pi}_{\beta}$. Let $B_{1,0} = \{x \in \mathcal{X} : \pi_1(x) = 1, \pi_2(x) = 0\}$ and $B_{0,1} = \{x \in \mathcal{X} : \pi_1(x) = 0, \pi_2(x) = 1\}$. By the definition of Π^* we know that $\omega_{\pi_1} \geq \omega_{\pi_2}$, and

$$\omega_{\pi_1} - \omega_{\pi_2} = \int \mathbb{E}[Y^*|A = \pi_1(x), x] dP_0(x) - \int \mathbb{E}[Y^*|A = \pi_2(x), x] dP_0(x)$$

$$= \int_{B_{1,0}} q_{b,0}(x)dP_0(x) - \int_{B_{0,1}} q_{b,0}(x)dP_0(x).$$

Since $\pi_1 \in \Pi^*$ and Π^* contains unrestricted optimal policies by assumption, ω_{π_1} is largest among all $\pi \in \Pi$, which implies that for $x \in B_{1,0}$, $q_{b,0}(x) \geq 0$ and for $x \in B_{0,1}$, $q_{b,0}(x) \leq 0$. This gives us

$$\omega_{\pi_1} - \omega_{\pi_2} = \int_{B_{1,0}} |q_{b,0}(x)| dP_0(x) + \int_{B_{0,1}} |q_{b,0}(x)| dP_0(x).$$

On the other hand, on the event $\{\Pi^* \subseteq \widehat{\Pi}_{\beta}\}$, we have $\sup_{\pi \in \widehat{\Pi}_{\beta}} \psi_{\pi} \ge$ $\sup_{\pi\in\Pi^*}\psi_{\pi}$, and

$$|\psi_{\pi_{2}} - \psi_{\pi_{1}}| = \left| \int \mathbb{E}[Y^{\dagger}|A = \pi_{2}(x), x] dP_{0}(x) - \int \mathbb{E}[Y^{\dagger}|A = \pi_{1}(x), x] dP_{0}(x) \right|$$

$$= \left| \int_{B_{0,1}} s_{b,0}(x) dP_{0}(x) - \int_{B_{1,0}} s_{b,0}(x) dP_{0}(x) \right|$$

$$\leq \int_{B_{1,0}} |s_{b,0}(x)| dP_{0}(x) + \int_{B_{0,1}} |s_{b,0}(x)| dP_{0}(x)$$

$$\leq C \int_{B_{1,0}} |q_{b,0}(x)| dP_{0}(x) + C \int_{B_{0,1}} |q_{b,0}(x)| dP_{0}(x).$$

Therefore, $|\psi_{\pi_2} - \psi_{\pi_1}| \leq C(\omega_{\pi_1} - \omega_{\pi_2})$ for some $C < \infty$. Since this holds for any $\pi_1 \in \Pi^*$ and $\pi_2 \in \widehat{\Pi}_{\beta}$, we have $\sup_{\pi \in \widehat{\Pi}_{\beta}} \psi_{\pi} - \inf_{\pi \in \Pi^*} \psi_{\pi} \le$ $C(\sup_{\pi \in \Pi^*} \omega_{\pi} - \inf_{\pi \in \widehat{\Pi}_{\beta}} \omega_{\pi}).$ Under the event $\{\omega_{\pi^*} - \inf_{\pi \in \widehat{\Pi}_{\beta}} \omega_{\pi} \leq \frac{4t_{\beta}}{n^{1/2}} \sup_{\pi \in \Pi} \widehat{\sigma}_{\pi}\},$ we have that $\sup_{\pi \in \widehat{\Pi}_{\beta}} \psi_{\pi} - \inf_{\pi \in \Pi^*} \psi_{\pi} \leq C \frac{4t_{\beta}}{n^{1/2}} \sup_{\pi \in \Pi} \widehat{\sigma}_{\pi}$. Under Condition 9, we know that $\sup_{\pi \in \Pi} \widehat{\sigma}_{\pi} - \sup_{\pi \in \Pi} \sigma_{\pi}(P_0) = o_p(1)$, so

$$\sup_{\pi \in \widehat{\Pi}_{\beta}} \psi_{\pi} - \inf_{\pi \in \Pi^*} \psi_{\pi} \le C \frac{4t_{\beta}}{n^{1/2}} \sup_{\pi \in \Pi} \widehat{\sigma}_{\pi}$$

