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Supplementary Material

This supplementary material provides the technical details of asymptotic results (Section S1), the details of the

rank regression framework for the DC endpoint (Section S2), and additional simulation results relegated from

the main paper (Section S3).

S1 Asymptotic Results

This section provides theoretical justification of the proposed methods. We assume the

following regularity conditions for the asymptotic results.

(C1) The true value of β, denoted by β0, lies in the interior of a known compact set

B ⊂ Rp. The covariate X is uniformly bounded, i.e., supi ∥Xi∥ <∞ for i = 1, . . . , n.

(C2) The residual distribution F0 ∈ F is uniformly bounded away from 0, and has a

density with continuous derivative bounded away from 0 on their support.

(C3) The distribution of ∆ depends only on the observed data {∆,∆T, (1−∆)U, (1−

∆)V,X}. There exists a positive constant c0 such that P (∆ = 1|X) > c0 with
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probability 1.

(C4) The joint density of the examination times (W1, . . . ,WK) given ∆ = 0 is continuous

and differentiable in their support with respect to some dominating measure. There

exists a positive constant τ0 such that P (min0≤k≤K−1(Wk+1 −Wk) > τ0|X,K,∆ =

0) = 1.

Some necessary notations are as follows. Let B be the parameter space in Rp, and ∥·∥

be the supremum norm in the metric space Rp. Define Pn and P0 as the empirical and

true probability measures, respectively, along with the corresponding empirical process

Gn = n1/2(Pn−P0). Denote S(k)
n (β, t) = Pn{η1I(uβ ≥ t)Xk} and S

(k)
0 (β, t) = P0{η1I(uβ ≥

t)Xk} for k = 0, 1, where uβ ≡ u(β) = log Ũ − β′X.

Lemma 1. The classes of functions {η2[S(0)
n (β, t)X − S(1)

n (β, t)] : β ∈ Rp, t ∈ R} and

{η2[S(0)
0 (β, t)X − S

(1)
0 (β, t)] : β ∈ Rp, t ∈ R} are Donsker.

Proof. From Exercise 9 and 14 of Section 2.6 in van der Vaart and Wellner (1996), the

class of indicator function of half space is a VC-class, and thus a Donsker class. Hence,

both F0 = {η1I(uβ ≥ t) : β ∈ Rp, t ∈ R} and F1 = {η2I(uβ ≥ t)X : β ∈ Rp, t ∈ R} are

Donsker. Let F̄k be the closure of Fk (k = 0, 1). By Theorems 2.10.2 and 2.10.3 of van

der Vaart and Wellner (1996), S(k)
n (β, u) and S

(k)
0 (β, u) belong to the convex hull of F̄k, so

they are also in Donsker classes. By their Theorem 2.10.6, the set of bounded functions

{η2[S(0)
n (β, t)X − S(1)

n (β, t)] : β ∈ Rp, t ∈ R} and {η2[S(0)
0 (β, t)X − S

(1)
0 (β, t)] : β ∈ Rp, t ∈

R} are Donsker, and thus Glivenko-Cantelli.
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Theorem 1. Under conditions (C1)–(C4), the proposed regression estimator β̂ is strongly

consistent for β0, and n
1/2(β̂ − β0) converges in distribution to a zero-mean normal dis-

tribution with covariance matrix Γ = A−1Ω(A−1)′.

Proof. Let ψβ(S(0)
n ,S(1)

n ) = η2{S(0)
n (β, vβ)X−S(1)

n (β, vβ)} and ψβ(S
(0)
0 , S

(1)
0 ) = η2{S(0)

0 (β, vβ)X−

S
(1)
0 (β, vβ)}, where vβ ≡ v(β) = log Ṽ − β′X. Define

Ψn(β, S(0)
n ,S(1)

n ) = Pnψβ(S(0)
n ,S(1)

n ), Ψ0(β, S
(0)
0 , S

(1)
0 ) = P0ψβ(S

(0)
0 , S

(1)
0 ). (S1.1)

