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This supplementary material provides proofs for lemmas and theorems in Sections 2 and 3, a

detailed description of multiplier bootstrap used in our simulations, as well as additional simu-

lation experiments.

A. Proofs for Section 2

Let QX,0 be the marginal distribution of X under P0, and let QY ⇤,0 and

QY †,0 be respectively the conditional distribution of Y ⇤ and Y † given A,

X under P0. Let {P✏ : ✏ 2 R} ⇢ M be a parametric submodel that is

such that P✏ = P0 when ✏ = 0. This submodel is defined so that the

marginal distribution of X and the conditional distributions of Y † and Y ⇤

given (A,X) satisfy

dQX,✏(x) = (1 + ✏SX(x))dQX,0(x), (S1.1)



A.1 Proof of Lemma 1

where E0 [SX(x)] = 0 and sup
x

|SX(x)|  m < 1,

dQY †,✏(z | a, x) = (1 + ✏SY †(z | a, x)) dQY †,0(z | a, x), (S1.2)

where E0 [SY † | A,X] = 0 P0-a.s. and sup
x,a,z

|SY †(z | a, x)| < 1, and

dQY ⇤,✏(y | a, x) = (1 + ✏SY ⇤(y | a, x)) dQY ⇤,0(y | a, x), (S1.3)

where E0 [SY ⇤ | A,X] = 0 P0-a.s. and sup
x,a,y

|SY ⇤(y | a, x)| < 1.

We let qb,✏(x) = qb(P✏)(x) and sb,✏(x) = sb(P✏)(x).

A.1 Proof of Lemma 1

Proof of Lemma 1. Note that ⇡⇤
P
(x) = I{qb(P )(x) > 0} for all x 2 X .

Following the idea of the proof of Theorem 3 in Luedtke and Van Der Laan

[2016], we observe that

 ⇤(P )� EPEP [Y
† | A = 0, X] = EP [⇡⇤

P
(X)sb(P )(X)] .

By a telescoping argument,

 ⇤(P✏)� ⇤(P0) = EP✏EP✏ [Y
†|A = ⇡⇤

P✏
(X), X]� EP0EP0 [Y

†|A = ⇡⇤(X), X]

= EP✏EP✏ [Y
†|A = ⇡⇤

P✏
(X), X]� EP✏EP✏ [Y

†|A = ⇡⇤(X), X]

+ EP✏EP✏ [Y
†|A = ⇡⇤(X), X]� EP0EP0 [Y

†|A = ⇡⇤(X), X]

= EP✏ [(I(qb,✏ > 0)� I(qb,0 > 0)) · sb,✏] + ⇡⇤(P✏)� ⇡⇤(P0).

(S1.4)
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It is known that for a fixed ⇡,  ⇡ is pathwise di↵erentiable with gradient

D(⇡, P0). We shall now show that the first term is o(✏). Letting B1 := {x 2

X : qb,0(x) = 0}, we have

EP✏ [(I (qb,✏ > 0)� I (qb,0 > 0)) sb,✏]

=

Z

X\B1

(I (qb,✏ > 0)� I (qb,0 > 0)) sb,✏dQX,✏

+

Z

B1

(I (qb,✏ > 0)� I (qb,0 > 0)) sb,✏dQX,✏.

Under Condition 1, we know that Pr0(qb,0(X) 6= 0) = 1, so the second term

is zero. Then we aim to show that the first term is o(|✏|). Note that

����
Z

X\B1

(I (qb,✏ > 0)� I (qb,0 > 0)) sb,✏dQX,✏

����


Z

X\B1

|(I (qb,✏ > 0)� I (qb,0 > 0)) sb,✏| dQX,✏


Z

X\B1

I (|qb,0| < |qb,✏ � qb,0|) |sb,✏| dQX,✏

by looking at the sign of qb,✏ and qb,0. Also,

qb,✏(x) =

Z
y (dQY ⇤,✏(y | A = 1, X = x)� dQY ⇤,✏(y | A = 0, X = x))

= qb,0(x) + ✏(E0 [Y
⇤SY ⇤(Y ⇤ | 1, X) | A = 1, X = x]

� E0 [Y
⇤SY ⇤(Y ⇤ | 0, X) | A = 0, X = x])

= qb,0(x) + ✏h̄(x)
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where

h̄(x) = E0[Y
⇤SY ⇤(Y ⇤|1, X)|A = 1, X = x]�E0[Y

⇤SY ⇤(Y ⇤|0, X)|A = 0, X = x].

Similarly, sb,✏(x) = sb,0(x) + ✏ · h̃(x) where

h̃(x) = E0[Y
†SY †(Y †|1, X)|A = 1, X = x]�E0[Y

†SY †(Y †|0, X)|A = 0, X = x].

Note that h̃ and h̄ are uniformly bounded since Y ⇤, Y †, SY ⇤ , and SY † are

bounded. Let H = max{sup
x
|h̄(x)|,

sup
x
|h̃(x)|}. Therefore,

Z

X\B1

I (|qb,0| < |qb,✏ � qb,0|) |sb,✏| dQX,✏


Z

X\B1

I (|qb,0| < H|✏|) (|sb,0|+H|✏|) dQX,✏

 (1 +m|✏|)
Z

X\B1

I (|qb,0| < H|✏|) (|sb,0|+H|✏|) dQX,0

= (1 +m|✏|)
Z

X\B1

I (0 < |qb,0| < H|✏|) (|sb,0|+H|✏|) dQX,0.

Denote X̃ = X \B1. Under the first condition, define the set

B2,t = {x 2 X̃ : |sb,0(x)| < Ct�1|qb,0(x)|}.

Then

Z

X\B1

I (|qb,0| < H|✏|) (|sb,0|+H|✏|) dQX,0

=

Z

X̃
I (0 < |qb,0| < H|✏|) (|sb,0|+H|✏|) dQX,0
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=

Z

B2,t

I (0 < |qb,0| < H|✏|) (|sb,0|+H|✏|) dQX,0

+

Z

X̃ \B2,t

I (0 < |qb,0| < H|✏|) (|sb,0|+H|✏|) dQX,0.