Under the event $\{\Pi^* \subseteq \widehat{\Pi}_{\beta}\}$, we have $\sup_{\pi \in \widehat{\Pi}_{\beta}} \psi_{\pi} \ge \sup_{\pi \in \Pi^*} \psi_{\pi} \ge \inf_{\pi \in \Pi^*} \psi_{\pi}$, so we have $\sup_{\pi \in \Pi^*} \psi_{\pi} - \sup_{\pi \in \widehat{\Pi}_{\beta}} \psi_{\pi} = O_p(n^{-1/2})$. Also,

$$\begin{split} \sup_{\pi \in \widehat{\Pi}_{\beta}} \left[\widehat{\psi}_{\pi} - \psi_{\pi} + \frac{\widehat{\kappa}_{\pi} z_{\alpha,\beta}}{n^{1/2}} \right] \\ &\leq \sup_{\pi \in \Pi} \left[\widehat{\psi}_{\pi} - \psi_{\pi} + \frac{\widehat{\kappa}_{\pi} z_{\alpha,\beta}}{n^{1/2}} \right] \leq \sup_{\pi \in \Pi} \left[\widehat{\psi}_{\pi} - \psi_{\pi} \right] + \sup_{\pi \in \Pi} \frac{\widehat{\kappa}_{\pi} z_{\alpha,\beta}}{n^{1/2}}. \end{split}$$

The first term is $O_p(n^{-1/2})$ under Condition 7. As for the second term, under Condition 9.

$$\sup_{\pi \in \Pi} \frac{\widehat{\kappa}_{\pi} z_{\alpha,\beta}}{n^{1/2}} = \sup_{\pi \in \Pi} \frac{\kappa_{\pi}(P_0) z_{\alpha,\beta}}{n^{1/2}} + o_p(n^{-1/2}) = O_p(n^{-1/2}).$$

Therefore, $\sup_{\pi \in \widehat{\Pi}_{\beta}} \left[\widehat{\psi}_{\pi} - \psi_{\pi} + \frac{\widehat{\kappa}_{\pi} z_{\alpha,\beta}}{n^{1/2}} \right] = O_p(n^{-1/2})$ and so

$$\sup_{\pi \in \widehat{\Pi}_{\beta}} \left[\widehat{\psi}_{\pi} + \frac{\widehat{\kappa}_{\pi} z_{\alpha,\beta}}{n^{1/2}} \right] = \psi_0^u + O_p(n^{-1/2})$$

as desired. By symmetry, $\inf_{\pi \in \widehat{\Pi}_{\beta}} \left[\widehat{\psi}_{\pi} - \frac{\widehat{\kappa}_{\pi} z_{\alpha,\beta}}{n^{1/2}} \right] = \psi_0 - O_p(n^{-1/2})$ as well.

B.4 Proof of Theorem 3

Proof of Theorem 3. To establish this theorem, we show that

$$\liminf_n \mathbb{P}\left(\sup_{\pi \in \Pi^*} \psi_\pi \leq \sup_{\pi \in \widehat{\Pi}^\dagger} \left[\widehat{\psi}_\pi + \frac{\widehat{\kappa}_\pi u_\alpha^\dagger}{n^{1/2}}\right]\right) \geq 1 - \alpha/2.$$

We can similarly get

$$\liminf_{n} \mathbb{P}\left(\inf_{\pi \in \Pi^*} \psi_{\pi} \geq \inf_{\pi \in \widehat{\Pi}^{\dagger}} \left[\widehat{\psi}_{\pi} - \frac{\widehat{\kappa}_{\pi} u_{\alpha}^{\dagger}}{n^{1/2}} \right] \right) \geq 1 - \alpha/2.$$

