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Supplementary Material

In this supplement, we discuss additional applications of LASLA in Section S1; the construction of

corresponding distance matrices in Section S2; related background review on the sparsity-adaptive

weights in Sections S3; implementation details and additional simulation results in Sections S4-S5.

Proofs of the main results are collected in Section S6. Finally, Sections S7 and S8 extend the

discussion and theoretical analysis to dependent primary statistics.

S1 Additional applications

LASLA has a wide range of applications aside from the network-structured data like the GWAS

example discussed in the main article. In this section, we introduce two additional challenging

settings: data-sharing regression and integrative inference with multiple auxiliary data sets. In both

scenarios, traditional frameworks are not applicable since the auxiliary data UUU and the primary data

TTT do not match in dimension.

Example 1. Data-sharing high-dimensional regression. Suppose we are interested in identi-

fying genetic variants associated with type II diabetes (T2D). Consider a high-dimensional regression
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model:

YYY = µµµ+XXXβββ + ϵϵϵ, (S1.1)

where YYY = (Y1, . . . , Yn)
T are measurements of phenotypes, µµµ = µ111T is the intercept, with 111T being

a vector of ones, βββ = (β1, . . . , βm)T is the vector of regression coefficients, X ∈ Rn×m is the matrix

of measurements of genomic markers, and ϵ = (ϵ1, . . . , ϵn)
T are random errors.

Both genomics and epidemiological studies have provided evidence that complex diseases may

have shared genetic contributions. The power for identifying T2D-associated genes can be enhanced

by incorporating data from studies of related diseases such as cardiovascular disease (CVD) and

ischaemic stroke. Consider models for other studies:

YYY k = µµµk +XXXkβββk + ϵϵϵk, (S1.2)

where the superscript k indicates that the auxiliary data are collected from disease type k ∈ [K].

The notations YYY k, µµµk, βββk, Xk and ϵk have similar explanations as above. The identification of

genetic variants associated with T2D can be formulated as a multiple testing problem (2.1), where

θθθ = (θi : i ∈ [m]) = {I(βi ̸= 0) : i ∈ [m]} is the primary parameter of interest. The primary and

auxiliary data sets are TTT = (Y ,X) and UUU = {(Y k,Xk) : k ∈ [K]}, respectively. The auxiliary data

UUU can provide useful guidance by prioritizing the shared risk factors and genetic variants.

Example 2. Integrative “omics” analysis with multiple auxiliary data sets. The rapidly

growing field of integrative genomics calls for new frameworks for combining various data types

to identify novel patterns and gain new insights. Related examples include (a) the analysis of

multiple genomic platform (MGP) data, which consist of several data types, such as DNA copy
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number, gene expression, and DNA methylation, in the same set of the specimen (Cai et al., 2016);

(b) the integrated copy number variation (iCNV) caller that aims to boost statistical accuracy by

integrating data from multiple platforms such as whole exome sequencing (WES), whole genome

sequencing (WGS) and SNP arrays (Zhou et al., 2018); (c) the integrative analysis of transcriptomics,

proteomics and genomic data (Medina et al., 2010). The identification of significant genetic factors

can be formulated as (2.1) with mixed types of auxiliary data.

S2 Forming local neighborhoods: illustrations

Recall that, in Section 1, LASLA first summarizes the structural knowledge in a distance matrix

DDD ∈ Rm×m where m is the number of hypotheses. The distance matrix describes the relation

between each pair of hypotheses in the light of the auxiliary data. For the GWAS example detailed

in Section 1, DDD = (1 − r2ij : i, j ∈ [m]) where rij measures the linkage disequilibrium between the

two SNPs i and j.

In Example 1 (data-sharing regression) from Section S1, we can extract the structural knowledge

provided by the related regression problems via Mahalanobis distance (Krusińska, 1987). Specifi-

cally, let {β̂ββ
k
= (β̂k

1 , . . . , β̂
k
m)T : k ∈ [K]} denote the estimation of {βββk = (βk

1 , . . . , β
k
m)T : k ∈ [K]}.

Denote by β̂ββi = (β̂k
i : k ∈ [K]) the vector of estimated coefficients for the ith genomic marker across

K different studies. The distance matrix DDD = (Dij)i,j∈[m] is then constructed via Mahalanobis

distance with Dij = (β̂ββi − β̂ββj)Σ̂
−1
βββ (β̂ββi − β̂ββj)

T , where Σ̂βββ is the estimated covariance matrix based

on {β̂ββi : i ∈ [m]}. Similarly, in Example 2 (analysis with multiple auxiliary data sets), suppose

we collect a multivariate variable UUU i from different platforms as the side information for gene i,
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then the Mahalanobis distance can be used to construct a distance matrix DDD = (Dij)i,j∈[m] with

Dij = (UUU i−UUU j)Σ̂
−1
U (UUU i−UUU j)

T, where Σ̂U is the estimated covariance matrix based on the auxiliary

sample {UUU i : i ∈ [m]}.

We emphasize that LASLA is not limited to the aforementioned examples. Most of the tradi-

tional covariate-assisted methods focus on the array-like auxiliary data UUU = {Ui : i = 1, 2, . . .} that

matches primary data coordinate by coordinate. LASLA can also handle this dimension-matching

side information as the latter can be represented by a distance matrix DDD through simple manip-

ulations. Below, we provide a list of practical types of side information and their corresponding

methods for constructing the distance matrix.

(a) A vector of categorical covariates. The elements in UUU take discrete values and the local

neighborhoods can be defined as groups. With suitably chosen weights LASLA reduces to the

methods considered in Hu et al. (2010), Li and Barber (2019), and Xia et al. (2020) that are

developed for multiple testing with groups.

(b) A vector of continuous covariates. We can define distance as either the absolute difference or

the standardized difference in rank Dij = |F̂m(Ui) − F̂m(Uj)|, where F̂m(t) is the empirical

CDF.

(c) Spatial locations. Such structures have been considered in, for example, Lynch et al. (2017),

Lei and Fithian (2018) and Cai et al. (2022). The locations are viewed as covariates and Dij

is the Euclidean distance between locations i and j.

(d) The correlations in a network or partial correlations in graphical models. See the GWAS
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example discussed in Section 1 of the main article.

(e) Multiple auxiliary samples. The Mahalanobis distance or its generalizations (Krusińska, 1987)

can be used to calculate the distance matrix DDD.

Note that in practical applications, it could be beneficial to “standardize” the distance matrix DDD;

this step ensures algorithm robustness. A more comprehensive discussion on the implementation

details is relegated to Section S4.1.

S3 Details on sparsity-adaptive weights

Recall the definition from Section 2.2 that the primary statistics Ti has the hypothetical mixture

distribution:

F ∗
i (t) = (1− π∗

i )F0(t) + π∗
i F

∗
1i(t)

for i ∈ [m]. The quantity π∗
i indicates the sparsity level of signals at location i, and π∗

i is allowed

to be heterogeneous across m testing locations.

The key idea in existing weighted FDR procedures such as GBH (Hu et al., 2010), SABHA

(Li and Barber, 2019) and LAWS (Cai et al., 2022) is to construct weights that leverage π∗
i by

prioritizing the rejection of the null hypotheses in groups or at locations where signals appear to

be more frequent. Specifically, SABHA defines the weight as wsabha
i = 1/(1 − π∗

i ), and LAWS as

wlaws
i = π∗

i /(1 − π∗
i ). The sparsity adaptive-weights have an intuitive interpretation. Consider

the LAWS weight wlaws
i , if π∗

i is large, indicating a higher occurrence of signals at location i, the

weighted p-value Pw
i := Pi/w

laws
i = (1 − π∗

i )Pi/π
∗
i will be smaller, up-weighting the significance
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level of hypothesis i. However, compared to the proposed weights, such weighting scheme ignores

structural information in alternative distributions as discussed in Section 2.5.