Notice that Ψn and Ψ0 represent random and deterministic maps, respectively, corre-

sponding to the estimating equation Sn(β) and its limiting function S0(β). The Gehan

estimator β̂ can be defined as a Z-estimator of the map Ψn(β̂, S(0)
n ,S(1)

n ) = op(n
−1/2),

while the true parameter β0 satisfies Ψ0(β0, S
(0)
0 , S

(1)
0 ) = 0, because

Ψ0(β0, S
(0)
0 , S

(1)
0 ) = E [η2[E{η1I(uβ0 ≥ vβ0)}X − E{η1I(uβ0 ≥ vβ0)X}]]

= E [η2{E(η1)X − η1X}] = 0.

To check the convergence of the estimating function Ψn to Ψ0, we use the triangle

inequality to induce the following result,

∥Ψn(β, S(0)
n ,S(1)

n )−Ψ0(β, S
(0)
0 , S

(1)
0 )∥

= ∥Ψn(β, S(0)
n ,S(1)

n )− P0ψβ(S(0)
n ,S(1)

n ) + P0ψβ(S(0)
n ,S(1)

n )−Ψ0(β, S
(0)
0 , S

(1)
0 )∥

≤ ∥(Pn − P0)[η2{S(0)
n X − S(1)

n }]∥+ ∥P0[η2{S(0)
n − S

(0)
0 }X]∥+ ∥P0[η2{S(1)

n − S
(1)
0 }]∥.

The first term on the right side of the above inequality converges to zero in probabil-

ity by the Glivenko-Cantelli property, as shown in Lemma 1. The second and third
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terms also converge to zero in probability, since all components in S(k)
n and S

(k)
0 for

k = 0, 1 are Glivenko-Cantelli, and ∥P0[η2X{S(0)
n − S

(0)
0 }]∥ ≤ ∥S(0)

n − S
(0)
0 ∥ ·P0|η2X| →p 0

and ∥P0[η2{S(1)
n − S

(1)
0 }]∥ ≤ ∥S(1)

n − S
(1)
0 ∥ · P0|η2| →p 0. Therefore, ∥Ψn(β, S(0)

n ,S(1)
n ) −

Ψ0(β, S
(0)
0 , S

(1)
0 )∥ →p 0. By Lemma 1, this result can be further improved to give

∥n1/2{Ψn(β, S(0)
n , S(1)

n )−Ψ0(β, S
(0)
0 , S

(1)
0 )}∥ = Op(1). (S1.2)

To prove the strong consistency of β̂, we first note that β0 is the unique solution to

Ψ0(β0, S
(0)
0 , S

(1)
0 ) = 0 by the condition (C3). Then, for any fixed ϵ > 0, there exists a

δ > 0, such that P (|β̂ − β0| > ϵ) ≤ P (|Ψ0(β̂, S
(0)
0 , S

(1)
0 )| > δ). By the definition of almost

sure convergence, it suffices to show that |Ψ0(β̂, S
(0)
0 , S

(1)
0 )| →p 0. The standard property

of Glivenko-Cantelli implies S(0)
n → S

(0)
0 and S(1)

n → S
(1)
0 , with probability tending to one.

Hence, from (S1.2), we have the desired inequalities

|Ψ0(β̂, S
(0)
0 , S

(1)
0 )| ≤ |Ψn(β̂, S(0)

n ,S(1)
n )|+ |Ψn(β̂, S(0)

n ,S(1)
n )−Ψ0(β̂, S

(0)
0 , S

(1)
0 )| = op(1),

which implies P (|β̂ − β0| > ϵ) → 0, and hence, β̂ is consistent. It can be easily shown

that (S1.2) further implies n1/2(β̂ − β0) = Op(1).

Next, we prove the asymptotic normality of β̂. Let |β − β0| ≤ Kn−1/2 with K <∞.