Combining the two displays gives us the theorem statement. Note that

$$\left\{ \sup_{\pi \in \Pi^*} \psi_{\pi} \leq \sup_{\pi \in \widehat{\Pi}^{\dagger}} \left[\widehat{\psi}_{\pi} + \frac{\widehat{\kappa}_{\pi} u_{\alpha}^{\dagger}}{n^{1/2}} \right] \right\}
\supseteq \left\{ \sup_{\pi \in \Pi^*} \psi_{\pi} \leq \sup_{\pi \in \widehat{\Pi}^{\dagger}} \left[\widehat{\psi}_{\pi} + \frac{\widehat{\kappa}_{\pi} u_{\alpha}^{\dagger}}{n^{1/2}} \right], \Pi^* \subseteq \widehat{\Pi}^{\dagger} \right\}.$$

Since Π^* is P_0 -Donsker following from Π being P_0 -Donsker, Π^* is totally bounded in $L^2(P_0)$ Luedtke and Van Der Laan [2016]. Also, since $L^2(P_0)$ is complete, Π^* being closed in $L^2(P_0)$ implies that Π^* is complete in $L^2(P_0)$. So Π^* is compact in $L^2(P_0)$. Combining this with the fact that $\pi \mapsto \psi_{\pi}$ is continuous implies that there exists a $\pi^u \in \Pi^*$ such that $\psi_{\pi^u} = \sup_{\pi \in \Pi^*} \psi_{\pi}$. Combining this with the above, we see that

$$\left\{ \sup_{\pi \in \Pi^*} \psi_{\pi} \leq \sup_{\pi \in \widehat{\Pi}^{\dagger}} \left[\widehat{\psi}_{\pi} + \frac{\widehat{\kappa}_{\pi} u_{\alpha}^{\dagger}}{n^{1/2}} \right] \right\}$$

$$\supseteq \left\{ \psi_{\pi^{u}} \leq \sup_{\pi \in \widehat{\Pi}^{\dagger}} \left[\widehat{\psi}_{\pi} + \frac{\widehat{\kappa}_{\pi} u_{\alpha}^{\dagger}}{n^{1/2}} \right], \Pi^{*} \subseteq \widehat{\Pi}^{\dagger} \right\}$$

$$\supseteq \left\{ \psi_{\pi^{u}} \leq \widehat{\psi}_{\pi^{u}} + \frac{\widehat{\kappa}_{\pi^{u}} u_{\alpha}^{\dagger}}{n^{1/2}}, \Pi^{*} \subseteq \widehat{\Pi}^{\dagger} \right\}$$

$$= \left\{ \psi_{\pi^{u}} \leq \widehat{\psi}_{\pi^{u}} + \frac{\widehat{\kappa}_{\pi^{u}} u_{\alpha}^{\dagger}}{n^{1/2}}, \omega_{\pi'} < \sup_{\pi \in \Pi} \omega_{\pi}, \forall \pi' \in (\widehat{\Pi}^{\dagger})^{C} \right\}. \tag{S2.10}$$

Note that

$$\left\{\omega_{\pi'} < \sup_{\pi \in \Pi} \omega_{\pi}, \forall \pi' \in (\widehat{\Pi}^{\dagger})^{C}\right\}^{C} = \left\{\exists \pi' \in (\widehat{\Pi}^{\dagger})^{C} : \omega_{\pi'} = \sup_{\pi \in \Pi} \omega_{\pi}\right\}$$