S4 Additional numerical results with marginally indepen-

dent data

In this section, we provide the numerical implementation details and collect additional simulation

results for data-sharing high-dimensional regression, latent variable model and multiple auxiliary

samples under the marginal independence assumption (A1).

S4.1 Implementation Details

In all of our numerical results, the bandwidth h for the kernel estimations in (2.5) and (2.6) is chosen

automatically by applying the density function with the option “SJ-ste” in R package stats. For

the size of neighborhoods m1−ϵ, the default choice for ϵ is 0.1 for marginally independent p-values,

while for dependent p-values, we set ϵ = 0 to comply with our FDR control theory under weak

dependence in Section S7. For the screening parameter τ , we choose the threshold through the BH

algorithm with FDR level α = 0.8. This choice ensures that the screening set {i ∈ [m] : Pi > τ} is

predominantly composed of null indices. See Cai et al. (2022) for a more comprehensive discussion

on the choice of τ .

To enhance algorithmic robustness and numerical performance, we perform a data-driven scal-

ing of the distance matrix DDD by a constant factor a. A practical guideline is to ensure that the

spread of entries in the scaled distance matrix DDD/a is similar to that of the entries in TTT . We use the
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interquartile range (IQR) to measure data spread, a strategy similarly employed in Scott (1992). All

additional details can be found in the public repository containing all experiments implementation

at https://github.com/ZiyiLiang/r-Blasla.

S4.2 Heterogeneous alternative distributions

As highlighted in Section 2.5, LASLA can handle hypothesis-specific alternative densities, unlike

many popular methods that only accommodate heterogeneous sparsity levels (Li and Barber, 2019;

Cai et al., 2022). Building on the discussion in Section 2.5, we present two additional examples

involving heterogeneous data to further demonstrate LASLA’s strength in leveraging hypothesis-

specific information. Consistent with the analysis in Section 2.5, we compare the oracle LASLA

procedure with the oracle LAWS to illustrate the methodological distinctions without the influence

of practical implementation.

Extending the analysis of Example 1 in Section 2.5, which considers asymmetry in the sign of

the signal, we explore a more challenging setting that allows for varying levels of asymmetry across

hypotheses.

Example S4.1. Set F ∗
1i(t) = γiN(3, 1)+(1−γi)N(−3, 1), where γi controls the relative proportions

of positive and negative signals for the ith hypothesis. Each γi follows a uniform distribution over

interval [0.5− r, 0.5 + r], i.e., γi ∼ U(0.5− r, 0.5 + r). We vary r from 0 to 0.5 by 0.1.

In practice, the heterogeneity of alternative densities can be complex, potentially involving a

mixture of factors such as signal strength, signal sign, and the shape of the alternative density. In

the following setting, we introduce substantial heterogeneity across each of these components:

https://github.com/ZiyiLiang/r-lasla
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Example S4.2. Set F ∗
1i(t) = γiN(µi, σ

2
i ) + (1 − γi)N(−µi, σ

2
i ), where each parameter follows a

uniform distribution: γi ∼ U(0, 1);µi ∼ U(2.5, 3.5) and σi ∼ U(0.1, 1).

The results for the two examples above are summarized in Figure S4.2 and Figure S4.2, respec-

tively. We again observe LASLA’s ability in capturing the heterogeneities, thereby improving the

power across the settings.
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Figure S4.1: Comparison of oracle LASLA and benchmarks with nominal FDR level α = 0.05 under
the heterogeneous asymmetry setting in Example S4.1. Parameter r controls the level of asymmetry
in each individual hypothesis. All other details remain consistent with Figure 2.
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Figure S4.2: Comparison of oracle LASLA and benchmarks with nominal FDR level α = 0.05 under
the setting in Example S4.2, which introduces substantial heterogeneity across hypotheses.
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S4.3 Data-sharing high-dimensional regression

Example 2 in Section S1 discussed how the knowledge in regression models from related studies

can be transferred to improve the inference on regression coefficients from the primary model. This

section designs simulation studies to illustrate the point.

Consider the regression model (S1.1) defined in Section S1 with Xij ∼ N(0, 1) for i ∈ [n], j ∈

[m] where Xij denotes the entry of X at coordinate (i, j); ϵi ∼ N(0, 1) for i ∈ [n]. Let P(βi = 0) =

0.9. For the non-null locations, βi ∼ (−1)u|N(µ, 0.1)|; u ∼ Bernoulli(0.2). Note that signals will be

more likely to take positive signs, hence asymmetric rejection rules are desired.

Models from K related studies are generated by (S1.2). If the auxiliary model is closely related

to the primary model, they tend to share similar coefficients. Therefore, we generate the coefficients

for study k ∈ [K] as βββk = βββ + σσσ, where each coordinate of σσσ is drawn from normal distribution

N(0, σ2). Other quantities are defined similarly as the primary model.

We compute the distance matrixDDD using the Mahalanobis distance on the estimated coefficients

as specified in Section S2. Fix K = 3, n = 1000,m = 800, consider the following settings:

• Setting 1: Fix µ = 0.25, vary the noise level σ from 0.1 to 0.2 by 0.02.

• Setting 2: Fix σ = 0.15, vary the signal strength µ from 0.25 to 0.3 by 0.01.

We compare data-driven LASLA with BH and AdaPT method (Yurko et al., 2020). To apply

LASLA, it’s essential to have knowledge of the null distribution for the test statistics. In this

simulation we use the ordinary least square estimators and Ti follows a t-distribution. Alternatively,

one can explore the approach outlined in Xia et al. (2020), where the test statistics follow the
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N(0, 1) distribution asymptotically. Figure S4.3 shows that LASLA can effectively leverage the side

information from related studies and outperforms both BH and AdaPT.
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Figure S4.3: Empirical FDR and power comparison of data-driven LASLA and benchmarks at
nominal FDR level α = 0.05 under the data-sharing regression setting in Section S4.3. (a): Regres-
sion setting 1: increasing the noise level σ in the auxiliary data; (b): Regression setting 2: increasing
signal strength µ.

S4.4 Latent variable setting

Suppose the primary and auxiliary data are associated with a common latent variable ξ = (ξi : i ∈

[m]) where ξi ∼ (1− θi)∆0 + θiN(µ, 1) and ∆0 is the Dirac delta function, namely, ξi = 0 if θi = 0.

The primary data TTT = (Ti : i ∈ [m]) and auxiliary data UUU = (Ui : i ∈ [m]) respectively follow:

Ti ∼ N(ξi, 1), Ui ∼ N(ξi, σ
2
s), (S4.3)

where σs controls the informativeness the auxiliary data. Our goal is to test m hypotheses on θi as

stated in (2.1). Fix m = 1200 and let θi
ind∼ Bernoulli(0.1), for i ∈ [m]. We consider two settings:
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• Setting 1: Fix µ = 2.5, vary σs from 0.5 to 2 by 0.25.

• Setting 2: Fix σs = 1 , vary µ from 3 to 4 by 0.2.

We compute the distance matrix DDD from the auxiliary data UUU using the Euclidean distance,

i.e. Dij = |Ui − Uj |. We then compare LASLA with the BH procedure, data-driven SABHA

(SABHA.DD) as reviewed in Section S3 and AdaPT method (Yurko et al., 2020).