On one hand, note that for x 2 B2,t and under the fact that |qb,0(x)|  H|✏|

we have |sb(x)|  CHt�1|✏|. define C2 such that P0(0 < |qb,0(X)| < t) 

C2t� for any t > 0, the first term

Z

B2,t

I (0 < |qb,0| < H|✏|) (|sb,0|+H|✏|) dQX,0 (S1.5)


Z

B2,t

I (0 < |qb,0| < H|✏|)
�
CHt�1|✏|+H|✏|

�
dQX,0


�
CHt�1|✏|+H|✏|

�
P0 (0 < |qb,0(X)| < H|✏|)


�
Ct�1|✏|+H|✏|

�
C2(H|✏|)� (S1.6)

for t < 1. For the second term, let C3 := sup
x
|sb,0(x)|, we have

Z

X̃ \B2,t

I (0 < |qb,0| < H|✏|) (|sb,0|+H|✏|) dQX,0

 (C3 +H|✏|)P0(|sb,0(X)| > Ct�1|qb,0(X)|))

 (C3 +H|✏|)t⇣

where the last inequality follows from Condition 1. Therefore, the sum is

bounded by

�
Ct�1|✏|+H|✏|

�
C2(H|✏|)� + (C3 +H|✏|)t⇣ .
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Taking t = |✏|
1+�
⇣+1 gives that this is O(|✏|1+��

1+�
⇣+1 ), which is o(|✏|) given that

� > 1
⇣
. Combining all of the results above gives

lim
✏!0

1

✏
EP✏ [(I (qb,✏ > 0)� I (qb,0 > 0)) sb,✏] = 0.

Therefore,  ⇤ is pathwise di↵erentiable, and, per (S1.4), has the same

canonical gradient as the parameter  ⇡⇤ , namely D(⇡⇤, P0).

A.2 Proof of Theorem 1

Proof of Theorem 1. We would first like to show that  OS,n is an asymptot-

ically linear estimator of  0. For simplicity of notation, we let ⇡⇤
n
:= ⇡⇤

bPn
and

drop the dependence of ⇡ in the definition of  ⇡ in this proof. Note that

 OS,n �  0 = (Pn � P0)D(P0) + (Pn � P0)[D( bPn) � D(P0)] + R( bPn, P0).

Note that the first term (Pn � P0)D(P0) is the linear term and (Pn �

P0)[D( bPn) � D(P0)] = oP0(n
�1/2) under the Donsker condition and the

fact that kD( bPn) �D(P0)k2
p! 0 (Lemma 19.24 of Van der Vaart [2000]).

To show that  OS,n is asymptotically linear, we only need to argue that the

remainder term R( bPn, P0) is oP0(n
�1/2). Note that

P0D( bPn) = E0


I{A = ⇡⇤

n
(X)}

pn(A|X)
(Y † � s(A,X)) + s(⇡⇤

n
(X), X)� ( bPn)

�

= E0


I{A = ⇡⇤

n
(X)}

pn(A|X)
(s0(A,X)� s(A,X)) + s(⇡⇤

n
(X), X)� ( bPn)

�
,
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by the law of total expectation. Therefore,

R( bPn, P0) =  ( bPn)� (P0) + P0D( bPn)

=

Z ⇢
I{a = ⇡⇤

n(x)}
pn(a|x)

(s0(a, x)� sn(a, x)) + sn(⇡
⇤
n(x), x)� s0(⇡

⇤(x), x)

�
dP0(a, x)

=

Z ✓
I{a = ⇡⇤

n(x)}
pn(a|x)

� 1

◆
[s0(⇡

⇤
n(x), x)� sn(⇡

⇤
n(x), x)]dP0(a, x) + ⇡⇤

n
(P0)� ⇡⇤(P0)

=

ZZ ✓
I{a = ⇡⇤

n(x)}
pn(a|x)

� 1

◆
[s0(⇡

⇤
n(x), x)� sn(⇡

⇤
n(x), x)]p0(a|x)da dP0(x)

+ ⇡⇤
n
(P0)� ⇡⇤(P0)

=

Z ✓
p0(⇡⇤

n(x)|x)
pn(⇡⇤

n(x)|x)
� 1

◆
[s0(⇡

⇤
n(x), x)� sn(⇡

⇤
n(x), x)]dP0(x)

+ ⇡⇤
n
(P0)� ⇡⇤(P0)

=: R1n +R2n.

The first term R1n is oP0(n
�1/2) under under Condition 4 — see Proposi-

tion 1. As for the second term R2n, Proposition 2 shows that it is oP0(n
�1/2)

under the margin condition.

Proposition 1. Under Condition 4, R1n = oP0(n
�1/2).

Proof. By Jensen’s inequality, the fact that ⇡⇤
n
(x) 2 {0, 1} for all x, the fact

that (b+ c)  2max{b, c} for b, c 2 R, and Cauchy-Schwarz, we have that

|R1n| =
����
Z ✓

p0(⇡⇤
n
(x)|x)

pn(⇡⇤
n
(x)|x) � 1

◆
[s0(⇡

⇤
n
(x), x)� sn(⇡

⇤
n
(x), x)]dP0(x)

����


Z ����

✓
p0(⇡⇤

n
(x)|x)

pn(⇡⇤
n
(x)|x) � 1

◆
[s0(⇡

⇤
n
(x), x)� sn(⇡

⇤
n
(x), x)]

���� dP0(x)


Z 1X

a=0

����

✓
p0(a|x)
pn(a|x)

� 1

◆
[s0(a, x)� sn(a, x)]

���� dP0(x)
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=
1X

a=0

Z ����

✓
p0(a|x)
pn(a|x)

� 1

◆
[s0(a, x)� sn(a, x)]

���� dP0(x)

 2 max
a2{0,1}

Z ����

✓
p0(a|x)
pn(a|x)

� 1

◆
[s0(a, x)� sn(a, x)]

���� dP0(x)

 2 max
a2{0,1}

(����
p0(a | X)

pn(a | X)
� 1

����
2,P0

ksn(a,X)� s0(a,X)k2,P0

)
.

The following proposition shows that the second term R2n is oP0(n
�1/2)

under our margin condition.

Proposition 2. Assume Conditions 1, 2, and 3 hold. Then, for any ✏ > 0,

|R2n| = oP0(n
�1/2).