$$\subseteq \left\{ \exists \pi' \in (\widehat{\Pi}^{\dagger})^{C} : \left[\omega_{\pi'} - \widehat{\omega}_{\pi'} - \frac{\widehat{\sigma}_{\pi'} t_{\alpha}^{\dagger}}{n^{1/2}} + \sup_{\pi \in \Pi} \left[\widehat{\omega}_{\pi} - \frac{\widehat{\sigma}_{\pi} s_{\alpha}^{\dagger}}{n^{1/2}} \right] \right] > \sup_{\pi \in \Pi} \omega_{\pi} \right\} \\
= \left\{ \exists \pi' \in (\widehat{\Pi}^{\dagger})^{C} : \left[\omega_{\pi'} - \widehat{\omega}_{\pi'} - \frac{\widehat{\sigma}_{\pi'} t_{\alpha}^{\dagger}}{n^{1/2}} \right] > \sup_{\pi \in \Pi} \omega_{\pi} - \sup_{\pi \in \Pi} \left[\widehat{\omega}_{\pi} - \frac{\widehat{\sigma}_{\pi} s_{\alpha}^{\dagger}}{n^{1/2}} \right] \right\}, \tag{S2.11}$$

where the inclusion follows from the definition of $\widehat{\Pi}^{\dagger}$. Let \mathcal{A}' denote the event

$$\left\{ \sup_{\pi \in \Pi} \left[\widehat{\omega}_{\pi} - \frac{\widehat{\sigma}_{\pi} s_{\alpha}^{\dagger}}{n^{1/2}} \right] \leq \sup_{\pi \in \Pi} \omega_{\pi} \right\} \bigcap \left[\bigcap_{\pi \in \Pi} \left\{ \omega_{\pi} \leq \widehat{\omega}_{\pi} + \frac{\widehat{\sigma}_{\pi} t_{\alpha}^{\dagger}}{n^{1/2}} \right\} \right].$$

Hence, (S2.11) shows that

$$\left\{ \exists \pi' \in (\widehat{\Pi}^{\dagger})^{C} : \omega_{\pi'} = \sup_{\pi \in \Pi} \omega_{\pi} \right\}
\subseteq \left[\left\{ \exists \pi' \in (\widehat{\Pi}^{\dagger})^{C} : \omega_{\pi'} - \widehat{\omega}_{\pi'} - \frac{\widehat{\sigma}_{\pi'} t_{\alpha}^{\dagger}}{n^{1/2}} > \sup_{\pi \in \Pi} \omega_{\pi} - \sup_{\pi \in \Pi} \left[\widehat{\omega}_{\pi} - \frac{\widehat{\sigma}_{\pi} s_{\alpha}^{\dagger}}{n^{1/2}} \right] \right\} \cap \mathcal{A}' \right] \cup \mathcal{A}'^{C}
\subseteq \left[\left\{ \exists \pi' \in (\widehat{\Pi}^{\dagger})^{C} : \omega_{\pi'} - \widehat{\omega}_{\pi'} - \frac{\widehat{\sigma}_{\pi'} t_{\alpha}^{\dagger}}{n^{1/2}} > 0 \right\} \cap \mathcal{A}' \right] \cup \mathcal{A}'^{C}
= \mathcal{A}'^{C}.$$

For each $\pi \in \Pi$, we define $\widehat{B}_{n,\pi} := n^{1/2} \frac{\widehat{\omega}_{\pi} - \omega_{\pi}}{\widehat{\sigma}_{\pi}}$ and $\widetilde{B}_{n,\pi} := n^{1/2} \frac{\widehat{\psi}_{\pi} - \psi_{\pi}}{\widehat{\kappa}_{\pi}}$. Then starting from (S2.11), we have

$$\left\{ \omega_{\pi'} < \sup_{\pi \in \Pi} \omega_{\pi}, \forall \pi' \in (\widehat{\Pi}^{\dagger})^{C} \right\} \supseteq \mathcal{A}'
= \left\{ \sup_{\pi \in \Pi} \left[\widehat{\omega}_{\pi} - \frac{\widehat{\sigma}_{\pi} s_{\alpha}^{\dagger}}{n^{1/2}} \right] < \sup_{\pi \in \Pi} \omega_{\pi} \right\} \bigcap \left[\bigcap_{\pi \in \Pi} \left\{ \omega_{\pi} \le \widehat{\omega}_{\pi} + \frac{\widehat{\sigma}_{\pi} t_{\alpha}^{\dagger}}{n^{1/2}} \right\} \right]
\supseteq \bigcap_{\pi \in \Pi} \left\{ \widehat{\omega}_{\pi} - \frac{\widehat{\sigma}_{\pi} s_{\alpha}^{\dagger}}{n^{1/2}} < \omega_{\pi} < \widehat{\omega}_{\pi} + \frac{\widehat{\sigma}_{\pi} t_{\alpha}^{\dagger}}{n^{1/2}} \right\}$$