The results are summarized in Figure S4.4. In both settings, LASLA achieves a lower FDR

than SABHA while still outperforming it in power. This is because SABHA relies solely on p-

values and uses weights that only account for sparsity. The AdaPT method performs comparably

to data-driven LASLA when the noise level in the auxiliary data is low, but its performance rapidly

deteriorates as the auxiliary information becomes noisier.
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Figure S4.4: Empirical FDR and power comparison of LASLA and benchmarks at nominal FDR
level α = 0.05 under the latent variable setting in Section S4.4. (a): Latent setting 1: increasing
the noise level σ in the auxiliary data; (b): Latent setting 2: increasing signal strength µ.
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S4.5 Multiple auxiliary samples

We explore two scenarios with multiple auxiliary samples: (1) all samples are informative; (2) some

samples are non-informative. Similar to the previous section, consider a latent variable ξ = (ξi : i ∈

[m]) where ξi ∼ (1−θi)∆0+θiN(µ, 1) and θi ∼ Bernoulli(0.1). The primary statistics Ti ∼ N(ξi, 1)

for i ∈ [m]. The goal is to make inference on the unknown θi. Let UUUk = (Uk
i : i ∈ [m]) denote the

kth auxiliary sequence for k ∈ [K]. If UUU is informative, it should carry knowledge on the underlying

signal θi. Hence we introduce the first setting where all auxiliary samples are associated with the

latent variable ξ:

• Setting 1: Uk
i ∼ N(ξi, σ

2
s) for i ∈ [m], k = 1, ..., 4.

Let γi ∼ Bernoulli(0.1) for i ∈ [m] independently of everything else, and ψi ∼ (1−γi)∆0+γiN(µ, 1).

Consider:

• Setting 2: Uk
i ∼ N(ξi, σ

2
s) , for k = 1, 2; Uk

i ∼ N(ψi, σ
2
s) , for k = 3, 4.

Note that γi being independent of θi can lead to significant divergence between the latent

variables ψi and ξi, potentially making UUU3 and UUU4 anti-informative. The construction of DDD from

{UUUk}k∈[K] is not unique, we explore two different methods: using Mahalanobis distance vs using

Euclidean distance with the averaged data Uavg
i = 1

4 (U
1
i + U2

i + U3
i + U4

i ) for i ∈ [m]. We assess

their effectiveness under varying degrees of informativeness exhibited by the auxiliary samples.

In both settings, we fix m = 1200, µ = 3, and change σs from 0.5 to 2 by 0.25. The results are

summarized in Figure S4.5. Intuitively, the averaging method reduces variance when all auxiliary

samples are informative and leads to power gain over the Mahalanobis approach. However, the
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latter appears to be more robust when some samples are anti-informative.
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Figure S4.5: Empirical FDR and power comparison of LASLA with different distance computations
at a nominal FDR level of α = 0.05 under the multiple auxiliary sample setting in Section S4.5. (a):
Multiple auxiliary samples, setting 1: all auxiliary samples are informative; (b): Multiple auxiliary
samples, setting 2: half of the auxiliary samples are uninformative.

S4.6 Comparison of alternative thresholding rules

As mentioned in Remark 1 of Section 2.4, it is possible to substitute the LASLA thresholding

rule in (2.11) with other types of weighted thresholding rules such as the weighted BH procedure

(WBH) (Genovese et al., 2006) and the adaptively adjusted WBH procedure (Adj-WBH) (Ram-

das et al., 2019). In this section, we first describe both approaches and then present numerical

comparisons.

The WBHmethod applies the BH procedure to the weighted p-values {Pw
i = Pi/wi : i ∈ [m]} at

level α, while the Adjusted WBH method (Ramdas et al., 2019) improves on WBH by applying the

BH procedure at an adaptively adjusted FDR level. Specifically, it computes a “weighted sparsity
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estimator”

π̂ = 1−
|w|∞ +

∑m
i=1 wiI{Pi > τ}

m(1− τ)
(S4.4)

wherew = (w1, . . . , wm) are the weights, |·|∞ is the infinity norm and τ > 0 is a screening parameter

similar to the one used in (2.5). Note that the weighted sparsity estimator does not account for

potential heterogeneity in the sparsity level across the hypotheses. When such heterogeneity is

significant, the adaptive adjustment may not be optimal, as we shall see later in Figure S4.7. The

rejection threshold of the adjusted WBH method is then computed by applying the BH procedure

to the weighted p-values {Pw
i = Pi/wi : i ∈ [m]} at level α/(1− π̂).

Next, we provide some numerical comparisons of different thresholding approaches. Under

the latent variable setting detailed in Section S4.4, we compare LASLA with WBH and adjusted

WBH, both benchmarks are implemented with data-driven LASLA weights. The purpose of this

comparison is to isolate the effects of different thresholding rules, as the weights remain consistent

across methods. Figure S4.6 shows that WBH is overly conservative, whereas both LASLA and

adjusted WBH achieve higher power by adjusting to the sparsity level in the dataset. We emphasize

that in this latent variable setting, the sparsity level is constant across all locations i ∈ [m], hence

LASLA and adjusted WBH have nearly identical performance. In the next experiment, we examine

a synthetic setting with heterogeneous sparsity levels.

Consider a simple scenario where the primary data TTT = (Ti : i ∈ [m]) are generated as

Ti ∼ (1− θi)N(0, 1) + θiN(2, 1), where θi ∼ Bernoulli(πi) with

πi ∼ U(0.8, 0.9), for i = 1, . . . , 200; πi = 0.01, for i = 201, . . . , 1000. (S4.5)



15

Here, the sparsity levels are heterogeneous, with elevated levels in the first 200 indices. For sim-

plicity and direct methodological comparison, we use oracle quantities across all methods in this

heterogeneous setting. Both adjusted and unadjusted WBH methods utilize the oracle LASLA

weights, and the weighted non-null proportion in (S4.4) is also computed using the oracle LASLA

weights. The results in Figure S4.7 demonstrate that LASLA effectively utilizes the heterogeneity in

sparsity levels and outperforms the adjusted WBH method. The adjusted WBH falls short because

the weighted sparsity level in (S4.4) only captures the global sparsity level, neglecting potential

heterogeneity.
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Figure S4.6: Empirical FDR and power comparison of different thresholding rules at nominal FDR
level α = 0.05 under the latent variable setting in Section S4.4. Other details are the same as in
Figure S4.4.
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Figure S4.7: Empirical FDR and power comparison for the oracle LASLA, WBH and adjusted WBH
for the heterogeneous sparsity level setting. All methods utilize the oracle LASLA weights.

S5 Numerical experiments for dependent data

In this section we conduct more numerical studies under data dependency. Following a similar

setup as in Section 4, in all the subsequent experiments, θi ∼ Bernoulli(0.1) indicates the presence

or absence of a signal at index i. The primary statistics Ti are marginally distributed as N(0, 1)

when θi = 0 and are distributed as N(3, 1) when θi = 1. The distance matrix DDD = (Dij)1≤i,j≤m

is defined by Dij ∼ I{θi=θj}|N(0, 0.7)| + I{θi ̸=θj}|N(1, 0.7)|. We fix m = 1000 and the FDR level

at α = 0.05. The correlation structure will be specified in each setting below. Section S5.1 ex-

amines LASLA’s performance in a weakly dependent setting, while Section S5.2 considers stronger

dependency scenarios.

S5.1 Block dependency

In this setting, we consider a “block” dependency type where variables within the same block

are equally correlated with each other, while variables in different blocks are uncorrelated. This

structure offers a simplified model to mimic the scenarios where there are distinct clusters or groups

of highly correlated variables that have little or no correlation with variables in other groups, similar
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Figure S5.8: Empirical FDR and power comparison for data-driven LASLA and BH under the block
dependency setting. The correlation strength increases as ρ increases.

to GWAS data where certain clusters of SNPs may work together to influence specific phenotypes.

We divide the m = 1000 indices into 10 blocks, each has a size of 100. For k ∈ [10], let bk ⊂ [m]

denote the collection of indices in block k. For i, j ∈ [m], define the correlation matrix ΣΣΣ as

ΣΣΣij =


1, if i = j;

ρ, if i ̸= j, and i, j ∈ bk, for some k ∈ [10];

0, otherwise,

(S5.6)

where ρ controls the correlation strength. We vary ρ from 0 to 0.8 by step of 0.2, and summarize

the result in Figure S5.8. We observe that LASLA’s performance remains robust under block

dependency, consistently controlling the FDR within the nominal level.