Proof. We adopt the idea in proof of Theorem 8 of Luedtke and Van

Der Laan [2016]. Let B0
3,u = {x 2 X : |sb,0(x)| < C1u|qb,0(x)|} and

Au = {x 2 X : C1u|qb,0(x)|  |sb,0(x)| < C1(u + 1) |qb,0(x)|}. Then for

any t > 0,

| ⇡⇤
n
(P0)� ⇡⇤ (P0) |

= EP0 [sb,0(X)(⇡⇤
n
(X)� ⇡⇤(X))]

 E0 [|sb,0(X)| I (⇡⇤(X) 6= ⇡⇤
n
(X))]

=
1X

u=0

E0[|sb,0(X)|I(⇡⇤(X) 6= ⇡⇤
n
(X))I(Au)]


1X

u=0

E0[|sb,0(X)|I(|qb,0(X)|  |qb,n(X)� qb,0(X)|)I(Au)].
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where the last inequality follows from the fact that for any x 2 X , ⇡⇤(x) 6=

⇡⇤
n
(x) implies that |qb,n(x)� qb,0(x)| � |qb,0(x)|. From Condition 1 we know

that qb,0(X) 6= 0 with P0-probability 1, so

1X

u=0

E0[|sb,0(X)|I(|qb,0(X)|  |qb,n(X)� qb,0(X)|)I(Au)]

=
1X

u=0

E0[|sb,0(X)|I(0 < |qb,0(X)|  |qb,n(X)� qb,0(X)|)I(Au)].

For any x 2 Au, |sb,0(x)|  C1(u+ 1)|qb,0(x)|, so for each u,

E0 [|sb,0(X)| I (0 < |qb,0(X)|  |qb,n(X)� qb,0(X)|) I(Au)]

 C1E0 [(u+ 1) |qb,0(X)| I (0 < |qb,0(X)|  |qb,n(X)� qb,0(X)|) I(Au)]

 C1E0 [(u+ 1) |qb,n(X)� qb,0(X)| I (0 < |qb,0(X)|  |qb,n(X)� qb,0(X)|) I(Au)]

 C1E0


(u+ 1)max

x2X
kqb,n(x)� qb,0(x)k I

✓
0 < |qb,0(X)|  max

x2X
kqb,n(x)� qb,0(x)k

◆
I(Au)

�

= C1(u+ 1) kqb,n � qb,0k1,P0
E0


I

✓
0 < |qb,0(X)|  max

x2X
kqb,n(x)� qb,0(x)k

◆
I(Au)

�

= C1(u+ 1) kqb,n � qb,0k1,P0
P0(0 < |qb,0(X)|  kqb,n � qb,0k1,P0

, Au).

For an event E ✓ X , let P1(E) := P0(0 < |qb,0(X)|  kqb,n � qb,0k1,P0
, E).

Then, for any k 2 N,

kX

u=0

E0[|sb,0(X)|I(0 < |qb,0(X)|  |qb,n(X)� qb,0(X)|)I(Au)]


kX

u=0

C1(u+ 1) kqb,n � qb,0k1,P0
P1(Au)

=
kX

u=0

C1(u+ 1) kqb,n � qb,0k1,P0
[P1(B0

3,u+1)� P1(B0
3,u)]
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=
kX

u=0

C1(u+ 1) kqb,n � qb,0k1,P0
P1(B0

3,u+1)�
kX

u=0

C1(u+ 1) kqb,n � qb,0k1,P0
P1(B0

3,u)

=
k+1X

u=1

C1u kqb,n � qb,0k1,P0
P1(B0

3,u)�
kX

u=0

C1(u+ 1) kqb,n � qb,0k1,P0
P1(B0

3,u)

= C1(k + 1) kqb,n � qb,0k1,P0
P1(B0

3,k+1)�
kX

u=0

C1 kqb,n � qb,0k1,P0
P1(B0

3,u)

=
kX

u=0

C1 kqb,n � qb,0k1,P0
[P1(B0

3,k+1)� P1(B0
3,u)]


kX

u=0

C1 kqb,n � qb,0k1,P0
[P1(X )� P1(B0

3,u)]

=
kX

u=0

C1 kqb,n � qb,0k1,P0
[P1(B0c

3,u)]

=
kX

u=0

C1 kqb,n � qb,0k1,P0
[P0(0 < |qb,0(X)|  kqb,n � qb,0k1,P0

, B0c
3,u)]


kX

u=0

C1 kqb,n � qb,0k
1+�/2
1,P0

u�⇣/2.

where the last step follows from Holder’s inequality. Since ⇣ > 2, let k ! 1

and the infinite sum converges. Therefore,

| ⇡⇤
n
(P0)� ⇡⇤ (P0) |

=
1X

u=1

E0[|sb,0(X)|I(⇡⇤(X) 6= ⇡⇤
n
(X))|Au]P(Au)

= lim
k!1

kX

u=1

E0[|sb,0(X)|I(⇡⇤(X) 6= ⇡⇤
n
(X))|Au]P(Au) . kqb,n � qb,0k1+�/2p,P0

.

Note that under Condition 3, we have kqb,n�qb,0k1+�/21,P0
= oP0(n

�1/2) for

any � > 0, so |R2n| = oP0(n
�1/2).



B. Proofs for Section 3

For notational simplicity, throughout this section and later we denote  ⇡ :=

 ⇡(P0) for some policy ⇡ 2 ⇧.

B.1 Proof of Lemma 2

Proof of Lemma 2. We have that

n
⇧⇤ ✓ b⇧�

o
=

⇢
!⇡0 < sup

⇡2⇧
!⇡, 8⇡0 2 b⇧C

�

�
.