$$= \bigcap_{\pi \in \Pi} \left\{ -t_{\alpha}^{\dagger} < n^{1/2} \frac{\widehat{\omega}_{\pi} - \omega_{\pi}}{\widehat{\sigma}_{\pi}} < s_{\alpha}^{\dagger} \right\}$$

$$= \bigcap_{\pi \in \Pi} \left\{ -t_{\alpha}^{\dagger} < B_{n,\pi} < s_{\alpha}^{\dagger} \right\}$$

$$= \left\{ -t_{\alpha}^{\dagger} \le \inf_{\pi \in \Pi} B_{n,\pi} \right\} \cap \left\{ \sup_{\pi \in \Pi} B_{n,\pi} \le s_{\alpha}^{\dagger} \right\}.$$

Using the above to study the event on the right-hand side of (S2.10) shows that

$$\left\{ \psi_{\pi^{u}} \leq \widehat{\psi}_{\pi^{u}} + \frac{\widehat{\kappa}_{\pi^{u}} u_{\alpha}^{\dagger}}{n^{1/2}}, \omega_{\pi'} < \sup_{\pi \in \Pi} \omega_{\pi}, \forall \pi' \in (\widehat{\Pi}^{\dagger})^{C} \right\}$$

$$\supseteq \left\{ \psi_{\pi^{u}} < \widehat{\psi}_{\pi^{u}} + \frac{\widehat{\kappa}_{\pi^{u}} u_{\alpha}^{\dagger}}{n^{1/2}}, -t_{\alpha}^{\dagger} \leq \inf_{\pi \in \Pi} B_{n,\pi}, \sup_{\pi \in \Pi} B_{n,\pi} \leq s_{\alpha}^{\dagger} \right\}$$

$$= \left\{ \widetilde{B}_{n,\pi^{u}} > -u_{\alpha}^{\dagger}, -t_{\alpha}^{\dagger} \leq \inf_{\pi \in \Pi} B_{n,\pi}, \sup_{\pi \in \Pi} B_{n,\pi} \leq s_{\alpha}^{\dagger} \right\}. \tag{S2.12}$$

We know that the choices $(s^{\dagger}_{\alpha}, t^{\dagger}_{\alpha}, u^{\dagger}_{\alpha})$ satisfy that

$$\inf_{\pi \in \Pi} \mathbb{P} \left\{ \inf_{f \in \mathcal{F}} \mathbb{G} f \ge -t_{\alpha}^{\dagger}, \sup_{f \in \mathcal{F}} \mathbb{G} f \le s_{\alpha}^{\dagger}, \mathbb{G} \tilde{f}_{\pi} \ge -u_{\alpha}^{\dagger} \right\} \ge 1 - \alpha/2.$$
 (S2.13)