S5.2 Random dependency

In this section we consider a “random” dependency structure where the correlation matrix is gen-

erated randomly, with no specific pattern or clustering. We first generate a random factor vector

vvv ∈ Rm, where each entry follows a standard normal distribution. Define the correlation matrix as

ΣΣΣij = s(vvvvvv⊤ + ϵϵϵ), (S5.7)
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where we add a diagonal matrix ϵϵϵ, with the diagonal elements uniformly distributed from [0, 1],

ensuring the positive definiteness of the correlation matrix. The function s(·) is then applied to

standardize the matrix, ensuring that all diagonal elements are equal to 1. The off-diagonal elements

approximately follow a uniform distribution from [−1, 1]. Unlike the block correlation in (S5.6)

where indices are weakly and positively correlated, the random correlation in (S5.7) allows for both

negative and positive correlations. Moreover, the correlation is strong and may even violate the weak

dependency assumption in (A3). To adjust the dependency strength, we introduce a parameter a

that scales the off-diagonal elements of ΣΣΣ by dividing them by a. That is, for i, j ∈ [m], the adjusted

correlation matrix is defined as

Σ̃ΣΣij =


1, if i = j;

ΣΣΣij

a , otherwise.

We examine LASLA’s performance with a taking values in (1, 1.5, 2, 3, 5, 10). Note that smaller

values of a signify stronger correlations. Figure S5.9 shows that the FDR of LASLA tends to

rise above the nominal level under the strongest dependency setting. As discussed in Remark 2,

the dependency assumption can be further relaxed by choosing a larger bandwidth, for instance

m−1/6. Hence, we rerun the experiment with a = 1 using the enlarged bandwidth, and Figure S5.10

demonstrates that LASLA effectively reduces the FDR level under this adjustment.

S6 Proof of Main Results

Recall that DDDi is the ith column of DDD, and Di is a continuous finite domain (w.r.t. coordinate i) in

R with positive measure by adopting the fixed-domain asymptotics in Stein (1995). Each d ∈ Di is
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Figure S5.9: Empirical FDR and power comparison for data-driven LASLA and BH under the
random dependency setting. The correlation strength decreases as a increases.
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Figure S5.10: Empirical FDR and power comparison for data-driven LASLA and BH under the
random dependency setting with a = 1 and enlarged bandwidth h = m−1/6.

a distance and 0 ∈ Di. The two sets DDDi and Di can be viewed as collections of distances measured

from the partial and full network respectively, and it follows that DDDi ⊂ Di.

Throughout the proofs, we assume that DDDi → Di as m→ ∞ in the sense that, for any d0 ∈ Di,

there exists at least an index j such that |Dij − d0| = O(m−1) as m→ ∞.

S6.1 Proof of Proposition 1

Proof. For simplicity of notation, throughout we omit the conditioning on D, and use P(Pj >

τ |Dij = x) and P(Pi > τ) to denote P(Pj > τ | Dj , Dij = x) and P(Pi > τ | Di) respectively. Recall
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that

1− πi =

∑
j∈Ni

[Kh(Dij)I{Pj > τ}]
(1− τ)

∑
j∈Ni

Kh(Dij)

Also note that, for all i ∈ [m],

E
(∑

j∈Ni

[Kh(Dij)I{Pj > τ} |DDD
)

=
∑
j∈Ni

[Kh(Dij)P(Pj > τ |DDDj)]

Then by m−1 ≪ h≪ m−ϵ, as DDDi → Di, we have

E(1− πi |DDD)∫
D̃i
Kh(x)P(Pjx > τ | Dijx = x) dx/(1− τ)

∫
D̃i
Kh(x) dx

→ 1,

where jx represents the index such that Dijx = x and D̃i is the limit of {Dij , j ∈ Ni} in the

asymptotic framework described at the beginning of Section S6. Using Taylor expansion at x = 0,

combined with Assumption (A2), we have

∫
D̃i

Kh(x)P(Pjx > τ | Dijx = x) dx

= P(Pi > τ)

∫
D̃i

Kh(x) dx+ P′(Pi > τ)

∫
D̃i

xKh(x) dx

+
P′′(Pi > τ)

2

∫
D̃i

x2Kh(x) dx+O(h2).

Thus, by the assumptions of K(·) in (2.4), uniformly for all index i, there exists some constant c > 0

such that

[E(πi |DDD)− πτ
i ]

2

≤
(
c

∫
D̃i

xKh(x) dx

/∫
D̃i

Kh(x) dx+ c

∫
D̃i

x2Kh(x)

/∫
D̃i

Kh(x) dx

)2

+ o(1)

→ 0, as h→ 0.
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Now we inspect the variance term. By Condition (A3), there exists a constant c′ > 1,

Var

(∑
j∈Ni

[Kh(Dij)I{Pj > τ}] |DDD
)

≤ c′
∑
j∈Ni

[K2
h(Dij)Var

(
I{Pj > τ} |DDDj

)
]

= c′
∑
j∈Ni

[
K2

h(Dij)P(Pj > τ |DDDj){1− P(Pj > τ |DDDj)}
]
.

Hence, as h ≫ m−1, by the assumptions of K(·) in (2.4) and that it is positive and bounded, we

have

Var(1− πi) ≤ c′′m−1

∫
D̃i
K2

h(x) dx

[(1− τ)
∫
D̃i
Kh(x) dx]2

≤ c′′(mh)−1

∫
RK

2(y) dy

[(1− τ)
∫
D̃i
Kh(x) dx]2

≤ c′′′(mh)−1 = o(1),

for some constant c′′, c′′′ > 0. Hence, as DDDi → Di, by combining the bias term and variance term,

the consistency result is proved.

S6.2 Proof of Theorem 1

Proof. For simplicity of notation, throughout we omit the explicit conditioning on D, and use

P(θi = 0) to denote P(θi = 0 | Di) and P(Pw
i ≤ t | θi = 0, wi) to denote P(Pw

i ≤ t | θi = 0, wi,Di).

Note that, by Algorithm 1, the FDP of LASLA at the thresholding level t can be calculated by

FDP (t) =

∑m
i=1 I{Pw

i ≤ t, θi = 0}
max[

∑m
i=1 I{Pw

i ≤ t}, 1]

=

∑m
i=1 P(Pw

i ≤ t | θi = 0, wi)P(θi = 0)

max[
∑m

i=1 I{Pw
i ≤ t}, 1]

·
∑m

i=1 I{Pw
i ≤ t, θi = 0}∑m

i=1 P(Pw
i ≤ t | θi = 0, wi)P(θi = 0)

,
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Step 1: We first show that, uniformly for all i ∈ [m], we have

m∑
i=1

P(Pw
i ≤ t | θi = 0, wi)P(θi = 0) ≤ [1 + oP(1)]

m∑
i=1

wi(1− πi)t. (S6.8)

Note that, in Algorithm 2, Ti is not used in the computation of wi given the sign of Ti. Then by

the independence assumption (A1), Ti is independent of wi conditioning on the sign, and it follows

that:

m∑
i=1

P(Pw
i ≤ t | θi = 0, wi)P(θi = 0)

=

[
m∑
i=1

P(Pw
i ≤ t | Ti > 0, θi = 0, wi)P(Ti > 0 | θi = 0, wi)(1− π∗

i )

]

=+

[
m∑
i=1

P(Pw
i ≤ t | Ti < 0, θi = 0, wi)P(Ti < 0 | θi = 0, wi)(1− π∗

i )

]

=

[
m∑
i=1

P(Ti > 0 | θi = 0)wi(1− π∗
i )t

]
+

[
m∑
i=1

P(Ti < 0 | θi = 0)wi(1− π∗
i )t

]

=

m∑
i=1

wi(1− π∗
i )t ≤

m∑
i=1

wi(1− πτ
i )t,

where the last inequality follows from the fact that πτ
i is a conservative approximation of π∗

i as

showed in Cai et al. (2022). By the result of Proposition 1 and Assumption (A4), together with the

fact that ξ ≤ wi ≤ 1 for i ∈ [m], we have

m∑
i=1

P(Pw
i ≤ t | θi = 0, wi)P(θi = 0) ≤

m∑
i=1

wi[1− πi + oP(1)]t = [1 + oP(1)]

m∑
i=1

wi(1− πi)t.