Then, we have

n1/2{Ψn(β, S(0)
n ,S(1)

n )−Ψn(β0,S(0)
n , S(1)

n )} = n1/2Pn{ψβ(S(0)
n ,S(1)

n )− ψβ0(S(0)
n ,S(1)

n )}

= Gn{ψβ(S(0)
n ,S(1)

n )− ψβ0(S(0)
n ,S(1)

n )}+ n1/2P0{ψβ(S(0)
n ,S(1)

n )− ψβ0(S(0)
n ,S(1)

n )}.

(S1.3)
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The first term of the right side in (S1.3) equalsGn[η2{S(0)
n (β, ·)−S(0)

n (β0, ·)}X]−Gn[η2{S(1)
n (β, ·)−

S(1)
n (β0, ·)}], which converges to zero in probability, since S(k)

n (β, ·)− S(k)
n (β0, ·) (k = 0, 1)

converge to zero in quadratic mean, while the second term is asymptotically equivalent

to n1/2A(β − β0) + op(1), where A = E{∂ψβ(S
(0)
0 , S

(1)
0 )/(∂β)|β=β0}. Therefore, equation

(S1.3), together with Ψn(β̂, S(0)
n , S(1)

n ) = op(n
−1/2), yields the asymptotic linearity when

β is replaced by β̂, such that

n1/2Ψn(β0,S(0)
n ,S(1)

n ) = −n1/2A(β̂ − β0) + op(1). (S1.4)

IfA is continuously invertible, the above equation yields n1/2(β̂−β0) = −A−1Gnψβ0(S
(0)
n ,S(1)

n )+

op(1). Then, by the Theorem 3.3.1 of van der Vaart and Wellner (1996) and the consis-

tency result of β̂, n1/2(β̂ − β0) converges in distribution to the zero-mean normal dis-

tribution with covariance matrix Γ = A−1Ω(A−1)′, where Ω = cov{ψβ0(S
(0)
0 , S

(1)
0 )} =

E{ψβ0(S
(0)
0 , S

(1)
0 )′ψβ0(S

(0)
0 , S

(1)
0 )}.

Remark 1. Using a similar argument of the proof of Theorem 1, we can prove the

strong consistency of β̂ϕ for β0. Note that ψϕ(S
(0)
0 , S

(1)
0 ) = η2{X − S

(1)
0 (β, vβ)/S

(0)
0 (β, vβ)}

and ψϕ0 ≡ ψϕ0(S
(0)
0 , S

(1)
0 ) = η2{X − S

(1)
0 (β, vβ)/S

(0)
0 (β, vβ0)}. Furthermore, asymptotic

normality of β̂ϕ can be derived by using Theorem 3.3.1 of van der Vaart and Well-

ner (1996), such that n1/2(β̂ϕ − β0) → N(0,Γϕ), Γϕ = A−1
ϕ Ωϕ(A

−1
ϕ )′, where Aϕ =

E{∂ψϕ(S
(0)
0 , S

(1)
0 )/(∂β)|β=β0} and Ωϕ = E{ψϕ0(S

(0)
0 , S

(1)
0 )′ ψϕ0(S

(0)
0 , S

(1)
0 )} with ψϕ(S

(0)
0 , S

(1)
0 ) =

η2{X − S
(1)
0 (β, vβ)/S

(0)
0 (β, vβ)}.

Theorem 2. Under conditions (C1)–(C4), for any k ≥ 1, an iterative estimator β̂(k)
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is strongly consistent for β0, and n1/2(β̂(k) − β0) converges to the same distribution of

n1/2(β̂ϕ − β0) as k → ∞.

Proof. From Theorem 1, an initial estimator β̂(0) = β̂ is strongly consistent for β0, im-

plying n−1Lϕ(β; β̂(0)) converges almost surely to limn→∞ n−1Lϕ(β; β0), with its minimizer

at β = β0. Because n−1Lϕ(β, β̂(0)) is convex, β̂(1) converges to β0 almost surely. This

argument can be successively applied for k ≥ 2, and we argue that β̂(k) →p β0 as n→ ∞

for all k.