Note that by Condition 7, we have $\sup_{\pi \in \Pi} \left[n^{1/2} \frac{\widehat{\omega}_{\pi} - \omega_{\pi}}{\widehat{\sigma}_{\pi}} - \mathbb{G}_n f_{\pi} \right] = o_p(1)$ and also $\frac{\widehat{\psi}_{\pi^u} - \psi_{\pi^u}}{\widehat{\kappa}_{\pi^u}} - \mathbb{G}_n \widetilde{f}_{\pi^u} = o_p(1)$. Since $\sup_{f \in \mathcal{F}} \mathbb{G}_n f \rightsquigarrow \sup_{f \in \mathcal{F}} \mathbb{G} f$, $\inf_{f\in\mathcal{F}}\mathbb{G}_n f \rightsquigarrow \inf_{f\in\mathcal{F}}\mathbb{G} f$, and for each $\pi\in\Pi$, $\widehat{\sigma}_{\pi}$ is a consistent estimator of σ_{π} , by Slutsky Theorem, we have $\sup_{\pi \in \Pi} B_{n,\pi} \leadsto \sup_{f \in \mathcal{F}} \mathbb{G}f$ and $\inf_{\pi \in \Pi} B_{n,\pi} \leadsto \inf_{f \in \mathcal{F}} \mathbb{G}f$. Also, since for each $\tilde{f} \in \tilde{\mathcal{F}}$, $\mathbb{G}_n \tilde{f} \leadsto \mathbb{G}\tilde{f}$ and $\hat{\sigma}_{\pi}$ is a consistent estimator of σ_{π} , we similarly have $\widetilde{B}_{n,\pi^u} \rightsquigarrow \mathbb{G}\widetilde{f}_{\pi^u}$. Combining (S2.10), (S2.12), and (S2.13), we have

$$\begin{split} & \lim\inf_{n} \mathbb{P}\left(\sup_{\pi\in\Pi^{*}}\psi_{\pi} < \sup_{\pi\in\widehat{\Pi}}\left[\widehat{\psi}_{\pi} + \frac{\widehat{\kappa}_{\pi}u_{\alpha}^{\dagger}}{n^{1/2}}\right]\right) \\ & \geq \liminf_{n} \mathbb{P}\left(\widetilde{B}_{n,\pi^{u}} < u_{\alpha}^{\dagger}, -s_{\alpha}^{\dagger} < \inf_{\pi\in\Pi}B_{n,\pi}, \sup_{\pi\in\Pi}B_{n,\pi} < t_{\alpha}^{\dagger}\right) \\ & \to \mathbb{P}\left(\mathbb{G}\widetilde{f}_{\pi^{u}} < u_{\alpha}^{\dagger}, -s_{\alpha}^{\dagger} < \inf_{f\in\mathcal{F}}\mathbb{G}f, \sup_{f\in\mathcal{F}}\mathbb{G}f < t_{\alpha}^{\dagger}\right) \\ & \geq \inf_{\pi\in\Pi} \mathbb{P}\left(\mathbb{G}\widetilde{f}_{\pi} < u_{\alpha}^{\dagger}, -s_{\alpha}^{\dagger} < \inf_{f\in\mathcal{F}}\mathbb{G}f, \sup_{f\in\mathcal{F}}\mathbb{G}f < t_{\alpha}^{\dagger}\right) = 1 - \alpha/2. \end{split}$$

C. Additional simulation results

C.1 A 1D simulation with large sample size

In this section, we run the same 1D instance described in Section 4.1 but with larger sample size. Table 2 provides coverages and confidence interval widths with a larger sample size of 5000. In the non-unique setting, since there are multiple optimal policies for the primary outcome, $[\psi_0^{\ell}, \psi_0^{u}]$ will be an interval with some length. In our setting, we can see from the lower-left plot of Figure 3 that the length of $[\psi_0^{\ell}, \psi_0^{u}]$ is about 0.5, so any valid confidence interval for $[\psi_0^{\ell}, \psi_0^{u}]$ must have at least that length. Comparing the widths in Table 1 and 2 we can see that both the union bounding method and the joint method produce confidence intervals approaching that

	coverage						width					
	union	joint	one-step	os-split	union	joint	one-step	os-split	oracle			
non-unique	1.000	1.000	0.000	0.000	1.091	1.061	0.061	0.096	0.561			
unique non-margin	0.981	0.986	0.810	0.734	0.036	0.035	0.017	0.027	0.016			
unique margin	0.983	0.989	0.946	0.949	0.040	0.036	0.023	0.037	0.023			

Table 2: Coverages and widths of $[\psi_0^{\ell}, \psi_0^{u}]$ with sample size n = 5000.

limit. In the setting where Ω -optimal policy is unique, the widths of the confidence intervals for all methods approach zero as n goes to infinity.