Hence, (S6.8) is proved.

Step 2: We next show that∣∣∣∣∣
∑

θi=0 P(Pw
i ≤ t | θi = 0, wi)−

∑m
i=1 P(Pw

i ≤ t | θi = 0, wi)P(θi = 0)∑m
i=1 P(Pw

i ≤ t | θi = 0, wi)P(θi = 0)

∣∣∣∣∣→ 0, (S6.9)
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in probability. Define the event

B =

[
{θi}mi=1,

m∑
i=1

I{θi = 0} ≥ cm for some constant c > 0

]
.

It follows from Condition (A4) that P(B) → 1. Then by the fact that ξ ≤ wi ≤ 1, we have

E

[
E
(∣∣∣∣∑m

i=1 [P(Pw
i ≤ t | θi = 0, wi)I{θi = 0} − P(Pw

i ≤ t | θi = 0, wi)P(θi = 0)]∑m
i=1 P(Pw

i ≤ t | θi = 0, wi)P(θi = 0)

∣∣∣∣2
∣∣∣∣∣wi

)]

= E

[
E
(∣∣∣∣∑m

i=1 P(Pw
i ≤ t | θi = 0, wi)[I{θi = 0} − P(θi = 0)]∑m
i=1 P(Pw

i ≤ t | θi = 0, wi)P(θi = 0)

∣∣∣∣2
∣∣∣∣∣wi

)]

= E

[
Var

(
m∑
i=1

[P(Pw
i ≤ t|θi = 0)I{θi = 0}]

∣∣∣∣∣wi

)/( m∑
i=1

witP(θi = 0)

)2
]

= O(mζ−1),

the last equality follows from the law of total variance and condition (A3) for some 0 ≤ ζ < 1.

Hence (S6.9) is proved.

Step 3: Finally, we analyze the following quantity:∑m
i=1 I{Pw

i ≤ t, θi = 0}∑m
i=1 P(Pw

i ≤ t | θi = 0, wi)P(θi = 0)
.

We first check the range of the cutoff t, or equivalently the threshold for the weighted z-values, i.e.,

zwi = Φ−1(1 − Pw
i /2), for i ∈ [m]. Then as shown in Cai et al. (2022) and replace their weights

πi

1−πi
by wi, it is easy to see that, by applying BH procedure at level α to the adjusted p-values with

weights wi, the corresponding threshold is no larger than the threshold of LASLA for the adjusted

p-values with the same weights wi. Hence it suffices to obtain the threshold for the weighted z-values

zwi = Φ−1(1− Pw
i /2) of such BH procedure with weights wi.
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Let tm = (2 logm− 2 log logm)1/2. By Condition (A5), we have

∑
θi=1

I{|zi| ≥ (c logm)1/2+ρ/4} ≥ {1/(π1/2α) + δ}(logm)1/2,

with probability going to one. Recall that we have ξ ≤ wi ≤ 1 for some constant ξ > 0. Thus, for

those indices i ∈ H1 (equivalently θi = 1) such that |zi| ≥ (c logm)1/2+ρ/4, we have

Pw
i ≤ (1− Φ((c logm)1/2+ρ/4))/wi = o(m−M ),

for any constant M > 0. Thus we have

∑
i∈[m]

I{zwi ≥ (2 logm)1/2} ≥ {1/(π1/2α) + δ}(logm)1/2,

with probability going to one. Hence, with probability tending to one,

2m∑
i∈[m] I{zwi ≥ (2 logm)1/2}

≤ 2m{1/(π1/2α) + δ}−1(logm)−1/2.

Because 1− Φ(tm) ∼ 1/{(2π)1/2tm} exp(−t2m/2), it suffices to show that,

sup
0≤t≤tm

∣∣∣∣∣
∑m

i=1 I{zwi ≥ t, θi = 0} −
∑m

i=1 P(zwi ≥ t | θi = 0, wi)P(θi = 0)∑m
i=1 P(zwi ≥ t | θi = 0, wi)P(θi = 0)

∣∣∣∣∣→ 0, (S6.10)

in probability. Let the event A = [{θi}mi=1 : (S6.9) holds]. By the proofs in Step 2, we have P(A) → 1.

Hence, it is enough to show that, for {θi}mi=1 ∈ A, we have

sup
0≤t≤tm

∣∣∣∣∣
∑

θi=0 [I{zwi ≥ t} − P(zwi ≥ t | θi = 0, wi)]∑
θi=0 P(zwi ≥ t | θi = 0, wi)

∣∣∣∣∣→ 0, (S6.11)

in probability. Let 0 ≤ t0 < t1 < · · · < tb = tm such that tι − tι−1 = vm for 1 ≤ ι ≤ b − 1 and

tb − tb−1 ≤ vm, where vm = 1/
√

logm(log4m). Thus we have b ∼ tm/vm. For any t such that

tι−1 ≤ t ≤ tι, due to the fact that G(t + o((logm)−1/2))/G(t) = 1 + o(1) with G(t) = 2(1 − Φ(t))
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uniformly in 0 ≤ t ≤ c(logm)1/2 for any constant c, by Xia et al. (2020), it suffices to prove that

max
0≤ι≤b

∣∣∣∣∣
∑

θi=0 [I{zwi ≥ tι} − P(zwi ≥ tι | θi = 0, wi)]∑
θi=0 P(zwi ≥ tι | θi = 0, wi)

∣∣∣∣∣→ 0, (S6.12)

in probability. Thus, it suffices to show that, for any ϵ > 0,

∫ tm

0

P

{∣∣∣∣∣
∑

θi=0 [I{zwi ≥ t} − P(zwi ≥ t | θi = 0, wi)]∑
θi=0 P(zwi ≥ t | θi = 0, wi)

∣∣∣∣∣ ≥ ϵ

}
dt = o(vm). (S6.13)

By the fact that ξ ≤ wi ≤ 1 for some constant ξ > 0, we have

P(zwi ≥ t | θi = 0, wi) = P(Φ−1(1− Pw
i /2) ≥ t | θi = 0, wi)

= P(Pi ≤ 2wi(1− Φ(t)) | θi = 0, wi)

= 2wi(1− Φ(t)) ≥ ξG(t).

It follows that

E

∣∣∣∣∣
∑

θi=0 [I{zwi ≥ t} − P(zwi ≥ t | θi = 0, wi)]∑
θi=0 P(zwi ≥ t | θi = 0, wi)

∣∣∣∣∣
2

≤
E
∣∣∑

θi=0 [I{zwi ≥ t} − P(zwi ≥ t | θi = 0, wi)]
∣∣2{∑

θi=0 ξG(t)
}2

=
E
[∑

θi=0,θj=0 P(zwi ≥ t, zwj ≥ t | θi = 0, θj = 0, wi, wj)−
{∑

θi=0 P(zwi ≥ t | θi = 0, wi)
}2]{∑

θi=0 ξG(t)
}2 .