Assume ϕ(t) = 0 for t near the endpoint to avoid possible tail instabilities. We further

assume that for any βn and ϵn converging to β0 and 0 in probability, respectively,

w(βn, t+ ϵn) ≡
ϕ(βn)∑n

j=1 η1jI(ti + ϵn ≤ tj + ϵn)
= w(βn, t) + ẇ0(t)ϵn + o(n−1/2 + ϵn),

where, ẇ0(t) is the derivative of the limit of w(β0, t) as n→ ∞. Then, we expand

Sϕ(β; β̂(k−1)) = n−1

n∑
i=1

wi{β̂(k−1), vi(β̂(k−1))}η2iη1j(Xi −Xj)I{ui(β) ≤ vj(β)}

+ n−1

n∑
i=1

ẇ0i(t)η2iη1j(Xi −Xj)I{ui(β) ≤ vj(β)}(β − β̂(k−1))

+ o(n1/2 + n∥β − β̂(k−1)∥).

By Remark 1, the first term on the right-hand side of above equation has a linear expan-

sion
∑n

i=1 ψϕ0,i + n(β − β0)Aϕ + o(n1/2 + n∥β − β0∥). Thus,

Sϕ(β̂(k); β̂(k−1)) =
n∑

i=1

ψϕ0,i + n(Aϕ +Bϕ)(β̂(k) − β0)− nBϕ(β̂(k−1) − β0)

+ o(n1/2 + n∥β̂(k) − β0∥+ n∥β̂(k−1) − β0∥),

(S1.5)
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with

Bϕ = lim
n→∞

n−1

n∑
i=1

n∑
j=1

ẇ0iη2iη1jI(u0i ≤ v0j)

{
Xi −

∑n
j=1 η1jXjI(u0i ≤ v0j)∑n
j=1 η1jI(u0i ≤ v0j)

}⊗2

,

where, Bϕ is assumed to be a nonsingular limiting slope matrix of Sϕ(β; b) for β0, u0i ≡

ui(β0) and v0i ≡ vi(β0). Assume that A,Aϕ and Aϕ +Bϕ are nonsingular matrix. Then,

from equation (S1.5) and the asymptotic linearity of Sn(β̂) for k = 1, we observe

n1/2(β̂(1) − β0) = −n−1/2(Aϕ +Bϕ)
−1

{ n∑
i=1

ψϕ0,i +BϕA
−1

n∑
i=1

ψβ0,i

}
+ o(1 + n1/2∥β̂(1) − β0∥+ n1/2∥β̂ − β0∥).

Now, recursively using (S1.5), we obtain following equation in general

n1/2(β̂(k) − β0) = −n−1/2

k∑
j=1

{(Aϕ +Bϕ)
−1Bϕ}j−1(Aϕ +Bϕ)

−1

n∑
i=1

ψϕ0,i

− n−1/2{(Aϕ +Bϕ)
−1Bϕ}kA−1

n∑
i=1

ψβ0,i + o

(
1 + n1/2

k∑
j=0

∥β̂(j) − β0∥

)

or equivalently,

n1/2(β̂(k) − β0) = −n−1/2[I − {(Aϕ +Bϕ)
−1Bϕ}k]A−1

ϕ

n∑
i=1

ψϕ0,i

− n−1/2{(Aϕ +Bϕ)
−1Bϕ}kA−1

n∑
i=1

ψβ0,i + o

(
1 + n1/2

k∑
j=0

∥β̂(j) − β0∥

)
.

(S1.6)

This implies that asymptotic normality of n1/2(β̂(k)−β0) follows from that of n−1/2
∑n

i=1 ψϕ0,i

and n−1/2
∑n

i=1 ψβ0,i. Now, β̂(k) can be expressed by the weighted average of β̂ and β̂ϕ

β̂(k) = {(Aϕ +Bϕ)
−1Bϕ}kβ̂ + [I − {(Aϕ +Bϕ)

−1Bϕ}k]β̂ϕ + op(n
−1/2).
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Furthermore, n−1/2
∑n

i=1 ψβ0,i vanishes because {(Aϕ + Bϕ)
−1Bϕ}k → 0 as k → ∞,

implying n1/2(β̂(k) − β0) = n1/2(β̂ϕ − β0) + op(1) for k → ∞.