Therefore,

n
⇧⇤ ✓ b⇧�

oC

=

⇢
9⇡0 2 b⇧C

�
: !⇡0 = sup

⇡2⇧
!⇡

�

✓
⇢
9⇡0 2 b⇧C

�
:


!⇡0 � b!⇡0 � b�⇡0t�

n1/2
+ Ln

�
> sup

⇡2⇧
!⇡,

�

=

⇢
9⇡0 2 b⇧C

�
:


!⇡0 � b!⇡0 � b�⇡0t�

n1/2

�
> sup

⇡2⇧
!⇡ � Ln

�
, (S2.7)

where the inclusion follows from the definition of b⇧�. Let A denote the

event {Ln  sup
⇡2⇧ !⇡} \

h
\⇡2⇧

n
!⇡  b!⇡ + b�⇡t�

n1/2

oi
. Hence, (S2.7) shows

that

n
⇧⇤ 6✓ b⇧�

oC

✓
⇢

9⇡0 2 b⇧C

�
:


!⇡0 � b!⇡0 � b�⇡0t�

n1/2

�
> sup

⇡2⇧
!⇡ � Ln

�
\A

�
[AC
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✓
⇢

9⇡0 2 b⇧C

�
: !⇡0 � b!⇡0 � b�⇡0t�

n1/2
> 0

�
\A

�
[AC

= AC ,

where the final equality used that the leading event in the union above is

equal to the null set since under A, we have !⇡0�b!⇡0� b�⇡0 t�
n1/2  0 for each ⇡ 2

⇧. Also, note that by Lemma 4, Pr
⇣
\⇡2⇧

n
!⇡  b!⇡ + b�⇡t�

n1/2

o⌘
! 1� �/2,

and by definition of Ln, lim sup
n
Pr ({Ln < sup

⇡2⇧ !⇡}) � 1� �/2. Hence,

by a union bound,

lim sup
n

P
n
⇧⇤ 6✓ b⇧�

o
 �.

Lemma 4 in the following shows a uniform confidence band for {!⇡ :

⇡ 2 ⇧} which helps prove the validity of the candidate policy set b⇧�.

Lemma 4. If inf⇡2⇧ �⇡(P0) > 0, and b�⇡ is a consistent estimator of �⇡(P0)

for each ⇡ 2 ⇧, an asymptotically valid uniform �-level confidence band is

given by
n
b!⇡ ± b�⇡t�

n1/2 : ⇡ 2 ⇧
o
.

Proof of Lemma 4. To see that this is the case, note that t� is the 1� �/2

quantile of sup
f2F Gf , and also

P

✓
\⇡2⇧

⇢
b!⇡ �

b�⇡t�
n1/2

 !⇡  b!⇡ +
b�⇡t�
n1/2

�◆
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= P

✓
\⇡2⇧

⇢
�t�  n1/2 b!⇡ � !⇡

b�⇡
 t�

�◆

! P (\⇡2⇧ {�t�  Gf  t�})

= P

✓
\⇡2⇧

⇢
�t�  inf

f2F
Gf

�
\
⇢
sup
f2F

Gf  t�

��◆

= 1� �,

where the convergence follows from the fact that n1/2 b!⇡�!⇡
b�⇡  Gf by

Lemma 5 and Slutsky’s Theorem.

Lemma 5 (F is P0-Donsker). Assume that Conditions 8 and 9 hold and

also that

(i) ⇧ satisfies the uniform entropy bound, that is,

Z 1

0

sup
QX

p
logN (",⇧, L2(QX))d" < 1,

where the supremum is over all finitely supported measures on X ;

(ii) there exists L > 0 such that, for all finitely supported distributions Q

of (X,A, Y ) with support on X⇥{0, 1}⇥Y, the gradient map ⇡ 7! D⇡

is L-Lipschitz, in the sense that, for any ⇡, ⇡0 2 ⇧, kD⇡�D⇡0kL2(Q) 

Lk⇡ � ⇡0kL2(QX), where QX is the marginal distribution of X under

Q;

(iii) sup
⇡2⇧ ess sup

x2X ,a2{0,1},y2Y |D⇡(P0)(x, a, y)| < 1.
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Then, the set F := {D⇡(P0)/�⇡(P0) : ⇡ 2 ⇧} is P0-Donsker.

Proof of Lemma 5. We would like to use Theorem 2.5.2 of Van Der Vaart

and Wellner [2013]. First, by (iii) and Condition 9,

C :=
sup

⇡2⇧ ess sup
x2X ,a2{0,1},y2Y |D⇡(P0)(x, a, y)|
inf⇡2⇧ �⇡(P0)

< 1.

Hence, an envelope function for F is the constant function F (x, a, y) = C.

By (ii) and properties of covering numbers, for any Q as stated in (ii)

and implied marginal distribution QX , we have that N (C",F , L2(Q)) 

N (C"/L,⇧, L2(QX)). Combining this with (i) shows that F satisfies the

uniform entropy bound in the sense that
R1
0 sup

Q

p
logN (",F , L2(Q))d" <

1, where the supremum is over all finitely supported measures on X ⇥

{0, 1} ⇥ Y . Hence, F is P0-Donsker by Theorem 2.5.2 of Van Der Vaart

and Wellner [2013].

B.2 Proof of Theorem 2

This subsection shows the proof of Theorem 2, which gives the asymptotic

coverage of the confidence interval for the union bounding method.

Proof of Theorem 2. We have that

⇢
[ inf
⇡2⇧⇤

 ⇡, sup
⇡2⇧⇤

 ⇡] 6✓ CIn

�



B.2 Proof of Theorem 2

=

(
inf
⇡2⇧⇤

 ⇡ < inf
⇡2b⇧�


b ⇡ �

b⇡z↵,�
n1/2

�)
[
(
sup
⇡2⇧⇤

 ⇡ > sup
⇡2b⇧�


b ⇡ +

b⇡z↵,�
n1/2

�)

✓
(

inf
⇡2⇧⇤

 ⇡ < inf
⇡2b⇧�


b ⇡ �

b⇡z↵,�
n1/2

�
,⇧⇤ ✓ b⇧�

)

[
(
sup
⇡2⇧⇤

 ⇡ > sup
⇡2b⇧�


b ⇡ +

b⇡z↵,�
n1/2

�
,⇧⇤ ✓ b⇧�

)
[
n
⇧⇤ 6✓ b⇧�

o
.

Hence, by a union bound and the fact that lim sup
n
(an + bn + cn) 

lim sup
n
an + lim sup

n
bn + lim sup

n
cn, we see that

lim sup
n

P

⇢
CIn 6✓ [ inf

⇡2⇧⇤
 ⇡, sup

⇡2⇧⇤
 ⇡]

�

 lim sup
n

P

(
inf
⇡2⇧⇤

 ⇡ < inf
⇡2b⇧�


b ⇡ �

b⇡z↵,�
n1/2

�
,⇧⇤ ✓ b⇧�

)

+ lim sup
n

P

(
sup
⇡2⇧⇤

 ⇡ > sup
⇡2b⇧�


b ⇡ +

b⇡z↵,�
n1/2

�
,⇧⇤ ✓ b⇧�

)

+ lim sup
n

P
n
⇧⇤ 6✓ b⇧�

o
.