Recall that, by Algorithm 2 we only use O(m1−ϵ) neighbors to construct wi for any small enough

constant ϵ > 0, Hence, we can divide the indices pairs H̃0 = {(i, j) : θi = 0, θj = 0} into two subsets:

H̃01 = {(i, j) ∈ H̃0, either P
w
i is correlated with Pj or Pw

j is correlated with Pi},

H̃02 = H̃0 \ H̃01,

where |H̃01| = O(m2−ϵ) while among them m pairs with i = j are perfectly correlated.
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Note that, for (i, j) ∈ H̃01,

E
[∑

(i,j)∈H̃01

{
P(zwi ≥ t, zwj ≥ t | θi = 0, θj = 0, wi, wj)−

∏
h=i,j P(zwh ≥ t | θh = 0, wh)

}]
{∑

θi=0 ξG(t)
}2

≤
E
[∑

(i,j)∈H̃01
P(zwi ≥ t, zwj ≥ t | θi = 0, θj = 0, wi, wj)

]
{∑

θi=0 ξG(t)
}2 .

Recall that event B = [{θi}mi=1,
∑m

i=1 I{θi = 0} ≥ cm for some constant c > 0] and P(B) → 1. For

{θi}mi=1 ∈ A ∩B, we have

E
[∑

(i,j)∈H̃01

{
P(zwi ≥ t, zwj ≥ t | θi = 0, θj = 0, wi, wj)−

∏
h=i,j P(zwh ≥ t | θh = 0, wh)

}]
{∑

θi=0 ξG(t)
}2

≤
∑

θi=0 P(zwi ≥ t | θi = 0, wi){∑
θi=0 ξG(t)

}2 +O

(
m2−ϵ

m2

)

≤ O

(
1

mG(t)

)
+O

(
m−ϵ

)
,

where the first term reflects the pairs with i = j. On the other hand,

E

 ∑
(i,j)∈H̃02

P
{
zwi ≥ t, zwj ≥ t | θi = 0, θj = 0, wi, wj

}
−
∏
h=i,j

P(zwh ≥ t | θh = 0, wh)


 = 0.

Then by the fact that

∫ tm

0

{
1

mG(t)
+m−ϵ

}
dt = o(vm),

and that P(A∩B) → 1, (S6.13) is proved and (S6.11) is thus proved. Combining (S6.11) and (S6.9),

we obtain (S6.10). This together with (S6.8) prove the result of Theorem 1.

S6.3 Proof of Theorem 2

Proof. Note that

Q1(t) =

∑m
i=1(1− π∗

i )t∑m
i=1(1− π∗

i )t+
∑m

i=1 π
∗
i F

∗
1i(t | D)

.
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Recall that w̃i = wi[
∑m

j=1(1− π∗
j )]/[

∑m
j=1(1− π∗

j )wj ], we have

Qw̃(t) =

∑m
i=1(1− π∗

i )w̃it∑m
i=1(1− π∗

i )w̃it+
∑m

i=1 π
∗
i F

∗
1i(w̃it | D)

=

∑m
i=1(1− π∗

i )t∑m
i=1(1− π∗

i )t+
∑m

i=1 π
∗
i F

∗
1i(w̃it | D)

.

Under the Assumption (A7) we have,

m∑
i=1

π∗
i F

∗
1i(w̃it | D) =

m∑
i=1

π∗
i F

∗
1i(t/w̃

−1
i | D)

≥
m∑
i=1

π∗
i F

∗
1i

( ∑m
i=1 π

∗
j t∑m

j=1 π
∗
j w̃

−1
j

| D

)
.

By Assumption (A6) and the construction that w̃i = wi[
∑m

j=1(1− π∗
j )]/[

∑m
j=1(1− π∗

j )wj ], we have

[
∑m

i=1 π
∗
i ]/
[∑m

i=1 π
∗
i w̃

−1
i

]
≥ 1. Therefore,

m∑
i=1

π∗
i F

∗
1i(w̃it | D) ≥

m∑
i=1

π∗
i F

∗
1i(t | D).

Hence, by the definition of t1o, it is easy to see that Qw̃(t1o) ≤ Q1(t1o) ≤ α. It yields that tw̃o ≥ t1o and

thus Ψw̃(tw̃o ) ≥ Ψw̃(t1o) ≥ Ψ1(t1o).

S7 Asymptotic theories under weak dependence

In this section, we study the asymptotic control of FDP and FDR for dependent p-values. We

collect some additional regularity conditions to develop the theories under weak dependence. We

first introduce in Section S7.1 the benchmark oracle weight. Then the proofs are developed in two

stages: Section S7.2 shows the consistency of the weight estimators; Section S7.3 illustrates that

the oracle-assisted LASLA controls FDP and FDR asymptotically.
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S7.1 Oracle weight

With slight abuse of notation, we let L∗
i = (1−πτ

i )f0(ti)/f
∗
i (ti|D), where f∗i (·|D) can be interpreted

as the density function of the primary statistic in light of the full network. Again we omit the

conditioning on D throughout for notation simplicity. Since fi(t) is calculated in light of the partial

network DDDi, it should become close to f∗i (t) as DDDi → Di, which will be shown rigorously later in

Section S7.2.

Similarly as the oracle-assisted weights defined in Section 2.3, denote the sorted statistics by

L∗
(1) ≤ . . . ≤ L∗

(m). Let L∗
(k∗) be the threshold, where k∗ = max{j : j−1

∑j
i=1 L

∗
(i) ≤ α}. Then for

Ti > 0, let t∗,+i = ∞ if (1− π∗
i )f0(t)/f

∗
i (t)} ≥ E

{
L∗
(k∗)

}
for all t ≥ 0, else:

t∗,+i = inf
[
t ≥ 0 : {(1− πτ

i )f0(t)/f
∗
i (t)} ≤ E

{
L∗
(k∗)

}]
,

and define w∗
i = 1−F0(t

∗,+
i ). For Ti < 0, we let t∗,−i = −∞ if (1− π∗

i )f0(t)/f
∗
i (t)} ≥ E

{
L∗
(k∗)

}
for

all t ≤ 0, else:

t∗,−i = sup
[
t ≤ 0 : {(1− πτ

i )f0(t)/f
∗
i (t)} ≤ E

{
L∗
(k∗)

}]
,

and the corresponding weight is given by w∗
i = F0(t

∗,−
i ). Again, we let w∗

i = max{w∗
i , ξ} and

w∗
i = min{w∗

i , 1 − ξ} for any sufficiently small constant 0 < ξ < 1. Then the oracle thresholding

rule is provided by

k∗,w = max

{
j : (1/j)

m∑
i=1

w∗
i (1− πτ

i )P
w∗

(j) ≤ α

}
. (S7.14)

We show next that the oracle-assisted weight wi in Algorithm 1 estimates w∗
i consistently under

some regularity conditions in the following section.
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S7.2 Consistency of the weight estimator

The weight consistency result is built upon the consistency of sparsity estimator (2.5) and density

estimator (2.6). The theoretical properties of the former can be similarly proved as Proposition 1

under conditions (A2) and (A3), while letting Ni = {j ∈ [m], j ̸= i} and h ≫ m−1. We shall focus

on the consistency of the density estimator below. Recall that

fi(t) =

∑
j ̸=i[Vh(i, j)Kh(tj − t)]∑

j ̸=i Vh(i, j)
.

We will focus on the cases when the support of the primary statistics TTT = {Ti : i ∈ [m]} is R, e.g.

z-statistics and t-statistics.

(A8) Assume that for all i, j, f∗j (t | Dij = x) has bounded first and second partial derivatives at t

and x.

(A9) Assume that, for all i ∈ [m],

Var


m∑
j=1

Kh(Dij)Kh(tj − t) |DDD

 ≤ C

m∑
j=1

Var {Kh(Dij)Kh(tj − t) |DDDj}

for some constant C > 1, for all t.

Remark 1. Assumption (A8) is a mild regularity condition on the densities of the primary statistics.