S2 Doubly-censored rank regression

Now, we describe our proposed rank-based method for the doubly-censored (DC) data.

Let ei(β) = log T̃i − β′Xi denote the residual under model (1.1). The rank estimating

equation for DC data can be constructed by examining the rank between ei(β) and ej(β)

for all 1 ≤ i < j ≤ n. To perform the rank regression with DC data, we solve the

following estimating function

S̃n(β) = n−1

n∑
i=1

n∑
j=1

∆3i∆2j(Xi −Xj)I{ei(β) ≤ ej(β)}, (S2.7)

or equivalently,

L̃n(β) = n−1

n∑
i=1

n∑
j=1

∆3i∆2j{ei(β)− ej(β)}−, (S2.8)

where ∆2i = δ1i + δ2i and ∆3i = δ1i + δ3i. We define the Gehan estimator as β̃ =

argminβ∈B L̃n(β), which can be obtained via linear programming as before. By introduc-

ing the general weight ϕ̃i(β), we can also consider the generalized log-rank estimating

function

S̃ϕ(β) = n−1

n∑
i=1

ϕ̃i(β)∆3i

{
Xi −

∑n
j=1∆2jXjI{ei(β) ≤ ej(β)}∑n
j=1∆2jI{ei(β) ≤ ej(β)}

}
, (S2.9)

where the choice of ϕ̃i(β) =
∑n

j=1∆2jI{ej(β) ≥ ei(β)} and 1 leads the log-rank and

the Gehan estimators, respectively. Instead of directly working with (S2.9), we again
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formulate a monotone weighted estimating function, with its objective function as

S̃ϕ(β, b) = n−1

n∑
i=1

w̃i{b, ei(b)}∆3i∆2j(Xi −Xj)I{ei(β) ≤ ej(β)}, (S2.10)

and

L̃ϕ(β, b) = n−1

n∑
i=1

w̃i{b, ei(b)}∆3i∆2j{ei(β)− ej(β)}−, (S2.11)

where, w̃i(b, t) = ϕ̃i(b)/
∑n

j=1 ∆2jI{ej(b) ≥ t}. Let β̃(k) = argminβ∈B L̃ϕ(β, β̃(k−1)).

Then, we can finally obtain the log-rank estimator from β̃ϕ = limk→∞ β̃(k). With a

suitable choice of k that depends on n, β̃(k) is asymptotically equivalent to the con-

sistent roots of S̃ϕ(β). Whether the algorithm converges or not, β̃(k) is consistent and

asymptotically normal.

S3 Additional Simulations

This section provides further simulation results relegated from the main paper.



TAEHWA CHOI, SANGBUM CHOI AND DIPANKAR BANDYOPADHYAY

N =  1000 N =  2000

N =  200 N =  400

Gehan Logrank BJ Gehan Logrank BJ

Gehan Logrank BJ Gehan Logrank BJ

−2.0

−1.5

−1.0

−0.5

0.0

1.5

2.0

2.5

3.0

−3

−2

−1

0.0

0.5

1.0

1.5

2.0

Method

T
im

e 
(in

 lo
g 

sc
al

e)

Figure S1: Computing times measured in log scale across various sample sizes. Red, green and blue

colored boxes represent Gehan, log-rank and Buckley-James estimators, respectively.

We first compare the computation time of competing methods, which are summarized

in Figure S1. Times are measured in seconds and transformed into the log scale. Sample

sizes of n = 200, 400, 1000, and 2000 were considered. Among the three methods, the

Gehan approach appears to be the fastest. When the sample sizes are either of n =

200, 400, 1000, the log-rank method is slower than the Buckley-James method. However,

for a larger sample size (n = 2000), the Buckley-James method does not seems to be

efficient as more computing time is required than the proposed method. This is partly
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because the Buckley-James method involves nonparametric function estimation, which

requires additional time to arrive at the solution under larger sample sizes.