The third term is upper bounded by � by Lemma 2. In what follows we will

show that the first term on the right-hand side is no more than (↵� �)/2.

Similar arguments can be used to show that the second term is also no more

than (↵ � �)/2. By a union bound argument, the sum of three terms is

upper bounded by ↵, which completes the proof.

We begin by noting that, for any n 2 N,
(

inf
⇡2⇧⇤

 ⇡ < inf
⇡2b⇧�


b ⇡ �

b⇡z↵,�
n1/2

�
,⇧⇤ ✓ b⇧�

)
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✓
⇢

inf
⇡2⇧⇤

 ⇡ < inf
⇡2⇧⇤


b ⇡ �

b⇡z↵,�
n1/2

�
,⇧⇤ ✓ b⇧�

�

✓
⇢

inf
⇡2⇧⇤

 ⇡ < inf
⇡2⇧⇤


b ⇡ �

b⇡z↵,�
n1/2

��
.

By Lemma 7 and ⇡ 7!  ⇡ is continuous, there exists a ⇡` such that  ⇡` =

inf⇡2⇧⇤  ⇡. Combining this with the above, we see that

(
inf
⇡2⇧⇤

 ⇡ < inf
⇡2b⇧�


b ⇡ �

b⇡z↵,�
n1/2

�
,⇧⇤ ✓ b⇧�

)
✓
⇢
 ⇡` < inf

⇡2⇧⇤


b ⇡ �

b⇡z↵,�
n1/2

��

✓
⇢
 ⇡` < b ⇡` � b⇡`z↵,�

n1/2

�
.

Then

P

✓
 ⇡` < b ⇡` � b⇡`z↵,�

n1/2

◆
= P

 
n1/2

b ⇡` �  ⇡`

b⇡`

> z↵,�

!
.

By Condition 9, b⇡` is a consistent estimator for ⇡`(P0). Then with Slut-

sky’s Theorem, n1/2
b ⇡`� ⇡`

b⇡`
 Gf⇡` , so by definition of z↵,�,

P

 
n1/2

b ⇡` �  ⇡`

b⇡`

> z↵,�

!
 (↵� �)/2,

and so

lim sup
n!1

P
(

inf
⇡2⇧⇤

 ⇡ < inf
⇡2b⇧�


b ⇡ �

b⇡z↵,�
n1/2

�
,⇧⇤ ✓ b⇧�

)
 (↵� �)/2.

By a symmetric argument, we also have

lim sup
n!1

P

(
sup
⇡2⇧⇤

 ⇡ > sup
⇡2b⇧�


b ⇡ +

b⇡z↵,�
n1/2

�
,⇧⇤ ✓ b⇧�

)
 (↵� �)/2.



B.2 Proof of Theorem 2

Therefore, an asymptotic 1� ↵ confidence interval for [ l

0, 
u

0 ] is

"
inf
⇡2b⇧�

⇢
b ⇡ �

b⇡z↵,�
n1/2

�
, sup
⇡2b⇧�

⇢
b ⇡ +

b⇡z↵,�
n1/2

�#
.

In the following lemma, for some subset G of a space L2(Q), define the

covering number N(✏,G, L2(Q)) to be the minimal cardinality of an ✏-cover

of G with respect to the L2(Q) metric Van Der Vaart and Wellner [2013].

Before stating the lemma, we recall that F := {D⇡(P0)/�⇡(P0) : ⇡ 2 ⇧}.

Lemma 6. ⇧⇤ is a closed subset of L2(P0).

Proof. Let (⇡k)1k=1 be a ⇧⇤-valued sequence that converges to some ⇡⇤ in

L2(P ). Since ⇡ 7! !⇡ is a continuous map from {0, 1}X to R when the

domain is equipped with the L2(P )-topology, !⇡k ! !⇡⇤ . As ⇡k 2 ⇧⇤ for

all k, !⇡k = sup
⇡2⇧ !⇡ for all k. Hence, !⇡⇤ = sup

⇡2⇧ !⇡. As ⇧ is closed,

this shows that ⇡⇤ 2 ⇧⇤. Hence, ⇧⇤ is a closed subset of L2(P ).

Lemma 7. If ⇧⇤ is closed in L2(P0) and ⇧⇤ is P0-Donsker, ⇧⇤ is compact.

Proof of Lemma 7. Since⇧⇤ is P0-Donsker following from⇧ being P0-Donsker,

then ⇧⇤ is totally bounded in L2(P0). Also, since L2(P0) is complete, ⇧⇤ be-

ing closed implies that ⇧⇤ is complete. And totally bounded and complete

subsets of a metric space are compact, so ⇧⇤ is compact.
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B.3 Proof of Lemma 3

Proof of Lemma 3. To show this lemma, we first define two events {⇧⇤ ✓

b⇧�} and {!⇡⇤ � inf
⇡2b⇧�

!⇡  4t�
n1/2 sup⇡2⇧ b�⇡}. These events ensure that all

⌦-optimal policies are contained in b⇧�, and b⇧� only contains nearly optimal

policies. Lemma 2 and 8 ensure that both events happen with probability

at least 1�� asymptotically. Lemma 9 ensures that our confidence interval

shrinks at an n�1/2 rate under these events.

Lemma 8. For any � > 0, lim infn!1 P
⇣
!⇡⇤ � inf

⇡2b⇧�
!⇡  4t�

n1/2 sup⇡2⇧ b�⇡
⌘
�

1� �.

Proof of Lemma 8. Note that by the definition of b⇧�, we have

inf
⇡2b⇧�


b!⇡ +

b�⇡t�
n1/2

�
� sup

⇡2⇧


b!⇡ �

b�⇡t�
n1/2

�
,

so
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⇡2b⇧�
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⇡2⇧


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n1/2

�
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⇡2b⇧�


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b�⇡t�
n1/2

�
� inf

⇡2b⇧�

!⇡.