Condition (A9) assumes that most of the primary statistics are weakly correlated.

Lemma 1. Let K(·) be a kernel function that satisfies (2.4) and let T be a random variable with

support R. Assume that its conditional density f(· | DDD) has bounded first and second derivatives.
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Then for any fixed t, as the bandwidth h→ 0, we have

E(Kh(T − t) |DDD) = f(t |DDD) +O(h2)σ2
K

E(K2
h(T − t) |DDD) = f(t |DDD)

R(K)

h
+O(h)G(K),

where R(K) =
∫
RK

2(x) dx and G(K) =
∫
R x

2K2(x) dx.

Once Lemma 1 is developed, we can obtain the following proposition on density estimation

consistency.

Proposition 1. Under Assumptions (A8) and (A9), if h ≫ m−1/2, we have for any t, uniformly

for all i ∈ [m],

E({fi(t)− f∗i (t)} |DDD)2 → 0, as DDDi → Di.

Next, we develop the consistency result of the oracle-assisted weight in Algorithm 1. Without

loss of generality, we assume that −∞ < t∗,−i ≤ t∗,+i < +∞ for all i ∈ [m]. Let gi(t) = (1 −

πτ
i )f0(t)/f

∗
i (t) and define functions g−1

i,+ : x→ t and g−1
i,− : x→ t as

g−1
i,+(x) = inf{t ≥ 0 : gi(t) ≤ x},

and

g−1
i,−(x) = sup{t ≤ 0 : gi(t) ≤ x}.

We let g−1
i,+(x) = +∞ if gi(t) ≥ x for all t ≥ 0 and let g−1

i,−(x) = −∞ if gi(t) ≥ x for all t ≤ 0. We

also assume that −∞ < t−i ≤ t+i < +∞ for all i ∈ [m] for simplicity. If not, the data-driven testing

procedure will be more conservative than the oracle one and hence the asymptotic FDR control can

again be guaranteed. Then based on Proposition 1, we obtain the following corollary.
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Corollary 1. Assume that g−1
i,+(x) and g−1

i,−(x) have bounded first derivative for all 0 < x < 1

such that −∞ < g−1
i,−(x) ≤ g−1

i,+(x) < +∞ and there exists some constants α1 and α2 such that

1
k∗

∑k∗

i=1 L
∗
(i) ≤ α1 < α < α2 ≤ 1

k∗+1

∑k∗+1
i=1 L∗

(i) with probability tending to 1. Assume that 1/f∗i (t)

are bounded with probability tending to 1 uniformly for all i ∈ [m]. Further assume that πτ
i ≤ 1−ξ for

sufficiently small constant ξ > 0 and Var
(
L∗
(k∗)

)
= o(1). Then under the conditions of Propositions

1 and 1, we have, as m→ ∞, wi = w∗
i + oP(1), uniformly for all i ∈ [m].

Remark 2. The conditions on g−1
i,+, g

−1
i,− and L∗

(i) are mild and can be easily satisfied by the

commonly used distributions such as normal distribution, t-distribution, etc. The condition on

1/f∗i (t) can be further relaxed by a more sophisticated calculation on the convergence rate of fi(t)

in the proof of Proposition 1. The condition Var
(
L∗
(k∗)

)
= o(1) is mild and can be satisfied by most

of the settings in the scope of this paper. For example, in Setting 1 of Section S4.4, Var
(
L∗
(k∗)

)
is

of the order 10−2.

S7.3 FDP and FDR control under weak dependence

Recall that we define the z-values by Zi = Φ−1(1 − Pi/2), and let Z = (Z1, . . . , Zm)T. We collect

below one additional regularity condition for the asymptotic error rates control. We allow depen-

dency to come from two sources: Dependence of the θi’s and dependency of the p-values given θi’s.

Our conditions on these two types of correlations are respectively specified in (A4) and (A10).

(A10) Define (ri,j)m×m = R = Corr(Z). Assume max1≤i<j≤m |ri,j | ≤ r < 1 for some constant

r > 0. Moreover, there exists γ > 0 such that max{i:θi=0} |Γi(γ)| = o(mκ) for some constant

0 < κ < 1−r
1+r , where Γi(γ) = {j : 1 ≤ j ≤ m, |ri,j | ≥ (logm)−2−γ}.
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We first consider the oracle case. Recall that

k∗,w = max

{
j :
(
Pw∗

(j) /j
) m∑

i=1

w∗
i (1− πτ

i ) ≤ α

}
.

Denote the corresponding threshold for the weighted p-values as tw
∗
and the set of decision rules

as δδδw
∗
. The next theorem shows that both FDP and FDR are controlled at the nominal level

asymptotically under dependency.

Theorem 1. Under (A4), (A5) and (A10), we have for any ε > 0,

lim
DDDi→Di,∀i

FDR(δδδw
∗
) ≤ α, and lim

DDDi→Di,∀i
P(FDP(δδδw

∗
) ≤ α+ ε) = 1.

The next theorem establishes the theoretical properties of the data-driven LASLA procedure.

Recall that δδδw ≡ δδδw(tw) = {δwi (tw) : i ∈ [m]} is the set of data-driven decision rules, where the

LASLA weights are computed by Algorithm 1 with Ni = {j ∈ [m], j ̸= i}. Based on the weight

consistency result, the FDP and FDR of data-driven LASLA can be asymptotically controlled under

dependency.

Theorem 2. Under the conditions in Corollary 1 and Theorem 1, we have for any ε > 0,

lim
DDDi→Di,∀i

FDR(δδδw) ≤ α, and lim
DDDi→Di,∀i

P(FDP(δδδw) ≤ α+ ε) = 1.
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S8 Proof of the theoretical results under dependency

S8.1 Proof of Lemma 1

Proof. By Taylor expansion of f(y |DDD) at y = t, we have

E(Kh(T − t) |DDD) =

∫
Kh(y − t)f(y |DDD) dy

=

∫
Kh(y − t)

[
f(t |DDD) + f ′(t |DDD)(y − t) +

f ′′(t |DDD)

2
(y − t)2

]
dy +O(h2)

= f(t |DDD) +O(h2)σ2
K .

Similarly,

E(K2
h(T − t) |DDD) =

∫
K2

h(y − t)f(y |DDD) dy

=

∫
K2

h(y − t)

[
f(t |DDD) + f ′(t |DDD)(y − t) +

f ′′(t |DDD)

2
(y − t)2

]
dy +O(h)

=
f(t |DDD)R(K)

h
+O(h)G(K).

S8.2 Proof of Proposition 1

Proof. By Lemma 1, we have

E(fi(t) |DDD) =

∑
j ̸=iKh(Dij)E(Kh(tj − t) |DDDj)∑

j ̸=iKh(Dij)
=

∑
j ̸=iKh(Dij)f

∗
j (t |DDDj)∑

j ̸=iKh(Dij)
+O(h2).

By h≫ m−1/2, as DDDi → Di, we have∑
j ̸=iKh(Dij)f

∗
j (t |DDDj)/

∑
j ̸=iKh(Dij)∫

Di
Kh(x)f∗jx(t | Dijx = x) dx/

∫
Di
Kh(x) dx

→ 1,



S8. PROOF OF THE THEORETICAL RESULTS UNDER DEPENDENCY 34

where jx represents the index such that Dijx = x. By Taylor expansion of f∗jx(t | Dijx = x) at

x = 0, we have,∫
Di
Kh(x)f

∗
jx
(t | Dijx = x) dx∫

Di
Kh(x) dx

=

∫
Di
Kh(x)

[
f∗i (t) + (f∗i )

′(t)x+
(f∗

i )
′′(t)
2 x2

]
dx∫

Di
Kh(x) dx

+O(h2)

= f∗i (t) +

∫
Di
Kh(x)

[
(f∗i )

′(t)x+
(f∗

i )
′′(t)
2 x2

]
dx∫

Di
Kh(x) dx

+O(h2).