C.2 A 3D simulation

We also added a scenario where we have a 3D policy and the optimal policy is unique. The policy class is a restricted tree class, denoted as $\Pi = \{x \mapsto \mathbf{1}\{x_1 \geq a_1, x_2 \geq a_2, x_3 \geq a_3\} : a_1, a_2, a_3 \in [-1, 1]\}\}$. The optimal policy is $\pi^*(x) = \mathbf{1}\{x_1 \geq 0, x_2 \geq 0, x_3 \geq 0\}$ so it lies in the tree class Π . We compare the outcome interval from three approaches: union, joint, and one-step. The method os-split provides a wider interval while having a worse coverage than one-step in 1D simulation results, so we drop it from the simulation. For each scenario, we consider a sample size n of 500. We again use 1000 multiplier bootstrap replicates to estimate the supremum and infimum. In this scenario, instead of generating a fine grid and computing the maximum over the grid, we use the nlopt package to numerically approximate the maximum. We let $\alpha = 0.05$ and use 500 Monte Carlo repli-

		coverag	ge		W	ridth				
	union	joint	one-step	union	joint	one-step	oracle			
3D margin	0.970	0.948	0.940	0.199	0.186	0.124	0.124			
3D non-margin	1.000	0.988	0.594	0.185	0.175	0.092	0.092			

Table 3: Coverage and width for 3D policy class with sample size n = 500. cations to compute the coverage and approximate the average confidence interval widths. Table 3 shows the results. The joint methods achieves slightly shorter widths in this setting (5-6%), and the results are otherwise similar to those from Section 4.1.

C.3 Linear classes

To demonstrate the benefit of the joint method and the flexibility of our method in high-dimensional scenarios, we consider another scenario where the policy class is linear, taking the form $\Pi_{\theta} = \{x \mapsto \mathbf{1}\{x^{\top}\theta \geq 0\}\}$. We consider a high-dimensional sparse linear setting where $\theta^* = [0.1, 0.2, ..., 0.5, 0, ..., 0] \in \mathbb{R}^{10}$. We again compare the outcome interval from three approaches: union, joint, and one-step and use 1000 multiplier bootstrap replicates to estimate the supremum and infimum. To approximate the maximum more accurately and avoid the issue of getting a local optimum, we use the differential evolution method in the scipy package. We let $\alpha = 0.05$ and

		coverag	ge		W	ridth	
	union	joint	one-step	union	joint	one-step	oracle
linear margin	1.000	0.989	0.990	0.107	0.076	0.038	0.037
linear non-margin	1.000	0.998	0.618	0.183	0.161	0.062	0.050

Table 4: Coverage and width for sparse linear policy class with sample size n = 1000.

use 500 Monte Carlo replications to compute the coverage and approximate the average confidence interval widths. Table 4 shows the results. We can see that when the margin condition is not satisfied, the one-step estimator only achieves coverage of 0.618, while both the union bounding and the joint methods achieve valid coverages. Also, the joint method generally has a smaller confidence interval width than the union bounding method (29% decrease when the margin condition is satisfied and 12% when the margin condition is not satisfied).

We also consider the true parameter vector $\theta^* = [0.1, 0.2, \dots, 1] \in \mathbb{R}^{10}$ and we run the same set of simulations as described in Section C.3. Table 5 shows the results. The joint methods achieve much shorter widths (almost 20% decrease in margin and 17% decrease in non-margin setting) in this setting, and the results are otherwise similar to those from earlier sections.

		coveraş	ge		V	ridth				
	union	joint	one-step	union	joint	one-step	oracle			
linear margin	1.000	0.985	0.980	0.112	0.090	0.057	0.042			
linear non-margin	0.995	0.964	0.895	0.102	0.085	0.062	0.043			

Table 5: Coverage and width for linear policy class with sample size n = 1000.