Hence,

(
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✓
(
!⇡⇤ � sup

⇡2⇧

⇢
b!⇡ �

b�⇡t�
n1/2

�
+ inf

⇡2b⇧�

⇢
b!⇡ +

b�⇡t�
n1/2

�
� inf

⇡2b⇧�

!⇡ >
4t�
n1/2

sup
⇡2⇧

b�⇡

)

✓
⇢
!⇡⇤ > sup

⇡2⇧

⇢
b!⇡ �

b�⇡t�
n1/2

�
+ 2 sup

⇡2⇧

b�⇡t�
n1/2

�



B.3 Proof of Lemma 3

[
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n1/2

�
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b�⇡t�
n1/2

)
. (S2.8)

In the remainder of this proof, we will show that the two events on the

right-hand side each occur with probability no more than �/2. The result

then follows by a union bound. Note that

\

⇡2⇧

⇢
!⇡  b!⇡ +

b�⇡t�
n1/2

�
✓
⇢
!⇡⇤  sup

⇡2⇧

⇢
b!⇡ +

b�⇡t�
n1/2

��

✓
⇢
!⇡⇤  sup

⇡2⇧

⇢
b!⇡ �

b�⇡t�
n1/2

�
+ 2 sup

⇡2⇧

b�⇡t�
n1/2

�
,

where the latter inclusion holds because sup[f + g]  sup f + sup g. So

lim inf
n!1

P
✓
!⇡⇤ � sup

⇡2⇧

⇢
b!⇡ �

b�⇡t�
n1/2

�
 2 sup

⇡2⇧

b�⇡t�
n1/2

◆
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n!1

P
 
\
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⇢
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b�⇡t�
n1/2

�!
� 1� �

2
,

where the last step follows from Lemma 4. Hence, the first event on the

right-hand side of (S2.8) occurs with probability no more than probability

�/2. We also have that

\
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⇢
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n1/2
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✓
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since inf[f � g] � inf f � sup g. So

lim inf
n!1

P
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⇡2b⇧�

⇢
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b�⇡t�
n1/2

�
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,

where the last step follows from Lemma 4. Hence, the second event on the

right-hand side of (S2.8) occurs with probability no more than probability

�/2.

Lemma 9. In the setting of Lemma 3, under the event {⇧⇤ ✓ b⇧�} and

{!⇡⇤ � inf
⇡2b⇧�

!⇡  4t�
n1/2 sup⇡2⇧ b�⇡}, the width of the confidence interval for

 0 is Op(n�1/2).

Proof. We first show that sup
⇡2b⇧�

h
b ⇡ + b⇡z↵,�

n1/2

i
=  0 + Op(n�1/2). We

know that

sup
⇡2b⇧�


b ⇡ +

b⇡z↵,�
n1/2

�
 sup
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 ⇡ + sup
⇡2b⇧�


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b⇡z↵,�
n1/2

�
.

We then show that sup
⇡2⇧⇤  ⇡ � sup

⇡2b⇧�
 ⇡ = Op(n�1/2). Consider some

⇡1 2 ⇧⇤ and ⇡2 2 b⇧�. Let B1,0 = {x 2 X : ⇡1(x) = 1, ⇡2(x) = 0} and

B0,1 = {x 2 X : ⇡1(x) = 0, ⇡2(x) = 1}. By the definition of ⇧⇤ we know

that !⇡1 � !⇡2 , and

!⇡1 � !⇡2 =

Z
E[Y ⇤|A = ⇡1(x), x]dP0(x)�

Z
E[Y ⇤|A = ⇡2(x), x]dP0(x)
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=

Z

B1,0

qb,0(x)dP0(x)�
Z

B0,1

qb,0(x)dP0(x).

Since ⇡1 2 ⇧⇤ and ⇧⇤ contains unrestricted optimal policies by assumption,

!⇡1 is largest among all ⇡ 2 ⇧, which implies that for x 2 B1,0, qb,0(x) � 0

and for x 2 B0,1, qb,0(x)  0. This gives us

!⇡1 � !⇡2 =

Z

B1,0

|qb,0(x)|dP0(x) +

Z

B0,1

|qb,0(x)|dP0(x).

On the other hand, on the event {⇧⇤ ✓ b⇧�}, we have sup
⇡2b⇧�

 ⇡ �
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| ⇡2 �  ⇡1 | =
����
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Z
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����
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�����
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|qb,0(x)|dP0(x) + C

Z
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|qb,0(x)|dP0(x).

Therefore, | ⇡2 �  ⇡1 |  C(!⇡1 � !⇡2) for some C < 1. Since this

holds for any ⇡1 2 ⇧⇤ and ⇡2 2 b⇧�, we have sup
⇡2b⇧�

 ⇡ � inf⇡2⇧⇤  ⇡ 

C(sup
⇡2⇧⇤ !⇡�inf

⇡2b⇧�
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⇡2b⇧�
!⇡  4t�

n1/2 sup⇡2⇧ b�⇡},

we have that sup
⇡2b⇧�

 ⇡ � inf⇡2⇧⇤  ⇡  C 4t�
n1/2 sup⇡2⇧ b�⇡. Under Condi-

tion 9, we know that sup
⇡2⇧ b�⇡ � sup

⇡2⇧ �⇡(P0) = op(1), so
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= C
4t�
n1/2

✓
sup
⇡2⇧

�⇡(P0) + op(n
�1/2)

◆
= Op(n

�1/2). (S2.9)

Under the event {⇧⇤ ✓ b⇧�}, we have sup⇡2b⇧�
 ⇡ � sup

⇡2⇧⇤  ⇡ � inf⇡2⇧⇤  ⇡,

so we have sup
⇡2⇧⇤  ⇡ � sup
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 ⇡ = Op(n�1/2). Also,
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The first term is Op(n�1/2) under Condition 7. As for the second term,

under Condition 9,

sup
⇡2⇧

b⇡z↵,�
n1/2

= sup
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Therefore, sup
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as desired. By symmetry, inf
⇡2b⇧�

h
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n1/2

i
=  0 � Op(n�1/2) as well.
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Proof of Theorem 3. To establish this theorem, we show that

lim inf
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⇡2b⇧†


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We can similarly get

lim inf
n

P
✓
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
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Combining the two displays gives us the theorem statement. Note that
(
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.