Under assumption (A8) and the condition that Di is finite, we have that for some constant c > 0,

[E(fi(t) |DDD)− f∗i (t)]
2

≤
(
c

∫
Di

|x|Kh(x) dx

/∫
Di

Kh(x) dx+ c

∫
Di

x2Kh(x)

/∫
Di

Kh(x) dx

)2

+ o(1)

→ 0, as h → 0.

Now for the variance term, by Assumption (A9), we have

Var

(∑
j ̸=i

[Kh(Dij)Kh(tj − t)] |DDD
)

≤ c′
∑
j ̸=i

[
K2

h(Dij)Var(Kh(tj − t) |DDDj)
]
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Hence, as h ≫ m−1/2, by Lemma 1, Assumption (2.4) and the fact that K(·) is positive and

bounded, we take Taylor expansion again and obtain that

Var(fi(t) |DDD) ≤ c′m−1

∫
Di
K2

h(x)
[
f∗jx(t | Dijx = x)

(
R(K)/h− f∗jx(t | Dijx = x)

)]
dx+O(1)

(
∫
Di
Kh(x) dx)2

≤ c′m−1

∫
Di

R(K)
h K2

h(x)
[
f∗i (t) + (f∗i )

′(t)x+
(f∗

i )
′′(t)
2 x2

]
dx+O(1)

(
∫
Di
Kh(x) dx)2

≤ c′m−1

∫
Di

R(K)
h K2

h(x)f
∗
i (t) dx+O(h−1)

(
∫
Di
Kh(x) dx)2

≤ c′′m−1

∫
Di

R(K)
h K2

h(x) dx+O(h−1)

(
∫
Di
Kh(x) dx)2

≤ c′′m−1h−2R(K)

∫
RK

2(y) dy

(
∫
Di
Kh(x) dx)2

≤ c′′′m−1h−2 = o(1),

for some constant c′′, c′′′ > 0. Hence, as DDDi → Di, combining the bias term and variance term, the

consistency result is proved.

S8.3 Proof of Corollary 1

Proof. Recall that

Li =
(1− πi)f0(Ti)

fi(Ti)
.

Then based on the consistency results on πi and fi(t) in Propositions 1 (with Ni = {j ∈ [m], j ̸= i}

and h≫ m−1) and 1, together with the condition that 1/f∗i (t) is bounded and πτ
i ≤ 1− ξ, we have,

uniformly for all i ∈ [m],

Li = (1 + oP(1))L
∗
i .
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Then by the condition that 1
k∗

∑k∗

i=1 L
∗
(i) ≤ α1 < α < α2 ≤ 1

k∗+1

∑k∗+1
i=1 L∗

(i) with probability

tending to 1 and Var
(
L∗
(k∗)

)
= o(1), it yields that

L(k) = L∗
(k∗) + oP(1) = E

{
L∗
(k∗)

}
+ oP(1).

Then based on the definitions of g−1
i,+ and g−1

i,−, we have that

t∗,+i = g−1
i,+

[
E
{
L∗
(k∗)

}]
and t∗,−i = g−1

i,−

[
E
{
L∗
(k∗)

}]
,

and that

t+i = g−1
i,+

[
(1 + oP(1))L(k)

]
and t−i = g−1

i,−
[
(1 + oP(1))L(k)

]
,

based on the condition that πτ
i ≤ 1− ξ. Then because g−1

i,+ and g−1
i,− have bounded first derivative,

we have

t+i = t∗,+i + oP(1) and t
−
i = t∗,−i + oP(1).

By Assumption (A8), f0 is bounded, then we obtain

wi = w∗
i + oP(1),

uniformly for all i ∈ [m].



37

S8.4 Proof of Theorem 1

Proof. The FDP of the oracle procedure at the thresholding level t can be calculated by

FDP(t) =

∑m
i=1 I{Pw∗

i ≤ t, θi = 0}
max{

∑m
i=1 I{Pw∗

i ≤ t}, 1}

=

∑m
i=1 P(Pw∗

i ≤ t, θi = 0)

max{
∑m

i=1 I{Pw∗
i ≤ t}, 1}

·
∑m

i=1 I{Pw∗

i ≤ t, θi = 0}∑m
i=1 P(Pw∗

i ≤ t, θi = 0)

=

∑m
i=1 w

∗
i (1− π∗

i )t

max{
∑m

i=1 I{Pw∗
i ≤ t}, 1}

·
∑m

i=1 I{Pw∗

i ≤ t, θi = 0}∑m
i=1 P(Pw∗

i ≤ t, θi = 0)

≤
∑m

i=1 w
∗
i (1− πτ

i )t

max{
∑m

i=1 I{Pw∗
i ≤ t}, 1}

·
∑m

i=1 I{Pw∗

i ≤ t, θi = 0}∑m
i=1 P(Pw∗

i ≤ t, θi = 0)
.

Then by Steps 2 and 3 in the proofs of Theorem 1 by replacing wi’s with the true w∗
i ’s, and

together with the proofs of Theorem 2 in Cai et al. (2022), by Assumption (A10), we have

sup
0≤t≤tm

∣∣∣∣∣
∑m

i=1 I{Zw∗

i ≥ t, θi = 0} −
∑m

i=1 P(Zw∗

i ≥ t, θi = 0)∑m
i=1 P(Zw∗

i ≥ t, θi = 0)

∣∣∣∣∣→ 0,

in probability. Then the FDP and FDR are controlled and Theorem 1 is proved.

S8.5 Proof of Theorem 2

Proof. Note that, the FDP of the data-driven procedure at the thresholding level t can be calculated

by

FDP (t) =

∑m
i=1 I{Pw

i ≤ t, θi = 0}
max[

∑m
i=1 I{Pw

i ≤ t}, 1]

=

∑m
i=1 P(Pw

i ≤ t | θi = 0, wi)P(θi = 0)

max[
∑m

i=1 I{Pw
i ≤ t}, 1]

·
∑m

i=1 I{Pw
i ≤ t, θi = 0}∑m

i=1 P(Pw
i ≤ t | θi = 0, wi)P(θi = 0)

,

Define the event A = [{wi}mi=1 : wi = w∗
i + o(1)], then based on the result of Corollary 1, we have

that P(A) → 1. Next, we shall focus on the event A. For {wi}mi=1 ∈ A, uniformly for all i ∈ [m],

P(Pw
i ≤ t|θi = 0, wi, Ti > 0) = wit = [1 + o(1)]w∗

i t,
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uniformly for all t defined in the range defined in Step 3 of Theorem 1. The same equality holds if

we replace the condition Ti > 0 by Ti < 0 because the oracle quantity w∗
i is fixed given the sign of

Ti. Then we have, uniformly for all i ∈ [m],

P(Pw
i ≤ t | θi = 0, wi) = P(Pw

i ≤ t | θi = 0, wi, Ti > 0)P(Ti > 0 | θi = 0, wi)

= + P(Pw
i ≤ t | θi = 0, wi, Ti < 0)P(Ti < 0 | θi = 0, wi)

= [1 + o(1)]w∗
i t[P(Ti > 0 | θi = 0, wi) + P(Ti < 0 | θi = 0, wi)]

= [1 + o(1)]w∗
i t,

which implies that

P(Pw
i ≤ t | θi = 0, wi)P(θi = 0) = [1 + o(1)]w∗

i (1− π∗
i )t ≤ [1 + o(1)]w∗

i (1− πτ
i )t.

Thus, based on the results of Proposition 1 and Corollary 1 and proofs of Theorems 1 and 1, we

obtain that the oracle-assisted weight produces a more conservative procedure asymptotically. This

concludes the proof of Theorem 2.
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