Next, we simulate the PIC data with larger sample sizes of n = 1000 and 2000.

Various scenarios are considered, under the censoring rates of 30% and 60% and error

distributions following Normal(0,1) denoted as N(0, 1), Extreme Value (EV), and Ex-

ponential(1), denoted as Exp(1). The simulation results are summarized in Table S1.

For larger sample sizes, the proposed methods still perform very well. Biases are much

smaller (nearly unbiased), than those observed with moderate sample sizes. Furthermore,

the estimated standard errors are smaller, and the target coverage probabilities are well

achieved.
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Table S1: Simulation results for the PIC data. Table entries are the average bias (Bias), empirical stan-

dard error (ESE), asymptotic standard error (ASE), and coverage probability (CP) of the 95%Wald-type

confidence intervals for the parameter estimates obtained from the Gehan and log-rank methods, under

n = 1000 and 2000, censoring rates of 30% and 60%, and error distributions that follow Normal(0,1)

denoted as N(0, 1), Extreme Value (EV), and Exponential(1), denoted as Exp(1).

Gehan Log-rank

Censoring Error n Par Bias ESE ASE CP Bias ESE ASE CP

30% N(0, 1) 1000 β1 –0.002 0.034 0.032 0.944 0.003 0.034 0.035 0.956

β2 –0.004 0.059 0.064 0.958 0.001 0.062 0.070 0.975

2000 β1 0.000 0.023 0.023 0.957 0.005 0.024 0.025 0.965

β2 0.003 0.048 0.045 0.939 0.008 0.048 0.049 0.961

EV 1000 β1 –0.003 0.037 0.036 0.950 0.000 0.043 0.049 0.983

β2 –0.002 0.073 0.072 0.950 0.000 0.088 0.096 0.965

2000 β1 –0.002 0.026 0.025 0.946 0.007 0.032 0.035 0.959

β2 –0.003 0.050 0.051 0.952 0.003 0.064 0.068 0.956

Exp(1) 1000 β1 0.001 0.019 0.019 0.961 0.005 0.026 0.033 0.986

β2 0.001 0.038 0.038 0.945 0.003 0.055 0.064 0.971

2000 β1 0.000 0.013 0.013 0.951 0.007 0.024 0.023 0.942

β2 0.001 0.026 0.026 0.959 0.007 0.045 0.045 0.952

60% N(0, 1) 1000 β1 –0.003 0.038 0.037 0.943 0.000 0.039 0.040 0.952

β2 –0.004 0.072 0.076 0.958 –0.002 0.075 0.081 0.972

2000 β1 0.000 0.028 0.027 0.937 0.004 0.028 0.028 0.948

β2 0.003 0.052 0.053 0.955 0.005 0.053 0.057 0.969

EV 1000 β1 –0.003 0.042 0.042 0.944 –0.001 0.048 0.052 0.971

β2 –0.002 0.082 0.085 0.952 0.000 0.094 0.104 0.973

2000 β1 –0.001 0.030 0.030 0.946 0.001 0.034 0.037 0.968

β2 –0.003 0.059 0.060 0.954 0.000 0.067 0.074 0.967

Exp(1) 1000 β1 0.001 0.023 0.023 0.946 0.003 0.030 0.034 0.974

β2 0.000 0.044 0.045 0.963 0.001 0.058 0.067 0.981

2000 β1 0.000 0.016 0.016 0.952 0.002 0.021 0.024 0.974

β2 0.002 0.030 0.031 0.959 0.004 0.040 0.047 0.984



BIBLIOGRAPHY

Bibliography

van der Vaart, A. and J. Wellner (1996). Weak Convergence and Empirical Processes:

With Applications to Statistics. New York: Springer.


	Asymptotic Results
	Doubly-censored rank regression
	Additional Simulations