Since ⇧⇤ is P0-Donsker following from ⇧ being P0-Donsker, ⇧⇤ is totally

bounded in L2(P0) Luedtke and Van Der Laan [2016]. Also, since L2(P0) is

complete, ⇧⇤ being closed in L2(P0) implies that ⇧⇤ is complete in L2(P0).

So ⇧⇤ is compact in L2(P0). Combining this with the fact that ⇡ 7!  ⇡ is

continuous implies that there exists a ⇡u 2 ⇧⇤ such that  ⇡u = sup
⇡2⇧⇤  ⇡.

Combining this with the above, we see that
(
sup
⇡2⇧⇤

 ⇡  sup
⇡2b⇧†


b ⇡ +

b⇡u†
↵

n1/2

�)

◆
(
 ⇡u  sup

⇡2b⇧†


b ⇡ +

b⇡u†
↵

n1/2

�
,⇧⇤ ✓ b⇧†

)

◆
⇢
 ⇡u  b ⇡u +

b⇡uu†
↵

n1/2
,⇧⇤ ✓ b⇧†

�

=

⇢
 ⇡u  b ⇡u +

b⇡uu†
↵

n1/2
,!⇡0 < sup

⇡2⇧
!⇡, 8⇡0 2 (b⇧†)C

�
. (S2.10)

Note that

⇢
!⇡0 < sup

⇡2⇧
!⇡, 8⇡0 2 (b⇧†)C

�C

=

⇢
9⇡0 2 (b⇧†)C : !⇡0 = sup

⇡2⇧
!⇡

�
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✓
⇢
9⇡0 2 (b⇧†)C :


!⇡0 � b!⇡0 � b�⇡0t†

↵

n1/2
+ sup

⇡2⇧


b!⇡ �

b�⇡s†↵
n1/2

��
> sup

⇡2⇧
!⇡

�

=

⇢
9⇡0 2 (b⇧†)C :


!⇡0 � b!⇡0 � b�⇡0t†
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n1/2

�
> sup

⇡2⇧
!⇡ � sup

⇡2⇧


b!⇡ �

b�⇡s†↵
n1/2

��
,
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where the inclusion follows from the definition of b⇧†. Let A0 denote the

event

⇢
sup
⇡2⇧


b!⇡ �

b�⇡s†↵
n1/2

�
 sup

⇡2⇧
!⇡

�\
"
\

⇡2⇧

⇢
!⇡  b!⇡ +

b�⇡t†↵
n1/2

�#
.

Hence, (S2.11) shows that

⇢
9⇡0 2 (b⇧†)C : !⇡0 = sup

⇡2⇧
!⇡

�

✓
"(

9⇡0 2 (b⇧†)C : !⇡0 � b!⇡0 � b�⇡0t†↵
n1/2

> sup
⇡2⇧

!⇡ � sup
⇡2⇧

"
b!⇡ �

b�⇡s†↵
n1/2

#)
\A0

#
[A0C

✓
"(
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> 0

)
\A0

#
[A0C

= A0C .

For each ⇡ 2 ⇧, we define bBn,⇡ := n1/2 b!⇡�!⇡
b�⇡ and eBn,⇡ := n1/2 b ⇡� ⇡

b⇡ . Then

starting from (S2.11), we have

⇢
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⇡2⇧
!⇡, 8⇡0 2 (b⇧†)C

�
◆ A0

=

⇢
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n1/2

�
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"
\

⇡2⇧

⇢
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�#
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↵
}.

Using the above to study the event on the right-hand side of (S2.10) shows

that

⇢
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↵

n1/2
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⇡2⇧
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⇡2⇧
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⇡2⇧
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↵

�
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⇢
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⇡2⇧
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We know that the choices (s†
↵
, t†
↵
, u†

↵
) satisfy that

inf
⇡2⇧

P
⇢
inf
f2F

Gf � �t†
↵
, sup
f2F

Gf  s†
↵
,Gf̃⇡ � �u†

↵

�
� 1� ↵/2. (S2.13)

Note that by Condition 7, we have sup
⇡2⇧

h
n1/2 b!⇡�!⇡

b�⇡ �Gnf⇡
i

= op(1)

and also
b ⇡u� ⇡u

b⇡u
� Gnf̃⇡u = op(1). Since sup

f2F Gnf  sup
f2F Gf ,

inff2F Gnf  inff2F Gf , and for each ⇡ 2 ⇧, b�⇡ is a consistent esti-

mator of �⇡, by Slutsky Theorem, we have sup
⇡2⇧ Bn,⇡  sup

f2F Gf and

inf⇡2⇧ Bn,⇡  inff2F Gf . Also, since for each f̃ 2 F̃ , Gnf̃  Gf̃ and b�⇡ is

a consistent estimator of �⇡, we similarly have eBn,⇡u  Gf̃⇡u . Combining



(S2.10), (S2.12), and (S2.13), we have
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C. Additional simulation results

C.1 A 1D simulation with large sample size

In this section, we run the same 1D instance described in Section 4.1 but

with larger sample size. Table 2 provides coverages and confidence interval

widths with a larger sample size of 5000. In the non-unique setting, since

there are multiple optimal policies for the primary outcome, [ `0, 
u

0 ] will

be an interval with some length. In our setting, we can see from the lower-

left plot of Figure 3 that the length of [ `0, 
u

0 ] is about 0.5, so any valid

confidence interval for [ `0, 
u

0 ] must have at least that length. Comparing

the widths in Table 1 and 2, we can see that both the union bounding

method and the joint method produce confidence intervals approaching that



C.2 A 3D simulation

coverage width

union joint one-step os-split union joint one-step os-split oracle

non-unique 1.000 1.000 0.000 0.000 1.091 1.061 0.061 0.096 0.561

unique non-margin 0.981 0.986 0.810 0.734 0.036 0.035 0.017 0.027 0.016

unique margin 0.983 0.989 0.946 0.949 0.040 0.036 0.023 0.037 0.023

Table 2: Coverages and widths of [ `0, 
u

0 ] with sample size n = 5000.

limit. In the setting where ⌦-optimal policy is unique, the widths of the

confidence intervals for all methods approach zero as n goes to infinity.