D. Multiplier bootstrap

In practice, we use multiplier bootstrap to estimate the quantiles described in Section 3 and we provide the pseudocodes of the algorithms below. Algorithm 1 estimates t_{β} defined just above Lemma 2. Algorithm 2 estimates the quantiles described in (3.7). In this algorithm, we take $s_{\alpha}^{\dagger} = t_{\alpha}^{\dagger}$ for simplicity and estimate the best $(t_{\alpha}^{\dagger}, u_{\alpha}^{\dagger})$ given samples. Both algorithms approximate suprema and infima over sets indexed by $\pi \in \Pi$ by maxima and minima over π belonging to a grid approximation of Π .

Algorithm 1 Multiplier bootstrap

Input: samples $\{(x_i, a_i, y_i)\}_{i=1}^n$, policy set Π , bootstrap sample size B, confidence level β

- 1: Take a grid estimate $\{\pi_1, \cdots, \pi_K\}$ of Π
- 2: for each $k \in [K]$, compute normalized one-step estimates $\{o_i^{(\pi_k)}\}_{i=1}^n$ using collected samples $\{(x_i, a_i, y_i)\}_{i=1}^n$
- 3: **for** $j = 1, \dots, B$ **do**
- 4: get multiplier bootstrap samples ϵ_{ij} for $i=1,\cdots,n$ and $k=1,\cdots,K$
- 5: compute $n^{-1/2} \sum_{i=1}^{n} \epsilon_{ij} o_i^{(\pi_k)}$ and denote the result as $f_{\pi_k}^{(j)}$
- 6: end for
- 7: compute $\max_{k \in [K]} f_{\pi_k}^{(j)}$ for each j and denote the resulting dataset as $\{t_i\}_{i=1}^B$

Output: $(1 - \beta)$ -th quantile of $\{t_i\}_{i=1}^B$

Algorithm 2 Multiplier bootstrap for joint probability

Input: samples $\{(x_i, a_i, y_i, z_i)\}_{i=1}^n$, policy set Π , bootstrap sample size B, confidence level α

- 1: Take a grid estimate $\{\pi_1, \dots, \pi_K\}$ of Π
- 2: for $k \in [K]$ do
- 3: compute normalized one-step estimates $\{o_i^{(\pi_k)}\}_{i=1}^n$ using collected samples $\{(x_i,a_i,y_i)\}_{i=1}^n$
- 4: compute normalized one-step estimates $\{\tilde{o}_i^{(\pi_k)}\}_{i=1}^n$ using collected samples $\{(x_i, a_i, z_i)\}_{i=1}^n$
- 5: end for
- 6: **for** $j = 1, \dots, B$ **do**
- 7: get multiplier bootstrap samples $\epsilon_{ik}^{(j)}$ for $i=1,\cdots,n$ and $k=1,\cdots,K$
- 8: compute $n^{-1/2} \sum_{i=1}^{n} \epsilon_{ik}^{(j)} o_i^{(\pi_k)}$ and denote the result as $f_{\pi_k}^{(j)}$
- 9: compute $n^{-1/2} \sum_{i=1}^n \epsilon_{ik}^{(j)} \tilde{o}_i^{(\pi_k)}$ and denote the result as $\tilde{f}_{\pi_k}^{(j)}$
- 10: **end for**
- 11: compute $\max_{k \in [K]} f_{\pi_k}^{(j)}$ for each j and denote the results as $\{s_j\}_{j=1}^B$
- 12: compute probability $\mathbb{P}(\max_{k \in [K]} f_{\pi_k} \leq t, \tilde{f}_{\pi_k} \leq u)$ for each $k = 1, \dots, K$ using the B samples

Output: pairs (t, u) such that $\min_{k \in [K]} \mathbb{P}(\max_{k \in [K]} f_{\pi_k} \leq t, \tilde{f}_{\pi_k} \leq u) = 1 - \alpha$.