C.2 A 3D simulation

We also added a scenario where we have a 3D policy and the optimal

policy is unique. The policy class is a restricted tree class, denoted as

⇧ = {x 7! 1{x1 � a1, x2 � a2, x3 � a3} : a1, a2, a3 2 [�1, 1]}}. The opti-

mal policy is ⇡⇤(x) = 1{x1 � 0, x2 � 0, x3 � 0} so it lies in the tree class

⇧. We compare the outcome interval from three approaches: union, joint,

and one-step. The method os-split provides a wider interval while having a

worse coverage than one-step in 1D simulation results, so we drop it from

the simulation. For each scenario, we consider a sample size n of 500. We

again use 1000 multiplier bootstrap replicates to estimate the supremum

and infimum. In this scenario, instead of generating a fine grid and com-

puting the maximum over the grid, we use the nlopt package to numerically

approximate the maximum. We let ↵ = 0.05 and use 500 Monte Carlo repli-



C.3 Linear classes

coverage width

union joint one-step union joint one-step oracle

3D margin 0.970 0.948 0.940 0.199 0.186 0.124 0.124

3D non-margin 1.000 0.988 0.594 0.185 0.175 0.092 0.092

Table 3: Coverage and width for 3D policy class with sample size n = 500.

cations to compute the coverage and approximate the average confidence

interval widths. Table 3 shows the results. The joint methods achieves

slightly shorter widths in this setting (5-6%), and the results are otherwise

similar to those from Section 4.1.

C.3 Linear classes

To demonstrate the benefit of the joint method and the flexibility of our

method in high-dimensional scenarios, we consider another scenario where

the policy class is linear, taking the form ⇧✓ = {x 7! 1{x>✓ � 0}}. We con-

sider a high-dimensional sparse linear setting where ✓⇤ = [0.1, 0.2, ..., 0.5,

0, ..., 0] 2 R10. We again compare the outcome interval from three ap-

proaches: union, joint, and one-step and use 1000 multiplier bootstrap repli-

cates to estimate the supremum and infimum. To approximate the maxi-

mum more accurately and avoid the issue of getting a local optimum, we use

the di↵erential evolution method in the scipy package. We let ↵ = 0.05 and



C.3 Linear classes

coverage width

union joint one-step union joint one-step oracle

linear margin 1.000 0.989 0.990 0.107 0.076 0.038 0.037

linear non-margin 1.000 0.998 0.618 0.183 0.161 0.062 0.050

Table 4: Coverage and width for sparse linear policy class with sample size

n = 1000.

use 500 Monte Carlo replications to compute the coverage and approximate

the average confidence interval widths. Table 4 shows the results. We can

see that when the margin condition is not satisfied, the one-step estimator

only achieves coverage of 0.618, while both the union bounding and the

joint methods achieve valid coverages. Also, the joint method generally has

a smaller confidence interval width than the union bounding method (29%

decrease when the margin condition is satisfied and 12% when the margin

condition is not satisfied).

We also consider the true parameter vector ✓⇤ = [0.1, 0.2, · · · , 1] 2 R10

and we run the same set of simulations as described in Section C.3. Table 5

shows the results. The joint methods achieve much shorter widths (almost

20% decrease in margin and 17% decrease in non-margin setting) in this

setting, and the results are otherwise similar to those from earlier sections.



coverage width

union joint one-step union joint one-step oracle

linear margin 1.000 0.985 0.980 0.112 0.090 0.057 0.042

linear non-margin 0.995 0.964 0.895 0.102 0.085 0.062 0.043

Table 5: Coverage and width for linear policy class with sample size n =

1000.

D. Multiplier bootstrap

In practice, we use multiplier bootstrap to estimate the quantiles described

in Section 3 and we provide the pseudocodes of the algorithms below. Al-

gorithm 1 estimates t� defined just above Lemma 2. Algorithm 2 estimates

the quantiles described in (3.7). In this algorithm, we take s†
↵
= t†

↵
for

simplicity and estimate the best (t†
↵
, u†

↵
) given samples. Both algorithms

approximate suprema and infima over sets indexed by ⇡ 2 ⇧ by maxima

and minima over ⇡ belonging to a grid approximation of ⇧.



Algorithm 1 Multiplier bootstrap
Input: samples {(xi, ai, yi)}ni=1, policy set ⇧, bootstrap sample size B, confi-

dence level �

1: Take a grid estimate {⇡1, · · · ,⇡K} of ⇧

2: for each k 2 [K], compute normalized one-step estimates {o(⇡k)
i

}n
i=1 using

collected samples {(xi, ai, yi)}ni=1

3: for j = 1, · · · , B do

4: get multiplier bootstrap samples ✏ij for i = 1, · · · , n and k = 1, · · · ,K

5: compute n�1/2Pn

i=1 ✏ijo
(⇡k)
i

and denote the result as f (j)
⇡k

6: end for

7: compute maxk2[K] f
(j)
⇡k for each j and denote the resulting dataset as {ti}Bi=1

Output: (1� �)-th quantile of {ti}Bi=1



Algorithm 2 Multiplier bootstrap for joint probability
Input: samples {(xi, ai, yi, zi)}ni=1, policy set ⇧, bootstrap sample size B, confi-

dence level ↵

1: Take a grid estimate {⇡1, · · · ,⇡K} of ⇧

2: for k 2 [K] do

3: compute normalized one-step estimates {o(⇡k)
i

}n
i=1 using collected samples

{(xi, ai, yi)}ni=1

4: compute normalized one-step estimates {õ(⇡k)
i

}n
i=1 using collected samples

{(xi, ai, zi)}ni=1

5: end for

6: for j = 1, · · · , B do

7: get multiplier bootstrap samples ✏(j)
ik

for i = 1, · · · , n and k = 1, · · · ,K

8: compute n�1/2Pn

i=1 ✏
(j)
ik

o(⇡k)
i

and denote the result as f (j)
⇡k

9: compute n�1/2Pn

i=1 ✏
(j)
ik

õ(⇡k)
i

and denote the result as f̃ (j)
⇡k

10: end for

11: compute maxk2[K] f
(j)
⇡k for each j and denote the results as {sj}Bj=1

12: compute probability P(maxk2[K] f⇡k  t, f̃⇡k  u) for each k = 1, · · · ,K

using the B samples

Output: pairs (t, u) such that mink2[K] P(maxk2[K] f⇡k  t, f̃⇡k  u) = 1� ↵.
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